Hurwitz integrality of the power series expansion of
the sigma function for telescopic curves

Takanori Ayano*

Abstract

A telescopic curve is a certain algebraic curve defined by m — 1 equations in
the affine space of dimension m, which can be a hyperelliptic curve and an (n, s)
curve as a special case. The sigma function o(u) associated with a telescopic curve
of genus g is a holomorphic function on C9. For a subring R of C and variables

w="(u1,...,ug), let
k1 kg
u .. -u
R((u)) = > Ckl,...,kggkll‘ — kg' Chyyoky € R
! g

ki,.kg>0

If the power series expansion of a holomorphic function f(u) on C9 around the
origin belongs to R((u)), then f(u) is said to be Hurwitz integral over R. In this
paper, we show that the sigma function o(u) associated with a telescopic curve
is Hurwitz integral over the ring generated by the coefficients of the defining
equations of the curve and % over Z, and its square o(u)? is Hurwitz integral over
the ring generated by the coefficients of the defining equations of the curve over
Z. Our results are a generalization of the results of Y. Onishi for the (n, s) curves
to the telescopic curves.

1 Introduction

The Weierstrass’s elliptic sigma function plays important roles in the theory of the
Weierstrass’s elliptic function. F. Klein [23, 24] generalized the Weierstrass’s elliptic
sigma function to the multivariate sigma function associated with the hyperelliptic
curves. V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin developed the theory of
the Klein’s hyperelliptic sigma function and generalized it to the more general plane
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algebraic curves called (n, s) curves (e.g. [10, 11, 12, 13, 14, 15, 16, 17, 20]). The sigma
function is obtained by modifying the Riemann’s theta function so as to be modular
invariant, i.e., it does not depend on the choice of a canonical homology basis. Further
the sigma function has some remarkable algebraic properties that it is directly related
with the defining equations of an algebraic curve. Namely, the coefficients of the power
series expansion of the sigma function around the origin become polynomials of the
coefficients of the defining equations of the algebraic curve. This property is important
in the study of differential structure of Abelian functions (cf. [19, 28]). Further, from
this property of the sigma function, the sigma function has a limit when the coefficients
of the defining equations of a curve are specialized in any way, which is important in
the study of integrable systems (cf. [7, 29]). It is the central problem to determine the
coefficients of the power series expansion of the sigma function. This problem is studied
in many papers (e.g. [5, 8,9, 16, 21, 22, 26, 27, 32]).

Throughout the present paper, we denote the sets of positive integers, non-negative
integers, integers, rational numbers, and complex numbers by N,Z>(,Z,Q, and C,
respectively. For a subring R of C and a set of some complex numbers A, we denote by
R[A] the ring generated by elements in A over R. For positive integers ki, ..., k,, let
(kiy ... kn) = {liki 4+ -+ lokn | by ... 4y € Z>o} and we denote by ged(ky, ..., ky)

the greatest common divisor of ki,...,k,. For a subring R of C and variables z =
21,0y 2p), let
Zf]‘ DY an
R<<Z>> - R<<Zl7 cee ,Zn>> = Z <k1,...,knm Ckl,n-,kn S
k1ye.oykn >0
If the power series expansion of a holomorphic function f(z) = f(z1,...,2,) on C"

around the origin belongs to R((z)), then we write f(z) € R{(z)) and f(z) is said to be
Hurwitz integral over R.

For relatively prime positive integers n and s such that n,s > 2, the (n, s) curve is
the algebraic curve defined by the following equation in C? = (z,y)

yn =z + Z )\Z"j]?iyj, )\m‘ cC

ni+sj<ns

(cf. [12]). The (2,s) curves are equal to the hyperelliptic curves. The sigma function
o(u) associated with an (n,s) curve of genus ¢ is a holomorphic function on C9. We
denote by {\; ;} the set of all \; ;. In [26], the expression of the sigma function associated
with the (n, s) curves in terms of the prime function and algebraic functions is derived.
In [27], the expression of the sigma function associated with the (n, s) curves in terms of
the tau function of the KP-hierarchy is derived. In [26, 27|, by using these expressions
of the sigma function of the (n, s) curves, it is proved that o(u) € Q[{\;;}]{{u)) for the
(n,s) curves. We set A}, = A;;/2 if both ¢ and j are odd, and \]; = A;; otherwise.
Moreover, we denote by {\] ;} the set of all A ;. In [32], a special local parameter of the
(n, s) curves around oo is introduced, which is called arithmetic local parameter, and by
using the arithmetic local parameter and the expression of the sigma function associated



with the (n, s) curves in terms of the tau function of the KP-hierarchy derived in [27], it
is proved that o(u) € Z[{\] ;}]((u)) and o(u)* € Z[{);;}]((u)) for the (n,s) curves. In
[31], in the case of (n, s) = (2, 3), the Hurwitz integrality of the elliptic sigma function is
proved by an approach different from [32]. In [31, 32], the relationships of the Hurwitz
integrality of the sigma functions with number theory are discussed.

On the other hand, in [25], Miura introduced a certain canonical form, Miura canon-
ical form, for defining equations of any non-singular algebraic curve. A telescopic curve
[25] is a special curve for which Miura canonical form is easy to determine. For an
integer m > 2, let A,, = (a1,...,a,) be a sequence of positive integers such that
ged(ay, ... a,) =1, a; > 2 for any 4, and

a; a a;_ ,
—Z€<—1,...,Z—1>, 2<i<m,
d; di1 di1

where d; = ged(aq, ..., a;). Let
di—1

)

0<t<

B(Am):{(él,...,ém)EZ’fo —1 for 2§i§m}.

For any 2 < i < m, there exists a unique sequence (l;1, ..., n) € B(Ay,) satisfying

= d;_
Z ajfi’j = azd_zl

J=1

For any 2 < i < m, we have ¢; ; = 0 for j > ¢. Then the telescopic curve associated with

A, is the algebraic curve defined by the following m — 1 equations in C™ = (x1, ..., )
i—1
af = T+ D00 el 2<i<m,
j=1

where >‘§’?- . € C and the sum of the right hand side is over all (ji,...,jm) € B(An)

b "7]
such that
m
. di—q
E agJr < a; g
i
k=1

For m = 2, the telescopic curves are equal to the (n,s) curves. We denote by A the
set of all )‘g?,...,jm' In [1], the sigma function of the (n,s) curves is generalized to case
of the telescopic curves. The sigma function o(u) associated with a telescopic curve of
genus ¢ is a holomorphic function on C9. In [4], the expression of the sigma function
associated with the telescopic curves in terms of the prime function and algebraic func-
tions is derived. Further, in [4], the expression of the sigma function associated with
the telescopic curves in terms of the tau function of the KP-hierarchy is also derived.
In [4], by using these expressions of the sigma function of the telescopic curves, it is

proved that o(u) € Q[A]((u)) for the telescopic curves. We assign degrees as

m

deg /\gi),...,jm = i /d; — Z ke Jk-

k=1



Cifdeg A s
.. In this paper, we generalize the arithmetic
local parameter of the (n, s) curves to the case of the telescopic curves (Section 3). By
using the arithmetic local parameter of the telescopic curves and the expression of the
sigma function associated with the telescopic curves in terms of the tau function of the

KP-hierarchy, we show that o(u) € Z[A]{({u)) and o(u)? € Z[A]{{u)) for the telescopic
curves (Theorem 4.6). For a non-negative integer n, if n is even, then we set x(n) =0,

and if n is odd, then we set x(n) = 1. We set X;? i = )\g.? in /212700 x(Jk) > 2 and

) N0 . <~ ) i—1
Ajtroim = i, Otherwise. We denote by A the set of all A,/ 5 If > 70— x(4i ) <1

for any 2 < ¢ < m, then we show that o(u) € Z[A]((u)) for the telescopic curves
(Theorem 4.8). We can apply Theorem 4.8 to the (n, s) curves. The result obtained by
applying Theorem 4.8 to the (n,s) curves is equal to [32, Theorem 2.3].

In the case of the hyperelliptic curves, more precise properties on the power series

expansion of the sigma function are known. Let V, be the hyperelliptic curve of genus
g defined by

Y =2 L AT 4 X2 TP 4+ Mgy + Aggra, N € C

The sigma function o(u) associated with Vj is a holomorphic function on CY. By
applying [32, Theorem 2.3] to the curve V,, we obtain o(u) € Z[{\g}:%4 ' [{((u)). In
[18, 31], it is proved that o(u) € Z[2A4, 8] ((u)) for ¢ = 1. In [18], it is conjectured
that o(u) € Z[2\4,24X6]((u)) for ¢ = 1. In [3, Corollary 2], it is proved that o(u) €
Z[/\4, /\67 /\87 2)\10]<<U,>> for g = 2.

2 Preliminaries

2.1 Telescopic curves

In this section we briefly review the definition of telescopic curves following [25, 1, 4].
For an integer m > 2, let A,, = (a4, ...,a,) be a sequence of positive integers such
that ged(aq, ..., a,) =1, a; > 2 for any 4, and

a; a ai_ ,
—Z€< 1,...,Z—1>, 2<1<m,
d; di— di—

where d; = ged(aq, ..., a;). Let

d;—
B(A,,) = {(61,...,€m)EZ’§0 0<¢ < dl —1 for 2§i§m}.
Lemma 2.1 ([25, 1]). For anya € (ay,...,an), there exists a unique element (ky, ..., ky,)

of B(A,,) such that

m
E a;k; = a.
i=1
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By this lemma, for any 2 < ¢ < m, there exists a unique sequence (€;1,...,0m) €
B(A,,) satisfying

- di—1
Zajfi,j = azd—l (21)
j=1

Lemma 2.2 ([4]). For any 2 <i <m, we have {; ; =0 for j > i.

Consider m — 1 polynomials in m variables x = (z1,...,z,,) given by
Fy(z) = 2 /ds H b Z)\ﬁ)’m’jmx{l coegm 2 <0 <m, (2.2)
where )\gi)]m € C and the sum of the right hand side is over all (j1,...,7m) € B(An)
such that .
Za e < a-—di_l
kJk T
k=1

We assign degrees as
degzy = ay, deg )\;?,...,jm = a;di—1/d; — Z Ak Jk-

We denote by A the set of all )\gj)]m For 2 < i < m, the polynomial Fj(x) is
homogeneous of degree a;d;_1/d; with respect to the coefficients A and the variables

T1,...,Ty. Let X* be the common zeros of Fy, ..., Fl,:
XM = (), xy) €C™ | Fy(2y,. .., 2m) = 0,2 <i<m}.

In [25, 1], X2 is proved to be an affine algebraic curve. We assume that X®% is non-
singular. Let X be the compact Riemann surface corresponding to X*f. Then X is
obtained from X*! by adding one point, say oo [25, 1]. The genus of X is given by

(cf. [25, 1]). We call X the telescopic curve associated with A,,. The numbers ay, ..., ay,
are a generator of the semigroup of non-gaps at co.

Example 2.3. (i) Let n and s be integers such that n,s > 2 and ged(n,s) = 1. The
telescopic curve associated with Ay = (n, s) is the (n,s) curve introduced in [12].

(ii) For m = 3 and A3 = (4,6,5), the polynomials Fy and Fj are given by

2 2 2 2
Fy(z) =23 — 2} — Aé 11T2T3 — )\g,ioﬁlb — /\;3,11'1953 — /\g,g,of’ﬁ — )\(() ) 0T2 )\é 3 173

(2)
- )\1,0,0371 ) 0,00

F(r) = 373 — L1T2 — /\53()) 12123 — )\2 ,0,0% % )‘(()?,0552 - )‘(()?()),1953 - )‘f()),oﬁ - A(()?(%,o-



(iii)! Let a and b be integers such that a > b > 2 and ged(a,b) = 1. For A, =
(ai,...,an), where a; = a™ 'b*"1, the polynomials Fj, 2 < i < m, are given by

_ G b () J1 J
Fi(x) =af —a_y — E A g LT T

a1j1+-+amjim<aa;

For a meromorphic function f on X, we denote by ord,(f) the order of a pole at oc.

Then we have ordu(z;) = a;. We enumerate the monomials % - - zfm (k... k,) €
B(A,,), according as the order of a pole at oo and denote them by ¢;, i« > 1. In
particular we have ¢ = 1. Let (wy,...,w,) be the gap sequence at oo:

{w; |1 <i<g}=Zs\(a1,...,an), w3 <---<w,.

In particular, we have w; = 1. The set {y;}$2; is a basis of the vector space consisting
of meromorphic functions on X which are holomorphic at any point except co. Let G
be the (m — 1) x m matrix defined by

Ox; ) 2<i<m, 1<j<m

and Gy, be the (m — 1) x (m — 1) matrix obtained by deleting the k-th column from G.
Then a basis of the vector space consisting of holomorphic one forms on X is given by

_ _Pgtl-i

w; = —dxr, 1<1<yg,
det G, ! =1=9

where det G is the determinant of Gy (cf. [1]). The following lemma is proved in [1].

Lemma 2.4. We have wy = 2g — 1. In particular, the holomorphic one form w, has a
zero of order 2g — 2 at co.

From Lemma 2.4, we find that the vector of Riemann constants for a telescopic curve
with the base point co is a half-period.

2.2 Fundamental differential of second kind

A fundamental differential of second kind plays important roles in the theory of the
sigma functions. We recall its definition.

Let X be a telescopic curve of genus g and Kx be the canonical bundle of X. For
1=1,2,let m; : X x X — X be the projection to the i-th component. A section of
i Kx ® m5 Kx is called a bilinear form on X x X and a bilinear form w(P, Q) is called
symmetric if w(Q, P) = w(P, Q).

IThis example is given in [30, 4].



Definition 2.5. A meromorphic symmetric bilinear form w(P, Q) on X x X is called
a fundamental differential of second kind if the following conditions are satisfied.

(i) w(P, Q) is holomorphic at any point except {(R, R) | R € X}.

(ii) For R € X, take a local parameter ¢ around R. Then w(P, Q) has the following
form around (R, R) :

w(P,Q) = ( L +f(tp,tQ)) dt pito,

(tp —tq)
where tp = t(P), tg = t(Q), and f (tp,tg) is a holomorphic function of tp and tg.

g

For a fundamental differential of second kind w(P, @) and complex numbers {c; ;}{;_,

such that ¢; ; = ¢;,,

g
w(P, Q)+ Z cijwi(P)w; (Q)
ij=1
is also a fundamental differential of second kind.

For the telescopic curve X, a fundamental differential of second kind is algebraically
constructed in [1]. We recall its construction. Note that the construction inherits all
steps of classical construction in [6] that was recently recapitulated and generalized in
20, 26] for the (n, s) curves. We define the meromorphic bilinear form &(P, Q) on X x X
by

S(P,Q) = do(P,Q) + 3 wi(Pyni(Q),

where P = (z1,...,2,) and @ = (y1, ..., Yn) are points on X,

det H(P, Q)

UPQ) = (z1 —y1) det G1(P)

d'rlu

H = (hi;j)a<ij<m with

By — E(yb e Yi—1, L5 Tjg1y - - ,CL’m) - E(yh e Yi—1,Y5 L1, - - ,.Z'm)
i7~j - x'_ .
i Yj

Y

and 7; is a meromorphic one form on X which is holomorphic at any point except co.
Here dg€(P, () means the derivative of (P, Q) with respect to Q.

Lemma 2.6 ([1, Lemma 4.7], [26, Lemma 6]). The set
(P o

@Z( ) dﬂfl
det Gl(P) i=1

15 a basis of the vector space consisting of meromorphic one forms on X which are
holomorphic at any point except oo.



Let

g . o )
Z Cityenimig1yeend :L'le .. .xzmz/{l e gydm

ZP i — e imaJlyeeJm m m d d ’

> wi(Pm(Q) e o) 21y,

where (i1,...,0mn), (J1,---,Jm) € B(Ay) and ¢, _ivviroim € C.

-----

Lemma 2.7 ([1, Theorem 4.1 (i)], [26, Proposition 2 (ii)]). It is possible to take {n;}I_,
such that 5(Q, P) = B(P,Q), Ciy...inijroin € QAL and ciy i, ..., is homogeneous
of degree 2(2g — 1) — > 7" a(ix + jx) with respect to X if ¢iy, ivivojm 7 0.

Lemma 2.8 ([1, Theorem 4.1 (ii)], [26, Proposition 2 (i)]). If we take {n;}{_; as in
Lemma 2.7, then W(P, Q) becomes a fundamental differential of second kind.

2.3 Sigma function of telescopic curves

Let X be a telescopic curve of genus g associated with A,, = (ai,...,a,). We take
{n;}{_; as in Lemma 2.7. We take a canonical basis {a;, b;}?_; in the one-dimensional
homology group of the curve X and define the matrices of periods by

(L) () (1) (1)

The matrix of normalized periods is given by 7 = (w')7'w”. Let 6 = 78’ + 8", §',6" €
RY, be the vectors of Riemann’s constants with respect to ({a;, b;}7_;,00). We set
§ =1(*',19"). We denote the imaginary unit by i. The sigma function o(u) associated
with the curve X, u = "(uy,...,u,), is defined by

1
o(u) = Cexp (itun’(u}')_lu) 0[] ((2w') ', 7),
where 6[0](u) is the Riemann’s theta function with the characteristics § defined by
0[0](w) = > exp{mi'(n+&)r(n+ &) +2ri ' (n+ &) (u+5")},
nezy

and C' is a constant. Since ¢ is a half-period from Lemma 2.4, o(u) vanishes on the
Abel-Jacobi image of the (¢ — 1)-th symmetric products of the telescopic curve. We
have the following proposition.

Proposition 2.9 ([1, 26]). For my,mq € Z9 and u € C?, we have
o(u+ 2w'my + 2w’ my)
o(u)

A sequence of non-negative integers p = (1, ft2, - - ., ft¢) such that gy > pg > -+ >

pe is called a partition. For a partition g = (1, pa, - - -, fte), let |u| = g1 + po + -+ + pue.
For n > 0, let p,(T") be the polynomial of 71,75, ... defined by

i% <i TW) = ipn(T)k”, (2.3)

8

_ (_1)2(t6’m17t6”m2)+tm1m2 eXp{t(Qn'ml—i—Qn”mg)(u—i—w'ml—i—w"mg)}.




where k is a variable, i.e., p,(T) is the coefficient of ™ in the left hand side of (2.3).

For example, we have
T? T3
po(M) =1 p(T) =T, p(T)=To+ 5, ps(T) =T+ T+

For n < 0, let p,(T) = 0.

Lemma 2.10. Forn > 1, we have
T""l ce Tk
=TT

where the sum is over all (ky, ..., k,) € ZZ, satisfying

j=1

Proof. By comparing the coefficients of £ in (2.3), we obtain the statement of the
lemma. O

For an arbitrary partition p = (p1, o, . - ., pt¢), the Schur function S,(7T") is defined
by
Su(T) = det (pu,—i+; (T))1gi,jgz :
For the telescopic curve X associated with A,, = (a1,...,ay), we define the partition
by
w(Ay) = (wy,...,w1) — (g —1,...,0).

Lemma 2.11. The Schur function Sy a,, (T') is a polynomial of the variables T, ..., T,,.

Proof. We can prove this lemma as in the case of (n, s) curves (cf. [12, Section 4]). [

Theorem 2.12 ([4, Theorem 7]|). The sigma function o(u) is a holomorphic function
on CY9 and we have the unique constant C' such that the series expansion of o(u) around
the origin has the following form :

u ... 9
o(u) = Suanm) (1)1 —u, + > Enging (2.4)

winy+-Fwgng>|u(Am)]

where ey, n, € QA] and &y, ..., is homogeneous of degree winy +- - - +wyng —|p(Ay)|

We take the constant C' such that the expansion (2.4) holds, see the expression for
the sigma function above, which involves the constant C'. Then the sigma function o(u)
does not depend on the choice of a canonical basis {a;, b;}Y_; in the one-dimensional
homology group of the curve X and is determined by the coefficients A of the defining
equations of the curve X.



3 Arithmetic local parameter for telescopic curves
Since ged(ay, ..., a,) = 1, we can take (by, ..., b,) € Z™ such that
a1b1 + -4+ ambm = —1.

We consider the defining equations (2.2) of the telescopic curve X. Let M,,(Z) be the
set of m x m matrices such that all the components are integers. We consider the matrix

—6271 dl/dg 0 s 0
—l31  —l39 dy/ds ce 0
D=| : : : : € My (Z).
_gm,l _Em,2 e _gm,m—l dm—l/dm
bl b2 e bm—l bm
Lemma 3.1. We have det(D) = (—1)™.
Proof. From (2.1) and Lemma 2.2, we have
0
ay .
Dl : = "1 3.1
=1 3.)
A, 1

By multiplying some elementary matrices whose determinants are 1 on the left, the
equation (3.1) becomes

0
ay .
D= 1.
a 0
mn -1
where
€9 dl/dg 0 0
€3 0 dg/dg 0
D = : : : " :
ém 0 0 oo dp/d
e 0 0 0
for certain e, ..., e, e € Q. From the above equation, we obtain e = —1/a;. We have
~ 1dr dy dy
det(D) = det(D) = (-1)" 1 —=. =... ce=(—1)".
ct(D) = det(D) = (1)1 G St e ()

10



Let
t=al b, (3.2)

m

Since t has a zero of order 1 at oo, we can regard ¢ as a local parameter of X around
o0o. We call t the arithmetic local parameter as in the case of [32]. For 1 <i < m, we
consider the expansion of z; around oo with respect to ¢

1 — N
T; = #Ti kz_opi’kt , Dik € C. (33)

By substituting (3.3) into the defining equations of X, for 2 < i < m, we obtain
0 di-1/di i1/ oo bij
(S} =T1(S0er)
k=0 J=1 \k=0
o) Ji 0o Jm
+ Z )\gli)’...’jmtaidifl/difzz;l agjk (Z pl,ktk) ce (Z pm,ktk> , (34)
k=0

k=0

where the sum of the right hand side is over all (ji,...,Jm) € B(A,,) such that

m

. di—y
Zakjk < a; 1
k=1 ¢

Proposition 3.2. We have p1g =pao="--+ = pmo = L.

Proof. By comparing the coefficients of tV in (3.4), we obtain
i—1
di1/d; li )
o = 11w (35)
j=1
for 2 < ¢ < m. By substituting (3.3) into (3.2), we obtain

9] b1 0
1= <ZP1,ktk> (Z pm,ktk>
k=0 k=0

We divide the set {1,2,...,m} into the two sets {av, ..., a5} and {11, ...,y }, where

bm

bay, -+, ba, are negative integers and b, ,,. .., ba,, are non-negative integers. Then we
have
S 0 _baj m 00 baj
11 ( paj,kt’f) = 11 (Z paﬁktk) . (3.6)
=1 \k=0 j=s+1 \k=0

By comparing the coefficients of ¢ in (3.6), we obtain
Do Pty = 1. (3.7)

11



For a complex number z satisfying z # 0, the principal value of the complex logarithm
of z is defined by Log(z) = log |z|+iArg(z), where Arg(z) is the argument of z satisfying
—7m < Arg(z) < 7. For complex numbers z; and z, satisfying 2125 # 0, the following
relations hold:

Log(z129) — Log(z1) — Log(zq) € 2miZ,

Log(z1/#2) — Log(z1) + Log(z2) € 27iZ,
where 27iZ = {27in | n € Z}. From (3.5), we have

i—1

ILOg(pi,O) - Zﬁ@jLOg(pLQ) € 2miZ, 2<i<m.
j=1

di—
d;

From (3.7), we have
biLog(pio) + -+ + b Log(pmo) € 2miZ.

Therefore we have
Log(p1.0)
D : € 2miz™,
Log(pm.o)
where 2miZ™ = {27in | n € Z™}. From Lemma 3.1, we have D~ € M,,(Z), where D!

is the inverse matrix of D. Therefore we have Log(p;o) € 2miZ for 1 < j < m. Thus
we obtain p;o =1for 1 <j <m. O

We set degt = —1.

Proposition 3.3. We have p;, € Z[\] and the expansion of x; around oo with respect
to t is homogeneous of degree a; with respect to XA and t.

Proof. From Proposition 3.2, for any 1 < i < m, we have p;o € Z[A] and p; is
homogeneous of degree 0 with respect to A. We take an integer ¢ > 1. For any
1 <i<mand0<k</{—1, we assume that p;, € Z[A] and p;, is homogeneous of
degree k with respect to A if p;x # 0. By comparing the coefficients of t* in (3.4), there
exist f;(A) € Z[A] for 2 < i < m such that f;(A) are homogeneous of degree ¢ with
respect to A if f;(A) # 0 and

din ,
g b =), 2gism

By comparing the coefficients of ¢ in (3.6), there exists f(X) € Z[A] such that f(\) is
homogeneous of degree ¢ with respect to A if f(A) # 0 and

blpl,g + -+ bmpm,ﬁ = f()‘)

12



Therefore, we obtain

e\ (B
U
pra) -\

Since D! € M,,(Z), for any 1 < i < m, we have p;, € Z[A] and p;, is homogeneous of
degree ¢ with respect to A if p;y # 0. By mathematical induction, for any 1 <¢ < m
and k > 0, we have p;;, € Z[A] and p; ; is homogeneous of degree k with respect to A if
pik 7 0. O

Lemma 3.4. For any (ki,..., kn) € ZZ,, the meromorphic function Mgk oon X

can be expressed by the linear combination of @; uniquely as follows :

Ty = Zpi%‘, (3.8)
i=1

where ordoo(pn) = Y iey @iki, pn =1, pi € Z[A] for 1 < i <n —1, and the right hand
side of (3.8) is homogeneous of degree Y .-, a;k; with respect to A and x1, ..., Tp,.

Proof. Since the set {p;}2, is a basis of the vector space consisting of meromorphic
functions on X which are holomorphic at any point except co, the meromorphic function

x’fl ---xFm on X can be expressed by the linear combination of ¢; uniquely as follows :
gh gk = Zpi@i, pi € C. (3.9)
i=1

m

For 1 < i < n, let j; = ordeo(y;). We have j, = > " a;k;. By expanding the both
sides of (3.9) around co with respect to ¢ and comparing the coefficients of ¢/, from
Proposition 3.2, we obtain p, = 1. We take an integer 1 < ¢ < n — 1. For any
¢+ 1 <i<n, we assume that p; € Z[A] and p; is homogeneous of degree j,, — j; with
respect to A if p; # 0. From Proposition 3.3, the expansion of 2 - - . gkm — > i1 PiPi
around oo with respect to t is homogeneous of degree j, with respect to A and t.
By expanding the both sides of (3.9) around co with respect to ¢ and comparing the
coefficients of ¢t77¢, from Proposition 3.2, we have p, € Z[A] and p, is homogeneous
of degree j, — j, with respect to X if p, # 0. By mathematical induction, for any
1 <i<n-—1, wehave p; € Z[A] and p; is homogeneous of degree j,, — j; with respect
to A if p; # 0. m

Lemma 3.5 (2, Lemma 3.4]). For 1 <k < m, we have
det Gx(P) = (—1)" " apa]* - 2)m + Z ﬁil,...,iml‘if et (3.10)

where (Y1, . . ., Ym) is the unique element of B(Ay,) such that 3 7", a;y; = 7", a;d; 1 /dj—
Z;“:l a;+ay and the sum of the right hand side of (3.10) is over all (i1, ... ,im) € B(An)

such that Z;n:l ajij < Z;ﬂzz ajd;_q/d; — E;”:l aj+a,. We have B, ;. € Z[A] and the
right hand side of (3.10) is homogeneous of degree 7", a;d;—1/d; — 37", a; + ay, with

respect to X and x1,...,T,,.
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In the same way as [4, Proposition 1], for 1 < i < g, we can prove that the expansion
of w; around oo with respect to t has the following form :

w; = twi_l (1 + Z bi,jtj) dt, bz‘,j e C.
j=1

Proposition 3.6. We have b; ; € Z[\] and the expansion of w; around oo with respect
to t is homogeneous of degree 1 — w; with respect to A and t.

Proof. From Propositions 3.2, 3.3, and Lemma 3.5, for 1 < k& < m, we have the following

expansion :
dwg k4292 o (k)44
— = (—1)"t¥ 1 byt | dt
et Gy~ Y 2.0 :

Jj=1

where bg-k) € Z[1/ax, A] and bg-k) is homogeneous of degree 7 with respect to X if bg»k) #0.
For any 1 < k < m, we have

d&?k

dl’l

— = (-1 3.11
det G1(P) (=1) (3:11)
(cf. the proof of [1, Lemma 3.2]). Therefore we have bg-l) = bgk) for any j > 1 and

2 < k < m. Since ged(ay, ..., a,) =1, for any j > 1, we have

1
b € () Z[1/ar, A = Z[A].
k=1
From Propositions 3.2 and 3.3, we obtain the statement of the proposition. Il

We take {n;}{_, as in Lemma 2.7.

Proposition 3.7. It is possible to take {n;}{_, such thatc;, ;i1 . =0 > po agiy >
2211 akjk:-

Proof. If 7" agiy, > > ey agjr and ¢y, o # 0, we add

Ci1,...,im;j1,.-.,jmxill .« .. %[Z,;{Lyil “ .. yJT;Ln Ci1,...,im;j1,..~,jmxji1 .. x%nyil DY y,:’r'flﬂ
B darsdy — derd
det Gy (P) det G (Q) 1041 det G4 (P) det Gy (Q) e

to (P, Q). If >0 agix = >, axjk, which is equivalent to (i1, ..., %) = (1, .-, Jm),
and ¢y i 7 0, we add

Cit it D1 * TomYT -yl
— htm e dxyd
det G, (P) det G1(Q) 1
to W(P, Q). Then we can take {n;}¢_; in the form of this proposition. O

Hereafter, we take {n;}Y_; as in Proposition 3.7.
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Lemma 3.8 ([1, p. 470], [2, p. 6]). We have

dQQ(Pa Q)
{2 () @ — ) 25 (P, Q) det Gi(Q)} + det G (Q) det H(P, Q)

- (21 — y1)2 det G, (P) det G4 (Q) de1dy,

where the numerator is homogeneous of degree 2y ", (d;_1/d; — 1)a; = 2(2g — 1 + a1)
with respect to X and x1,...,Tm, Y1, -+ Ym-

We define cil,-n,im;jl .... Jm by

D Ciroiimigt i iyl oyl
doQU(P,Q) = R A L “-dxyd
QSUP Q) = = S eGP det Gh () 1t
where (i1, .., 4m), (41, -+, Jm) € B(An).

Lemma 3.9. We have ¢, i .i1oim € ZIA] and &, . ;..-5. .. is homogeneous of degree
2129 — 14 a1) — >0, an(in + J) with respect to X if &, 4 v i # 0.

Proof. From Lemmas 3.4 and 3.8, we obtain the statement of the lemma. O

We define F(P,Q) by

F(P,Q)
(ZEl — y1)2 det Gl (P) det Gl(Q)

Q(P, Q) = d.ﬁL’ldyl.

We can determine the coefficients ¢;, i by the following recurrence relations.

STm3) 1y

Proposition 3.10. We take (i1, ... im), (J1,---,Jm) € B(An) such that Y, agiy <
Zzlzl akjk~
(i) If iy = 0, we have

C0,i,seeimiftyndm — Ci142,92,0dmi0s02,sim — C0jiz,eimiji+2,52, 05 -
(i) If iy = 1, we have

Clii, simigt i = 2Ci1+3,2s0mmiOsizsvoorim — 2€0,ig,e.simiji+3:j2sdm T CirH2,42,mmmrjmiLyizsee.vim

= Clig,imifi 42,52, 0m
(iii) If iy > 2, we have

Cit,eoimsfloendm QCil_17i27~~-7im§j1+1,j27-~-1j7n = Cir—2ia,imf1 42,52, 0 0m

T Chr42,02,eesimiityeensim " Cityenimigi+2,5250eedm -

15



Proof. (i) The coefficient of 2 - - - zimy *2y22 ... yim in F(P,Q) is

COsin,evrsimigteesdm T+ CO2yeensimif1+ 2,2 e
Ji+2, g2 jm 02 i
From Y )", agir, < > -, axjr and Proposition 3.7, the coefficient of x7' ™23’ - - - xdmys? - - - yim

in F'(P,Q) 18 €j,42.js....jmi0vinsnsim- From 0(Q, P) = &0(P,Q), we obtaln the statement of
().

(ii) The coefficient of z a2 - - - zimyl t2yd2 .. .yim in F(P,Q) is

Cllisesimityersim — 2C0,iz s msimift Lz sgm T Cliz,eosimijt 42,52, jm
From a,+> ", apir < Y-, axjx and Proposition 3.7, the coefficient of 27
in F(P,Q) 1S €j,42.js... jmiliz,sim- From @(Q, P) = w(P @) and (i), we obtain the state-

ment of (ii).

(iii) The coefficient of it - - - gimyl*2y22 .. yim in F(P,Q) is

Ciyoosimitrsim — 2Ci1—Lyizsemsimigi+1yj2sendm T Cit—2jiz,imifi+2,:52sedm T Citoimift 42,5200 -

From Y"1 | agir, < S°1, axjr and Proposition 3.7, the coefficient of 2! 72222 - - gimyit ... yim

in F(P,Q) 18 €j,42.js....jmsir,im- From &(Q, P) = &(P,Q), we obtain the statement of
(i). O

Lemma 3.11. We have ¢y, i r.jm € Z[A] and ¢y, i i @S homogeneous of

degree 2(2g — 1) — > 7" | ay (i + ji) with respect to X if ¢;y i ivoim 7 0.
Proof. From Proposition 3.10, we obtain the statement of the lemma. O

We define Ei1»---7im;j17---7jm by

= Zeil,...,im;jl,...,jmmil eyl eyl
where (i1,...,%m), (41, -+, Jm) € B(An).

Lemma 3.12. We have G, i r.jm € Z[A] and G, i ... 1S homogeneous of
degree 2(29 — 1+ a1) — Y ax(ix + ji) with respect to X if Gy, i 7 0.

Proof. From Lemmas 3.9 and 3.11, we obtain the statement of the lemma. O

The fundamental differential of second kind @(P, Q) is expanded around oo X oo
with respect to the arithmetic local parameter ¢ as follows :

R 1 1
OP,Q) = —+ > ath'th " | ditpdtq, g €C, (3.12)
(tr—te)* 55

where tp = t(P) and tg = t(Q). From &(Q, P) = &(P,Q), we have ¢;; = ¢, ; for any
i ],
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Proposition 3.13. We have ¢;; € Z[A] and ¢;; is homogeneous of degree i + j with
respect to X if ¢; j # 0.

Proof. From (3.3) and Proposition 3.2, we have

oo [o.¢] 2
Rt (o — ) = (t‘g; +) puathty — 4 - Zpl,ktaplté> . (3.13)
k=1 k=1
From Proposition 3.3, we have
gt (@ — 1) = (tp — 1Q)> > vijtith, (3.14)
,j>0

where v; ; € Z[A] and v;; is homogeneous of degree 2 — 2a; + 7 + j with respect to A if
3.12), (3 13), and (3.14), around oo x oo, we have

v;j # 0. From (
2a; 2 ~
B2 (a1 - 1) 0P
2
> vith (tal + Zpl Wt — 3 — Zpl ktalt’“) (Z qz-,jti;ltg*) dtpdtq.
4,720 i5>1

(3.15)

Therefore, around oo x co, we have

e (w1 — 11)°W(P, Q) = (Z qUtPtQ> dtpdtq, G € C. (3.16)

4,720

From Propositions 3.3, 3.6, and Lemma 3.12, we have ¢; ; € Z[A] and g; ; is homogeneous
of degree 2 — 2a; + i + j with respect to X if g; ; # 0. From (3.15) and (3.16), we have

> (g —vig)tpty

i,j>0
o0 o0 2
— (t‘g + ) puathty — 4 — Zpl,kt‘;;t’g?) (Z qi,jtipltgf) . (3.17)
k=1 k=1 ij>1
By comparing the coefficients of té‘“ in the both sides of (3.17), we have ¢, ; € Z[A] and
¢1,1 is homogeneous of degree 2 with respect to X if ¢; 1 # 0. We take a pair of positive
integers (4o, jo). For any (i,7) € N? such that
o 1+ 7 <19+ jJoor
e i+ j =1+ 70 andi<i0,
we assume that ¢;; € Z[A] and ¢, ; is homogeneous of degree i 4+ j with respect to A
if ¢;; # 0. By comparing the coefficients of tﬁg_ltgwarl in the both sides of (3.17),

we have g;,j, € Z[A] and g;, j, is homogeneous of degree iy + jo with respect to X if
Qio.jo 7 0. By mathematical induction, we obtain the statement of the proposition. [
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For k > 1, we define ¢; by

00 4 ©0 ]
Z c tk_l 1 a (1 + Ej:l bgdt]> (3 18)
L = = e ——. .
N _ (@ : (%) : N (@) ()
Weset ;) . =X\ . /2if deg Ajh:;’i is odd and )‘jl,...g/ = Aiv g 1 d'eg Aiv i 18
even. We denote by A the set of all >‘§Z1) . We set deg /\5-21) 77777 i = deg )\5-? 77777 i Fora

domain R, we denote by R[[t]] the set consisting of formal power series over R.

Lemma 3.14. We have ¢;, € Z[X] and ¢y 1s homogeneous of degree k with respect to A

Proof. From Proposition 3.6, we have b, ; € Z[A] and b, ; is homogeneous of degree j
with respect to A if b, ; # 0. Therefore, if j is odd and b, ; # 0, any term of b, ; contains

a coefficient )\?1) . such that deg )\ﬁ) _is odd. Thus, we have

and it is homogeneous of degree 1 with respect to X and £. On the other hand, we have

1+ Z(]).l;l bg’jtj — ; <_ J;1 bg7jtj> ) Z[A]Ht]]

and it is homogeneous of degree 0 with respect to A and ¢. Therefore we have

> ettt e ZI[[1]

and it is homogeneous of degree 1 with respect to X and ¢. Thus we obtain the statement
of the lemma. N

4 Hurwitz integrality of the power series expansion
of the sigma function for telescopic curves

Definition 4.1. For a subring R of C and variables z = *(2q,. .., 2,), let

Zfl “ e an
R<<Z>> - R<<Zl7 oo 7Zn>> = Z Ckl ----- knkil'—k‘:;' Ckl ,,,,, kn € R
k1 enhin >0
If the power series expansion of a holomorphic function f(z) = f(z1,...,2,) on C"

around the origin belongs to R((z)), then we write f(z) € R{(z)) and f(z) is said to be
Hurwitz integral over R.

18



Let W = {wy,...,w,} and u = *(uy,...,u,). For any partition x and the Schur
function S,(T), we substitute T,,, = w; for 1 < ¢ < g and T; = 0 for any j satisfying
j ¢ W, and denote it by S, (u).

Lemma 4.2. For any partition p, we have S, (u) € Z{(u)).

Proof. For an integer n > 1 and the polynomial p, (T") (cf. Section 2.3), we substitute
T, = u; for 1 <i < g and T; = 0 for any j satisfying j ¢ W, and denote it by p,(u).
Let po(u) = 1 and p,(u) = 0 for n < 0. From Lemma 2.10, for n > 0, we have

u?l ... u;L(]
u) =y —
pn( ) an!_..ng!7
where the sum is over all (ny,...,n,) € Z%, satisfying win; +--- +wyny = n. We have

SM(U) = det (pm—i—irj (u>)1§z‘,j§€ )

where p = (p1, pt2, . - ., pte). For integers my,...,mgy,nq,...,ny > 0, we have
+
ugnl,_‘u;ﬂguvlu__.ugg o my 4y my +n, u’in1+7l1___u;ng ng
myl---mgl nyl- - ng! my my (my 4+ ny)!l-- (my +ng)!
. . . . my+n mg+n . .
Since the binomial coefficients ( 1m 1) s ( gm g > are integers, we obtain the
1 g

statement of the lemma.

Lemma 4.3. Let R be a subring of C, f(u) = f(u1,...,uy) be a holomorphic function
on C9, and M be a g X g matrix such that all the components are included in R. If
f(u) € R{{(u)), then we have f(Mu) € R({(u)).

Proof. Let M = (m; ;)1<ij<g, Where m; ; € R. For any integer n > 0, we have

n ny g
(migur + - - - + miguy) n1 ng Uy~ Ug
= mi 1 e M _—

n' Y nl!...ng!’
where the sum is over all (ny,...,ny) € Z%, satisfying n; + --- +ny = n. Thus we
obtain the statement of the lemma. ]

We expand 97 p; around oo with respect to the arithmetic local parameter ¢
197 g, = Z &t
From Proposition 3.3, we have &, ; € Z[A]. For j > ¢, we have
&J:{ ? it i< —j

if 1=—j.
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For a partition g = (u1, o, . .. ), we define

gml,l £m1,2 §m1,3

&, = det(&m, ) ijen = Emat Ema2 Emas3
b ‘ g JHIER §m3,1 §m3,2 £m3,3

where m; = y; — i and the infinite determinant is well defined. Then we have £, € Z[A].
The tau function 7(u) is defined by

7(u) = ZSHSM<U>7

where the sum is over all partitions.
Proposition 4.4. We have 7(u) € Z[A]{((u)).
Proof. From Lemma 4.2, we obtain the statement of the proposition. Il

For 1 < i < g, we expand w; around co with respect to ¢ as follows :
> ~ ~
W; = me’tj_ldt, b@j c (C
j=1

From Proposition 3.6, we have

T i g = w

and EZ] € Z[A] if 7 > w;. We define the g x g matrix

1 bl,wg El,wg e él,wg
_ 0 1 b2,w3 e 22,11)9
B = (biwh<ijeg=0 0 1 - byu, |,
0 O 0 1
¢ = (Cwy, " »Cu,), and the g X g matrix
qwhwl qwth Tt qquhwg
Gu ;W Gw k) Tt Gw W
N = (Quauhsijeo= | . . o
Qg1 Qugws " Qug,wg

Theorem 4.5 ([4, Theorem 1], [27, Theorem 8]). For v = *(vy,...,v,) € C9, the
following relation holds :

(v) = exp (—cv + %%NU) o(Bu).
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Theorem 4.6. We have o(u) € ZIA{(v)) and o(u)? € ZIN{{(u)).

Proof. Since the determinant of B is 1, we have

B'=B

Y

where B is the adjugate matrix of B. Therefore all the components of B~! are included
in Z[A]. We set u = Bv in Theorem 4.5. Then we have

o(u) = exp (cB_lu - %tu t(B_l)NB_lu) (B~ ). (4.1)

From Lemma 4.3 and Proposition 4.4, we have 7(B~'u) € Z[A|{({u)). Let ¢ = ¢B™,
¢=(¢1,...,¢y), N="B)NB™, and N = (4, ;)1<ij<g- From Lemma 3.14, we have
G € Z[X] for any 4. Since N is the symmetric matrix, N is also the symmetric matrix.
From Proposition 3.13, we have g, ; € Z[A] for any 7,j. Thus we have exp(Gu;) €
Z[X]((ul)) and exp(q; juiu;) € Z[A]({u;, u;)) for any 4, j. For any non-negative integer
n, we have

(2n)!

2np)
(cf. [3, Lemma 11]). Therefore, we have exp(g, u7/2) € Z[A]({u;)) for any i. Thus,
from (4.1), we have o(u) € Z[A]{(u)). From (4.1), we have

e

o(u)® =exp (2B 'u —‘u (B~ )NB 'u) 7(B~'u)*.
From (3.18), we have 2¢; € Z[A] for any i. Therefore we have o(u)? € Z[A]{(u)). O

For a non-negative integer n, if n is even, then we set x(n) = 0, and if n is odd,
then we set x(n) = 1. We set /\ o= )\(z il 2 1f Yo X(jk) > 2 and )\( i =

)\(-l) ;. Otherwise. We denote by A the set of all )\
by {2r |r € R}.

Lemma 4.7. For even non-negative integers ky, . .., k,,, we define p, by

e’} 00 k1 00 km,
> pat" = (Z pl,kt’“> e (Z pmktk) : (4.2)
n=0 k=0 k=0

where p; i, € Z[A] is defined in (3.3). If n is odd, then we have p, € 2Z[A].

Proof. We differentiate the both sides of (4.2) with respect to t. Since ky,. ..,k are
even non-negative integers, we have np,, € 2Z[A] for any n > 1. Therefore, if n is odd,
then we have p,, € 2Z[A]. O

Theorem 4.8. If Z] 1)(( ij) < 1 for any 2 < i < m, where {;; is defined in (2.1),
then we have o(u) € Z[A|{(u)).
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Proof. We take an integer k£ such that a; is odd. From Z] 1X( i;) < 1 and the

definition of A" )J , for any 2 <7 <m and 1 < j < m, we have the expression
OF; L)k K
Oz Kk ki T1 7 T
j
where /-e,(c ) o € QZ[X] or all of ky,..., k,, are even non-negative integers. Therefore,

-----

det Gi(P) = Z By o THY - im (4.3)
where kg, k. € 2Z[X] or all of ky, ..., k,, are even non-negative integers. From Propo-

sitions 3.2, 3.3, and Lemma 3.5, det G (P) can be expanded around oco with respect to

t as follows
( k+1
det Gy (P) = t29 — |1+ Z nt

where p,, € Z[1/ag, A] for any n > 1. From Lemma 4.7 and (4.3), if n is odd, then we
have p,, € 27Z[1/ay, A]. Let
S
n=1

From

1 t2g 1+ag
At Go(P) — (“D)F Tay 1+;f

we have the expansion

1 t29 1+ag
= 1 t" 4.4
detGu(P) (DR \ - T Z I (44)

n=1

where g,, € Z[1/ay, A] for any n > 1. Further, if n is odd, then we have g,, € 2Z[1/ay, A].
On the other hand, we have the expansion around oo with respect to ¢

dug = ( +ant"> (4.5)

where G, € Z[1/a, A for any n > 1. Further, if n is odd, then we have g, € 2Z[1/ay, A.
From Proposition 3.6, we have b, ; € Z[A] for any j > 1. From (3.11), (4.4), and (4.5),
if j is odd, then we have b, ; € 2Z[A]. Thus, we have

S <1+Zbgjt> X))

As in the case of Lemma 3.14, we have ¢, € Z[A] for any k > 1. Therefore, as in the
case of Theorem 4.6, we obtain the statement of the theorem. Il
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Remark 4.9. We can apply Theorem 4.8 to the (n, s) curves. The result obtained by
applying Theorem 4.8 to the (n,s) curves is equal to [32, Theorem 2.3]. We can apply
Theorem 4.8 to the telescopic curves considered in Example 2.3 (iii).
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