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Abstract. It is known that if an orbit of a Hermann action is an austere submanifold then

the corresponding orbit of the path group action is also an austere submanifold. In this

article we will discuss the converse of this property.

1 Introduction

Let M = G/K be a symmetric space of compact type and H a closed subgroup
of G. An isometric action of H on M is defined by

b · (aK) := (ba)K for aK ∈M and b ∈ H.

Then an isometric action of H ×K on G is defined by

(b, c) · a := bac−1 for a ∈ G and (b, c) ∈ H ×K.

Moreover there is an isometric action of a path group on a path space. More
precisely we consider the path group G := H1([0, 1], G) of all Sobolev-H1-paths
from [0, 1] to G and the path space Vg := L2([0, 1], g) of all L2-paths from [0, 1] to
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g. Then G acts on Vg isometrically via the gauge transformations:

g ∗ u := gug−1 − g′g−1 for u ∈ Vg and g ∈ G.

Then the subgroup

P (G,H ×K) := {g ∈ G | (g(0), g(1)) ∈ H ×K}

of G acts on Vg by restriction. It is known that every orbit of the P (G,H×K)-action
is a proper Fredholm submanifold of the Hilbert space Vg ([11]). It is an interesting
problem to study submanifold geometry of orbits of P (G,H ×K)-actions.

Recall that a submanifold of a Riemannian manifold is called austere ([2]) if for
each normal vector ξ the set of eigenvalues with multiplicities of the shape operator
Aξ is invariant under the multiplication by (−1). By definition austere submanifolds
are minimal submanifolds. The concept of austere submanifolds was extended to the
class of PF submanifolds in Hilbert spaces by the author ([6], [7], [8]). Recently the
author [9] studied the austere property of orbits of P (G,H ×K)-actions under the
assumption that H is a symmetric subgroup of G, that is, there exists an involutive
automorphism τ of G such that H lies between the fixed point subgroup Gτ and
its identity component Gτ0 . Such an H-action is called a Hermann action ([3]).
To explain that result, for simplicity here we suppose that τ commutes with the
involutive automorphism σ of G corresponding to K. Denoting by g = k + m and
g = h + p the canonical decompositions associated to σ and τ respectively we take
a maximal abelian subalgebra t of m∩p so that every H-orbit can be written in the
form H · (expw)K for some w ∈ t. Then the constant path with value w is denoted
by ŵ. The author showed ([9, Theorems 6.1 and 7.5, Section 8]):

(1) Suppose that an orbit H · (expw)K is an austere submanifold of M . Then
the orbit P (G,H ×K) ∗ ŵ is an austere PF submanifold of Vg.

(2) Conversely suppose that the orbit P (G,H×K)∗ ŵ is an austere PF subman-
ifold of Vg. If the root system ∆ of t is reduced then the orbit H · (expw)K is
an austere submanifold of M . If the root system ∆ of t is non-reduced then
the orbit H · (expw)K is not an austere submanifold of M in general.

In fact the author gave an example of an H-orbit which is not austere but the
corresponding P (G,H ×K)-orbit is austere. However, in the non-reduced case, it
is not clear whether such a non-austere H-orbit always exists or not. The purpose
of this article is to discuss this problem more precisely. As a consequence we will
show that even if the root system ∆ is non-reduced, under some assumptions the
austere property of P (G,H ×K)-orbits conversely implies the austere property of
H-orbits (Theorem 3.3).

Throughout this article we will suppose that the involutions σ and τ commute.

2 Principal curvatures and austere property

In this section we review the facts on the principal curvatures and the austere
property of H-orbits and P (G,H ×K)-orbits.
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Take a maximal abelian subalgebra t of m ∩ p and consider the root space
decomposition of m with respect to t

m = m0 +
∑
α∈∆+

mα,

m0 = {x ∈ m | ∀η ∈ t, ad(η)x = 0},
mα = {x ∈ m | ∀η ∈ t, ad(η)2x = −〈α, η〉2x}.

Since σ and τ commute we have the decomposition

m = m ∩ h + m ∩ p.

Since σ commutes with ad(η)2 for all η ∈ t we have

m ∩ p = m0 ∩ p +
∑
α∈∆+

1

mα ∩ p, m ∩ h = m0 ∩ h +
∑

α∈∆+
−1

mα ∩ h.

∆+
1 = {α ∈ ∆+ | mα ∩ p 6= {0}}, ∆+

−1 = {α ∈ ∆+ | mα ∩ h 6= {0}}.

Take w ∈ t, set a := expw and consider the orbit N := H · (expw)K through
(expw)K. Denote by La the isometry of M defined by La(bK) = (ab)K. Then the
tangent space and the normal space of N are decomposed as follows ([1, Proposition
5.1])

TaKN = dLa( m0 ∩ h +
∑
α∈∆+

1

〈α,w〉/∈πZ

mα ∩ p +
∑

α∈∆+
−1

〈α,w〉+π/2/∈πZ

mα ∩ h ),(2.1)

T⊥aKN = dLa( t +
∑
α∈∆+

1

〈α,w〉∈πZ

mα ∩ p +
∑

α∈∆+
−1

〈α,w〉+π/2∈πZ

mα ∩ h ),(2.2)

Moreover the decomposition (2.1) is just the eigenspace decomposition of the family
shape operators {ANdLa(ξ)}ξ∈t. In fact ([1, Theorem 5.3])

dLa(m0 ∩ h) : the eigenspace of eigenvalue 0,

dLa(mα ∩ p) : the eigenspace of eigenvalue −〈α, ξ〉 cot〈α,w〉,

dLa(mα ∩ h) : the eigenspace of eigenvalue 〈α, ξ〉 tan〈α,w〉.

Thus principal curvatures of the orbit H · (expw)K in the direction of dLa(ξ) are
given by

{0}∪{−〈α, ξ〉 cot〈α,w〉 | α ∈ ∆+
1 , 〈α,w〉 /∈ πZ}

{〈α, ξ〉 tan〈α,w〉 | α ∈ ∆+
−1, 〈α,w〉+

π

2
/∈ πZ}
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where the multiplicities are respectively given by

dim(m0 ∩ h), dim(mα ∩ p), dim(mα ∩ h).

We now consider the principal curvatures of the orbit P (G,H×K)∗ŵ. Although
the eigenspace decompositions are complicated in general we can explicitly describe
the principal curvatures as follows ([9, Corollary 5.2]):

Theorem 2.1 ([9]). Let ξ ∈ t. Then the principal curvatures of the orbit P (G,H×

K) ∗ ŵ in the direction of ξ̂ are given by

{0} ∪
{

〈α, ξ〉
−〈α,w〉+mπ

∣∣∣∣ α ∈ ∆+
1 , 〈α,w〉 /∈ πZ, m ∈ Z

}
∪
{

〈α, ξ〉
−〈α,w〉 − π

2 +mπ

∣∣∣∣ α ∈ ∆+
−1, 〈α,w〉+

π

2
/∈ πZ, m ∈ Z

}
∪
{
〈α, ξ〉
nπ

∣∣∣∣ α ∈ ∆+
1 , 〈α,w〉 ∈ πZ, n ∈ Z\{0}

or α ∈ ∆+
−1, 〈α,w〉+

π

2
∈ πZ, n ∈ Z\{0}

}
.

where the multiplicities are respectively given by

∞, dim(mα ∩ p), dim(mα ∩ h), dim(mα ∩ p) + dim(mα ∩ h).

Next we consider the austere properties of H- and P (G,H × K)-orbits. The
following lemma is fundamental ([4, p. 89], [9, Lemma 6.2]):

Lemma 2.2. (i) (Ikawa [4]) the orbit H · (expw)K through (expw)K is an aus-

tere submanifold of M if and only if the set

{−α cot〈α,w〉 | α ∈ ∆+
1 , 〈α,w〉 /∈

π

2
Z}

∪ {α tan〈α,w〉 | α ∈ ∆+
−1, 〈α,w〉 /∈

π

2
Z}

with multiplicities is invariant under the multiplication by (−1).

(ii) ([9]) the orbit P (G,H × K) ∗ ŵ is an austere PF submanifold of Vg if and

only if the set{
1

−〈α,w〉+mπ
α

∣∣∣∣ α ∈ ∆+
1 , m ∈ Z, 〈α,w〉 /∈ π

2
Z
}

∪
{

1

−〈α,w〉 − π
2 +mπ

α

∣∣∣∣ α ∈ ∆+
−1, m ∈ Z, 〈α,w〉 /∈ π

2
Z
}

with multiplicities is invariant under the multiplication by (−1).
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Using this lemma the following theorem was shown ([9, Theorem 7.5]):

Theorem 2.3 ([9]). If the orbit H · (expw)K through (expw)K is an austere

submanifold of M then the orbit P (G,H × K) ∗ ŵ through ŵ is an austere PF

submanifold of Vg.

In the next section we will discuss the converse of this theorem.

3 On the converse problem

First we prepare the setting. We are supposing that the involutions σ and τ
commute. In addition to this we suppose that

(i) G is simple.

From this condition it follows that the root system ∆ is an irreducible root system
of t ([4, Lemma 4.34]). To consider the converse problem we note that if ∆ is a
reduced root system then the converse is true ([9, Theorem 6.1]). Therefore we
suppose that

(ii) ∆ is a non-reduced root system (i.e. of type BC).

We also note that if σ ∼ τ , that is, there exists an element c ∈ G such that
τ = Ad(c) ◦ σ ◦ Ad(c)−1, then the converse is true ([9, Corollary 7.4]). Hence we
suppose that

(iii) σ 6∼ τ .

Under these assumptions we consider the converse of Theorem 2.3
To consider the converse we briefly review Ikawa’s work [4]. He investigated

properties of the triple (∆,∆1,∆−1), formulated those properties Lie algebraically,
and gave classification of such triples (without assuming that ∆ is non-reduced).
The following lemma concerns one of those properties ([4, Theorem 4.33 (1), see
also Definition 2.2 (4)]):

Lemma 3.1 (Ikawa [4]). Suppose that G is simple, σ ◦ τ = τ ◦ σ, and σ 6∼ τ . Set

l := max{‖α‖ | α ∈ ∆1 ∩∆−1}. Then ∆1 ∩∆−1 = {α ∈ ∆ | ‖α‖ ≤ l}.

From this property it follows that if ∆ is of type BC then there are three
possibilities for ∆1 ∩∆−1, namely

(I) ∆1 ∩∆−1 = {±ei}i,

(II) ∆1 ∩∆−1 = {±ei}i ∪ {±(ei ± ej)}i<j or

(III) ∆1 ∩∆−1 = {±2ei,±ei}i ∪ {±(ei ± ej)}i<j .

where we write ∆+ = {ei, 2ei}i ∪ {ei ± ej}i<j .
We also recall his result for austere orbits of H-actions ([4, Theorem 2.18]):
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Proposition 3.2 (Ikawa [4]). Suppose that G is simple, σ ◦ τ = τ ◦ σ, and σ 6∼ τ .

Then the orbit H · (expw)K is an austere submanifold of M if and only if the

following conditions are satisfied:

(a) 〈α,w〉 ∈ π
4Z holds for all α ∈ ∆,

(b) 〈α,w〉 ∈ π
2Z holds for all α ∈ (∆1\∆−1) ∪ (∆−1\∆1),

(c) dimmα∩p = dimmα∩h holds for all α ∈ ∆1∩∆−1 satisfying 〈α,w〉 ∈ π
4 + π

2Z.

The following theorem states that the converse is true in the case (I) if dim t ≥ 2.

Theorem 3.3. Suppose that ∆1 ∩ ∆−1 = {±ei}i and dim t ≥ 2. If the orbit

P (G,H ×K) ∗ ŵ is austere then the orbit H · (expw)K is austere.

Proof. From Lemma 2.2 the set

{
1

−〈α,w〉+mπ
α

∣∣∣∣ α ∈ ∆+
1 \∆

+
−1, m ∈ Z, 〈α,w〉 /∈ π

2
Z
}(2.1)

∪
{

1

−〈α,w〉 − π
2 +mπ

α

∣∣∣∣ α ∈ ∆+
−1\∆

+
1 , m ∈ Z, 〈α,w〉 /∈ π

2
Z
}

∪
{

1

−〈α,w〉+mπ
α,

1

−〈α,w〉 − π
2 +mπ

α

∣∣∣∣ α ∈ ∆+
1 ∩∆+

−1, m ∈ Z, 〈α,w〉 /∈ π

2
Z
}

with multiplicities is invariant under the multiplication by (−1).

By the assumption we have {±(ei ± ej)}i<j ⊂ ∆1\∆−1 ∪ ∆−1\∆1. Suppose

ei + ej ∈ ∆1\∆−1. If 〈ei + ej , w〉 /∈ π
2Z then by the austere property of P (G,H ×

K)∗ŵ the set { 1
−〈ei+ej ,w〉+mπ (ei+ej)}m∈Z with multiplicities is invariant under the

multiplication by (−1). However this implies 〈ei + ej , w〉 ∈ π
2Z. Thus consequently

〈ei + ej , w〉 ∈ π
2Z holds. Similarly supposing ei + ej ∈ ∆−1\∆1 we obtain 〈ei +

ej , w〉 ∈ π
2Z. Thus 〈ei + ej , w〉 ∈ π

2Z holds for all i < j. By the similar arguments

it follows that 〈ei − ej , w〉 ∈ π
2Z holds for all i < j. Hence we obtain 〈2ei, w〉 ∈ π

2Z

and thus 〈ei, w〉 ∈ π
4Z. From these the conditions (a) and (b) hold.

To verify the condition (c) we suppose that 〈ei, w〉 = π
4 + π

2Z. Then 〈2ei, w〉 =

π
2 + πZ. Thus the vector 1

−〈2ei,w〉+mπ2ei or 1
−〈2ei,w〉−π/2+mπ2ei does not appear in

the set (2.1). Hence the set{
1

− 1
4π +mπ

ei,
1

− 3
4π +mπ

ei

}
m∈Z
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with multiplicities is invariant under the multiplication by (−1). More precisely

1

− 1
4π +mπ

= (−1)× 1

− 3
4π + (1−m)π

holds for all m ∈ Z. Hence dim(mei ∩ p) = dim(mei ∩ h) holds. If 〈ei, w〉 = 3
4π+πZ

then it follows similarly that dim(mei ∩ p) = dim(mei ∩ h). Hence (c) holds. This

proves the theorem.

Example 1. An example of the triple (G,K,H) satisfying the condition ∆1 ∩

∆−1 = {±ei}i is given by (SU(r + s+ t), S(U(r + s)× U(t)), S(U(r)× U(s+ t))),

(Sp(r+ s+ t), Sp(r+ s)× Sp(t), Sp(r)× Sp(s+ t) where r < t, 1 ≤ s, or (SO(4r+

4), U(2r + 2), U(2r + 2)′); see [4, Theorem 2.19] and [5, p. 228] for details.

The following proposition concerns the cases (II) and (III).

Proposition 3.4. Suppose ∆1 ∩ ∆−1 ⊃ {±ei}i ∪ {±(ei ± ej)}i<j. If the orbit

P (G,H ×K) ∗ ŵ is austere then 〈ei, w〉 ∈ π
8Z holds for all i. Moreover

(i) if 〈ei, w〉 ∈ π
4Z holds for all i then the orbit H · (expw)K is austere.

(ii) if there exists i such that 〈ei, w〉 ∈ π
8 + π

4Z then the orbit H · (expw)K is not

austere.

Proof. Let ei + ej ∈ ∆+. Suppose 〈ei + ej , w〉 /∈ π
2Z. Since ei + ej ∈ ∆1 ∩∆−1 it

follows from Lemma 2.2 that the set{
1

−〈ei + ej , w〉+mπ
(ei + ej),

1

−〈ei + ej , w〉 − π
2 +mπ

(ei + ej)

}
m∈Z

with multiplicities is invariant under the multiplication by (−1). Thus for each

ε ∈ {±1} there exists ε′ ∈ {±1} such that

(2.2)
1

−〈ei + ej , w〉 − 1
2 arg ε+mπ

(ei+ej) = (−1)× 1

−〈ei + ej , w〉 − 1
2 arg ε′ +m′π

(ei+ej).

From this we have

〈ei + ej , w〉 = −1

4
arg ε− 1

4
arg ε′, mod πZ.
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Since ε, ε′ ∈ {±1} it follows that 〈ei+ ej , w〉 ∈ π
4Z. Thus we have 〈ei+ ej , w〉 ∈ π

4Z.

Similarly we have 〈ei − ej , w〉 ∈ π
4Z. Hence we obtain 〈2ei, w〉 ∈ π

4Z and thus

〈ei, w〉 ∈ π
8Z.

Suppose that 〈ei, w〉 ∈ π
4Z holds for all i. Then 〈ei±ej , w〉 ∈ π

4Z and 〈2ei, w〉 ∈
π
2Z. Thus clearly the conditions (a) and (b) hold. To verify the condition (c) we

take α ∈ ∆+
1 ∩∆+

−1 satisfying 〈α,w〉 ∈ π
4 + π

2Z. Then α = ei or ei ± ej . Thus in

both cases the set {
1

− 1
4π +mπ

α,
1

− 3
4π +mπ

α

}
m∈Z

with multiplicities is invariant under the multiplication by (−1). More precisely

1

− 1
4π +mπ

= (−1)× 1

− 3
4π + (1−m)π

holds for all m ∈ Z. Hence dimmα ∩ p = dimmα ∩ h and (c) follows. This proves

the proposition.

Remark 3.5. As proved above, if the orbit P (G,H × K) ∗ ŵ is austere then

〈ei ± ej , w〉 ∈ π
4 holds for all i < j. Thus if the condition (ii) holds then 〈ei, w〉 ∈

π
8 + π

4Z holds for all i.

Example 2. An example of the triple (G,H,K) satisfying the condition ∆1∩∆−1 =

{±ei}i ∪ {±(ei ± ej)}i<j is given by (SU(r + s), S(U(r)× U(s)), SO(r + s)) where

r > s. In this case the H-orbit through w := π
8

∑s
i=1 ei satisfies the condition (ii)

in Proposition 3.4 and it is not austere. On the other hand the P (G,H ×K)-orbit

through ŵ is austere (see [9, Section 8] for details).
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