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Abstract. In this paper we observe that M -connections of a Sasakian manifold introduced

first by Okumura ([8]) are canonical connections in the sense of Olmos-Sánchez ([9]) and

we show that the parallelism of the second fundamental form of an invariant submanifold

in a regular Sasakian manifold relative to an M -connection is equivalent to the parallelism

of the second fundamental form of the corresponding complex submanifold in the quotient

Kähler manifold. This result generalizes a main result in [7] which was essential to give

a new proof of Nakagawa-Takagi’s theorem classifying complex submanifolds of complex

projective spaces with parallel second fundamental form.

Introduction

Let N be a Riemannian manifold with a Riemannian metric gN and ∇N denotes
the Levi-Civita connection of gN . The concept of the canonical connections of a
Riemannian manifold was used by Olmos-Sánchez in [9]. An affine connection ∇c

of N is called a canonical connection of (N, gN ) if

(1) ∇c is a metric connection:

(0.1) ∇cg = 0.
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(2) The tensor field D on N of type (1, 2) defined by D := ∇N −∇c satisfies the
equation

(0.2) ∇cD = 0.

The Levi-Civita connection ∇N is a trivial canonical connection of a Riemannian
manifold (D = 0).

Let φ : N → Ñ be a smooth immersion of N into a Riemannian manifold Ñ .
Then the usual covariant derivative of the second fundamental form αN of φ is
defined in terms of the normal connection ∇⊥ and the Levi-Civita connection ∇N

as

(0.3) (∇∗
XαN )(Y, Z) := ∇⊥

X(αN (Y, Z))− αN (∇N
XY, Z)− αN (Y,∇N

XZ).

When N satisfies ∇∗αN = 0, we say that a submanifold N of Ñ has parallel second
fundamental form in the usual sense. Symmetric R-spaces standardly imbedded
in a Euclidean space are well-known to be characterized by Ferus ([2]) in 1974 as
submanifold immersed in Euclidean space satisfying ∇∗αN = 0. As a wider concept
the covariant derivative of the second fundamental form αN in terms of the normal
connection ∇⊥ and a canonical connection ∇c is defined by

(0.4) (∇c
XαN )(Y, Z) := ∇⊥

X(αN (Y, Z))− αN (∇c
XY, Z)− αN (Y,∇c

XZ).

General R-spaces standardly imbedded in a Euclidean space were characterized
by Olmos-Sánchez ([9]) in 1991 as submanifold immersed in Euclidean space satis-
fying ∇cαN = 0, namely parallel second fundamental form relative to a canonical
connection ∇c, as follows:

Theorem 0.1 (Olmos and Sánchez [9]). Let N be a connected compact submanifold

fully embedded in the Euclidean space Rl. Then the following three conditions are

equivalent each other:

(1) There is a canonical connection ∇c on N such that

(0.5) ∇cαN = 0.

(2) N is a homogeneous submanifold with constant principal curvatures.

(3) N is an orbit of an s-representation, that is, an R-space standardly embedded

in the Euclidean space.

Recently in [7] we used Olmos-Sánchez’s Theorem 0.1 in order to give a new
proof of Nakagawa-Takagi’s theorem classifying complex submanifolds M in com-
plex projective spaces CPn satisfying ∇∗αM = 0. Let π : S2n+1(1) → CPn be
the Hopf fibration over the n-dimensional complex projective space CPn, which is
regarded as a Riemannian submersion with totally geodesic fibers. An essential
result in [7] was as follows:

2



Theorem 0.2 ([7]). Suppose that Mm be an m-dimensional complex submanifold

of CPn and M̂2m+1 = π−1(Mm) be the inverse image of M under the Hopf fibration

π. Then there exists a non-trivial canonical connection ∇c on the inverse image

M̂ = π−1(M) such that the following two conditions are equivalent each other:

(A) Mm has parallel second fundamental form: ∇∗αM = 0.

(B) M̂2m+1 = π−1(Mm) has parallel second fundamental form relative to the

canonical connection ∇c: ∇cαM̂ = 0.

In [7] this non-trivial canonical connection ∇c was explicitly given by defining
the tensor field D of type (1, 2) on M̂2m+1 = π−1(Mm) ⊂ S2n+1(1) ⊂ Cn+1 as

(0.6)


DX̃(Ỹ ) := −⟨

√
−1X̃, Ỹ ⟩

√
−1x ∈ VxM̂,

DX̃(V ) :=
√
−1X̃ = J̃X ∈ HxM̂,

DV (X̃) :=
1

2

√
−1X̃ =

1

2
J̃X ∈ HxM̂,

DV (V ) := 0

for each horizontal vectors X̃, Ỹ and the vertical vector V =
√
−1x on M̂2m+1.

The purpose of this paper is to generalize Theorem 0.2 from odd-dimensional
standard spheres S2n+1(1) to general Sasakian manifolds and invariant submani-
folds. We use the notion of M -connections of a Sasakian manifold as canonical
connections. In 1960s it was introduced first by Masafumi Okumura and inves-
tigated by Kanji Motomiya, Touru Kato, Toshio Takahashi ([8], [6], [4], [11]), as a
one-parameter family of affine connections on a Sasakian manifold which make all
structure tensor fields to be parallel. We observe that each M -connection of a
Sasakian manifold is a canonical connection in the above sense of Olmos-Sánchez.
The inverse image M̂2m+1 = π−1(Mm) here is an invariant submanifold of S2n+1(1)
as a Sasakian manifold. We will give attentions to invariant submanifolds of a
Sasakian manifold. Main results are Theorems 2.2 and 2.4 in Section 2. Though
M -connections are parametrized by real numbers r ∈ R, an M -connection with
r = − 1

2 is crucial for our problem. We show that the parallelism of the second
fundamental form of an invariant submanifold in a regular Sasakian manifold rela-
tive to the M -connection with r = − 1

2 is equivalent to the usual parallelism of the
second fundamental form of the corresponding complex submanifold in the quotient
Kähler manifold.

This paper is organized as follows: In Section 1 we explain the definition of M -
connections on a Sasakian manifold and discuss a relation of M -connections with
canonical connections in the sense of Olmos-Sánchez. In Section 2 we discuss the
covariant derivatives and the parallelism of the second fundamental form of invariant
submanifolds in a general Sasakian manifold with respect to M -connections. Main
results and formulas are described precisely. Finally we illustrate our result in
the Riemannian submersion setting of invariant submanifolds of regular Sasakian
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manifolds and corresponding complex submanifolds of its quotient Kähler manifolds,
which generalizes Theorem 0.2.

Throughout this paper any manifold is smooth, connected and second-countable.

1 Canonical connections of Sasakian manifolds

Let M2m+1 be a (2m+1)-dimensional Sasakian manifold with structure tensor
fields ϕ,ξ,η and g ([1] and its References). Then the fundamental equations for those
structure tensor fields are described as follows: For each X,Y ∈ TM2m+1

ϕ2 = ϕ ◦ ϕ = −I + η ⊗ ξ,(1.1)

η(ξ) = 1,(1.2)

g(X, ξ) = η(X),(1.3)

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),(1.4)

(dη)(X,Y ) = g(ϕ(X), Y ),(1.5)

(∇Xϕ)(Y ) = η(Y )X − g(X,Y )ξ(1.6)

Here ϕ is a tensor field of type (1, 1), ξ is a vector field on M2m+1 which is called
a characteristic vector field or Reeb vector field, η is a 1-form on M2m+1 and g is a
Riemannian metric on M2m+1. We denote by ∇ = ∇M the Levi-Civita connection
of g. For each X ∈ TM2m+1, we have

(1.7) ∇Xξ = ϕX.

If a vector field X is invariant under the flow of ξ, then we have

(1.8) ∇ξX = ∇Xξ + [ξ,X] = ∇Xξ = ϕX.

For each point x ∈ M set

VxM
2m+1 := Rξx,

HxM
2m+1 := {v ∈ TxM | gx(ξx, v) = 0 } = ϕx(TxM

2m+1)

and we have an orthogonal direct sum decomposition of TM2m+1 into vector sub-
bundles as

(1.9) TM2m+1 = VM2m+1 ⊕HM2m+1.

Any vectorX ∈ TM2m+1 can be decomposed asX = VX+HY , where VX andHX
denote the VM2m+1-component and the HM2m+1-component of X, respectively.

Now, following the definition (0.6) of the canonical connection ∇c = ∇−D on
M̂ ⊂ S2n+1(1) ⊂ Cn+1, we can define a tensor field D̃ of type (1, 2) on a general
Sasakian manifold M2m+1 by

(1.10)


D̃X̃ Ỹ := −g(ϕX̃, Ỹ )ξ ∈ VxM

2m+1,

D̃X̃ξ := ϕX̃ ∈ HxM
2m+1,

D̃ξX̃ :=
1

2
ϕX̃ ∈ HxM

2m+1,

D̃ξξ := 0
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for each X̃, Ỹ ∈ HxM
2m+1 and the characteristic vector ξ ∈ VxM

2m+1 at a point
x ∈ M2m+1 on M2m+1, and define an affine connection ∇̃ := ∇− D̃ on a Sasakian
manifold M2m+1.

Here we shall explain the notion of M -connections. For each real number r ∈ R,
define a tensor field D(r) of type (1, 2) on a Sasakian manifold M2m+1 by

(1.11) D
(r)
X Y := −g(ϕ(X), Y )ξ − rη(X)ϕ(Y ) + η(Y )ϕ(X) (∀X,Y ∈ TM2m+1)

and define an affine connection of M2m+1 as

(1.12) ∇(r) := ∇−D(r).

We should notice that

Lemma 1.1. When r = −1

2
, it holds D(r) = D̃ and thus ∇(r) = ∇̃.

Since

g(D
(r)
X Y, Z) =− g(ϕ(X), Y )g(ξ, Z)− rη(X)g(ϕ(Y ), Z) + η(Y )g(ϕ(X), Z)

=− g(ϕ(X), Y )g(ξ, Z)− rη(X)g(ϕ(Y ), Z) + g(ξ, Y )g(ϕ(X), Z)

is skew-symmetric with respect to Y and Z, the affine connection ∇(r) is a metric
connection with respect to g, that is,

(1.13) ∇(r)g = 0.

For each X ∈ TM2m+1, as

D
(r)
X ξ = −g(ϕ(X), ξ)ξ − rη(X)ϕ(ξ) + η(ξ)ϕ(X) = ϕ(X)

we have

(1.14) ∇(r)
X ξ = ∇Xξ −D

(r)
X ξ = ϕ(X)− ϕ(X) = 0.

Thus

(1.15) (∇(r)
X η)(Y ) = g(Y,∇(r)

X ξ) = 0.

By definition we compute

(D
(r)
X ϕ)Y =D

(r)
X (ϕ(Y ))− ϕ(D

(r)
X Y )

=− g(ϕ(X), ϕ(Y ))ξ − rη(X)ϕ(ϕ(Y )) + η(ϕ(Y ))ϕ(X)

− ϕ(−g(ϕ(X), Y )ξ − rη(X)ϕ(Y ) + η(Y )ϕ(X))

=− (g(X,Y )− η(X)η(Y ))ξ − rη(X)(−Y + η(Y )ξ) + 0

− 0 + rη(X)(−Y + η(Y )ξ)− η(Y )(−X + η(X)ξ))

=− g(X,Y )ξ + η(Y )X

=(∇Xϕ)(Y ).
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Thus we have

(1.16) (∇(r)
X ϕ)(Y ) = (∇Xϕ)(Y )− (D

(r)
X ϕ)Y = 0.

It follows from (1.13), (1.14), (1.15) and (1.16) that

(1.17) ∇(r)D(r) = 0.

Therefore we obtain

Lemma 1.2. For each r ∈ R, the affine connection ∇(r) is a canonical connection

of a Sasakian manifold M2m+1 with respect to the structure Riemannian metric g.

2 Parallelism of the second fundamental form of an invariant subman-

ifold with respect to the canonical connection

Let M̂ be an invariant submanifold of a Sasakian manifold M̃ with (ϕ, ξ, η, g),
that is, by definition ϕx(TxM̂) ⊂ TxM̂ for each x ∈ M̂ . For the definition and
fundamental properties of invariant submanifolds refer [1], [5] and so on. Then M̂
is also known to be a Sasakian manifold by restriction and a minimal submanifold
in (M̃, g) in the sense of vanishing the mean curvature vector field. Since M̂ is a
Sasakian manifold, M̂ is equipped with M -connections {∇(r) | r ∈ R} explained in
Section 1. The Gauss formula and the Weingarten formula are

∇XY = ∇XY + αM̂ (X,Y ),(2.1)

∇Xν = −AM̂
ν (X) +∇⊥

Xν.(2.2)

for any vector fields X, Y on M̂ and any normal vector field ν to M̂ . Here αM̂

and AM̂ denote the second fundamental form and the shape operator of M̂ in M̃ ,
respectively. Then the second fundamental form and the shape operator of M̂
satisfy the following equations ([5]):

αM̂ (ϕ(X), Y ) = αM̂ (X,ϕ(Y )) = ϕ(αM̂ (X,Y )),(2.3)

αM̂ (X, ξ) = 0(2.4)

and

ϕ(AM̂
ν (X)) = −AM̂

ν (ϕ(X)) = AM̂
ϕ(ν)(X),(2.5)

AM̂
ν (ξ) = 0(2.6)

for eachX,Y ∈ TM̂ and each ν ∈ T⊥M̂ . By differentiating covariantly the equation

(2.4) in terms of the Levi-Civita connection ∇M̂ , we compute

0 =∇⊥
Y (α

M̂ (X, ξ))

=(∇∗
Y α

M̂ )(X, ξ) + αM̂ (∇M̂
Y X, ξ) + αM̂ (X,∇M̂

Y ξ)

=(∇∗
Y α

M̂ )(X, ξ) + αM̂ (X,ϕ(Y )).
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It follows from this equation and (2.4) that

Proposition 2.1. If M̂ has parallel second fundamental form in the sense of

∇∗αM̂ = 0, then M̂ must be totally geodesic, that is, αM̂ = 0.

By covariantly differentiating the equation (2.4) in terms of the canonical con-
nection ∇(r), we compute

0 =∇⊥
Y (α

M̂ (X, ξ))

=(∇(r)
Y αM̂ )(X, ξ) + αM̂ (∇(r)

Y X, ξ) + αM̂ (X,∇(r)
Y ξ)

=(∇(r)
Y αM̂ )(X, ξ).

Hence for any r ∈ R we have

(2.7) (∇(r)
X αM̂ )(ξ, Y ) = 0

for each X,Y ∈ TM̂ .
Note that any vectors X̃, Ỹ ∈ HxM̂ can be locally extended to vector fields

X̃, Ỹ ∈ HM̂ invariant under the flow of ξ. Thus by (1.8) we have

(2.8) ∇(r)
ξ X̃ = ∇M̂

ξ X̃ −D
(r)
ξ X̃ = ϕ(X̃) + rϕ(X̃) = (1 + r)X̃.

By using (2.8) we compute

0 =ξ(g(αM̂ (X̃, Ỹ ), ν̃))

=g(∇⊥
ξ (α

M̂ (X̃, Ỹ )), ν̃) + g(αM̂ (X̃, Ỹ ),∇⊥
ξ ν̃)

=g((∇(r)
ξ αM̂ )(X̃, Ỹ ), ν̃)

+ g(αM̂ (∇(r)
ξ X̃, Ỹ ), ν̃) + g(αM̂ (X̃,∇(r)

ξ Ỹ ), ν̃) + g((∇(r)
ξ αM̂ )(X̃, Ỹ ),∇⊥

ξ ν̃)

=g((∇(r)
ξ αM̂ )(X̃, Ỹ ), ν̃)

+ g(αM̂ ((1 + r)ϕ(X̃), Ỹ ), ν̃) + g(αM̂ (X̃, (1 + r)ϕ(Ỹ )), ν̃) + g((∇(r)
ξ αM̂ )(X̃, Ỹ ),∇M̂

ξ ν̃)

=g((∇(r)
ξ αM̂ )(X̃, Ỹ ), ν̃)

+ g(αM̂ ((1 + r)ϕ(X̃), Ỹ ), ν̃) + g(αM̂ (X̃, (1 + r)ϕ(Ỹ )), ν̃) + g((∇(r)
ξ αM̂ )(X̃, Ỹ ), ϕ(ν̃))

=g((∇(r)
ξ αM̂ )(X̃, Ỹ ), ν̃)

+ (1 + r)g(αM̂ (ϕ(X̃), Ỹ ), ν̃) + (1 + r)g(αM̂ (X̃, ϕ(Ỹ )), ν̃)− g(ϕ(∇(r)
ξ αM̂ )(X̃, Ỹ ), ν̃)

=g((∇(r)
ξ αM̂ )(X̃, Ỹ ), ν̃) + (1 + 2r)g(αM̂ (ϕ(X̃), Ỹ ), ν̃).

Hence we obtain

(2.9) (∇(r)
ξ αM̂ )(X̃, Ỹ ) + (1 + 2r)αM̂ (ϕ(X̃), Ỹ ) = 0
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for each X̃, Ỹ ∈ HM̂ . In particular we find that if r = −1

2
, then we have

(2.10) (∇(r)
ξ αM̂ )(X̃, Ỹ ) = (∇(− 1

2 )

ξ αM̂ )(X̃, Ỹ ) = 0.

For each X̃, Ỹ , Z̃ ∈ HM̂ , by using the definition (1.11) and (2.4) we compute

(∇(r)

X̃
αM̂ )(Ỹ , Z̃) =∇⊥

X̃
(αM̂ (Ỹ , Z̃))− αM̂ (∇(r)

X̃
Ỹ , Z̃)− αM̂ (Ỹ ,∇(r)

X̃
Z̃)

=∇⊥
X̃
(αM̂ (Ỹ , Z̃))− αM (∇M̂

X̃
Ỹ , Z̃)− g(ϕX̃, Ỹ )αM̂ (ξ, Z̃)

− αM̂ (Ỹ ,∇M̂
X̃
Z̃)− g(ϕX̃, Z̃)αM̂ (Ỹ , ξ)

=∇⊥
X̃
(αM̂ (Ỹ , Z̃))− αM̂ (∇M̂

X̃
Ỹ , Z̃)− αM̂ (Ỹ ,∇M̂

X̃
Z̃)

=(∇∗
X̃
αM̂ )(Ỹ , Z̃),

(2.11)

where we use

∇(r)

X̃
Ỹ = ∇M̂

X̃
Ỹ −D

(r)

X̃
Ỹ = ∇M̂

X̃
Ỹ + g(ϕ(X̃), Ỹ )ξ.

Therefore combing (2.7), (2.9) and (2.11) we obtain

Theorem 2.2. Let M̂ be an invariant submanifold of a Sasakian manifold M̃ .

Suppose that M̂ is not totally geodesic. Then r = −1

2
if and only if

(2.12) (∇(r)
X αM̂ )(Y, Z) = (∇∗

HXαM̂ )(HY,HZ)

for each X,Y, Z ∈ TM̂ .

Corollary 2.3. For any invariant submanifold M̂ of a Sasakian manifold M̃ , the

following two conditions are equivalent each other:

(a) M̂ has η-parallel second fundamental form in the sense of [3]:

(∇∗
HXαM̂ )(HY,HZ) = 0

for each X,Y, Z ∈ TM̂ .

(b) M̂ has parallel second fundamental form with respect to the canonical connection

∇(− 1
2 ):

∇(− 1
2 )

X αM̂ = 0

for each X,Y, Z ∈ TM̂ .

8



Furthermore we suppose that M̃2n+1 is a regular Sasakian manifold. Let
Qn := M̃2n+1/ξ be its quotient Kähler manifold by the flow of the Reeb vector field

ξ with the natural projection π : M̃2n+1 → Q = M̃2n+1/ξ, which is a Riemannian
submersion of totally geodesic fibers. Let Mm be a complex submanifold of the quo-
tient Kähler manifold Qn = M̃2n+1/ξ. Then the inverse image M̂2m+1 = π−1(Mm)

is an invariant submanifold of M̃2n+1 and thus it is also a Sasakian manifold:

M̃2n+1

π π S1

Qn := M̃2n+1/ξ

-M̂2m+1 = π−1(Mm)
φ̂

? ?
S1

Mm
φ

-

By applying Theorem 2.2 to this setting of Riemannian submersions we obtain a
formula

(∇(− 1
2 )

X αM̂ )x(Y, Z) =(∇∗
HXαM̂ )x(HY,HZ)

=((∇∗
(dπ)xX

αM )π(x)((dπ)xY, (dπ)xZ))̃

(2.13)

for each x ∈ M̂ and any X,Y, Z ∈ TxM̂ . Here ( )̃ denotes the horizontal lift of a

vector on Q under the Riemannian submersion π : M̃2n+1 → Qn.
Now we obtain

Theorem 2.4. Suppose that M̃2n+1 is a regular Sasakian manifold. Let Qn :=

M̃2n+1/ξ be its quotient Kähler manifold with the natural projection π : M̃2n+1 →

Q = M̃2n+1/ξ. Let Mm be an m-dimensional complex submanifold of Q and

M̂2m+1 = π−1(Mm) be the inverse image of Mm under the projection π. Then

there exists a non-trivial canonical connection ∇c on the inverse image M̂2m+1 =

π−1(Mm) such that the following two conditions are equivalent each other:

(A) Mm has parallel second fundamental form: ∇∗αM = 0.

(B) M̂2m+1 = π−1(Mm) has parallel second fundamental form relative to the

canonical connection ∇c: ∇cαM̂ = 0.

Proof. Since the inverse image M̂2m+1 = π−1(Mm) of a complex submanifold M

is an invariant submanifold of M̃2n+1, we take an M -connection ∇(− 1
2 ) relative to

its Sasakian structure as a canonical connection ∇c on M̃2n+1. The claim of this

theorem follows from the formula (2.13).
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