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Abstract

A telescopic curve is a certain algebraic curve defined by m − 1 equations in
the affine space of dimension m, which can be a hyperelliptic curve and an (n, s)
curve as a special case. The sigma function σ(u) associated with a telescopic curve
of genus g is a holomorphic function on Cg. For a subring R of C and variables
u = t(u1, . . . , ug), let

R⟨⟨u⟩⟩ =

 ∑
k1,...,kg≥0

ζk1,...,kg
uk11 · · ·ukgg
k1! · · · kg!

∣∣∣∣∣∣ ζk1,...,kg ∈ R

 .

If the power series expansion of a holomorphic function f(u) on Cg around the
origin belongs to R⟨⟨u⟩⟩, then f(u) is said to be Hurwitz integral over R. In this
paper, we show that the sigma function σ(u) associated with a telescopic curve
is Hurwitz integral over the ring generated by the coefficients of the defining
equations of the curve and 1

2 over Z, and its square σ(u)2 is Hurwitz integral over
the ring generated by the coefficients of the defining equations of the curve over
Z. Our results are a generalization of the results of Y. Ônishi for the (n, s) curves
to the telescopic curves.

1 Introduction

The Weierstrass’s elliptic sigma function plays important roles in the theory of the
Weierstrass’s elliptic function. F. Klein [23, 24] generalized the Weierstrass’s elliptic
sigma function to the multivariate sigma function associated with the hyperelliptic
curves. V. M. Buchstaber, V. Z. Enolski, and D. V. Leykin developed the theory of
the Klein’s hyperelliptic sigma function and generalized it to the more general plane
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algebraic curves called (n, s) curves (e.g. [10, 11, 12, 13, 14, 15, 16, 17, 20]). The sigma
function is obtained by modifying the Riemann’s theta function so as to be modular
invariant, i.e., it does not depend on the choice of a canonical homology basis. Further
the sigma function has some remarkable algebraic properties that it is directly related
with the defining equations of an algebraic curve. Namely, the coefficients of the power
series expansion of the sigma function around the origin become polynomials of the
coefficients of the defining equations of the algebraic curve. This property is important
in the study of differential structure of Abelian functions (cf. [19, 28]). Further, from
this property of the sigma function, the sigma function has a limit when the coefficients
of the defining equations of a curve are specialized in any way, which is important in
the study of integrable systems (cf. [7, 29]). It is the central problem to determine the
coefficients of the power series expansion of the sigma function. This problem is studied
in many papers (e.g. [5, 8, 9, 16, 21, 22, 26, 27, 32]).

Throughout the present paper, we denote the sets of positive integers, non-negative
integers, integers, rational numbers, and complex numbers by N,Z≥0,Z,Q, and C,
respectively. For a subring R of C and a set of some complex numbers A, we denote by
R[A] the ring generated by elements in A over R. For positive integers k1, . . . , kn, let
⟨k1, . . . , kn⟩ = {ℓ1k1 + · · · + ℓnkn | ℓ1, . . . , ℓn ∈ Z≥0} and we denote by gcd(k1, . . . , kn)
the greatest common divisor of k1, . . . , kn. For a subring R of C and variables z =
t(z1, . . . , zn), let

R⟨⟨z⟩⟩ = R⟨⟨z1, . . . , zn⟩⟩ =

{ ∑
k1,...,kn≥0

ζk1,...,kn
zk11 · · · zknn
k1! · · · kn!

∣∣∣∣∣ ζk1,...,kn ∈ R

}
.

If the power series expansion of a holomorphic function f(z) = f(z1, . . . , zn) on Cn

around the origin belongs to R⟨⟨z⟩⟩, then we write f(z) ∈ R⟨⟨z⟩⟩ and f(z) is said to be
Hurwitz integral over R.

For relatively prime positive integers n and s such that n, s ≥ 2, the (n, s) curve is
the algebraic curve defined by the following equation in C2 = (x, y)

yn = xs +
∑

ni+sj<ns

λi,jx
iyj, λi,j ∈ C

(cf. [12]). The (2, s) curves are equal to the hyperelliptic curves. The sigma function
σ(u) associated with an (n, s) curve of genus g is a holomorphic function on Cg. We
denote by {λi,j} the set of all λi,j. In [26], the expression of the sigma function associated
with the (n, s) curves in terms of the prime function and algebraic functions is derived.
In [27], the expression of the sigma function associated with the (n, s) curves in terms of
the tau function of the KP-hierarchy is derived. In [26, 27], by using these expressions
of the sigma function of the (n, s) curves, it is proved that σ(u) ∈ Q[{λi,j}]⟨⟨u⟩⟩ for the
(n, s) curves. We set λ′

i,j = λi,j/2 if both i and j are odd, and λ′
i,j = λi,j otherwise.

Moreover, we denote by {λ′
i,j} the set of all λ′

i,j. In [32], a special local parameter of the
(n, s) curves around ∞ is introduced, which is called arithmetic local parameter, and by
using the arithmetic local parameter and the expression of the sigma function associated
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with the (n, s) curves in terms of the tau function of the KP-hierarchy derived in [27], it
is proved that σ(u) ∈ Z[{λ′

i,j}]⟨⟨u⟩⟩ and σ(u)2 ∈ Z[{λi,j}]⟨⟨u⟩⟩ for the (n, s) curves. In
[31], in the case of (n, s) = (2, 3), the Hurwitz integrality of the elliptic sigma function is
proved by an approach different from [32]. In [31, 32], the relationships of the Hurwitz
integrality of the sigma functions with number theory are discussed.

On the other hand, in [25], Miura introduced a certain canonical form, Miura canon-
ical form, for defining equations of any non-singular algebraic curve. A telescopic curve
[25] is a special curve for which Miura canonical form is easy to determine. For an
integer m ≥ 2, let Am = (a1, . . . , am) be a sequence of positive integers such that
gcd(a1, . . . , am) = 1, ai ≥ 2 for any i, and

ai
di

∈
〈

a1
di−1

, . . . ,
ai−1

di−1

〉
, 2 ≤ i ≤ m,

where di = gcd(a1, . . . , ai). Let

B(Am) =

{
(ℓ1, . . . , ℓm) ∈ Zm

≥0

∣∣∣∣ 0 ≤ ℓi ≤
di−1

di
− 1 for 2 ≤ i ≤ m

}
.

For any 2 ≤ i ≤ m, there exists a unique sequence (ℓi,1, . . . , ℓi,m) ∈ B(Am) satisfying

m∑
j=1

ajℓi,j = ai
di−1

di
.

For any 2 ≤ i ≤ m, we have ℓi,j = 0 for j ≥ i. Then the telescopic curve associated with
Am is the algebraic curve defined by the following m−1 equations in Cm = (x1, . . . , xm)

x
di−1/di
i =

i−1∏
j=1

x
ℓi,j
j +

∑
λ
(i)
j1,...,jm

xj1
1 · · ·xjm

m , 2 ≤ i ≤ m,

where λ
(i)
j1,...,jm

∈ C and the sum of the right hand side is over all (j1, . . . , jm) ∈ B(Am)
such that

m∑
k=1

akjk < ai
di−1

di
.

For m = 2, the telescopic curves are equal to the (n, s) curves. We denote by λ the

set of all λ
(i)
j1,...,jm

. In [1], the sigma function of the (n, s) curves is generalized to case
of the telescopic curves. The sigma function σ(u) associated with a telescopic curve of
genus g is a holomorphic function on Cg. In [4], the expression of the sigma function
associated with the telescopic curves in terms of the prime function and algebraic func-
tions is derived. Further, in [4], the expression of the sigma function associated with
the telescopic curves in terms of the tau function of the KP-hierarchy is also derived.
In [4], by using these expressions of the sigma function of the telescopic curves, it is
proved that σ(u) ∈ Q[λ]⟨⟨u⟩⟩ for the telescopic curves. We assign degrees as

deg λ
(i)
j1,...,jm

= aidi−1/di −
m∑
k=1

akjk.

3



We set λ̃
(i)
j1,...,jm

= λ
(i)
j1,...,jm

/2 if deg λ
(i)
j1,...,jm

is odd and λ̃
(i)
j1,...,jm

= λ
(i)
j1,...,jm

if deg λ
(i)
j1,...,jm

is

even. We denote by λ̃ the set of all λ̃
(i)
j1,...,jm

. In this paper, we generalize the arithmetic
local parameter of the (n, s) curves to the case of the telescopic curves (Section 3). By
using the arithmetic local parameter of the telescopic curves and the expression of the
sigma function associated with the telescopic curves in terms of the tau function of the
KP-hierarchy, we show that σ(u) ∈ Z[λ̃]⟨⟨u⟩⟩ and σ(u)2 ∈ Z[λ]⟨⟨u⟩⟩ for the telescopic
curves (Theorem 4.6). For a non-negative integer n, if n is even, then we set χ(n) = 0,

and if n is odd, then we set χ(n) = 1. We set λ
(i)

j1,...,jm
= λ

(i)
j1,...,jm

/2 if
∑m

k=1 χ(jk) ≥ 2 and

λ
(i)

j1,...,jm
= λ

(i)
j1,...,jm

otherwise. We denote by λ the set of all λ
(i)

j1,...,jm
. If

∑i−1
j=1 χ(ℓi,j) ≤ 1

for any 2 ≤ i ≤ m, then we show that σ(u) ∈ Z[λ]⟨⟨u⟩⟩ for the telescopic curves
(Theorem 4.8). We can apply Theorem 4.8 to the (n, s) curves. The result obtained by
applying Theorem 4.8 to the (n, s) curves is equal to [32, Theorem 2.3].

In the case of the hyperelliptic curves, more precise properties on the power series
expansion of the sigma function are known. Let Vg be the hyperelliptic curve of genus
g defined by

y2 = x2g+1 + λ4x
2g−1 + λ6x

2g−2 + · · ·+ λ4gx+ λ4g+2, λi ∈ C.

The sigma function σ(u) associated with Vg is a holomorphic function on Cg. By
applying [32, Theorem 2.3] to the curve Vg, we obtain σ(u) ∈ Z[{λ2i}2g+1

i=2 ]⟨⟨u⟩⟩. In
[18, 31], it is proved that σ(u) ∈ Z[2λ4, 8λ6]⟨⟨u⟩⟩ for g = 1. In [18], it is conjectured
that σ(u) ∈ Z[2λ4, 24λ6]⟨⟨u⟩⟩ for g = 1. In [3, Corollary 2], it is proved that σ(u) ∈
Z[λ4, λ6, λ8, 2λ10]⟨⟨u⟩⟩ for g = 2.

2 Preliminaries

2.1 Telescopic curves

In this section we briefly review the definition of telescopic curves following [25, 1, 4].
For an integer m ≥ 2, let Am = (a1, . . . , am) be a sequence of positive integers such

that gcd(a1, . . . , am) = 1, ai ≥ 2 for any i, and

ai
di

∈
〈

a1
di−1

, . . . ,
ai−1

di−1

〉
, 2 ≤ i ≤ m,

where di = gcd(a1, . . . , ai). Let

B(Am) =

{
(ℓ1, . . . , ℓm) ∈ Zm

≥0

∣∣∣∣ 0 ≤ ℓi ≤
di−1

di
− 1 for 2 ≤ i ≤ m

}
.

Lemma 2.1 ([25, 1]). For any a ∈ ⟨a1, . . . , am⟩, there exists a unique element (k1, . . . , km)
of B(Am) such that

m∑
i=1

aiki = a.
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By this lemma, for any 2 ≤ i ≤ m, there exists a unique sequence (ℓi,1, . . . , ℓi,m) ∈
B(Am) satisfying

m∑
j=1

ajℓi,j = ai
di−1

di
. (2.1)

Lemma 2.2 ([4]). For any 2 ≤ i ≤ m, we have ℓi,j = 0 for j ≥ i.

Consider m− 1 polynomials in m variables x = (x1, . . . , xm) given by

Fi(x) = x
di−1/di
i −

i−1∏
j=1

x
ℓi,j
j −

∑
λ
(i)
j1,...,jm

xj1
1 · · ·xjm

m , 2 ≤ i ≤ m, (2.2)

where λ
(i)
j1,...,jm

∈ C and the sum of the right hand side is over all (j1, . . . , jm) ∈ B(Am)
such that

m∑
k=1

akjk < ai
di−1

di
.

We assign degrees as

deg xk = ak, deg λ
(i)
j1,...,jm

= aidi−1/di −
m∑
k=1

akjk.

We denote by λ the set of all λ
(i)
j1,...,jm

. For 2 ≤ i ≤ m, the polynomial Fi(x) is
homogeneous of degree aidi−1/di with respect to the coefficients λ and the variables
x1, . . . , xm. Let X

aff be the common zeros of F2, . . . , Fm:

Xaff = {(x1, . . . , xm) ∈ Cm |Fi(x1, . . . , xm) = 0, 2 ≤ i ≤ m}.

In [25, 1], Xaff is proved to be an affine algebraic curve. We assume that Xaff is non-
singular. Let X be the compact Riemann surface corresponding to Xaff . Then X is
obtained from Xaff by adding one point, say ∞ [25, 1]. The genus of X is given by

g =
1

2

{
1− a1 +

m∑
i=2

(
di−1

di
− 1

)
ai

}
(cf. [25, 1]). We callX the telescopic curve associated with Am. The numbers a1, . . . , am
are a generator of the semigroup of non-gaps at ∞.

Example 2.3. (i) Let n and s be integers such that n, s ≥ 2 and gcd(n, s) = 1. The
telescopic curve associated with A2 = (n, s) is the (n, s) curve introduced in [12].

(ii) For m = 3 and A3 = (4, 6, 5), the polynomials F2 and F3 are given by

F2(x) = x2
2 − x3

1 − λ
(2)
0,1,1x2x3 − λ

(2)
1,1,0x1x2 − λ

(2)
1,0,1x1x3 − λ

(2)
2,0,0x

2
1 − λ

(2)
0,1,0x2 − λ

(2)
0,0,1x3

− λ
(2)
1,0,0x1 − λ

(2)
0,0,0,

F3(x) = x2
3 − x1x2 − λ

(3)
1,0,1x1x3 − λ

(3)
2,0,0x

2
1 − λ

(3)
0,1,0x2 − λ

(3)
0,0,1x3 − λ

(3)
1,0,0x1 − λ

(3)
0,0,0.
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(iii)1 Let a and b be integers such that a > b ≥ 2 and gcd(a, b) = 1. For Am =
(a1, . . . , am), where ai = am−ibi−1, the polynomials Fi, 2 ≤ i ≤ m, are given by

Fi(x) = xa
i − xb

i−1 −
∑

a1j1+···+amjm<aai

λ
(i)
j1,...,jm

xj1
1 · · ·xjm

m .

For a meromorphic function f on X, we denote by ord∞(f) the order of a pole at ∞.
Then we have ord∞(xi) = ai. We enumerate the monomials xk1

1 · · · xkm
m , (k1, . . . , km) ∈

B(Am), according as the order of a pole at ∞ and denote them by φi, i ≥ 1. In
particular we have φ1 = 1. Let (w1, . . . , wg) be the gap sequence at ∞:

{wi | 1 ≤ i ≤ g} = Z≥0\⟨a1, . . . , am⟩, w1 < · · · < wg.

In particular, we have w1 = 1. The set {φi}∞i=1 is a basis of the vector space consisting
of meromorphic functions on X which are holomorphic at any point except ∞. Let G
be the (m− 1)×m matrix defined by

G =

(
∂Fi

∂xj

)
2≤i≤m, 1≤j≤m

and Gk be the (m− 1)× (m− 1) matrix obtained by deleting the k-th column from G.
Then a basis of the vector space consisting of holomorphic one forms on X is given by

ωi = −φg+1−i

detG1

dx1, 1 ≤ i ≤ g,

where detG1 is the determinant of G1 (cf. [1]). The following lemma is proved in [1].

Lemma 2.4. We have wg = 2g − 1. In particular, the holomorphic one form ωg has a
zero of order 2g − 2 at ∞.

From Lemma 2.4, we find that the vector of Riemann constants for a telescopic curve
with the base point ∞ is a half-period.

2.2 Fundamental differential of second kind

A fundamental differential of second kind plays important roles in the theory of the
sigma functions. We recall its definition.

Let X be a telescopic curve of genus g and KX be the canonical bundle of X. For
i = 1, 2, let πi : X × X → X be the projection to the i-th component. A section of
π∗
1KX ⊗ π∗

2KX is called a bilinear form on X ×X and a bilinear form ω(P,Q) is called
symmetric if ω(Q,P ) = ω(P,Q).

1This example is given in [30, 4].
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Definition 2.5. A meromorphic symmetric bilinear form ω(P,Q) on X ×X is called
a fundamental differential of second kind if the following conditions are satisfied.

(i) ω(P,Q) is holomorphic at any point except {(R,R) | R ∈ X}.
(ii) For R ∈ X, take a local parameter t around R. Then ω(P,Q) has the following
form around (R,R) :

ω(P,Q) =

(
1

(tP − tQ)2
+ f (tP , tQ)

)
dtPdtQ,

where tP = t(P ), tQ = t(Q), and f (tP , tQ) is a holomorphic function of tP and tQ.

For a fundamental differential of second kind ω(P,Q) and complex numbers {ci,j}gi,j=1

such that ci,j = cj,i,

ω(P,Q) +

g∑
i,j=1

ci,jωi(P )ωj(Q)

is also a fundamental differential of second kind.
For the telescopic curve X, a fundamental differential of second kind is algebraically

constructed in [1]. We recall its construction. Note that the construction inherits all
steps of classical construction in [6] that was recently recapitulated and generalized in
[20, 26] for the (n, s) curves. We define the meromorphic bilinear form ω̂(P,Q) on X×X
by

ω̂(P,Q) = dQΩ(P,Q) +

g∑
i=1

ωi(P )ηi(Q),

where P = (x1, . . . , xm) and Q = (y1, . . . , ym) are points on X,

Ω(P,Q) =
detH(P,Q)

(x1 − y1) detG1(P )
dx1,

H = (hi,j)2≤i,j≤m with

hi,j =
Fi(y1, . . . , yj−1, xj, xj+1, . . . , xm)− Fi(y1, . . . , yj−1, yj, xj+1, . . . , xm)

xj − yj
,

and ηi is a meromorphic one form on X which is holomorphic at any point except ∞.
Here dQΩ(P,Q) means the derivative of Ω(P,Q) with respect to Q.

Lemma 2.6 ([1, Lemma 4.7], [26, Lemma 6]). The set{
φi(P )

detG1(P )
dx1

}∞

i=1

is a basis of the vector space consisting of meromorphic one forms on X which are
holomorphic at any point except ∞.
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Let
g∑

i=1

ωi(P )ηi(Q) =

∑
ci1,...,im;j1,...,jmx

i1
1 · · ·xim

m yj11 · · · yjmm
detG1(P ) detG1(Q)

dx1dy1,

where (i1, . . . , im), (j1, . . . , jm) ∈ B(Am) and ci1,...,im;j1,...,jm ∈ C.

Lemma 2.7 ([1, Theorem 4.1 (i)], [26, Proposition 2 (ii)]). It is possible to take {ηi}gi=1

such that ω̂(Q,P ) = ω̂(P,Q), ci1,...,im;j1,...,jm ∈ Q[λ], and ci1,...,im;j1,...,jm is homogeneous
of degree 2(2g − 1)−

∑m
k=1 ak(ik + jk) with respect to λ if ci1,...,im;j1,...,jm ̸= 0.

Lemma 2.8 ([1, Theorem 4.1 (ii)], [26, Proposition 2 (i)]). If we take {ηi}gi=1 as in
Lemma 2.7, then ω̂(P,Q) becomes a fundamental differential of second kind.

2.3 Sigma function of telescopic curves

Let X be a telescopic curve of genus g associated with Am = (a1, . . . , am). We take
{ηi}gi=1 as in Lemma 2.7. We take a canonical basis {ai, bi}gi=1 in the one-dimensional
homology group of the curve X and define the matrices of periods by

2ω′ =

(∫
aj

ωi

)
, 2ω′′ =

(∫
bj

ωi

)
, −2η′ =

(∫
aj

ηi

)
, −2η′′ =

(∫
bj

ηi

)
.

The matrix of normalized periods is given by τ = (ω′)−1ω′′. Let δ = τδ′ + δ′′, δ′, δ′′ ∈
Rg, be the vectors of Riemann’s constants with respect to ({ai, bi}gi=1,∞). We set
δ = t(tδ′, tδ′′). We denote the imaginary unit by i. The sigma function σ(u) associated
with the curve X, u = t(u1, . . . , ug), is defined by

σ(u) = C exp

(
1

2
tuη′(ω′)−1u

)
θ[δ]

(
(2ω′)−1u, τ

)
,

where θ[δ](u) is the Riemann’s theta function with the characteristics δ defined by

θ[δ](u) =
∑
n∈Zg

exp{πi t(n+ δ′)τ(n+ δ′) + 2πi t(n+ δ′)(u+ δ′′)},

and C is a constant. Since δ is a half-period from Lemma 2.4, σ(u) vanishes on the
Abel-Jacobi image of the (g − 1)-th symmetric products of the telescopic curve. We
have the following proposition.

Proposition 2.9 ([1, 26]). For m1,m2 ∈ Zg and u ∈ Cg, we have

σ(u+ 2ω′m1 + 2ω′′m2)

σ(u)
= (−1)2(

tδ′m1−tδ′′m2)+tm1m2 exp{t(2η′m1+2η′′m2)(u+ω′m1+ω′′m2)}.

A sequence of non-negative integers µ = (µ1, µ2, . . . , µℓ) such that µ1 ≥ µ2 ≥ · · · ≥
µℓ is called a partition. For a partition µ = (µ1, µ2, . . . , µℓ), let |µ| = µ1 + µ2 + · · ·+ µℓ.
For n ≥ 0, let pn(T ) be the polynomial of T1, T2, . . . defined by

∞∑
i=0

1

i!

(
∞∑
j=1

Tjk
j

)i

=
∞∑
n=0

pn(T )k
n, (2.3)
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where k is a variable, i.e., pn(T ) is the coefficient of kn in the left hand side of (2.3).
For example, we have

p0(T ) = 1, p1(T ) = T1, p2(T ) = T2 +
T 2
1

2
, p3(T ) = T3 + T1T2 +

T 3
1

6
.

For n < 0, let pn(T ) = 0.

Lemma 2.10. For n ≥ 1, we have

pn(T ) =
∑ T k1

1 · · ·T kn
n

k1! · · · kn!
,

where the sum is over all (k1, . . . , kn) ∈ Zn
≥0 satisfying

n∑
j=1

jkj = n.

Proof. By comparing the coefficients of kn in (2.3), we obtain the statement of the
lemma.

For an arbitrary partition µ = (µ1, µ2, . . . , µℓ), the Schur function Sµ(T ) is defined
by

Sµ(T ) = det (pµi−i+j(T ))1≤i,j≤ℓ .

For the telescopic curve X associated with Am = (a1, . . . , am), we define the partition
by

µ(Am) = (wg, . . . , w1)− (g − 1, . . . , 0).

Lemma 2.11. The Schur function Sµ(Am)(T ) is a polynomial of the variables Tw1 , . . . , Twg .

Proof. We can prove this lemma as in the case of (n, s) curves (cf. [12, Section 4]).

Theorem 2.12 ([4, Theorem 7]). The sigma function σ(u) is a holomorphic function
on Cg and we have the unique constant C such that the series expansion of σ(u) around
the origin has the following form :

σ(u) = Sµ(Am)(T )|Twi=ui
+

∑
w1n1+···+wgng>|µ(Am)|

εn1,...,ng

un1
1 · · ·ung

g

n1! · · ·ng!
, (2.4)

where εn1,...,ng ∈ Q[λ] and εn1,...,ng is homogeneous of degree w1n1+ · · ·+wgng−|µ(Am)|
with respect to λ if εn1,...,ng ̸= 0.

We take the constant C such that the expansion (2.4) holds, see the expression for
the sigma function above, which involves the constant C. Then the sigma function σ(u)
does not depend on the choice of a canonical basis {ai, bi}gi=1 in the one-dimensional
homology group of the curve X and is determined by the coefficients λ of the defining
equations of the curve X.
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3 Arithmetic local parameter for telescopic curves

Since gcd(a1, . . . , am) = 1, we can take (b1, . . . , bm) ∈ Zm such that

a1b1 + · · ·+ ambm = −1.

We consider the defining equations (2.2) of the telescopic curve X. Let Mm(Z) be the
set of m×m matrices such that all the components are integers. We consider the matrix

D =


−ℓ2,1 d1/d2 0 · · · 0
−ℓ3,1 −ℓ3,2 d2/d3 · · · 0
...

...
...

. . .
...

−ℓm,1 −ℓm,2 · · · −ℓm,m−1 dm−1/dm
b1 b2 · · · bm−1 bm

 ∈ Mm(Z).

Lemma 3.1. We have det(D) = (−1)m.

Proof. From (2.1) and Lemma 2.2, we have

D

a1
...
am

 =


0
...
0
−1

 . (3.1)

By multiplying some elementary matrices whose determinants are 1 on the left, the
equation (3.1) becomes

D̃

a1
...
am

 =


0
...
0
−1

 ,

where

D̃ =


e2 d1/d2 0 · · · 0
e3 0 d2/d3 · · · 0
...

...
...

. . .
...

em 0 0 · · · dm−1/dm
e 0 0 · · · 0


for certain e2, . . . , em, e ∈ Q. From the above equation, we obtain e = −1/a1. We have

det(D) = det(D̃) = (−1)m−1d1
d2

· d2
d3

· · · dm−1

dm
· e = (−1)m.
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Let
t = xb1

1 · · ·xbm
m . (3.2)

Since t has a zero of order 1 at ∞, we can regard t as a local parameter of X around
∞. We call t the arithmetic local parameter as in the case of [32]. For 1 ≤ i ≤ m, we
consider the expansion of xi around ∞ with respect to t

xi =
1

tai

∞∑
k=0

pi,kt
k, pi,k ∈ C. (3.3)

By substituting (3.3) into the defining equations of X, for 2 ≤ i ≤ m, we obtain(
∞∑
k=0

pi,kt
k

)di−1/di

=
i−1∏
j=1

(
∞∑
k=0

pj,kt
k

)ℓi,j

+
∑

λ
(i)
j1,...,jm

taidi−1/di−
∑m

k=1 akjk

(
∞∑
k=0

p1,kt
k

)j1

· · ·

(
∞∑
k=0

pm,kt
k

)jm

, (3.4)

where the sum of the right hand side is over all (j1, . . . , jm) ∈ B(Am) such that

m∑
k=1

akjk < ai
di−1

di
.

Proposition 3.2. We have p1,0 = p2,0 = · · · = pm,0 = 1.

Proof. By comparing the coefficients of t0 in (3.4), we obtain

p
di−1/di
i,0 =

i−1∏
j=1

p
ℓi,j
j,0 (3.5)

for 2 ≤ i ≤ m. By substituting (3.3) into (3.2), we obtain

1 =

(
∞∑
k=0

p1,kt
k

)b1

· · ·

(
∞∑
k=0

pm,kt
k

)bm

.

We divide the set {1, 2, . . . ,m} into the two sets {α1, . . . , αs} and {αs+1, . . . , αm}, where
bα1 , . . . , bαs are negative integers and bαs+1 , . . . , bαm are non-negative integers. Then we
have

s∏
j=1

(
∞∑
k=0

pαj ,kt
k

)−bαj

=
m∏

j=s+1

(
∞∑
k=0

pαj ,kt
k

)bαj

. (3.6)

By comparing the coefficients of t0 in (3.6), we obtain

pb11,0 · · · pbmm,0 = 1. (3.7)
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For a complex number z satisfying z ̸= 0, the principal value of the complex logarithm
of z is defined by Log(z) = log |z|+iArg(z), where Arg(z) is the argument of z satisfying
−π < Arg(z) ≤ π. For complex numbers z1 and z2 satisfying z1z2 ̸= 0, the following
relations hold:

Log(z1z2)− Log(z1)− Log(z2) ∈ 2πiZ,

Log(z1/z2)− Log(z1) + Log(z2) ∈ 2πiZ,

where 2πiZ = {2πin | n ∈ Z}. From (3.5), we have

di−1

di
Log(pi,0)−

i−1∑
j=1

ℓi,jLog(pj,0) ∈ 2πiZ, 2 ≤ i ≤ m.

From (3.7), we have

b1Log(p1,0) + · · ·+ bmLog(pm,0) ∈ 2πiZ.

Therefore we have

D

Log(p1,0)
...

Log(pm,0)

 ∈ 2πiZm,

where 2πiZm = {2πin | n ∈ Zm}. From Lemma 3.1, we have D−1 ∈ Mm(Z), where D−1

is the inverse matrix of D. Therefore we have Log(pj,0) ∈ 2πiZ for 1 ≤ j ≤ m. Thus
we obtain pj,0 = 1 for 1 ≤ j ≤ m.

We set deg t = −1.

Proposition 3.3. We have pi,k ∈ Z[λ] and the expansion of xi around ∞ with respect
to t is homogeneous of degree ai with respect to λ and t.

Proof. From Proposition 3.2, for any 1 ≤ i ≤ m, we have pi,0 ∈ Z[λ] and pi,0 is
homogeneous of degree 0 with respect to λ. We take an integer ℓ ≥ 1. For any
1 ≤ i ≤ m and 0 ≤ k ≤ ℓ − 1, we assume that pi,k ∈ Z[λ] and pi,k is homogeneous of
degree k with respect to λ if pi,k ̸= 0. By comparing the coefficients of tℓ in (3.4), there
exist fi(λ) ∈ Z[λ] for 2 ≤ i ≤ m such that fi(λ) are homogeneous of degree ℓ with
respect to λ if fi(λ) ̸= 0 and

di−1

di
pi,ℓ −

i−1∑
j=1

ℓi,jpj,ℓ = fi(λ), 2 ≤ i ≤ m.

By comparing the coefficients of tℓ in (3.6), there exists f(λ) ∈ Z[λ] such that f(λ) is
homogeneous of degree ℓ with respect to λ if f(λ) ̸= 0 and

b1p1,ℓ + · · ·+ bmpm,ℓ = f(λ).
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Therefore, we obtain

D

p1,ℓ
...

pm,ℓ

 =


f2(λ)

...
fm(λ)
f(λ)

 .

Since D−1 ∈ Mm(Z), for any 1 ≤ i ≤ m, we have pi,ℓ ∈ Z[λ] and pi,ℓ is homogeneous of
degree ℓ with respect to λ if pi,ℓ ̸= 0. By mathematical induction, for any 1 ≤ i ≤ m
and k ≥ 0, we have pi,k ∈ Z[λ] and pi,k is homogeneous of degree k with respect to λ if
pi,k ̸= 0.

Lemma 3.4. For any (k1, . . . , km) ∈ Zm
≥0, the meromorphic function xk1

1 · · ·xkm
m on X

can be expressed by the linear combination of φi uniquely as follows :

xk1
1 · · ·xkm

m =
n∑

i=1

ρiφi, (3.8)

where ord∞(φn) =
∑m

i=1 aiki, ρn = 1, ρi ∈ Z[λ] for 1 ≤ i ≤ n − 1, and the right hand
side of (3.8) is homogeneous of degree

∑m
i=1 aiki with respect to λ and x1, . . . , xm.

Proof. Since the set {φi}∞i=1 is a basis of the vector space consisting of meromorphic
functions onX which are holomorphic at any point except∞, the meromorphic function
xk1
1 · · ·xkm

m on X can be expressed by the linear combination of φi uniquely as follows :

xk1
1 · · ·xkm

m =
n∑

i=1

ρiφi, ρi ∈ C. (3.9)

For 1 ≤ i ≤ n, let ji = ord∞(φi). We have jn =
∑m

i=1 aiki. By expanding the both
sides of (3.9) around ∞ with respect to t and comparing the coefficients of t−jn , from
Proposition 3.2, we obtain ρn = 1. We take an integer 1 ≤ ℓ ≤ n − 1. For any
ℓ + 1 ≤ i ≤ n, we assume that ρi ∈ Z[λ] and ρi is homogeneous of degree jn − ji with
respect to λ if ρi ̸= 0. From Proposition 3.3, the expansion of xk1

1 · · · xkm
m −

∑n
i=ℓ+1 ρiφi

around ∞ with respect to t is homogeneous of degree jn with respect to λ and t.
By expanding the both sides of (3.9) around ∞ with respect to t and comparing the
coefficients of t−jℓ , from Proposition 3.2, we have ρℓ ∈ Z[λ] and ρℓ is homogeneous
of degree jn − jℓ with respect to λ if ρℓ ̸= 0. By mathematical induction, for any
1 ≤ i ≤ n− 1, we have ρi ∈ Z[λ] and ρi is homogeneous of degree jn − ji with respect
to λ if ρi ̸= 0.

Lemma 3.5 ([2, Lemma 3.4]). For 1 ≤ k ≤ m, we have

detGk(P ) = (−1)k+1akx
γ1
1 · · ·xγm

m +
∑

βi1,...,imx
i1
1 · · · xim

m , (3.10)

where (γ1, . . . , γm) is the unique element of B(Am) such that
∑m

j=1 ajγj =
∑m

j=2 ajdj−1/dj−∑m
j=1 aj+ak and the sum of the right hand side of (3.10) is over all (i1, . . . , im) ∈ B(Am)

such that
∑m

j=1 ajij <
∑m

j=2 ajdj−1/dj −
∑m

j=1 aj + ak. We have βi1,...,im ∈ Z[λ] and the
right hand side of (3.10) is homogeneous of degree

∑m
j=2 ajdj−1/dj −

∑m
j=1 aj + ak with

respect to λ and x1, . . . , xm.
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In the same way as [4, Proposition 1], for 1 ≤ i ≤ g, we can prove that the expansion
of ωi around ∞ with respect to t has the following form :

ωi = twi−1

(
1 +

∞∑
j=1

bi,jt
j

)
dt, bi,j ∈ C.

Proposition 3.6. We have bi,j ∈ Z[λ] and the expansion of ωi around ∞ with respect
to t is homogeneous of degree 1− wi with respect to λ and t.

Proof. From Propositions 3.2, 3.3, and Lemma 3.5, for 1 ≤ k ≤ m, we have the following
expansion :

dxk

detGk(P )
= (−1)kt2g−2

(
1 +

∞∑
j=1

b
(k)
j tj

)
dt,

where b
(k)
j ∈ Z[1/ak,λ] and b

(k)
j is homogeneous of degree j with respect to λ if b

(k)
j ̸= 0.

For any 1 ≤ k ≤ m, we have

dx1

detG1(P )
= (−1)k−1 dxk

detGk(P )
. (3.11)

(cf. the proof of [1, Lemma 3.2]). Therefore we have b
(1)
j = b

(k)
j for any j ≥ 1 and

2 ≤ k ≤ m. Since gcd(a1, . . . , am) = 1, for any j ≥ 1, we have

b
(1)
j ∈

m⋂
k=1

Z[1/ak,λ] = Z[λ].

From Propositions 3.2 and 3.3, we obtain the statement of the proposition.

We take {ηi}gi=1 as in Lemma 2.7.

Proposition 3.7. It is possible to take {ηi}gi=1 such that ci1,...,im;j1,...,jm = 0 if
∑m

k=1 akik ≥∑m
k=1 akjk.

Proof. If
∑m

k=1 akik >
∑m

k=1 akjk and ci1,...,im;j1,...,jm ̸= 0, we add

−ci1,...,im;j1,...,jmx
i1
1 · · · xim

m yj11 · · · yjmm
detG1(P ) detG1(Q)

dx1dy1 −
ci1,...,im;j1,...,jmx

j1
1 · · · xjm

m yi11 · · · yimm
detG1(P ) detG1(Q)

dx1dy1

to ω̂(P,Q). If
∑m

k=1 akik =
∑m

k=1 akjk, which is equivalent to (i1, . . . , im) = (j1, . . . , jm),
and ci1,...,im;j1,...,jm ̸= 0, we add

−ci1,...,im;i1,...,imx
i1
1 · · ·xim

m yi11 · · · yimm
detG1(P ) detG1(Q)

dx1dy1

to ω̂(P,Q). Then we can take {ηi}gi=1 in the form of this proposition.

Hereafter, we take {ηi}gi=1 as in Proposition 3.7.
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Lemma 3.8 ([1, p. 470], [2, p. 6]). We have

dQΩ(P,Q)

=
{
∑m

i=1(−1)i+1(x1 − y1)
∂ detH
∂yi

(P,Q) detGi(Q)}+ detG1(Q) detH(P,Q)

(x1 − y1)2 detG1(P ) detG1(Q)
dx1dy1,

where the numerator is homogeneous of degree 2
∑m

i=2(di−1/di − 1)ai = 2(2g − 1 + a1)
with respect to λ and x1, . . . , xm, y1, . . . , ym.

We define c̃i1,...,im;j1,...,jm by

dQΩ(P,Q) =

∑
c̃i1,...,im;j1,...,jmx

i1
1 · · ·xim

m yj11 · · · yjmm
(x1 − y1)2 detG1(P ) detG1(Q)

dx1dy1,

where (i1, . . . , im), (j1, . . . , jm) ∈ B(Am).

Lemma 3.9. We have c̃i1,...,im;j1,...,jm ∈ Z[λ] and c̃i1,...,im;j1,...,jm is homogeneous of degree
2(2g − 1 + a1)−

∑m
k=1 ak(ik + jk) with respect to λ if c̃i1,...,im;j1,...,jm ̸= 0.

Proof. From Lemmas 3.4 and 3.8, we obtain the statement of the lemma.

We define F (P,Q) by

ω̂(P,Q) =
F (P,Q)

(x1 − y1)2 detG1(P ) detG1(Q)
dx1dy1.

We can determine the coefficients ci1,...,im;j1,...,jm by the following recurrence relations.

Proposition 3.10. We take (i1, . . . , im), (j1, . . . , jm) ∈ B(Am) such that
∑m

k=1 akik <∑m
k=1 akjk.

(i) If i1 = 0, we have

c0,i2,...,im;j1,...,jm = c̃j1+2,j2,...,jm;0,i2,...,im − c̃0,i2,...,im;j1+2,j2,...,jm .

(ii) If i1 = 1, we have

c1,i2,...,im;j1,...,jm = 2c̃j1+3,j2,...,jm;0,i2,...,im − 2c̃0,i2,...,im;j1+3,j2,...,jm + c̃j1+2,j2,...,jm;1,i2,...,im

− c̃1,i2,...,im;j1+2,j2,...,jm .

(iii) If i1 ≥ 2, we have

ci1,...,im;j1,...,jm = 2ci1−1,i2,...,im;j1+1,j2,...,jm − ci1−2,i2,...,im;j1+2,j2,...,jm

+ c̃j1+2,j2,...,jm;i1,...,im − c̃i1,...,im;j1+2,j2,...,jm .
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Proof. (i) The coefficient of xi2
2 · · ·xim

m yj1+2
1 yj22 · · · yjmm in F (P,Q) is

c0,i2,...,im;j1,...,jm + c̃0,i2,...,im;j1+2,j2,...,jm .

From
∑m

k=2 akik <
∑m

k=1 akjk and Proposition 3.7, the coefficient of xj1+2
1 xj2

2 · · ·xjm
m yi22 · · · yimm

in F (P,Q) is c̃j1+2,j2,...,jm;0,i2,...,im . From ω̂(Q,P ) = ω̂(P,Q), we obtain the statement of
(i).

(ii) The coefficient of x1x
i2
2 · · ·xim

m yj1+2
1 yj22 · · · yjmm in F (P,Q) is

c1,i2,...,im;j1,...,jm − 2c0,i2,...,im;j1+1,j2,...,jm + c̃1,i2,...,im;j1+2,j2,...,jm .

From a1+
∑m

k=2 akik <
∑m

k=1 akjk and Proposition 3.7, the coefficient of xj1+2
1 xj2

2 · · ·xjm
m y1y

i2
2 · · · yimm

in F (P,Q) is c̃j1+2,j2,...,jm;1,i2,...,im . From ω̂(Q,P ) = ω̂(P,Q) and (i), we obtain the state-
ment of (ii).

(iii) The coefficient of xi1
1 · · · xim

m yj1+2
1 yj22 · · · yjmm in F (P,Q) is

ci1,...,im;j1,...,jm − 2ci1−1,i2,...,im;j1+1,j2,...,jm + ci1−2,i2,...,im;j1+2,j2,...,jm + c̃i1,...,im;j1+2,j2,...,jm .

From
∑m

k=1 akik <
∑m

k=1 akjk and Proposition 3.7, the coefficient of xj1+2
1 xj2

2 · · ·xjm
m yi11 · · · yimm

in F (P,Q) is c̃j1+2,j2,...,jm;i1,...,im . From ω̂(Q,P ) = ω̂(P,Q), we obtain the statement of
(iii).

Lemma 3.11. We have ci1,...,im;j1,...,jm ∈ Z[λ] and ci1,...,im;j1,...,jm is homogeneous of
degree 2(2g − 1)−

∑m
k=1 ak(ik + jk) with respect to λ if ci1,...,im;j1,...,jm ̸= 0.

Proof. From Proposition 3.10, we obtain the statement of the lemma.

We define ci1,...,im;j1,...,jm by

F (P,Q) =
∑

ci1,...,im;j1,...,jmx
i1
1 · · ·xim

m yj11 · · · yjmm ,

where (i1, . . . , im), (j1, . . . , jm) ∈ B(Am).

Lemma 3.12. We have ci1,...,im;j1,...,jm ∈ Z[λ] and ci1,...,im;j1,...,jm is homogeneous of
degree 2(2g − 1 + a1)−

∑m
k=1 ak(ik + jk) with respect to λ if ci1,...,im;j1,...,jm ̸= 0.

Proof. From Lemmas 3.9 and 3.11, we obtain the statement of the lemma.

The fundamental differential of second kind ω̂(P,Q) is expanded around ∞ × ∞
with respect to the arithmetic local parameter t as follows :

ω̂(P,Q) =

(
1

(tP − tQ)2
+
∑
i,j≥1

qi,jt
i−1
P tj−1

Q

)
dtPdtQ, qi,j ∈ C, (3.12)

where tP = t(P ) and tQ = t(Q). From ω̂(Q,P ) = ω̂(P,Q), we have qj,i = qi,j for any
i, j.
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Proposition 3.13. We have qi,j ∈ Z[λ] and qi,j is homogeneous of degree i + j with
respect to λ if qi,j ̸= 0.

Proof. From (3.3) and Proposition 3.2, we have

t2a1P t2a1Q (x1 − y1)
2 =

(
ta1Q +

∞∑
k=1

p1,kt
k
P t

a1
Q − ta1P −

∞∑
k=1

p1,kt
a1
P tkQ

)2

. (3.13)

From Proposition 3.3, we have

t2a1P t2a1Q (x1 − y1)
2 = (tP − tQ)

2
∑
i,j≥0

νi,jt
i
P t

j
Q, (3.14)

where νi,j ∈ Z[λ] and νi,j is homogeneous of degree 2− 2a1 + i+ j with respect to λ if
νi,j ̸= 0. From (3.12), (3.13), and (3.14), around ∞×∞, we have

t2a1P t2a1Q (x1 − y1)
2ω̂(P,Q) =∑

i,j≥0

νi,jt
i
P t

j
Q +

(
ta1Q +

∞∑
k=1

p1,kt
k
P t

a1
Q − ta1P −

∞∑
k=1

p1,kt
a1
P tkQ

)2(∑
i,j≥1

qi,jt
i−1
P tj−1

Q

) dtPdtQ.

(3.15)

Therefore, around ∞×∞, we have

t2a1P t2a1Q (x1 − y1)
2ω̂(P,Q) =

(∑
i,j≥0

q̃i,jt
i
P t

j
Q

)
dtPdtQ, q̃i,j ∈ C. (3.16)

From Propositions 3.3, 3.6, and Lemma 3.12, we have q̃i,j ∈ Z[λ] and q̃i,j is homogeneous
of degree 2− 2a1 + i+ j with respect to λ if q̃i,j ̸= 0. From (3.15) and (3.16), we have∑

i,j≥0

(q̃i,j − νi,j)t
i
P t

j
Q

=

(
ta1Q +

∞∑
k=1

p1,kt
k
P t

a1
Q − ta1P −

∞∑
k=1

p1,kt
a1
P tkQ

)2(∑
i,j≥1

qi,jt
i−1
P tj−1

Q

)
. (3.17)

By comparing the coefficients of t2a1Q in the both sides of (3.17), we have q1,1 ∈ Z[λ] and
q1,1 is homogeneous of degree 2 with respect to λ if q1,1 ̸= 0. We take a pair of positive
integers (i0, j0). For any (i, j) ∈ N2 such that

� i+ j < i0 + j0 or

� i+ j = i0 + j0 and i < i0,

we assume that qi,j ∈ Z[λ] and qi,j is homogeneous of degree i + j with respect to λ
if qi,j ̸= 0. By comparing the coefficients of ti0−1

P tj0+2a1−1
Q in the both sides of (3.17),

we have qi0,j0 ∈ Z[λ] and qi0,j0 is homogeneous of degree i0 + j0 with respect to λ if
qi0,j0 ̸= 0. By mathematical induction, we obtain the statement of the proposition.
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For k ≥ 1, we define ck by

∞∑
k=1

ckt
k−1 =

1

2

d
dt

(
1 +

∑∞
j=1 bg,jt

j
)

1 +
∑∞

j=1 bg,jt
j

. (3.18)

We set λ̃
(i)
j1,...,jm

= λ
(i)
j1,...,jm

/2 if deg λ
(i)
j1,...,jm

is odd and λ̃
(i)
j1,...,jm

= λ
(i)
j1,...,jm

if deg λ
(i)
j1,...,jm

is

even. We denote by λ̃ the set of all λ̃
(i)
j1,...,jm

. We set deg λ̃
(i)
j1,...,jm

= deg λ
(i)
j1,...,jm

. For a
domain R, we denote by R[[t]] the set consisting of formal power series over R.

Lemma 3.14. We have ck ∈ Z[λ̃] and ck is homogeneous of degree k with respect to λ̃
if ck ̸= 0.

Proof. From Proposition 3.6, we have bg,j ∈ Z[λ] and bg,j is homogeneous of degree j
with respect to λ if bg,j ̸= 0. Therefore, if j is odd and bg,j ̸= 0, any term of bg,j contains

a coefficient λ
(i)
j1,...,jm

such that deg λ
(i)
j1,...,jm

is odd. Thus, we have

1

2

d

dt

(
1 +

∞∑
j=1

bg,jt
j

)
∈ Z[λ̃][[t]]

and it is homogeneous of degree 1 with respect to λ̃ and t. On the other hand, we have

1

1 +
∑∞

j=1 bg,jt
j
= 1 +

∞∑
ℓ=1

(
−

∞∑
j=1

bg,jt
j

)ℓ

∈ Z[λ][[t]]

and it is homogeneous of degree 0 with respect to λ and t. Therefore we have

∞∑
k=1

ckt
k−1 ∈ Z[λ̃][[t]]

and it is homogeneous of degree 1 with respect to λ̃ and t. Thus we obtain the statement
of the lemma.

4 Hurwitz integrality of the power series expansion

of the sigma function for telescopic curves

Definition 4.1. For a subring R of C and variables z = t(z1, . . . , zn), let

R⟨⟨z⟩⟩ = R⟨⟨z1, . . . , zn⟩⟩ =

{ ∑
k1,...,kn≥0

ζk1,...,kn
zk11 · · · zknn
k1! · · · kn!

∣∣∣∣∣ ζk1,...,kn ∈ R

}
.

If the power series expansion of a holomorphic function f(z) = f(z1, . . . , zn) on Cn

around the origin belongs to R⟨⟨z⟩⟩, then we write f(z) ∈ R⟨⟨z⟩⟩ and f(z) is said to be
Hurwitz integral over R.
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Let W = {w1, . . . , wg} and u = t(u1, . . . , ug). For any partition µ and the Schur
function Sµ(T ), we substitute Twi

= ui for 1 ≤ i ≤ g and Tj = 0 for any j satisfying
j /∈ W , and denote it by Sµ(u).

Lemma 4.2. For any partition µ, we have Sµ(u) ∈ Z⟨⟨u⟩⟩.

Proof. For an integer n ≥ 1 and the polynomial pn(T ) (cf. Section 2.3), we substitute
Twi

= ui for 1 ≤ i ≤ g and Tj = 0 for any j satisfying j /∈ W , and denote it by pn(u).
Let p0(u) = 1 and pn(u) = 0 for n < 0. From Lemma 2.10, for n ≥ 0, we have

pn(u) =
∑ un1

1 · · ·ung
g

n1! · · ·ng!
,

where the sum is over all (n1, . . . , ng) ∈ Zg
≥0 satisfying w1n1 + · · ·+wgng = n. We have

Sµ(u) = det (pµi−i+j(u))1≤i,j≤ℓ ,

where µ = (µ1, µ2, . . . , µℓ). For integers m1, . . . ,mg, n1, . . . , ng ≥ 0, we have

um1
1 · · ·umg

g

m1! · · ·mg!

un1
1 · · ·ung

g

n1! · · ·ng!
=

(
m1 + n1

m1

)
· · ·
(
mg + ng

mg

)
um1+n1
1 · · ·umg+ng

g

(m1 + n1)! · · · (mg + ng)!
.

Since the binomial coefficients

(
m1 + n1

m1

)
, . . . ,

(
mg + ng

mg

)
are integers, we obtain the

statement of the lemma.

Lemma 4.3. Let R be a subring of C, f(u) = f(u1, . . . , ug) be a holomorphic function
on Cg, and M be a g × g matrix such that all the components are included in R. If
f(u) ∈ R⟨⟨u⟩⟩, then we have f(Mu) ∈ R⟨⟨u⟩⟩.

Proof. Let M = (mi,j)1≤i,j≤g, where mi,j ∈ R. For any integer n ≥ 0, we have

(mi,1u1 + · · ·+mi,gug)
n

n!
=
∑

mn1
i,1 · · ·m

ng

i,g

un1
1 · · ·ung

g

n1! · · ·ng!
,

where the sum is over all (n1, . . . , ng) ∈ Zg
≥0 satisfying n1 + · · · + ng = n. Thus we

obtain the statement of the lemma.

We expand tg−1φj around ∞ with respect to the arithmetic local parameter t

tg−1φj =
∑
i

ξi,jt
i.

From Proposition 3.3, we have ξi,j ∈ Z[λ]. For j > g, we have

ξi,j =

{
0 if i < −j
1 if i = −j.
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For a partition µ = (µ1, µ2, . . . ), we define

ξµ = det(ξmi,j)i,j∈N =

∣∣∣∣∣∣∣∣∣
ξm1,1 ξm1,2 ξm1,3 · · ·
ξm2,1 ξm2,2 ξm2,3 · · ·
ξm3,1 ξm3,2 ξm3,3 · · ·
...

...
...

. . .

∣∣∣∣∣∣∣∣∣ ,
where mi = µi− i and the infinite determinant is well defined. Then we have ξµ ∈ Z[λ].
The tau function τ(u) is defined by

τ(u) =
∑
µ

ξµSµ(u),

where the sum is over all partitions.

Proposition 4.4. We have τ(u) ∈ Z[λ]⟨⟨u⟩⟩.

Proof. From Lemma 4.2, we obtain the statement of the proposition.

For 1 ≤ i ≤ g, we expand ωi around ∞ with respect to t as follows :

ωi =
∞∑
j=1

b̃i,jt
j−1dt, b̃i,j ∈ C.

From Proposition 3.6, we have

b̃i,j =

{
0 if j < wi

1 if j = wi

and b̃i,j ∈ Z[λ] if j > wi. We define the g × g matrix

B = (̃bi,wj
)1≤i,j≤g =


1 b̃1,w2 b̃1,w3 · · · b̃1,wg

0 1 b̃2,w3 · · · b̃2,wg

0 0 1 · · · b̃3,wg

...
...

...
. . .

...
0 0 0 · · · 1

 ,

c = (cw1 , · · · , cwg), and the g × g matrix

N = (qwi,wj
)1≤i,j≤g =


qw1,w1 qw1,w2 · · · qw1,wg

qw2,w1 qw2,w2 · · · qw2,wg

...
...

. . .
...

qwg ,w1 qwg ,w2 · · · qwg ,wg

 .

Theorem 4.5 ([4, Theorem 1], [27, Theorem 8]). For v = t(v1, . . . , vg) ∈ Cg, the
following relation holds :

τ(v) = exp

(
−cv +

1

2
tvNv

)
σ(Bv).
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Theorem 4.6. We have σ(u) ∈ Z[λ̃]⟨⟨u⟩⟩ and σ(u)2 ∈ Z[λ]⟨⟨u⟩⟩.

Proof. Since the determinant of B is 1, we have

B−1 = B̃,

where B̃ is the adjugate matrix of B. Therefore all the components of B−1 are included
in Z[λ]. We set u = Bv in Theorem 4.5. Then we have

σ(u) = exp

(
cB−1u− 1

2
tu t(B−1)NB−1u

)
τ(B−1u). (4.1)

From Lemma 4.3 and Proposition 4.4, we have τ(B−1u) ∈ Z[λ]⟨⟨u⟩⟩. Let c = cB−1,
c = (c1, . . . , cg), N = t(B−1)NB−1, and N = (qi,j)1≤i,j≤g. From Lemma 3.14, we have

ci ∈ Z[λ̃] for any i. Since N is the symmetric matrix, N is also the symmetric matrix.
From Proposition 3.13, we have qi,j ∈ Z[λ] for any i, j. Thus we have exp(ciui) ∈
Z[λ̃]⟨⟨ui⟩⟩ and exp(qi,juiuj) ∈ Z[λ]⟨⟨ui, uj⟩⟩ for any i, j. For any non-negative integer
n, we have

(2n)!

2nn!
∈ Z

(cf. [3, Lemma 11]). Therefore, we have exp(qi,iu
2
i /2) ∈ Z[λ]⟨⟨ui⟩⟩ for any i. Thus,

from (4.1), we have σ(u) ∈ Z[λ̃]⟨⟨u⟩⟩. From (4.1), we have

σ(u)2 = exp
(
2cB−1u− tu t(B−1)NB−1u

)
τ(B−1u)2.

From (3.18), we have 2ci ∈ Z[λ] for any i. Therefore we have σ(u)2 ∈ Z[λ]⟨⟨u⟩⟩.

For a non-negative integer n, if n is even, then we set χ(n) = 0, and if n is odd,

then we set χ(n) = 1. We set λ
(i)

j1,...,jm
= λ

(i)
j1,...,jm

/2 if
∑m

k=1 χ(jk) ≥ 2 and λ
(i)

j1,...,jm
=

λ
(i)
j1,...,jm

otherwise. We denote by λ the set of all λ
(i)

j1,...,jm
. For a subring R of C, let

2R = {2r | r ∈ R}.

Lemma 4.7. For even non-negative integers k1, . . . , km, we define p̃n by

∞∑
n=0

p̃nt
n =

(
∞∑
k=0

p1,kt
k

)k1

· · ·

(
∞∑
k=0

pm,kt
k

)km

, (4.2)

where pi,k ∈ Z[λ] is defined in (3.3). If n is odd, then we have p̃n ∈ 2Z[λ].

Proof. We differentiate the both sides of (4.2) with respect to t. Since k1, . . . , km are
even non-negative integers, we have np̃n ∈ 2Z[λ] for any n ≥ 1. Therefore, if n is odd,
then we have p̃n ∈ 2Z[λ].

Theorem 4.8. If
∑i−1

j=1 χ(ℓi,j) ≤ 1 for any 2 ≤ i ≤ m, where ℓi,j is defined in (2.1),

then we have σ(u) ∈ Z[λ]⟨⟨u⟩⟩.
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Proof. We take an integer k such that ak is odd. From
∑i−1

j=1 χ(ℓi,j) ≤ 1 and the

definition of λ
(i)

j1,...,jm
, for any 2 ≤ i ≤ m and 1 ≤ j ≤ m, we have the expression

∂Fi

∂xj

=
∑

κ
(i,j)
k1,...,km

xk1
1 · · ·xkm

m ,

where κ
(i,j)
k1,...,km

∈ 2Z[λ] or all of k1, . . . , km are even non-negative integers. Therefore,
the determinant detGk(P ) has the following form

detGk(P ) =
∑

κk1,...,kmx
k1
1 · · · xkm

m , (4.3)

where κk1,...,km ∈ 2Z[λ] or all of k1, . . . , km are even non-negative integers. From Propo-
sitions 3.2, 3.3, and Lemma 3.5, detGk(P ) can be expanded around ∞ with respect to
t as follows

detGk(P ) =
(−1)k+1ak
t2g−1+ak

(
1 +

∞∑
n=1

pnt
n

)
,

where pn ∈ Z[1/ak,λ] for any n ≥ 1. From Lemma 4.7 and (4.3), if n is odd, then we
have pn ∈ 2Z[1/ak,λ]. Let

f̃(t) = −
∞∑
n=1

pnt
n.

From
1

detGk(P )
=

t2g−1+ak

(−1)k+1ak

(
1 +

∞∑
n=1

f̃(t)n

)
,

we have the expansion

1

detGk(P )
=

t2g−1+ak

(−1)k+1ak

(
1 +

∞∑
n=1

qnt
n

)
, (4.4)

where qn ∈ Z[1/ak,λ] for any n ≥ 1. Further, if n is odd, then we have qn ∈ 2Z[1/ak,λ].
On the other hand, we have the expansion around ∞ with respect to t

dxk =
−ak
tak+1

(
1 +

∞∑
n=1

q̃nt
n

)
, (4.5)

where q̃n ∈ Z[1/ak,λ] for any n ≥ 1. Further, if n is odd, then we have q̃n ∈ 2Z[1/ak,λ].
From Proposition 3.6, we have bg,j ∈ Z[λ] for any j ≥ 1. From (3.11), (4.4), and (4.5),
if j is odd, then we have bg,j ∈ 2Z[λ]. Thus, we have

1

2

d

dt

(
1 +

∞∑
j=1

bg,jt
j

)
∈ Z[λ][[t]].

As in the case of Lemma 3.14, we have ck ∈ Z[λ] for any k ≥ 1. Therefore, as in the
case of Theorem 4.6, we obtain the statement of the theorem.
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Remark 4.9. We can apply Theorem 4.8 to the (n, s) curves. The result obtained by
applying Theorem 4.8 to the (n, s) curves is equal to [32, Theorem 2.3]. We can apply
Theorem 4.8 to the telescopic curves considered in Example 2.3 (iii).
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