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Abstract. It is known that an isometric action of a Lie group on a compact
symmetric space gives rise to a proper Fredholm action of a path group on a path
space via the gauge transformations. In this paper, supposing that the isometric
action is a Hermann action (i.e. an isometric action of a symmetric subgroup of
the isometry group) we study the principal curvatures and the austere property
of orbits of the path group action. Here an austere submanifold is a minimal
submanifold such that the set of principal curvatures in the direction of each
normal vector is invariant under the multiplication by minus one. The results
show that there exist many infinite dimensional austere submanifolds in Hilbert
spaces.
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Introduction

Let M = G/K be a symmetric space of compact type and H a closed subgroup
of G. Then H acts on M isometrically by left translations, namely

b · (aK) := (ba)K,

where b ∈ H and aK ∈ M . This action is closely related to the isometric action of
H ×K on G defined by the formula

(b, c) · a := bac−1,

where (b, c) ∈ H × K and a ∈ G. In fact the natural Riemannian submersion
π : G → M is equivariant with respect to these actions and each H × K-orbit is
expressed as the inverse image of an H-orbit under π.
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In addition to those actions there is an associated path group action on a path
space, which was discovered by Terng [29] (see also [25], [28] and [30]). Let G :=
H1([0, 1], G) denote the path group of all Sobolev H1-paths from [0, 1] to G and
Vg := L2([0, 1], g) the path space of all L2-paths from [0, 1] to the Lie algebra g of
G. Then G is a Hilbert Lie group and Vg a separable Hilbert space. Consider the
isometric action of G on Vg given by the gauge transformations

g ∗ u := gug−1 − g′g−1,

where g ∈ G, u ∈ Vg and g′ denotes the weak derivative of g. Then the subgroup

P (G,H ×K) := {g ∈ G | (g(0), g(1)) ∈ H ×K}

acts on Vg by the same formula. The P (G,H ×K)-action is closely related to the
H ×K-action via a natural Riemannian submersion Φ : Vg → G, called the parallel
transport map, which has properties similar to those of π mentioned above.

The concept of P (G,H ×K)-actions, or more generally P (G,L)-actions where L
is a closed subgroup of G × G, was introduced in her paper [29] with the purpose
of finding infinite dimensional analogues of finite dimensional symmetric spaces and
related concepts (see also [8]). In fact if H is a symmetric subgroup of G then
the P (G,H ×K)-action is essentially the isotropy representation of an affine Kac-
Moody symmetric space ([2], [6], [26]). Besides, it should be also mentioned that
P (G,H ×K)-actions serve as a useful tool for studying the geometry of H-actions
on M (e.g. [4]). A fundamental problem is to study the submanifold geometry of
orbits of P (G,H ×K)-actions. Note that every orbit of the P (G,H ×K)-action is
a proper Fredholm (PF) submanifold of the Hilbert space Vg ([28]).

In this paper we study the principal curvatures and the austere property of orbits
of the P (G,H ×K)-action. Here a submanifold is called austere if for each normal
vector ξ the set of eigenvalues with multiplicities of the shape operator Aξ is invariant
under the multiplication by (−1). By definition austere submanifolds are minimal
submanifolds. The concept of austere submanifolds was originally introduced by
Harvey and Lawson [5] in the study of calibrated geometry in the finite dimensional
Riemannian case. We can similarly define a PF submanifold to be austere ([19],
[20]) since its shape operators are compact self-adjoint operators. It is an interesting
problem to give examples of austere submanifolds.

To study the principal curvatures and the austere property of those orbits, in this
paper we will suppose that H is a symmetric subgroup of G, that is, there exists an
involutive automorphism τ of G such that H lies between the fixed point subgroup
Gτ and its identity component. Such an H-action is called a Hermann action ([9]).
It follows that any Hermann action is hyperpolar ([8]), that is, there exists a closed
connected totally geodesic submanifold Σ of M which is flat in the induced metric
and meets every H-orbit orthogonally. Such a Σ is called a section of the H-action.
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The principal curvatures and the austere property of orbits of Hermann actions can
be described Lie algebraically via the root space decompositions ([3], [10], [23]).

The purpose of this paper is to give an explicit formula for the principal curvatures
of P (G,H×K)-orbits (Theorem 5.1) and to show the relation between the following
two conditions:

(A) the orbit H · (expw)K through (expw)K is an austere submanifold of M ,
(B) the orbit P (G,H ×K) ∗ ŵ through ŵ is an austere PF submanifold of Vg,

where w ∈ g and ŵ denotes the constant path with value w. To explain the results
we write σ and τ for the involutions of G associated to the symmetric subgroups
K and H respectively. We suppose that the bi-invariant Riemannian metric on the
semisimple Lie group G is induced by a negative multiple of the Killing form of g.
We denote by g = k + m (resp. g = h + p) the orthogonal direct sum decomposition
into the (±1)-eigenspaces of the differential of σ (resp. τ). Take a maximal abelian
subspace t in m∩ p so that Σ := π(exp t) is a section of the Hermann action. Let ∆
denote the root system of t associated to the adjoint representation of t on gC (cf.
Section 2). We will prove the following theorem (Theorem 6.1):

Theorem I. If ∆ is a reduced root system then (A) and (B) are equivalent.

Then without supposing that ∆ is a reduced root system we will prove the fol-
lowing theorem (Theorems 7.2, 7.5 and 7.8):

Theorem II.

(i) Suppose that σ = τ . Then (A) and (B) are equivalent.
(ii) Suppose that σ and τ commute. Then (A) implies (B).
(iii) Suppose that G is simple. Then (A) implies (B).

Note that (B) does not imply (A) in the cases (ii) and (iii). In fact we will show
a counterexample of a minimal H-orbit which is not austere but the corresponding
P (G,H ×K)-orbit is austere (cf. Section 8). Without the assumption of (ii) or (iii)
we do not know whether (A) implies (B) or not, because in the non-simple case there
exist many non-commutative pairs of involutive automorphisms of G ([18]). However
the above theorems cover all known examples of austere orbits of Hermann actions
([10], [23]) and thus applying those examples to the above theorems we obtain many
examples of infinite dimensional austere PF submanifolds in Hilbert spaces. Notice
that so obtained austere PF submanifolds are not totally geodesic due to [19].

This paper is organized as follows. In Section 1 we review basic knowledge on
P (G,H × K)-actions and the parallel transport map. In particular we emphasize
that each P (G,H ×K)-orbit is expressed as the inverse image of an H-orbit under
the Riemannian submersion π ◦ Φ : Vg → G → M . In Section 2 we review funda-
mental results on the submanifold geometry of orbits of Hermann actions, especially
on Lie algebraic expressions of their tangent spaces, normal spaces and principal
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curvatures. In Section 3 we introduce a hierarchy of curvature-adapted submani-
folds in symmetric spaces and formulate the curvature-adapted property of orbits
of Hermann actions. In Section 4 we refine a formula originally given in [14] and
[20] that describes the relation of principal curvatures between a curvature-adapted
submanifold of M and its inverse image under π ◦ Φ. In Section 5, applying orbits
of Hermann actions to the refined formula we derive an explicit formula for the
principal curvatures of P (G,H×K)-orbits. In Section 6, using this explicit formula
we formulate the conditions (A) and (B) in terms of roots in ∆ and prove Theorem
I. In Section 7 we show an inequality between the multiplicities of roots α and 2α
in ∆ and prove Theorem II. Finally in Section 8 we show a counterexample to the
converse of (ii) and (iii) of Theorem II and mention further remarks on the converse.

1. Preliminaries

Let G be a connected compact semisimple Lie group and K a closed subgroup of
G. Suppose that K is a symmetric subgroup of G, that is, there exists an involutive
automorphism σ of G satisfying the condition Gσ

0 ⊂ K ⊂ Gσ, where Gσ denotes the
fixed point subgroup of G and Gσ

0 its identity component. We denote by g and k
the Lie algebras of G and K respectively. The differential of σ induces an involutive
automorphism of g, which is still denoted by σ. The direct sum decomposition
g = k + m into the (±1)-eigenspaces of σ is called the canonical decomposition. We
fix an Ad(G)-invariant inner product 〈·, ·〉 of g which is a negative multiple of the
Killing form of g. Then it is invariant under all automorphisms of g and the canonical
decomposition is orthogonal. We equip the corresponding bi-invariant Riemannian
metric with G and the G-invariant Riemannian metric with the homogeneous space
G/K. Then M := G/K is a symmetric space of compact type and the projection
π : G→M is a Riemannian submersion with totally geodesic fiber.

We denote by G := H1([0, 1], G) the path group of all Sobolev H1-paths from
[0, 1] to G and by Vg := L2([0, 1], g) the path space of all L2-paths from [0, 1] to g.
Then G is a Hilbert Lie group and Vg a separable Hilbert space. We consider the
isometric action of G on Vg defined by the gauge transformations

g ∗ u := gug−1 − g′g−1,

where g ∈ G and u ∈ Vg. We know that this action is proper and Fredholm ([24,
Theorem 5.8.1], [28, Section 4]). For any closed subgroup L of G×G the subgroup

P (G,L) := {g ∈ G | (g(0), g(1)) ∈ L}
acts on Vg by the same formula. It follows that the P (G,L)-action is also proper and
Fredholm ([29, p. 132]). Thus every orbit of the P (G,L)-action is a proper Fredholm
(PF) submanifold of Vg ([24, Theorem 7.1.6]). We know that the P (G, {e} × G)-
action on Vg is simply transitive ([30, Corollary 4.2]) and that the P (G,G × {e})-
action on Vg is also simply transitive ([19, Section 5]).
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The parallel transport map ([29], [30]) Φ : Vg → G is defined by

Φ(u) := gu(1),

where gu ∈ G is the unique solution to the linear ordinary differential equation{
g−1
u g′u = u,
gu(0) = e.

We know that Φ is a Riemannian submersion and a principal Ωe(G)-bundle, where
Ωe(G) = P (G, {e}×{e}) denotes the based loop group ([30, Corollary 4.4, Theorem
4.5]). The normal space of the fiber Φ−1(e) at 0̂ ∈ Vg is identified with the subspace
ĝ = {x̂ | x ∈ g} of Vg, where x̂ denotes the constant path with value x. It follows
that Φ(x̂) = exp x. The composition

ΦK := π ◦ Φ : Vg → G→M

is a Riemannian submersion which is also called the parallel transport map.
We consider the isometric action of G on M defined by

b · (aK) := (ba)K,

where b ∈ G and aK ∈M , and the isometric action of G×G on G defined by

(b, c) · a := bac−1,

where (b, c) ∈ G × G and a ∈ G. Then π and Φ have the following equivariant
properties ([29, Proposition 1.1 (i)]):

π((b, c) · a) = b · π(a) for (b, c) ∈ G×K and a ∈ G, (1.1)

Φ(g ∗ u) = (g(0), g(1)) · Φ(u) for g ∈ G and u ∈ Vg. (1.2)

From these we have

ΦK(g ∗ u) = g(0)ΦK(u) for g ∈ P (G,G×K) and u ∈ Vg. (1.3)

Let H be a closed subgroup of G; in later sections we will suppose that it is a
symmetric subgroup of G. We denote by h the Lie algebra of H and g = h + p the
orthogonal direct sum decomposition. Then H acts on M , the subgroup H×K acts
on G and the subgroup P (G,H ×K) acts on Vg. We know the following relations
for orbits ([29, Proposition 1.1 (ii)]):

(H ×K) · a = π−1(H · aK) and P (G,H ×K) ∗ u = Φ−1((H ×K) · Φ(u)).

Thus we have

P (G,H ×K) ∗ u = Φ−1
K (H · ΦK(u)). (1.4)
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Then we obtain the commutative diagram

G ⊃ P (G,H ×K) y Vg ⊃ P (G,H ×K) ∗ u = Φ−1((H ×K) · a)

ψ ↓ ψ ↓ Φ ↓ Φ ↓ Φ ↓
G×G ⊃ H ×K y G ⊃ (H ×K) · a = π−1(H · aK)

p ↓ p ↓ π ↓ π ↓
G ⊃ H y M ⊃ H · aK (Φ(u) = a),

where p denotes the projection onto the first component and ψ the submersion
defined by ψ(g) := (g(0), g(1)) for g ∈ G. We know that the following conditions are
equivalent: the orbit H · aK is a minimal submanifold of M , the orbit (H ×K) · a
is a minimal submanifold of G, and the orbit P (G,H ×K) ∗ u through u ∈ Φ−1(a)
is a minimal PF submanifold of Vg ([13, Theorem, 4.12], [7, Lemma 5.2]).

Recall that an isometric action of a compact Lie group A on a Riemannian man-
ifold X is called polar if there exists a closed connected submanifold Σ of X which
meets every A-orbit and is orthogonal to the A-orbits at every point of intersection.
Such a Σ is called a section, which is automatically totally geodesic in X. If Σ is
flat in the induced metric then the action is called hyperpolar ([8]). For a proper
Fredholm action on a Hilbert space we can define it to be hyperpolar by the similar
way. We know that the following conditions are equivalent ([8, Proposition 2.11],
[29, Theorem 1.2], [4, Lemma 4]):

(i) the H-action on M is hyperpolar,
(ii) the H ×K-action on G is hyperpolar,

(iii) the P (G,H ×K)-action on Vg is hyperpolar.

Since we fixed a bi-invariant Riemannian metric on G induced by a negative multiple
of the Killing form of g, the condition (ii) is equivalent to the existence of a c-
dimensional abelian subspace t in m∩p where c is the cohomogeneity of the H×K-
action ([8, Theorem 2.1]). Then π(exp t), exp t and t̂ = {x̂ | x ∈ t} are sections of
the H-action, the H × K-action and the P (G,H × K)-action respectively. If the
actions are hyperpolar then the following conditions are equivalent ([29, Theorem
1.2]): aK ∈ M is a regular point of the H-action, a ∈ G is a regular point of the
H ×K-action, and u ∈ Φ−1(a) is a regular point of the P (G,H ×K)-action. Here
a point is called regular if the orbit though it is principal.

In general it is not easy to compute the principal curvatures of orbits of those
actions. However if H is a symmetric subgroup of G, that is, the H-action is a
Hermann action, then it is possible to describe the principal curvatures of those
orbits Lie algebraically via the root space decompositions. In the rest of this paper
we will focus on the case of Hermann actions.
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2. Submanifold geometry of orbits of Hermann actions

In this section we review fundamental results on the submanifold geometry of or-
bits of Hermann actions. For details, see Ohno [23] (see also Goertsches-Thorbergsson
[3] and Ikawa [10]). Throughout this section M = G/K denotes a symmetric space
of compact type and H a symmetric subgroup of G. We denote by σ and τ the
involutions of G associated to K and H respectively and by g = k+m and g = h+p
the canonical decompositions. We choose and fix a maximal abelian subspace t in
m ∩ p so that Σ := π(exp t) is a section of the Hermann action.

Consider the root space decomposition of gC with respect to t:

gC = g(0) +
∑
α∈∆

g(α),

g(0) = {z ∈ gC | ad(η)z = 0 for all η ∈ t},
g(α) = {z ∈ gC | ad(η)z =

√
−1〈α, η〉z for all η ∈ t},

where ∆ = {α ∈ t\{0} | g(α) 6= {0}} is a root system of t ([10, Lemma 4.12]). Since

g(α) = g(−α), where the bar denotes the complex conjugation, the real form is

g = g0 +
∑
α∈∆+

gα,

g0 = g(0) ∩ g, gα = (g(α) + g(−α)) ∩ g.

Note that

g0 = {x ∈ g | ad(η)x = 0 for all η ∈ t},
gα = {x ∈ g | ad(η)2x = −〈α, η〉2x for all η ∈ t}.

Since σ commutes with ad(η)2 for all η ∈ t we have

k = k0 +
∑
α∈∆+

kα, m = m0 +
∑
α∈∆+

mα.

k0 = g0 ∩ k, m0 = g0 ∩m,

kα = gα ∩ k, mα = gα ∩m.

We define a linear orthogonal transformation ψα of gα by

ψα(x) :=
1

〈α, α〉
ad(α)x for x ∈ gα. (2.1)

An equivalent definition is that

ψα(z + z̄) :=
√
−1(z − z̄) for z ∈ g(α).

Since σ ◦ ψα = −(ψα ◦ σ) we have a linear isometry ψα : mα → kα. Set

m(α) := dim kα = dimmα.
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By setting xαi := ψα(yαi ) we can take bases {xαi }
m(α)
i=1 of kα and {yαi }

m(α)
i=1 of mα

satisfying
[η, xαi ] = −〈α, η〉yαi and [η, yαi ] = 〈α, η〉xαi (2.2)

for any η ∈ t.
The root space decompositions above are refined by combining a decomposition

derived from the involutions σ and τ . More precisely we consider the composition

σ ◦ τ : g→ g

and the eigenspace decomposition

gC =
∑
ε∈U(1)

g(ε),

g(ε) = {z ∈ gC | (σ ◦ τ)(z) = εz},
where the eigenvalues belong to U(1) = {ε ∈ C | |ε| = 1}. For each ε ∈ U(1) we
denote by arg ε its argument satisfying −π < arg ε ≤ π. Since σ ◦ τ commutes with
ad(η) for all η ∈ t we have

gC =
∑
ε∈U(1)

g(0, ε) +
∑
α∈∆

∑
ε∈U(1)

g(α, ε),

g(0, ε) = g(0) ∩ g(ε), g(α, ε) = g(α) ∩ g(ε).

Since g(α, ε) = g(−α, ε−1) the real form is

g =
∑

ε∈U(1)≥0

g0,ε +
∑
α∈∆+

∑
ε∈U(1)

gα,ε,

U(1)≥0 = {ε ∈ U(1) | Im(ε) ≥ 0},

g0,ε = (g(0, ε) + g(0, ε−1) ∩ g,

gα,ε = (g(α, ε) + g(−α, ε−1)) ∩ g.

Setting ρ+ = σ ◦ τ + τ ◦ σ and ρ− = σ ◦ τ − τ ◦ σ we can write

g0,ε = {x ∈ g0 | ρ+(x) = 2 Re(ε)x},
gα,ε = {x ∈ gα | ρ+(x) = 2 Re(ε)x, ρ−(x) = 2 Im(ε)ψα(x)},

where Re(ε) and Im(ε) denote the real and imaginary parts of ε respectively. Since
g0,ε and gα,ε are invariant under σ we have

k =
∑

ε∈U(1)≥0

k0,ε +
∑
α∈∆+

∑
ε∈U(1)

kα,ε,

m =
∑

ε∈U(1)≥0

m0,ε +
∑
α∈∆+

∑
ε∈U(1)

mα,ε,
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k0,ε = g0,ε ∩ k, kα,ε = gα,ε ∩ k,

m0,ε = g0,ε ∩m, mα,ε = gα,ε ∩m.

Since gα,ε is invariant under ψα we have a linear isometry ψα : mα,ε → kα,ε. Set

m(α, ε) := dim kα,ε = dimmα,ε.

Then similarly we can take bases {xα,εi }
m(α,ε)
i=1 of kα,ε and {yα,εi }

m(α,ε)
i=1 of mα,ε satisfying

[η, xα,εi ] = −〈α, η〉yα,εi and [η, yα,εi ] = 〈α, η〉xα,εi (2.3)

for any η ∈ t.
We now take w ∈ t, set a := expw and consider the orbit N := H · aK through

aK. Denote by La the isometry of M defined by La(bK) := (ab)K. Identifying
TeKM with m we can describe the tangent space and the normal space of N as
follows ([23, p. 12]):

TaKN = dLa(
∑

ε∈U(1)≥0

ε 6=1

m0,ε +
∑
α∈∆+

∑
ε∈U(1)

〈α,w〉+ 1
2

arg ε/∈πZ

mα,ε ), (2.4)

T⊥aKN = dLa( t +
∑
α∈∆+

∑
ε∈U(1)

〈α,w〉+ 1
2

arg ε∈πZ

mα,ε ). (2.5)

Moreover the decomposition (2.4) is just the eigenspace decomposition of the family
shape operators {ANdLa(ξ)}ξ∈t. In fact ([23, p. 17]):

dLa(m0,ε) : the eigenspace associated with the eigenvalue 0,

dLa(mα,ε) : the eigenspace associated with

the eigenvalue −〈α, ξ〉 cot(〈α,w〉+ 1
2

arg ε)

for each ξ ∈ t. If σ and τ commute then ε = ±1 and thus we get ([3, Theorem 5.3]):

TaKN = dLa( m0 ∩ h +
∑
α∈∆+

〈α,w〉/∈πZ

mα ∩ p +
∑
α∈∆+

〈α,w〉+π/2/∈πZ

mα ∩ h ), (2.6)

T⊥aKN = dLa( t +
∑
α∈∆+

〈α,w〉∈πZ

mα ∩ p +
∑
α∈∆+

〈α,w〉+π/2∈πZ

mα ∩ h ), (2.7)

dLa(m0 ∩ h) : the eigenspace associated with the eigenvalue 0,

dLa(mα ∩ p) : the eigenspace associated with the eigenvalue −〈α, ξ〉 cot〈α,w〉,
dLa(mα ∩ h) : the eigenspace associated with the eigenvalue 〈α, ξ〉 tan〈α,w〉.
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In particular if σ = τ then we have ([27, p. 122])

TaKN = dLa(
∑
α∈∆+

〈α,w〉/∈πZ

mα ), (2.8)

T⊥aKN = dLa( t +
∑
α∈∆+

〈α,w〉∈πZ

mα ), (2.9)

dLa(mα) : the eigenspace associated with the eigenvalue −〈α, ξ〉 cot〈α,w〉.

3. The curvature-adapted property

In this section we formulate the curvature-adapted property of orbits of Hermann
actions. First we recall the concept of curvature-adapted submanifolds ([1]). Let N
be a submanifold of a Riemannian manifold M . For each v ∈ T⊥p N at each p ∈ N
the Jacobi operator Rv is a symmetric linear transformation of TpM defined by

Rv(x) = RM(x, v)v for x ∈ TpM,

where RM denotes the curvature tensor of M . Then N is called curvature-adapted
if for every v ∈ T⊥p N at each p ∈ N the Jacobi operator Rv leaves TpN invariant

and the restriction Rv|TpN commutes with the shape operator ANv of N .
We now make the following definition:

Definition 3.1. Let M = G/K be a symmetric space of compact type and N a
submanifold of M . For an integer c satisfying 1 ≤ c ≤ codimN we say that N is
c-curvature-adapted if for each aK ∈ N the following two conditions are satisfied:

(i) for every v ∈ T⊥aKN the Jacobi operator Rv leaves TaKN invariant,
(ii) for each v ∈ T⊥aKN there exists a c-dimensional abelian subspace t in m

satisfying v ∈ dLa(t) ⊂ T⊥aKN such that the union

{RdLa(ξ)|TaKN}ξ∈t ∪ {ANdLa(ξ)}ξ∈t

is a commuting family of endomorphisms of TaKN .

Note that if c = 1 then 1-curvature-adapted submanifolds are just curvature-
adapted submanifolds in the original sense. Note also that if aK = eK then Rv

is identified with − ad(v)2 since M is a symmetric space. Typical examples of c-
curvature-adapted submanifolds are given by the following proposition, which was
essentially shown by Goertsches and Thorbergsson [3, Corollaries 3.3 and 3.4]:

Proposition 3.2 (Goertsches-Thorbergsson [3]). All orbits of Hermann actions of
cohomogeneity c are c-curvature-adapted submanifolds.
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Proof. Let N be an orbit of a Hermann action H y M of cohomogeneity c. Take
aK ∈ N . Since L−1

a N = (a−1Ka) · eK we can assume aK = eK without loss of
generality. Take v ∈ T⊥eKN . Choose a maximal abelian subspace t in m∩ p = T⊥eKN
containing v. Since π(exp t) is a section of the Hermann action we have dim t = c.
Then it follows from the decomposition (2.4) that the Jacobi operator Rv = − ad(v)2

leaves TeKN invariant and

Rv ◦Rw = Rw ◦Rv, Rv|TeKN ◦ ANw = ANw ◦Rv|TeKN , ANv ◦ ANw = ANw ◦ ANv
hold for any v, w ∈ t. Thus N is a c-curvature-adapted submanifolds of M . �

Remark 3.3. We do not know whether all orbits of hyperpolar actions of cohomo-
geneity c are c-curvature-adapted submanifolds or not. We know that any indecom-
posable hyperpolar action of cohomogeneity at least two on M is orbit equivalent
to a Hermann action ([17]). We also know that any cohomogeneity one action on
M is automatically hyperpolar ([8, Corollary 2.13]). There exist examples of co-
homogeneity one actions on the sphere which are different from Hermann actions
([8], [16]). Since the sphere is of constant sectional curvature, all orbits of such
cohomogeneity one actions are 1-curvature-adapted submanifolds.

Let N be a c-curvature-adapted submanifold of a symmetric space M = G/K of
compact type. Take aK ∈ N . Choose and fix an arbitrary c-dimensional abelian
subspace t in m satisfying the condition (ii) of Definition 3.1 for some v ∈ T⊥aKN .
Consider the root space decomposition

k = k0 +
∑
α∈∆+

kα, m = m0 +
∑
α∈∆+

mα,

k0 = {x ∈ k | ad(η)x = 0 for all η ∈ t},
kα = {x ∈ k | ad(η)2x = −〈α, η〉2x for all η ∈ t},
m0 = {y ∈ m | ad(η)y = 0 for all η ∈ t},
mα = {y ∈ m | ad(η)2y = −〈α, η〉2y for all η ∈ t}.

These are just the eigenspace decompositions of the commuting operators {ad(ξ)2}ξ∈t.
On the other hand, the following lemma concerns the eigenspace decomposition of
the commuting operators {ANdLa(ξ)}ξ∈t.

Lemma 3.4. There exists a unique finite subset Λ of t such that

TaKN =
∑
λ∈Λ

Sλ,

where Sλ is a nonzero subspace of TaKN defined by

Sλ = {x ∈ TaKN | ANdLa(η)(x) = 〈λ, η〉x for all η ∈ t}.
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Proof. By left translation we can assume aK = eK without loss of generality. It
is easy to see that such a subset Λ is unique. To see the existence we take a basis
{ηi}ci=1 of t. We denote by {λ(ηi)1, · · · , λ(ηi)m(i)} the set of all distinct eigenvalues
of the shape operator ANηi and by Wλ(ηi)1 , · · · ,Wλ(ηi)m(i)

their eigenspaces. Since

{ANηi}
c
i=1 is a commuting family we have the decomposition

TeKN =

m(1)∑
j1=1

· · ·
m(c)∑
jc=1

(Wλ(η1)j1
∩ · · · ∩Wλ(ηc)jc

).

Define a linear functional λj1···jc : t→ R by

λj1···jc(a1η1 + · · ·+ acηc) = a1λ(η1)j1 + · · ·+ acλ(ηc)jc , where a1, ..., ac ∈ R.

Then for each η = a1η1 + · · ·+ acηc ∈ t and x ∈ Wλ(η1)j1
∩ · · · ∩Wλ(ηc)jc

we have

ANη (x) = (a1A
N
η1

+ · · ·+ acA
N
ηc)(x) = λj1···jc(η)x.

Set Λ := {λj1···jc}1≤j1≤m(1), ··· , 1≤jc≤m(c) and Sλj1···jc := Wλ(η1)j1
∩ · · · ∩Wλ(ηc)jc

. Iden-
tifying t with the dual space t∗ we obtain the desired subset Λ ⊂ t and the decom-
position TeKN =

∑
λ∈Λ Sλ. This proves the lemma. �

The following proposition concerns the eigenspace decomposition of the union of
commuting operators {RdLa(ξ)}ξ∈t ∪ {ANdLa(ξ)}ξ∈t.

Proposition 3.5. Let Λ be as in Lemma 3.4. Then the tangent space and the
normal space of N are decomposed as follows:

TaKN =
∑
λ∈Λ0

(dLa(m0) ∩ Sλ) +
∑
α∈∆+

∑
λ∈Λα

(dLa(mα) ∩ Sλ), (3.1)

T⊥aKN = dLa(m0) ∩ T⊥aKN +
∑
α∈∆+

(dLa(mα) ∩ T⊥aKN), (3.2)

where Λ0 := {λ ∈ Λ | dLa(m0)∩Sλ 6= {0}} and Λα := {λ ∈ Λ | dLa(mα)∩Sλ 6= {0}}.

Proof. By left translation we can assume aK = eK without loss of generality. Since
the tangent space is invariant under {Rξ}ξ∈t the normal space is also invariant under
{Rξ}ξ∈t and we have the decompositions

TeKN = m0 ∩ TeKN +
∑
α∈∆+

(mα ∩ TeKN),

T⊥eKN = m0 ∩ T⊥eKN +
∑
α∈∆+

(mα ∩ T⊥eKN).

By the curvature-adapted property, m0 ∩ TeKN and mα ∩ TeKN are invariant under
{ANξ }ξ∈t. Thus by similar arguments as in the proof of Lemma 3.4 we obtain the
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eigenspace decompositions

m0 ∩ TeKN =
∑
λ∈Λ0

(m0 ∩ Sλ), mα ∩ TeKN =
∑
λ∈Λα

(mα ∩ Sλ)

and the assertion follows. �

Example 3.6. Let H y M be a Hermann action of cohomogeneity c. Choose a
maximal abelian subspace t in m ∩ p. Take w ∈ t, set a := expw and consider the
orbit N = H · aK through aK. From the decomposition (2.4) it is clear that t is
a c-dimensional abelian subspace in m satisfying the condition (ii) of Definition 3.1
for any v ∈ {dLa(ξ)}ξ∈t. We set U(1)0 := {ε ∈ U(1)≥0 | m0,ε 6= {0}} and

U(1)>0 := {ε ∈ U(1)0 | ε 6= 1}.

We also set U(1)α := {ε ∈ U(1) | mα,ε 6= {0}} and

U(1)>α := {ε ∈ U(1)α | 〈α,w〉+
1

2
arg ε /∈ πZ},

U(1)⊥α := {ε ∈ U(1)α | 〈α,w〉+
1

2
arg ε ∈ πZ}.

Then we can rewrite the decompositions (2.4) and (2.5) as follows:

TaKN =
∑

ε∈U(1)>0

dLa(m0,ε) +
∑
α∈∆+

∑
ε∈U(1)>α

dLa(mα,ε), (3.3)

T⊥aKN = dLa(t) +
∑
α∈∆+

∑
ε∈U(1)⊥α

dLa(mα,ε). (3.4)

For each α ∈ ∆+ and ε ∈ U(1)>α we set

λ(α, ε) := − cot

(
〈α,w〉+

1

2
arg ε

)
α ∈ t.

Then Λ0 and Λα in Proposition 3.5 are

Λ0

{
= {0} (if U(1)>0 6= ∅)
= ∅ (if U(1)>0 = ∅) , Λα = {λ(α, ε) | ε ∈ U(1)>α}.

Note that the correspondence U(1)>α 3 ε 7→ λ(α, ε) ∈ Λα is one-to-one because cotx
is strictly decreasing on R/πZ. Thus we have∑

ε∈U(1)>0

dLa(m0,ε) = dLa(m0) ∩ S0, dLa(mα,ε) = dLa(mα,ε) ∩ Sλ(α,ε),

dLa(t) = dLa(m0) ∩ T⊥aKN,
∑

ε∈U(1)⊥α

dLa(mα,ε) = dLa(mα) ∩ T⊥aKN
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and therefore the decompositions (3.3) and (3.4) are expressed as

TaKN = dLa(m0) ∩ S0 +
∑
α∈∆+

∑
λ∈Λα

(dLa(mα) ∩ Sλ), (3.5)

T⊥aKN = dLa(m0) ∩ T⊥aKN +
∑
α∈∆+

(dLa(mα) ∩ T⊥aKN). (3.6)

4. Principal curvatures via the parallel transport map

Let M = G/K be a symmetric space of compact type and ΦK : Vg → M the
parallel transport map. It is known that if N is a closed submanifold of M then
the inverse image Φ−1

K (N) is a PF submanifold of Vg ([30, Lemma 5.8]). Note
that this generalizes the orbital case (1.4). In [14] and [20] an explicit formula for
the principal curvatures of Φ−1

K (N) was given under the assumption that N is a
curvature-adapted submanifold of M . In this section we refine that formula to the
case of c-curvature-adapted submanifolds so that orbits of Hermann actions can be
applied.

Let N be a c-curvature-adapted submanifold of M . To consider the PF subman-
ifold Φ−1

K (N) of Vg we can assume eK ∈ N without loss of generality due to the
equivariant property (1.3) of ΦK . Choose and fix an arbitrary c-dimensional abelian
subspace t in T⊥eKN satisfying the condition (ii) of Definition 3.1 for some v ∈ T⊥eKN .
Recall the decompositions given in Proposition 3.5:

TeKN =
∑
λ∈Λ0

(m0 ∩ Sλ) +
∑
α∈∆+

∑
λ∈Λα

(mα ∩ Sλ), (4.1)

T⊥eKN = m0 ∩ T⊥eKN +
∑
α∈∆+

(mα ∩ T⊥eKN). (4.2)

Set
m(0, λ) := dim(m0 ∩ Sλ), m(α, λ) := dim(mα ∩ Sλ),
m(0,⊥) := dim(m0 ∩ T⊥eKN), m(α,⊥) := dim(mα ∩ T⊥eKN).

Take bases

{y0,λ
j }

m(0,λ)
j=1 of m0 ∩ Sλ, {yα,λk }

m(α,λ)
k=1 of mα ∩ Sλ,

{y0,⊥
l }

m(0,⊥)
l=1 of m0 ∩ T⊥eKN, {yα,⊥r }

m(α,⊥)
r=1 of mα ∩ T⊥eKN.

Then we obtain a basis ⋃
λ∈Λ0

{y0,λ
j }

m(0,λ)
j=1 ∪ {y0,⊥

l }
m(0,⊥)
l=1

of m0 and a basis ⋃
λ∈Λα

{yα,λk }
m(α,λ)
k=1 ∪ {yα,⊥r }

m(α,⊥)
r=1
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of mα. Via an isometry ψα : mα → kα defined by (2.1) we take a basis⋃
λ∈Λα

{xα,λk }
m(α,λ)
k=1 ∪ {xα,⊥r }

m(α,⊥)
r=1

of kα. Finally we choose a basis {x0
i }

dim k0
i=1 of k0. Then the relations

[ξ, x0
i ] = 0, [ξ, y0,λ

j ] = [ξ, y0,⊥
l ] = 0,

[ξ, xα,λk ] = −〈α, ξ〉 yα,λk , [ξ, yα,λk ] = 〈α, ξ〉xα,λk ,

[ξ, xα,⊥r ] = −〈α, ξ〉 yα,⊥r , [ξ, yα,⊥r ] = 〈α, ξ〉xα,⊥r .

hold for any ξ ∈ t.
We write V (g) for the Hilbert space Vg = L2([0, 1], g) and decompose

V (g) = V (k0) + V (m0 ∩ TeKN) + V (m0 ∩ T⊥eKN)

+
∑
α∈∆+

(V (kα) + V (mα ∩ TeKN) + V (mα ∩ T⊥eKN)).

We equip a suitable basis with each term above. Recall that in addition to

{1,
√

2 cos 2nπt,
√

2 cos 2nπt}∞n=1

there are two other kinds of orthonormal bases of L2([0, 1],R), namely

{1,
√

2 cos 2nπt}∞n=1 and {
√

2 sinnπt}∞n=1.

We consider bases

{x0
i sinnπt}i, n of V (k0),

{y0,λ
j }λ, j ∪ {y

0,λ
j cosnπt}λ, j, n of V (m0 ∩ TeKN),

{y0,⊥
l }l ∪ {y

0,⊥
l cosnπt}l, n of V (m0 ∩ T⊥eKN),

{xα,λk sinnπt}λ, k, n ∪ {xα,⊥r sinnπt}r, n of V (kα),

{yα,λk }λ, k ∪ {y
α,λ
k cosnπt}λ, n, k of V (mα ∩ TeKN),

{yα,⊥r }r ∪ {yα,⊥r cosnπt}n, r of V (mα ∩ T⊥eKN).

Then all these bases form a basis of V (g) = Vg ∼= T0̂Vg. Since Φ : Vg → G is
a Riemannian submersion with the orthogonal direct sum decomposition ([30, p.
686])

T0̂Vg = T0̂Φ−1(e)⊕ ĝ, X = (X −
∫ 1

0
X(t)dt)⊕

∫ 1

0
X(t)dt,

we have the orthogonal direct sum decomposition

T0̂Vg
∼= T0̂Φ−1

K (N)⊕ T⊥eKN, X = (X − (
∫ 1

0
X(t)dt)⊥)⊕ (

∫ 1

0
X(t)dt)⊥,
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where ⊥ denotes the projection from g = k ⊕ TeKN ⊕ T⊥eKN onto T⊥eKN . Thus we
obtain a basis

{x0
i sinnπt}i, n ∪ {y0,λ

j }λ, j ∪ {y
0,λ
j cosnπt}λ, j, n ∪ {y0,⊥

r cosnπt}r, n
∪

⋃
α∈∆+

({xα,λk sinnπt}λ, k, n ∪ {yα,λk }λ, k ∪ {y
α,λ
k cosnπt}λ, k, n)

∪
⋃
α∈∆+

({xα,⊥r sinnπt}r,n ∪ {yα,⊥r cosnπt}r, n)

of T0̂Φ−1
K (N).

For each ξ ∈ t we denote by A
Φ−1
K (N)

ξ̂
the shape operator of Φ−1

K (N) in the direction

of ξ̂. Similarly to [20, Lemma 3.1] the following lemma holds.

Lemma 4.1.

(i) A
Φ−1
K (N)

ξ̂
(x0

i sinnπt) = 0 , A
Φ−1
K (N)

ξ̂
(y0,λ
j ) = 〈λ, ξ〉y0,λ

j ,

(ii) A
Φ−1
K (N)

ξ̂
(y0,λ
j cosnπt) = A

Φ−1
K (N)

ξ̂
(y0,⊥
l cosnπt) = 0,

(iii) A
Φ−1
K (N)

ξ̂
(xα,⊥r sinnπt) = −〈α, ξ〉

nπ
yα,⊥r cosnπt,

A
Φ−1
K (N)

ξ̂
(yα,⊥r cosnπt) = −〈α, ξ〉

nπ
xα,⊥r sinnπt,

(iv) A
Φ−1
K (N)

ξ̂
(yα,λk ) = 〈λ, ξ〉yα,λk +

2〈α, ξ〉
π

∞∑
n=1

1

n
(xα,λk sinnπt),

(v) A
Φ−1
K (N)

ξ̂
(xα,λk sinnπt) = −〈α, ξ〉

nπ
yα,λk (−1 + cosnπt),

(vi) A
Φ−1
K (N)

ξ̂
(yα,λk cosnπt) = −〈α, ξ〉

nπ
xα,λk sinnπt.

The following theorem describes the principal curvatures of the PF submanifold
Φ−1
K (N) of Vg. This theorem refines [20, Theorem 3.2] (see also [14, Theorem 3.3]).

In fact, if c = 1 then it is equivalent to the original one. It can be proven by the
similar arguments using Lemma 4.1.

Theorem 4.2. Let M = G/K be a symmetric space of compact type, ΦK : Vg →M
the parallel transport map, N a c-curvature-adapted submanifold of M through eK,
and t an arbitrary c-dimensional abelian subspace in m satisfying the condition (ii)
of Definition 3.1. Then for each ξ ∈ t the principal curvatures of the PF submanifold
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Φ−1
K (N) in the direction of ξ̂ are given by

{0} ∪ {〈λ, ξ〉 | λ ∈ Λ0 ∪
⋃
β∈∆+

ξ
Λβ}

∪

{
〈α, ξ〉

arctan 〈α,ξ〉〈λ,ξ〉 +mπ

∣∣∣∣∣ α ∈ ∆+\∆+
ξ , λ ∈ Λα, m ∈ Z

}

∪
{
〈α, ξ〉
nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , mα ∩ T⊥eKN 6= {0}, n ∈ Z\{0}

}
,

where we set ∆+
ξ := {β ∈ ∆+ | 〈β, ξ〉 = 0} and arctan 〈α,ξ〉〈λ,ξ〉 := π

2
if 〈λ, ξ〉 = 0. The

eigenfunctions and the multiplicities are given in the following table.

Eigenvalue Basis of eigenfunctions Multiplicity

0
{x0

i sinnπt, y0,λ
j cosnπt, y0,⊥

l cosnπt}λ∈Λ0, n∈Z≥1, i, j, l

∪ {xβ,λk sinnπt, yβ,λk cosnπt}β∈∆ξ, λ∈Λβ , n∈Z≥1, k

∪ {xβ,⊥r sinnπt, yβ,⊥r cosnπt}β∈∆ξ, n∈Z≥1, r

∞

〈λ, ξ〉 {y0,λ
j }j ∪ {y

β,λ
k }β∈∆ξ, k

m(0, λ) +∑
βm(β, λ)

〈α,ξ〉
arctan

〈α,ξ〉
〈λ,ξ〉+mπ

{
∑
n∈Z

arctan
〈α,ξ〉
〈λ,ξ〉+mπ

arctan
〈α,ξ〉
〈λ,ξ〉+(m+n)π

(xα,λk sinnπt+ yα,λk cosnπt)}k m(α, λ)

〈α,ξ〉
nπ

{xα,⊥r sinnπt− yα,⊥r cosnπt}r m(α,⊥)

5. Principal curvatures of P (G,H ×K)-orbits

In this section, from Theorem 4.2 we derive an explicit formula for the principal
curvatures of orbits of P (G,H ×K)-actions induced by Hermann actions.

Let M = G/K be a symmetric space of compact type and H a symmetric sub-
group of G. Choose and fix a maximal abelian subspace t in m ∩ p. Then π(exp t)
is a section of the Hermann action H y M and t̂ = {x̂ | x ∈ t} is a section of the
hyperpolar P (G,H ×K)-action on Vg. We take arbitrary w, ξ ∈ t and consider the

principal curvatures of P (G,H ×K) ∗ ŵ in the direction of ξ̂.
Recall that the tangent space and the normal space of the orbit N = H · aK

where a := expw are decomposed as follows (cf. Section 2 and Example 3.6):

TaKN =
∑

ε∈U(1)>0

dLa(m0,ε) +
∑
α∈∆+

∑
ε∈U(1)>α

dLa(mα,ε),

T⊥aKN = dLa(t) +
∑
α∈∆+

∑
ε∈U(1)⊥α

dLa(mα,ε),
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where we set U(1)α := {ε ∈ U(1) | mα,ε 6= {0}} and

U(1)>α := {ε ∈ U(1)α | 〈α,w〉+
1

2
arg ε /∈ πZ},

U(1)⊥α := {ε ∈ U(1)α | 〈α,w〉+
1

2
arg ε ∈ πZ}.

Here dLa(m0,ε) and dLa(mα,ε) are the eigenspaces of the shape operator ANdLa(ξ)

associated with the eigenvalues 0 and −〈α, ξ〉 cot(〈α,w〉+ 1
2

arg ε) respectively.
Using the above information we can describe the principal curvatures of orbits of

P (G,H ×K)-actions induced by Hermann actions:

Theorem 5.1. Let M = G/K be a symmetric space of compact type and H a
symmetric subgroup of G. Take a maximal abelian subspace t in m ∩ p and w ∈ t.
Then for each ξ ∈ t the principal curvatures of P (G,H ×K) ∗ ŵ in the direction of

ξ̂ are given by

{0} ∪
{

〈α, ξ〉
−〈α,w〉 − 1

2
arg ε+mπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , ε ∈ U(1)>α , m ∈ Z

}
∪
{
〈α, ξ〉
nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ satisfying U(1)⊥α 6= ∅, n ∈ Z\{0}

}
.

Taking bases {x0
i }i of k0, {xα,εk }k of kα,ε, {y0,ε

j }j of m0,ε, {ηl}l of t and {yα,εk }k of
mα,ε with the relation (2.3) we can describe the eigenfunctions and the multiplicities
as in the following table. Here we are identifying TŵVg with T0̂Vg via the gauge

transformation g∗ : Vg → Vg for a unique g ∈ P (G,G× {e}) satisfying g ∗ 0̂ = ŵ.

Eigenvalue Basis of eigenfunctions Multiplicity

0

{x0
i sinnπt, y0,ε

j sinnπt, ηl cosnπt}ε∈U(1)>0 , n∈Z≥1,i, j, l

∪ {xβ,εk sinnπt, yβ,εk sinnπt}β∈∆+
ξ , ε∈U(1)>β , n∈Z≥1, k

∪ {xβ,εr sinnπt, yβ,εr cosnπt}β∈∆+
ξ , ε∈U(1)⊥β , n∈Z≥1, r

∞

〈α,ξ〉
−〈α,w〉− 1

2
arg ε+mπ

{
∑
n∈Z

〈α,w〉+ 1
2

arg ε+mπ

〈α,w〉+ 1
2

arg ε+(m+n)π
(xα,εk sinnπt+ yα,εk cosnπt)}k m(α, ε)

〈α,ξ〉
nπ

{xα,εr sinnπt− yα,εr cosnπt}ε∈U(1)⊥α , r

∑
εm(α, ε)

In particular, if w ∈ t is a regular point then the term 〈α,ξ〉
nπ

vanishes.

Proof. Take a unique g ∈ P (G,G × {e}) satisfying g ∗ 0̂ = ŵ. By (1.2) we have
g(0) = expw = a. From (1.3) the diagram

Vg
g∗−−−→ Vg

ΦK

y ΦK

y
M

La−−−→ M
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commutes. Thus setting N̄ := L−1
a (N) we have g ∗ Φ−1

K (N̄) = Φ−1
K (N) = P (G,H ×

K) ∗ ŵ by (1.4). Moreover since w ∈ t it follows from g ∗ 0̂ = ŵ that g(t) ∈ exp t

for all t ∈ [0, 1]. Thus we have d(g∗)ξ̂ = gξ̂g−1 = ξ̂. Hence it suffices to compute

the principal curvatures of Φ−1
K (N̄) in the direction of ξ̂. Since t is a c-dimensional

abelian subspace in m satisfying the condition (ii) of Definition 3.1 we can apply N̄
to Theorem 4.2. From (3.3) and (3.4) the tangent space and the normal space of N̄
are

TeKN̄ =
∑

ε∈U(1)>0

m0,ε +
∑
α∈∆+

∑
ε∈U(1)>α

mα,ε,

T⊥eKN̄ = t +
∑
α∈∆+

∑
ε∈U(1)⊥α

mα,ε.

From (3.5) and (3.6) the above decompositions are rewritten as

TeKN̄ = m0 ∩ S̄0 +
∑
α∈∆+

∑
λ∈Λα

(mα ∩ S̄λ),

T⊥eKN̄ = m0 ∩ T⊥eKN̄ +
∑
α∈∆+

(mα ∩ T⊥eKN̄),

where S̄0 := dL−1
a (S0) and S̄λ := dL−1

a (Sλ). Since 〈β, ξ〉 = 0 implies 〈λ(β, ε), ξ〉 = 0
the eigenvalue 〈λ, ξ〉 in the theorem is equal to 0. Moreover taking a unique m′ ∈ Z
satisfying −π/2 < 〈α,w〉+ 1

2
arg ε+m′π ≤ π/2 we have

arctan
〈α, ξ〉

〈λ(α, ε), ξ〉
= −〈α,w〉 − 1

2
arg ε−m′π.

Since m ∈ Z in the theorem is arbitrary the assertion follows. �

Applying (2.6) and (2.7) to Theorem 5.1 we obtain the following corollary.

Corollary 5.2. Suppose that σ ◦ τ = τ ◦ σ. Then the principal curvatures of the
orbit P (G,H ×K) ∗ ŵ in the direction of ξ̂ are given by

{0} ∪
{

〈α, ξ〉
−〈α,w〉+mπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , mα ∩ p 6= {0}, 〈α,w〉 /∈ πZ, m ∈ Z

}
∪
{

〈α, ξ〉
−〈α,w〉 − π

2
+mπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , mα ∩ h 6= {0}, 〈α,w〉+

π

2
/∈ πZ, m ∈ Z

}
∪
{
〈α, ξ〉
nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , mα ∩ p 6= {0}, 〈α,w〉 ∈ πZ, n ∈ Z\{0}

or α ∈ ∆+\∆+
ξ , mα ∩ h 6= {0}, 〈α,w〉+

π

2
∈ πZ, n ∈ Z\{0}

}
.

The multiplicities are respectively given by

∞, dim(mα ∩ p), dim(mα ∩ h), dim(mα ∩ p) + dim(mα ∩ h).
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In particular, if w ∈ t is a regular point then the term 〈α,ξ〉
nπ

vanishes.

Applying (3.5) and (3.6) to Theorem 5.1 we obtain the following corollary.

Corollary 5.3. Suppose that σ = τ . Then the principal curvatures of the orbit
P (G,H ×K) ∗ ŵ in the direction of ξ̂ are given by

{0} ∪
{

〈α, ξ〉
−〈α,w〉+mπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , 〈α,w〉 /∈ πZ, m ∈ Z

}
∪
{
〈α, ξ〉
nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , 〈α,w〉 ∈ πZ, n ∈ Z\{0}

}
.

The multiplicities are respectively given by

∞, dimmα, dimmα.

In particular, if w ∈ t is a regular point then the term 〈α,ξ〉
nπ

vanishes.

Remark 5.4. Terng [28] showed that any principal orbit of the P (G,∆G)-action,
where ∆G is the diagonal of G × G, is an isoparametric PF submanifold of Vg
and computed its principal curvatures. This result was extended by Pinkall and
Thorbergsson [25] to the case of P (G,K × K)-action, where K is a symmetric
subgroup of G. (Note that in the equation (28) of [25] the term α(Y ) should be
−α(Y ).) More generally, Koike [15] computed the principal curvatures of principal
orbits of the P (G,H×K)-action induced by a Hermann action with the assumption
that the involutions σ and τ commute ([15, p. 114]). Theorem 5.1 above does not
require such assumptions at all.

Remark 5.5. For each α ∈ ∆+ and ε ∈ U(1)>α it is clear that{
〈α, ξ〉

−〈α,w〉 − 1
2

arg ε+mπ

∣∣∣∣ m ∈ Z
}

=

{
− 〈α, ξ〉
〈α,w〉+ 1

2
arg ε+mπ

∣∣∣∣ m ∈ Z
}
.

We will alternatively use the latter expression to describe the principal curvatures.

6. The austere property of P (G,H ×K)-orbits: reduced case

In this section we study the austere property of orbits of P (G,H × K)-actions
induced by Hermann actions under the assumption that the root system ∆ is re-
duced; the non-reduced case will be dealt with in the next section. Notice that this
assumption is independent of the choice of a maximal abelian subspace t in m ∩ p.
The main result of this section is the following theorem (Theorem I in Introduction):

Theorem 6.1. Let M = G/K be a symmetric space of compact type and H a
symmetric subgroup of G. Suppose that the root system ∆ of a maximal abelian
subspace t in m∩p is reduced. Then for w ∈ g the following conditions are equivalent:

(i) the orbit H · (expw)K through (expw)K is an austere submanifold of M ,
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(ii) the orbit P (G,H ×K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

To prove this theorem we need the following lemma. The statement (i) was
essentially shown by Ohno [23, Proposition 13]. Note that this lemma is still valid
in the non-reduced case.

Lemma 6.2. Let t be a maximal abelian subspace in m ∩ p and w ∈ t. Set

U(1)∗α := {ε ∈ U(1)α | 〈α,w〉+
1

2
arg ε /∈ π

2
Z},

which is a subset of U(1)>α . Then

(i) (Ohno [23]) the orbit H · (expw)K through (expw)K is an austere subman-
ifold of M if and only if the set{

cot

(
〈α,w〉+

1

2
arg ε

)
α

∣∣∣∣ α ∈ ∆+, ε ∈ U(1)∗α

}
with multiplicities is invariant under the multiplication by (−1), where the
multiplicity of cot(〈α,w〉+ 1

2
arg ε)α is defined to be m(α, ε),

(ii) the orbit P (G,H ×K) ∗ ŵ through ŵ is an austere PF submanifold of Vg if
and only if the set{

1

〈α,w〉+ 1
2

arg ε+mπ
α

∣∣∣∣ α ∈ ∆+, ε ∈ U(1)∗α, m ∈ Z
}

with multiplicities is invariant under the multiplication by (−1), where the
multiplicity of 1

〈α,w〉+ 1
2

arg ε+mπ
α is defined to be m(α, ε).

In connection with the proof of (ii) we reprove (i) here.

Proof. (i) Set a := expw and N := H · aK. From the straightforward computations
([23, pp. 15-16]) the normal space of N is expressed as

T⊥aKN = dLa(m ∩ Ad(a)−1p) = dLa(
⋃

b∈K∩a−1Ha

Ad(b)t ). (6.1)

Thus for each v ∈ T⊥aKN there exist ξ ∈ t and b ∈ K ∩ a−1Ha such that v =
dLa(Ad(b)ξ). Since b belongs to a−1Ha the isometry Lb leaves the submanifold N̄ :=
L−1
a N invariant. Moreover since b belongs to K the differential dLb of the isometry

Lb at eK is identified with Ad(b). Thus the shape operators satisfy AN̄Ad(b)ξ =

dLb ◦ AN̄ξ ◦ dL−1
b . From this we obtain

ANdLa(Ad(b)ξ) = dLa ◦ dLb ◦ dL−1
a ◦ ANdLa(ξ) ◦ dLa ◦ dL−1

b ◦ dL
−1
a .

This shows that the eigenvalues with multiplicities of the shape operators ANv and
ANdLa(ξ) coincide. Thus to consider the austere property it suffices to consider normal
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vectors {dLa(ξ)}ξ∈t of N . Thus it follows from the eigenspace decomposition (2.4)
that the orbit H · (expw)K is an austere submanifold of M if and only if the set{

〈α, ξ〉 cot

(
〈α,w〉+

1

2
arg ε

) ∣∣∣∣ α ∈ ∆+, ε ∈ U(1)>α

}
with multiplicities is invariant under the multiplication by (−1) for each ξ ∈ t.
Notice that this condition is equivalent to the condition that the set{

cot

(
〈α,w〉+

1

2
arg ε

)
α

∣∣∣∣ α ∈ ∆+, ε ∈ U(1)>α

}
with multiplicities is invariant under the multiplication by (−1) (cf. [12, p. 459]).
Hence the assertion follows from the fact cot(π

2
+ πZ) = {0}.

(ii) Choose a unique g ∈ P (G,G × {e}) satisfying g ∗ 0̂ = ŵ. Then we have
a = g(0) and the commutative diagram

Vg
g∗−−−→ Vg

ΦK

y ΦK

y
M

La−−−→ M.

(6.2)

Since ΦK is a Riemannian submersion it follows from (6.1) and (6.2) that each normal

vector of Φ−1
K (N) is expressed as (dg∗) Ad(b)ξ̂ for some ξ ∈ t and b ∈ K ∩ a−1Ha.

Denote by b̂ ∈ G the constant path with value b. Then by (1.3) we have the
commutative diagram

Vg
b̂∗−−−→ Vg

ΦK

y ΦK

y
M

Lb−−−→ M,

where b̂∗ is identified with Ad(b) acting on Vg by pointwise operation. Since Lb
leaves N̄ invariant it follows that b̂∗ leaves Φ−1

K (N̄) invariant. Thus we have

A
Φ−1
K (N̄)

Ad(b)(ξ̂)
= (db̂∗) ◦ AΦ−1

K (N̄)

ξ̂
◦ (db̂∗)−1.

This together with the equality g ∗ Φ−1
K (N̄) = Φ−1

K (N) implies

A
Φ−1
K (N)

(dg∗)(Ad(b)ξ̂)
= (dg∗) ◦ (db̂) ∗ ◦(dg∗)−1 ◦ AΦ−1

K (N)

(dg∗)(ξ̂) ◦ (dg∗) ◦ (db̂∗)−1 ◦ (dg∗)−1.

Thus similarly it suffices to consider normal vectors {d(g∗)ξ̂}ξ∈t of Φ−1
K (N). Note

that g ∗ 0̂ = ŵ implies d(g∗)ξ̂ = ξ̂ as mentioned in the proof of Theorem 5.1. Thus
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from Theorem 5.1 and Remark 5.5 it follows that the orbit P (G,H ×K) ∗ ŵ is an
austere PF submanifold of Vg if and only if the set{

1

〈α,w〉+ 1
2

arg ε+mπ
α

∣∣∣∣ α ∈ ∆+, ε ∈ U(1)>α , m ∈ Z
}

with multiplicities is invariant under the multiplication by (−1). Hence the assertion
follows from the fact that the set { 1

π/2+mπ
α}m∈Z with multiplicities is invariant under

the multiplication by (−1) due to the equality 1
π/2+mπ

α = (−1)× 1
π/2+(−m−1)π

α. �

We are now in position to prove Theorem 6.1.

Proof of Theorem 6.1. Take a maximal abelian subspace t in m ∩ p. Since π(exp t)
is a section of the H-action we can assume w ∈ t without loss of generality.

“(i) ⇒ (ii)” : Let α ∈ ∆+ and ε ∈ U(1)∗α. Since the orbit H · (expw)K is austere
it follows from Lemma 6.2 (i) that there exist α′ ∈ ∆+ and ε′ ∈ U(1)∗α′ such that

cot

(
〈α,w〉+

1

2
arg ε

)
α = (−1)× cot

(
〈α′, w〉+

1

2
arg ε′

)
α′. (6.3)

Since cot(〈α,w〉 + 1
2

arg ε) 6= 0 and cot(〈α′, w〉 + 1
2

arg ε′) 6= 0 it follows from the

reduced property of ∆ that α′ = α. Moreover since the map ε 7→ cot(〈α,w〉+ 1
2

arg ε)
is injective we have m(α, ε) = m(α, ε′). Then we have

cot

(
〈α,w〉+

1

2
arg ε

)
= (−1)× cot

(
〈α,w〉+

1

2
arg ε′

)
.

Since cotx is strictly decreasing on R/πZ there exists a unique n ∈ Z such that

〈α,w〉+
1

2
arg ε = (−1)×

(
〈α,w〉+

1

2
arg ε′

)
+ nπ.

For each m ∈ Z we set m′ := −n−m. Then we obtain

1

〈α,w〉+ 1
2

arg ε+mπ
α = (−1)× 1

〈α,w〉+ 1
2

arg ε′ +m′π
α.

Thus by Lemma 6.2 (ii) the orbit P (G,H ×K) ∗ ŵ is an austere PF submanifold of
Vg.

“(ii) ⇒ (i)”: Since the orbit P (G,H ×K) ∗ ŵ is austere it follows from Lemma
6.2 (ii) that for each α ∈ ∆+, ε ∈ U(1)∗α and m ∈ Z there exist α′ ∈ ∆+, ε′ ∈ U(1)∗α′
and m′ ∈ Z such that

1

〈α,w〉+ 1
2

arg ε+mπ
α = (−1)× 1

〈α′, w〉+ 1
2

arg ε′ +m′π
α′.
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Since ∆ is reduced we have α = α′. Moreover since the map (ε,m) 7→ 1
〈α,w〉+(arg ε)/2+mπ

is injective we have m(α, ε) = m(α, ε′). Then we have

1

〈α,w〉+ 1
2

arg ε+mπ
= (−1)× 1

〈α,w〉+ 1
2

arg ε′ +m′π
,

that is,

〈α,w〉+
1

2
arg ε+mπ = (−1)×

(
〈α,w〉+

1

2
arg ε′ +m′π

)
.

Hence we have

cot

(
〈α,w〉+

1

2
arg ε

)
α = (−1)× cot

(
〈α,w〉+

1

2
arg ε′

)
α.

Thus by Lemma 6.2 (i) the orbit H · (expw)K is an austere submanifold of M . �

Remark 6.3. In the above proof we essentially showed that the following conditions
are equivalent when ∆ is reduced:

(i) the orbit H · (expw)K through (expw)K is an austere submanifold of M ,
(ii) for each α ∈ ∆+ the set{

cot

(
〈α,w〉+

1

2
arg ε

)
α

∣∣∣∣ ε ∈ U(1)∗α

}
with multiplicities is invariant under the multiplication by (−1),

(iii) for each α ∈ ∆+ the set{
1

〈α,w〉+ 1
2

arg ε+mπ
α

∣∣∣∣ ε ∈ U(1)∗α, m ∈ Z
}

with multiplicities is invariant under the multiplication by (−1).
(iv) the orbit P (G,H ×K) ∗ ŵ through ŵ is an austere PF submanifold of Vg,

7. The austere property of P (G,H ×K)-orbits: general case

In this section, without supposing that the root system ∆ is reduced, we study
the austere property of orbits of P (G,H×K)-actions induced by Hermann actions.

As a preliminary we prove the following lemma, which generalizes Lemma 4.32 in
[10]. In fact if σ = τ then it is just the original one.

Lemma 7.1. Let M = G/K be a symmetric space of compact type, H a symmetric
subgroup of G and t a maximal abelian subspace in m ∩ p. Suppose that there exists
α ∈ ∆ satisfying 2α ∈ ∆. Then the multiplicities satisfy m(α) > m(2α).

Proof. We extend the inner product of g to the complex symmetric bi-linear form
on gC which is still denoted by 〈·, ·〉. Choose ε ∈ U(1) satisfying g(α, ε) 6= {0}. Since
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g(α, ε) = σ(g(α, ε)) = g(−α, ε−1) the involution z 7→ σ(z̄) leaves g(α, ε) invariant.
Thus we have the (±1)-eigenspace decomposition

g(α, ε) = g(α, ε)+ ⊕ g(α, ε)−.

Take z0 ∈ g(α, ε)+\{0}. Then by definition we have

σ(z0) = z̄0, σ(z̄0) = z0, τ(z0) = εz̄0, τ(z̄0) = ε−1z0. (7.1)

Since [g(α), g(α)] ⊂ g(2α) we have the linear map ad(z0) : g(α) → g(2α). We
restrict this map to the subspace

(Cz0)⊥ := {z ∈ g(α) | 〈z, z̄0〉 = 0}.
It suffices to show that the restriction ad(z0) : (Cz0)⊥ → g(2α) is surjective. Take
arbitrary y ∈ g(2α). We define x ∈ (Cz0)⊥ by

x :=
−1

2‖α‖2‖z0‖2
[z̄0, y], where ‖z0‖2 := 〈z0, z̄0〉.

Then by the Jacobi identity we have

ad(z0)[z̄0, y] = −[z̄0, [y, z0]]− [y, [z0, z̄0]] = [[z0, z̄0], y], (7.2)

where the last equality follows from [y, z0] ∈ [g(2α), g(α)] ⊂ g(3α) = {0}. Notice
that [z0, z̄0] ∈ [g(α), g(−α)] ⊂ g(0). Moreover from (7.1) we have [z0, z̄0] ∈ mC ∩ pC.
Hence we have [z0, z̄0] ∈ tC by maximality. Since

〈[z0, z̄0], η〉 = 〈z̄0, [η, z0]〉 = 〈z̄0,
√
−1〈α, η〉z0〉 =

√
−1‖z0‖2〈α, η〉

for all η ∈ t we get [z0, z̄0] =
√
−1‖z0‖2α. Applying this to (7.2) we obtain

ad(z0)[z̄0, y] =
√
−1‖z0‖2[α, y] = −2‖z0‖2‖α‖2y.

Therefore we have ad(z0)(x) = y. This proves the lemma. �

Using this lemma we study the austere property of P (G,H×K)-orbits in the rest
of this section. First we consider the case σ = τ (Theorem II (i) in Introduction):

Theorem 7.2. Let M = G/K be a symmetric space of compact type and H a
symmetric subgroup of G. Suppose that σ = τ . Then for w ∈ g the following
conditions are equivalent:

(i) the orbit H · (expw)K through (expw)K is an austere submanifold of M ,
(ii) the orbit P (G,H ×K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

Remark 7.3. The above conditions (i) and (ii) are also equivalent to the following
conditions (see [10, Proposition 4.27, Theorem 4.31] and [19, Theorem 8]. See also
[21, Theorem 1] for the irreducible case):

(iii) the orbit H · (expw)K through (expw)K is a totally geodesic submanifold
of M ,

(iv) the orbit H · (expw)K through (expw)K is a reflective submanifold of M ,
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(v) the orbit P (G,H ×K) ∗ ŵ through ŵ is a weakly reflective PF submanifold
of Vg.

Note that the orbit P (G,H ×K) ∗ ŵ is not totally geodesic ([19, Corollary 2]) and
thus not reflective.

Proof of Theorem 7.2. Take a maximal abelian subspace t in m = p. Since π(exp t)
is a section of the H-action we can assume w ∈ t without loss of generality.

“(i) ⇒ (ii)”: Let α ∈ ∆+ satisfy 〈α,w〉 /∈ πZ. Suppose that 〈α,w〉 /∈ π
2
Z. Then

from Lemma 6.2 (i) there exists α′ ∈ ∆+ satisfying 〈α′, w〉 /∈ π
2
Z such that

α cot〈α,w〉 = (−1)× α′ cot〈α′, w〉. (7.3)

Since 〈α,w〉 /∈ π
2
Z we have α′ 6= α. Then by the property of root systems α′ is either

2α or 1
2
α. Suppose that α′ = 2α. Then the multiplicities of left and right terms of

(7.3) are m(α) and m(2α) respectively. However m(α) > m(2α) holds by Lemma
7.1. Thus α′ 6= 2α. Similarly α′ 6= 1

2
α. This is a contradiction. Thus 〈α,w〉 ∈ π

2
Z

holds for all α ∈ ∆+ satisfying 〈α,w〉 /∈ πZ. (Thus N is totally geodesic.) Hence
from Lemma 6.2 (ii) the orbit P (G,H ×K) ∗ ŵ is an austere PF submanifold of Vg.

“(ii) ⇒ (i)”: Let α ∈ ∆+ satisfy 〈α,w〉 /∈ πZ. Suppose that 〈α,w〉 /∈ π
2
Z. Take

m ∈ Z. Then it follows from Lemma 6.2 (ii) that there exist α′ ∈ ∆+ satisfying
〈α′, w〉 /∈ π

2
Z and m′ ∈ Z such that

1

〈α,w〉+mπ
α = (−1)× 1

〈α′, w〉+m′π
α′. (7.4)

Since 〈α,w〉 /∈ π
2
Z we have α′ 6= α. Then α′ is either 2α or 1

2
α. Suppose that

α′ = 2α. Then the multiplicity of the left term is m(α) +m(2α) due to the equality
1

〈α,w〉+mπα = 1
〈2α,w〉+2mπ

2α. However that of the right term is m(2α) since α′ 6= α.

Thus we have α′ 6= 2α. Similarly we have α′ 6= 1
2
α. This is a contradiction. Thus

〈α,w〉 ∈ π
2
Z holds for all α ∈ ∆+ satisfying 〈α,w〉 /∈ πZ. This shows that the orbit

H · (expw)K is totally geodesic and therefore austere. �

To generalize Theorem 7.2 we recall an equivalence relation for involutions: For
two involutive automorphisms τ and τ ′ of G we write τ ∼ τ ′ if there exists c ∈ G
such that τ ′ = Ad(c) ◦ τ ◦ Ad(c)−1. If τ ∼ τ ′ and H a symmetric subgroup of G
with respect to τ then H ′ := Ad(c)H is a symmetric subgroup of G with respect to
τ ′. Moreover the actions of H and H ′ on M are conjugate, that is, there exists an
isomorphism φ : H → H ′ and an isometry ψ : M →M such that ψ(b·p) = φ(b)·ψ(p)
for b ∈ H and p ∈M . In fact φ := Ad(c) and ψ := Lc satisfy the property. Thus we
can identify H ′-orbits with H-orbits via ψ and the theorem is generalized as follows:

Corollary 7.4. Let M , H be as in Theorem 7.2. Suppose that σ ∼ τ . Then for
w ∈ g the following conditions are equivalent:

(i) the orbit H · (expw)K through (expw)K is an austere submanifold of M ,
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(ii) the orbit P (G,H ×K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

Proof. Let c ∈ G satisfy σ = Ad(c) ◦ τ ◦Ad(c)−1. Take g ∈ P (G,G×{e}) satisfying
g(0) = c. Then from (1.3) the diagram

Vg
g∗−−−→ Vg

ΦK

y ΦK

y
M

Lc−−−→ M
commutes. Since each P (G,H ×K)-orbit is the inverse images of an H-orbit under
ΦK the assertion follows from Theorem 7.2. �

Next we consider the case σ ◦ τ = τ ◦ σ (Theorem II (ii) in Introduction):

Theorem 7.5. Let M = G/K be a symmetric space of compact type and H a
symmetric subgroup of G. Suppose that the involutions σ and τ commute. Then if
the orbit H · (expw)K through (expw)K where w ∈ g is an austere submanifold of
M , the orbit P (G,H ×K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

Remark 7.6. The converse of Theorem 7.5 does not hold in general. In the next
section we will show a counterexample of a minimal H-orbit which is not austere
but the corresponding minimal P (G,H ×K)-orbit is austere.

Proof of Theorem 7.5. Take a maximal abelian subspace t in m∩ p. We can assume
w ∈ t without loss of generality. Let α ∈ ∆+. If the set Rα ∩∆+ consists of only α
then it follows by the same argument as in the proof of Theorem 6.1 that the set{

1

〈α,w〉+ 1
2

arg ε+mπ
α

∣∣∣∣ ε ∈ U(1)∗α, m ∈ Z
}

with multiplicities is invariant under the multiplication by (−1). Let us consider the
other cases Rα ∩∆+ = {α, 2α} or {α, 1

2
α}. It suffices to consider the former case.

By Lemma 6.2 the union X ∪ Y of two sets

X :=

{
cot

(
〈α,w〉+

1

2
arg ε

)
α

∣∣∣∣ ε ∈ U(1)∗α

}
and

Y :=

{
cot

(
〈2α,w〉+

1

2
arg δ

)
2α

∣∣∣∣ δ ∈ U(1)∗2α

}
with multiplicities is invariant under the multiplication by (−1), and it suffices to
show that the union Z ∪W of two sets

Z :=

{
1

〈α,w〉+ 1
2

arg ε+mπ
α

∣∣∣∣ ε ∈ U(1)∗α, m ∈ Z
}

and

W :=

{
1

〈2α,w〉+ 1
2

arg δ +mπ
2α

∣∣∣∣ δ ∈ U(1)∗2α, m ∈ Z
}
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with multiplicities is invariant under the multiplication by (−1).
Since σ and τ commute we have ε, δ ∈ {±1}. Thus if 〈α,w〉 ∈ π

2
Z then the sets

X, Y , Z and W are empty. Suppose that 〈α,w〉 /∈ π
2
Z. Then 〈α,w〉+ 1

2
arg ε /∈ π

2
Z

for all ε ∈ U(1)α. Thus U(1)∗α = U(1)α. Hence m(α) =
∑

ε∈U(1)∗α
m(α, ε). This

implies that there exist ε, ε′ ∈ U(1)∗α such that

cot

(
〈α,w〉+

1

2
arg ε

)
α = (−1)× cot

(
〈α,w〉+

1

2
arg ε′

)
α. (7.5)

In fact, if this does not hold then for each ε ∈ U(1)∗α there exists a unique δ(ε) ∈
U(1)∗2α satisfying

cot

(
〈α,w〉+

1

2
arg ε

)
α = (−1)× cot

(
〈2α,w〉+

1

2
arg δ(ε)

)
2α.

The multiplicity of the left term is m(α, ε), or m(α, ε) + m(2α, δ′) if there exists
δ′ ∈ U(1)∗2α satisfying cot(〈α,w〉+ 1

2
arg ε)α = cot(〈2α,w〉+ 1

2
arg δ′)2α. That of the

right term is m(2α, δ(ε)); due to negation of (7.5) we have cot(〈2α,w〉+ 1
2

arg δ(ε)) 6=
cot(〈α,w〉+ 1

2
arg ε′) for any ε′ ∈ U(1)∗α and thus it is not m(2α, δ(ε)) +m(α, ε′) but

m(2α, δ(ε)). Thus we get m(α, ε) ≤ m(2α, δ(ε)). Hence we obtain

m(α) =
∑

ε∈U(1)∗α

m(α, ε) ≤
∑

ε∈U(1)∗α

m(2α, δ(ε)) ≤ m(2α),

where the last inequality is due to the injective property of the map ε 7→ δ(ε). This
contradicts the fact m(α) > m(2α) of Lemma 7.1. Thus from (7.5) we have

〈α,w〉+
1

2
arg ε = (−1)×

(
〈α,w〉+

1

2
arg ε′

)
, mod πZ.

Thus 〈α,w〉 = −1
4

arg ε− 1
4

arg ε′ mod πZ. Since ε, ε′ ∈ {±1} we obtain 〈α,w〉 ∈ π
4
Z

and 〈2α,w〉 ∈ π
2
Z. Thus

〈α,w〉+
1

2
arg ε ∈ π

4
Z, 〈2α,w〉+

1

2
arg δ ∈ π

2
Z.

for any ε ∈ U(1)α and δ ∈ U(1)2α. Thus the sets Y and W are empty. Hence the
set X with multiplicities is invariant under the multiplication by (−1). Therefore
by the same argument as in the proof of Theorem 6.1 the set Z with multiplicities
is invariant under the multiplication by (−1). This proves the theorem. �

To generalize Theorem 7.5 we recall an equivalence relation for pairs of involu-
tions introduced by Matsuki [18]. Let (σ, τ) and (σ′, τ ′) be two pairs of involutive
automorphisms of G. We write (σ, τ) ∼ (σ′, τ ′) if there exist an automorphism ρ of
G and an element c ∈ G such that

σ′ = ρ ◦ σ ◦ ρ−1, τ ′ = Ad(c) ◦ ρ ◦ τ ◦ ρ−1 ◦ Ad(c)−1.
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If K and H are symmetric subgroups of G then K ′ := ρ(K) and H ′ := Ad(c)◦ρ(H)
are symmetric subgroups of G. Moreover the H-action on G/K and the H ′-action
on G/K ′ are conjugate. In fact these actions are conjugate under the isomorphism
φ := Ad(c) ◦ ρ : H → H ′ and the isometry ψ : G/K → G/K ′ defined by ψ(aK) :=
cρ(a)K ′. Then the theorem is generalized as follows:

Corollary 7.7. Let M , H be as in Theorem 7.5. Suppose that there exists a pair
of commuting involutions (σ′, τ ′) of G satisfying (σ, τ) ∼ (σ′, τ ′). Then if the orbit
H · (expw)K through (expw)K where w ∈ g is an austere submanifold of M , the
orbit P (G,H ×K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

Proof. Let ρ ∈ Aut(G) and c ∈ G be as above. Since we equipped an Aut(G)-
invariant inner product with g the automorphism ρ is an isometry of G. Thus it
induces an isometry from G/K to G/K ′, which is still denoted by ρ. The differential
dρ : g→ g induces a linear orthogonal transformation of Vg by pointwise operation,

which is still denoted by dρ. Note that dρ(g ∗ 0̂) = (ρ ◦ g) ∗ 0̂ holds for all g ∈ G.
Take h ∈ P (G,G× {e}) satisfying h(0) = c. Then from (1.3) the diagram

Vg
dρ−−−→ Vg

h∗−−−→ Vg

ΦK

y ΦK′

y ΦK′

y
G/K

ρ−−−→ G/K ′
Lc−−−→ G/K ′

commutes. Since each P (G,H ×K)-orbit is the inverse image of an H-orbit under
ΦK the assertion follows from Theorem 7.5. �

Finally, as far as possible, we consider the general case that σ and τ do not nec-
essarily commute. In view of Corollary 7.7 it suffices to consider non-commutative
pairs of involutions which are not equivalent to commutative ones. According to
the classification result [18] if G is simple then there are three kinds of such non-
commutative pairs, and ifG is not simple then there are many such non-commutative
pairs. For a technical reason, here we focus on the case that G is simple. In this
case if (σ, τ) is one of those three pairs then the order of the composition σ ◦ τ is 3
or 4 (see also [23, Section 5]). We will use this fact to prove the following theorem
(Theorem II (iii) in Introduction):

Theorem 7.8. Let M = G/K be a symmetric space of compact type and H a
symmetric subgroup of G. Suppose that G is simple. Then if the orbit H · (expw)K
through (expw)K where w ∈ g is an austere submanifold of M , the orbit P (G,H ×
K) ∗ ŵ through ŵ is an austere PF submanifold of Vg.

Proof. From the above discussion it suffices to consider a pair of involutions (σ, τ)
where the order l of σ ◦ τ is 3 or 4. Take a maximal abelian subspace t in m∩ p. We
can assume w ∈ t without loss of generality. Let α ∈ ∆+. By the same argument as
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in the proof of Theorem 7.5 it suffices to consider the case Rα ∩∆+ = {α, 2α} and
to show that the austere property of X ∪ Y implies that of Z ∪W .

First we show that 〈α,w〉 ∈ π
2l
Z. If U(1)∗α ( U(1)α then there exists ε ∈ U(1)α

satisfying 〈α,w〉 + 1
2

arg ε ∈ π
2
Z. This shows 〈α,w〉 ∈ π

2l
Z. If U(1)∗α = U(1)α then

m(α) =
∑

ε∈U(1)∗α
m(α, ε). Thus by the same argument as in the proof of Theorem

7.5 there exist ε, ε′ ∈ U(1)∗α such that

cot

(
〈α,w〉+

1

2
arg ε

)
α = (−1)× cot

(
〈α,w〉+

1

2
arg ε′

)
α.

From this we have

〈α,w〉+
1

2
arg ε = (−1)×

(
〈α,w〉+

1

2
arg ε′

)
, mod πZ.

Hence 〈α,w〉 = −1
4

arg ε− 1
4

arg ε′ mod πZ. Therefore 〈α,w〉 ∈ π
2l
Z as claimed.

Since 〈α,w〉 ∈ π
2l
Z we have

〈α,w〉+
1

2
arg ε ∈ π

2l
Z, 〈2α,w〉+

1

2
arg δ ∈ π

l
Z

for any ε ∈ U(1)α and δ ∈ U(1)2α. Thus if l = 3 then

cot

(
〈α,w〉+

1

2
arg ε

)
= ±
√

3, ± 1√
3
, cot

(
〈2α,w〉+

1

2
arg δ

)
= ± 1√

3

and if l = 4 then

cot

(
〈α,w〉+

1

2
arg ε

)
= ±1, ±(

√
2± 1), cot

(
〈2α,w〉+

1

2
arg δ

)
= ±1

for ε ∈ U(1)∗α and δ ∈ U(1)∗2α. Therefore

cot

(
〈α,w〉+

1

2
arg ε

)
α 6= (−1)× cot

(
〈2α,w〉+

1

2
arg δ

)
2α.

for any ε ∈ U(1)∗α and δ ∈ U(1)∗2α. This shows that the sets X and Y with mul-
tiplicities are respectively invariant under the multiplication by (−1). Thus by the
similar arguments as in the proof of Theorem 6.1 the sets Z and W with multiplic-
ities are respectively invariant under the multiplication by (−1). This proves the
theorem. �

Remark 7.9. By the same arguments we can generalize Theorem 7.8 to the case
that G is not simple but the order of σ ◦ τ is 3 or 4.

Remark 7.10. In the proofs of Theorems 7.5 and 7.8 we essentially showed that
the orbit H · (expw) is an austere submanifold of M if and only if the set{

cot

(
〈α,w〉+

1

2
arg ε

)
α

∣∣∣∣ ε ∈ U(1)∗α

}
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with multiplicities is invariant under the multiplication by (−1) for each α ∈ ∆+.

Example 7.11. Ikawa [10] classified austere orbits of Hermann actions under the
assumptions that G is simple and that σ and τ commute. This result was extended
by Ohno [23] to the non-commutative case. Thus applying those results to Theorems
7.5 and 7.8 we can obtain many examples of homogeneous austere PF submanifolds
in Hilbert spaces. Note that so obtained austere PF submanifolds are not totally
geodesic due to Corollary 2 in [19].

8. A counterexample to the converse

In this section we show a counterexample to the converse of Theorems 7.5 and 7.8;
we show an example of a minimal H-orbit which is not austere but the corresponding
minimal P (G,H×K)-orbit is austere. Note that from Theorem 6.1 the root system
∆ must be non-reduced. We give such an example by the triple

(G,K,H) = (SU(p+ q), S(U(p)× U(q)), SO(p+ q)).

We shall suppose that p > q.
The involutions σ and τ of G corresponding to K and H respectively are

σ = Ad(Ipq) where Ipq =

[
−Ep 0

0 Eq

]
and τ : complex conjugation,

where Ep denote the unit matrix of order p. Clearly σ and τ commute. The canonical
decomposition of g = su(p+ q) with respect to σ is given by k = s(u(p) + u(q)) and

m =


 0 0 Z

0 0 W
−tZ̄ −tW̄ 0

 ∣∣∣∣∣∣ Z ∈ gl(q,C), W ∈ gl(p− q, q,C)

 .

The canonical decomposition of g with respect to τ is given by h = so(p+ q) and

p = {
√
−1X | X ∈ Sym(p+ q,R), trX = 0}.

Thus we can write

m ∩ p =

√−1

 0 0 X
0 0 Y
tX tY 0

 ∣∣∣∣∣∣ X ∈ gl(q,R), Y ∈ gl(p− q, q,R)

 .

We define a maximal abelian subspace t in m ∩ p by

t =

√−1

 0 0 X
0 0 0
X 0 0

 ∣∣∣∣∣∣ X =

 x1
. . .

xq

 , x1, · · · , xq ∈ R

 .
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Note that t is maximal also in m. For each i = 1, · · · , q we set

ei =
√
−1

 0 0 Eii
0 0 0
Eii 0 0

 .
where Eij denote the square matrix of order q having 1 in the i-th row and j-th
column and zeros elsewhere. We set

m2ei =


 0 0 X(i)

0 0 0
−tX(i) 0 0

 ∣∣∣∣∣∣ X(i) = xEii, x ∈ R

 ,

mei =


 0 0 0

0 0 W (i)

0 −tW̄ (i) 0

 ∣∣∣∣∣∣ W (i) =

 0 w1,i 0

0
... 0

0 wp−q,i 0

 , w1,i, · · · , wp−q,i ∈ C

 ,

mei±ej =


 0 0 Z(i,j)

0 0 0
−tZ̄(i,j) 0 0

 ∣∣∣∣∣∣ Z(i,j) = zEij ∓ z̄Eji, z ∈ C

 ,

where

dimm2ei = 1, dimmei = 2(p− q), dimmek+el = dimmek−el = 2.

Then we obtain the root space decomposition

m = t +

q∑
i=1

m2ei +

q∑
i=1

mei +
∑

1≤i<j≤q

mei+ej +
∑

1≤i<j≤q

mei−ej .

By commutativity of involutions this decomposition is refined as follows:

m ∩ p = t +

q∑
i=1

(mei ∩ p) +
∑

1≤i<j≤q

(mei+ej ∩ p) +
∑

1≤i<j≤q

(mei−ej ∩ p).

m ∩ h =

q∑
i=1

m2ei +

q∑
i=1

(mei ∩ h) +
∑

1≤i<j≤q

(mei+ej ∩ h) +
∑

1≤i<j≤q

(mei−ej ∩ h),

We now consider the orbit N := H · (expw)K, where w ∈ t is defined by

w :=
π

8

q∑
i=1

ei.
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Set a := expw. Then from (2.6) and (2.7) the tangent space and the normal space
of N are

TaKN = dLa(

q∑
i=1

(mei ∩ p) +
∑

1≤i<j≤q

(mei+ej ∩ p) )

+ dLa(

q∑
i=1

m2ei +

q∑
i=1

(mei ∩ h) +
∑

1≤i<j≤q

(mei+ej ∩ h) +
∑

1≤i<j≤q

(mei−ej ∩ h) ),

T⊥aKN = dLa( t +
∑

1≤i<j≤q

(mei−ej ∩ p) ),

and for each ξ ∈ t the principal curvatures of N in the direction of dLa(ξ) are
expressed as the inner product of ξ with vectors

−(
√

2 + 1)ei, −(ei + ej), 2ei, (
√

2− 1)ei, ei + ej, 0,

whose multiplicities are respectively

p− q, 1, 1, p− q, 1, 1.

Since the set {−(
√

2 + 1)ei, 2ei, (
√

2 − 1)ei} can not be invariant under the multi-
plication by (−1) the orbit N is not an austere submanifold of M . Note that if
p− q = 1 then it is a minimal submanifold of M but still not austere.

On the other hand, from Corollary 5.2 (see also Remark 5.5) the principal curva-

tures of the orbit P (G,H ×K) ∗ ŵ in the direction of ξ̂ are expressed as the inner
product of ξ with vectors

{0},
{
− 1

π
8

+mπ
ei

}
m∈Z

,

{
− 1

π
4

+mπ
(ei + ej)

}
m∈Z

,{
− 1

3
4
π +mπ

2ei

}
m∈Z

,

{
− 1

5
8
π +mπ

ei

}
m∈Z

,

{
− 1

3
4
π +mπ

(ei + ej)

}
m∈Z

,{
− 1

π
2

+mπ
(ei − ej)

}
m∈Z

,

{
1

nπ
(ei − ej)

}
n∈Z\{0}

,

whose multiplicities are respectively

∞, p− q, 1, 1, p− q, 1, 1, 1.

Note that{
− 1

3
4
π +mπ

2ei

}
m∈Z

=

{
− 1

3
8
π +mπ

ei

}
m∈Z
∪
{
− 1

7
8
π +mπ

ei

}
m∈Z

.

Note also that the sets {− 1
π/2+mπ

(ei − ej)}m∈Z and { 1
nπ

(ei − ej)}n∈Z\{0} with multi-

plicities are respectively invariant under the multiplication by (−1). Thus from the
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equalities

1
π
8

+mπ
ei = (−1)× 1

7
8
π + (−m− 1)π

ei,
1

5
8
π +mπ

ei = (−1)× 1
3
8
π + (−m− 1)π

ei,

1
π
4

+mπ
(ei + ej) = (−1)× 1

3
4
π + (−m− 1)π

(ei + ej)

the orbit P (G,H × K) ∗ ŵ is austere if and only if p − q = 1. Therefore we have
shown that if p − q = 1 then the orbit H · (expw)K is not austere but the orbit
P (G,H × K) ∗ ŵ is austere. This is the desired counterexample. In this case the
orbit H · (expw)K is a minimal submanifold of M as mentioned above, and thus
the orbit P (G,H ×K) ∗ ŵ is minimal PF submanifold of Vg ([13], [7]).

Finally we mention further remarks on the converse. As we have seen above, if
the root system ∆ is non-reduced then there exists a counterexample to the converse
of Theorems 7.5 and 7.8. However, even if ∆ is non-reduced, the converse holds in
some cases. In fact, Theorem 7.2 and Corollary 7.4 are valid in the non-reduced
case. Moreover consider the case σ ◦ τ = τ ◦ σ and set

∆+
1 := {α ∈ ∆+ | mα ∩ p 6= {0}} and ∆+

−1 := {α ∈ ∆+ | mα ∩ h 6= {0}}.

Suppose that ∆ is of type BC and write ∆+ = {ei, 2ei}i∪{ei±ej}i<j. Suppose also
that dim t ≥ 2 and ∆+

1 ∩∆+
−1 = {ei}i. Then it follows by straightforward calculations

that the converse holds (cf. [22]). Note that the counterexample shown in this section
satisfies ∆+

1 ∩∆+
−1 = {ei}i∪{ei±ej}i<j if dim t ≥ 2, and ∆+

1 ∩∆+
−1 = {e1} if dim t = 1.

For the investigation of the triple (∆,∆1,∆−1) and the corresponding commutative
Hermann actions, see Ikawa’s papers [10] and [11].
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