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ABSTRACT

The classical Poincaré conjecture that every homotopy 3-sphere is diffeomor-
phic to the 3-sphere is proved by G. Perelman by solving Thurston’s program
on geometrizations of 3-manifolds. A new confirmation of this conjecture is
given by combining R. H. Bing’s old result on this conjecture with Smooth
Unknotting Conjecture for a 2-link and Smooth 4D Poincaré Conjecture.
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1. Introduction

A homotopy 3-sphere is a smooth 3-manifold M homotopy equivalent to the 3-
sphere S3. It is well-known that a simply connected closed connected 3-manifold is
a smooth homotopy 3-sphere. The following theorem, called the classical Poincaré
Conjecture coming from [22, 23] is positively shown by Perelman [20, 21] solving
positively Thurston’s program [24] on geometrizations of 3-manifolds (see [19] for
detailed historical notes).

Theorem 1.1. Every homotopy 3-sphere M is diffeomorphic to the 3-sphere S3.

The purpose of this paper is to give an alternative proof to Theorem 1.1 by
combining R. H. Bing’s result in [2, 3] on the classical Poincaré conjecture with
Smooth Unknotting Conjecture and Smooth 4D Poincaré Conjecture to be explained
from now on. Let F be a smooth surface-link with a component system Fi, (i =

1



1, 2, . . . , n) in the 4-sphere S4. The fundamental group π1(S
4 \ F, v) (with v a base

point) is a meridian-based free group if the group π1(S
4 \ F, v) is a free group with a

basis represented by a meridian systemmi (i = 1, 2, . . . , n) of Fi, (i = 1, 2, . . . , n) with
a base point v. The smooth surface-link F is a trivial surface-link if the components
Fi, (i = 1, 2, . . . , n) bound a disjoint handlebody system smoothly embedded in S4.
Smooth Unknotting Conjecture for a surface-link is the following conjecture.

Smooth Unknotting Conjecture. Every smooth surface-link F in S4 with a
meridian-based free fundamental group π1(S

4 \ F, v) is a trivial surface-link.

The positive proof of this conjecture is claimed by [13, 15] with supplement [14].
The result when F is a 2-link (i.e. an S2-link, a surface-link with only S2-components)
is applied in this paper. A homotopy 4-sphere is a smooth 4-manifold X homotopy
equivalent to the 4-sphere S4. Smooth 4D Poincaré Conjecture is the following con-
jecture.

Smooth 4D Poincaré Conjecture. Every 4D smooth homotopy 4-sphere X is
diffeomorphic to the 4-sphere S4.

The positive proof of this conjecture is claimed by [16, 17]. For the proof of
Theorem 1.1, the following result of R. H. Bing in [2, 3] is used:

Bing’s Theorem. A homotopy 3-sphere M is diffeomorphic to S3 if, for every knot
k in M , there is a 3-ball in M containing the knot k.

Thus, the main result of this paper is to prove the following lemma.

Lemma 1.2. For every knot k in M , there is a 3-ball in M containing the knot k.

For the proof of Lemma 1.2, Artin’s spinning construction of a knot in S3 in [1]
is generalized into a connected graph in a homotopy 3-sphere M to produce a spun
S2-link in S4 with free fundamental group (not always meridian-based free group).
This explanation is done in Section 2. In Section 3, it is shown that every S2-link
in S4 with free fundamental group is a ribbon S2-link by using Smooth Unknotting
Conjecture for an S2-link and Smooth 4D Poincaré Conjecture. In Section 4, the proof
of Lemma 1.2 is done. To do this, it is shown that the spun torus-knot of every knot
k in M is a ribbon-torus knot in S4 by which it is shown that the knot k is a tangle
sum of a proper arc system a∗ in a boundary collar of a compact once-punctured
manifold M (o) of M and a proper arc system e∗ in M (o) with meridian-based free
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fundamental group π1(M
(o) \ e∗, v). To see this, an argument of a chord diagram of

the spun S2-link of a proper arc system a∗ in a boundary collar of M (o) in [12] is used.
The knot k with the last condition is shown to be in a 3-ball of M . In this way, the
proof of Lemma 1.2 is completed. Thus, the proof of Theorem 1.1 is completed.

Conventions. The unit n-disk is denoted by Dn with the origin 0 as a standard
notation, but the unit 2-disk D2 is fixed in the complex plane C. A smooth n-
manifold diffeomorphic to the unit n-disk Dn is called an n-ball for n ≥ 3 or n-disk
for n = 2. A point 1 is fixed in the n-sphere Sn = ∂Dn+1.

2. Artin’s spinning construction of a connected graph in a homotopy 3-
sphere

For a homotopy 3-sphere M , let M (o) be the compact once-punctured manifold
cl(M \B) of M for a 3-ball B in M . Let

S = ∂B = ∂M (o)

be the boundary 2-sphere of M (o). The closed smooth 4-manifold X(M) defined by

X(M) = M (o) × S1 ∪ S ×D2

is called the spun manifold of M with axis 4-submanifold S ×D2. As a convention,
the 3-submanifold M (o) × 1 of the product M (o) × S1 is identified with M (o). In
particular, a point (q, 1) ∈ M (o) × 1 is identified with the point q ∈ M (o). This
4-manifold X(M) is a smooth homotopy 4-sphere by the van Kampen theorem and
a homological argument and hence X(M) is diffeomorphic to the 4-sphere S4 by
Smooth 4D Poincaré Conjecture. A legged loop with base point v is the union k ∪ ω
of a loop k and an arc ω joining the base point v with a point of k. The arc ω is
called a leg. A legged loop system with base point v is the union

γ = ∪n
i=1ki ∪ ωi

of n legged loops ki ∪ ωi (i = 1, 2, . . . , n) meeting only at the same base point v.
Let k(γ) = ∪n

i=1ki = k∗ denote the loop system of the legged loop system γ. Let
ω∗ = ∪n

i=1ωi and v∗ = k∗ ∩ ω∗. A regular neighborhood B of ω∗ in M is taken as
a 3-ball B used for the compact once-punctured manifold M (o) = cl(M \ B) of M .
Deform the subgraph γ ∩B of γ so that

ω∗ ⊂ B, ω∗ ∩ S = {v} ∪ v∗ and k∗ ∩B = k∗ ∩ S = a′∗

for a regular neighborhood arc system a′∗ of v∗ in k∗. Let

a(γ) = ∪n
i=1ai = a∗
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for a proper arc ai = cl(ki \ a′i) (i = 1, 2, . . . , n) in M (o). Let

ȧ(γ) = ∂a∗ = ∂a′∗

be the set of 2n points in the boundary 2-sphere S of M (o). The spun S2-link of the
graph γ is the S2-link S(γ) in the 4-sphere X(M) defined by

S(γ) = a(γ)× S1 ∪ ȧ(γ)×D2.

Lemma 2.1. The inclusion M (o) \ a(γ) ⊂ X(M) \ S(γ) induces an isomorphism

σ : π1(M \ γ, v) → π1(X(M) \ S(γ), v)

sending a meridian system of the proper arc system a(γ) in M (o) to a meridian system
of S(γ).

Proof of Lemma 2.1. Note that there is a canonical isomorphism

π1(M
(o) \ a(γ), v) ∼= π1(M \ γ, v).

Then the desired isomorphism σ is obtained by applying the van Kampen theorem
between (M (o)\a(γ))×S1 and (S\ȧ(γ))×D2. This completes the proof of Lemma 2.1.
□

Here is a note on Lemma 2.1.

Note 2.2. A general connected graph γ with Euler characteristic χ(γ) = 1 − n in
M is deformed into a legged loop system γ in M by choosing a maximal tree to
shrink to a base point v. Note that there are only finitely many maximal trees of γ
such that the loop systems k(γ) of the resulting legged loop systems γ are distinct as
links. By Lemma 2.1, we can obtain finitely many distinct spun S2-links in S4 with
isomorphic fundamental groups obtained by taking different maximal trees of the
connected graph γ. This is a detailed explanation on the spun S2-link of a connected
graph associated with a maximal tree in [7, p.204] when M = S3.

An argument on Lemma 2.1 is further developed when the homotopy 3-sphereM is
given by a Heegaard spitting V ∪V ′ pasting along a Heegaard surface F = ∂V = ∂V ′

of genus n. A spine of a handlebody V of genus n is a legged loop system γ in
F = ∂V with base point v such that the inclusion map γ → V induces an isomorphism
π1(γ, v) → π1(V, v). A regular neighborhood V̇ of γ in F is a planar surface in F .
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By [5, Theorem 10.2], there is a diffeomorphism (V̇ × [0, 1], V̇ × 0) → (V, V̇ ) sending
every point (x, 0) ∈ V̇ × 0 to x ∈ V̇ . The surface V̇ is called a spine surface of V .
Let γ and γ′ be spines of the handlebodies V and V ′ in F with the same base point
v, respectively. A legged Heegaard loop system in M is a legged loop system γγ′ in
M with base point v obtained by pushing γ \ v and γ′ \ v into the interiors IntV and
IntV ′, respectively. The fundamental groups of the spun S2-links S(γ), S(γ′) and
S(γγ′) = S(γ)∪S(γ′), in the 4-sphere X(M) given by Lemma 2.1 are free groups, as
shown in the following lemma:

Lemma 2.3. The fundamental groups π1(X(M) \ S(γ), v) and π1(X(M) \ S(γ′), v)
are free groups of rank n and the fundamental group π1(X(M) \ S(γγ′), v) is a free
group of rank 2n.

Proof of Lemma 2.3. The closed complements cl(M \ N(γ)), cl(M \ N(γ′)) and
cl(M \ N(γγ′)) are diffeomorphic to the handlebodies V ′, V and F (o) × [0, 1] for
the once-punctured surface F (o) of F , respectively. Since the fundamental groups
π1(V

′, v), π1(V, v) and π1(F
(o)× [0, 1], v) are free groups of ranks n, n and 2n, respec-

tively, the desired result is obtained from Lemma 2.1. □

It should be noted that these free groups in Lemma 2.3 are not necessarily
meridian-based free groups. Here is an example.

Figure 1: A legged loop system γ in S3 with free fundamental group of rank 2

Example 2.4. Let γ be a legged loop system with base point v in S3 illustrated in
Fig. 1 with free fundamental group π1(S

3\γ, v) of rank 2. In fact, a trivial legged loop
system is obtained by sliding an edge along another edge, so that the fundamental
group π1(S

3 \ k(γ), v) is a free group of rank 2. A regular neighborhood V of γ in S3

and the closed complement V ′ = cl(S3 \ V ) constitute a genus 2 Heegaard splitting
V ∪V ′ of S3 by noting that the 3-manifold V ′ is a handlebody of genus 2 by the loop

5



system theorem and the Alexander theorem (cf. e.g., [7]). Thus, the union V ∪ V ′

is a genus 2 Heegaard splitting of S3. The legged loop system γ with vertex v is a
spine of V by sliding the base point v into ∂V . By Lemma 2.3, the spun S2-link S(γ)
in the 4-sphere X(S3) = S4 has the free fundamental group π1(X(S3) \ S(γ), v) of
rank 2, which does not admit any meridian basis because the S2-link S(γ) contains
a component of the spun trefoil S2-knot in S4 whose fundamental group is known to
be not infinite cyclic.

Given a proper arc system a∗ in M (o), there is a legged loop system γ in M with
the proper arc system a(γ) = a∗ in M (o). The spun S2-link S(γ) in X(M) is uniquely
determined by the arc system a∗ and thus denoted by S(a∗). The following lemma is
directly used for the proof of Lemma 1.2.

Lemma 2.5. Let a∗ be a proper arc system in a compact once-punctured manifold
M (o) = cl(M \ B) of a homotopy 3-sphere M . If the spun S2-link S(a∗) in the 4-
sphere X(M) is a trivial S2-link, then the proper arc system a∗ is in a boundary-collar
S × [0, 1] of M (o).

Proof of Lemma 2.5. By Lemma 2.1, the fundamental group π1(M
(o) \ a(γ), v) is

a meridian-based free group. Consider the 2-sphere S is the boundary of the product
d× [0, 1] for a disk d so that d× 0 contains one end of the proper arc system a∗ and
d×1 contains the other end of the proper arc system a∗. Let (E;E0, E1) be the triplet
obtained from (M (o), d× 0, d× 1) by removing a tubular neighborhood of a∗ in M (o).
Then the inclusion E0 ⊂ E induces an isomorphism

π1(E0, v) → π1(E, v).

By [5, Theorem 10.2], E is diffeomorphic to the connected sum of the product E0 ×
[0, 1] and a homotopy 3-sphere. This means that the proper arc system a∗ is in a
boundary-collar S × [0, 1]. This completes the proof of Lemma 2.5. □

3. Ribbonness of an S2-link with free fundamental group
The 4D handlebody of genus n is the boundary 3-disk sum

Y D = D4♮nı=1S
1 ×D3

i

obtained from n copies S1×D3
i (i = 1, 2, . . . , n) of the 4D solid torus S1×D3 and the

4-disk D4 by pasting a 3-disk system consisting of a boundary 3-disk in (S1\{1})×D3
i

for every i to a system of disjoint n boundary 3-disks of D4. A legged loop system
γD in the 4D handlebody Y D of genus n is standard if the legged loop system γD has
the following two conditions:
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• The loop system k(γD) is consistent with the system S1 ×1i (i = 1, 2, . . . , n), and

• The base point v is in the 4-disk D4 and the legs ωi (i = 1, 2, . . . , n) of γD do not
meet the 3-disks 1×D3

i (i = 1, 2, . . . , n).

Note that the legs (i = 1, 2, . . . , n) of γD are ∂-relatively unique up to isotopies
in Y D. The 4D closed handlebody of genus n is the double of the 4D handlebody Y D

of genus n, that is the 4-manifold

∂(Y D × [0, 1]) = Y D × 0 ∪ (∂Y D)× [0, 1] ∪ Y D × 1

which is canonically identified with the following 4-manifold

Y S = S4#n
i=1S

1 × S3
i ,

where the connected summands S4 and S1 × S3
i correspond to the doubles of the

3-disk summands D4 and S1×D3
i , respectively. The 4D handlebody Y D × 0 in Y S is

identified with Y D. A legged loop system γ with vertex v of the 4D closed handlebody
Y S of genus n is standard if it is v-relatively isotopic to a standard legged loop system
γD of Y D ⊂ Y S. A standard legged loop system of Y S is denoted by γS. A homology
4-sphere is a smooth 4-manifoldX with an isomorphismH∗(X;Z) ∼= H∗(S

4;Z). A 4D
closed homology handlebody of genus n is a smooth 4-manifold Y with an isomorphism
H∗(Y ;Z) ∼= H∗(Y

S;Z) for the 4D closed handlebody Y S of genus n. For an S2-link
L in a homology 4-sphere X, take a normal disk bundle L × D2 in X and a 3-disk
system D3

L with ∂D3
L = L. The transformation from X into the 4-manifold

Y = cl(X \ L×D2) ∪D3
L × S1

is called the surgery of X along the S2-link L. Conversely, the transformation from
Y into X is called the surgery of Y along the loop system 0∗ × S1 by observing that
D3

L × S1 is a regular neighborhood of 0∗ × S1 in Y . The following lemma is a more
or less known fact.

Lemma 3.1. Let Y be the 4-manifold obtained from a homology 4-sphere X by
surgery along any n-component S2-link L. Then the 4-manifold Y is a 4D closed
homology handlebody of genus n such that the inclusion X \L×D2 ⊂ Y induces an
isomorphism

π1(X \ L×D2, v) → π1(Y, v).

Proof of Lemma 3.1. To see that H2(Y ;Z) = 0, use the Euler characteristic
χ(Y ) = 2n. Since H1(Y ;Z) ∼= Zn, we have H2(Y ;Z) = 0 by Poincaé duality, which
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shows that Y is a 4D closed homology handlebody of genus n. The isomorphism
i∗ : π1(X \ L×D2, v) → π1(Y, v) is obtained by a general position argument. □

A meridian system of an S2-link L in X is a legged loop system γL in the closed
complement cl(X \L×D2) for a normal disk bundle L×D2 in X such that the loop
system k(γL) is the loop system p∗ ×S1 for a point system p∗ in L with one point for
every component of L. By Lemma 3.1, note that the meridian system γL induces a
legged loop system γ in Y such that the loop system k(γ) represents a homological
basis of the homology group H1(Y ;Z). Conversely, given any legged loop system
γ in Y such that the loop system k(γ) represents a homological basis of H1(Y ;Z),
then the 4-manifold X obtained from Y by surgery along the loop system k(γ) is a
homology 4-sphere and the legged loop system γ induces a meridian system γL of the
S2-link L in X obtained by surgery. A 4D closed homotopy handlebody of genus n
is a 4D closed homology handlebody Y of genus n such that the fundamental group
π1(Y, p) is a free group of rank n. A legged loop system γ with base point v in a 4D
closed homotopy handlebody Y of genus n is a basis if the inclusion γ ⊂ Y induces
an isomorphism

π1(γ, v) → π1(Y, v).

For example, a standard legged loop system γS of the 4D closed handlebody Y S is a
basis. The following classification lemma is a result of Smooth Unknotting Conjecture
for an S2-link and Smooth 4D Poincaré Conjecture.

Lemma 3.2. Let Y S be the 4D closed handlebody of genus n, and γS a standard
legged loop system with base point vS of Y S. For every 4D closed homotopy han-
dlebody Y of genus n and every basis γ in Y , there is an orientation-preserving
diffeomorphism

f : Y → Y S

such that f(γ) = γS. Given any spin structures on Y and Y S, the diffeomorphism f
can be taken spin-structure-preserving.

Proof of Lemma 3.2. Let X be the 4-manifold obtained from Y by surgery along
the loop system k∗ = k(γ). This 4-manifold X is diffeomorphic to the 4-sphere S4

by Smooth 4D Poincaré Conjecture since it is a smooth homotopy 4-sphere by the
van Kampen theorem and a homological argument. Since X is obtained from Y by
replacing a normal 3-disk bundle k∗×D3 of k∗ in Y with D2

∗ ×S2 for the disk system
D2

∗ bounded by k∗. Then there is an S2-link L = 0∗×S2 in X. Since the basis γ of Y
induces a meridian system of L in X, Lemma 3.1 implies that the fundamental group
π1(X \ L, v) is a meridian based free group. By Smooth Unknotting Conjecture for
an S2-link, the S2-link L is a trivial S2-link in the 4-sphere X. By the back surgery
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replacing D2
∗ × S2 in X with k(γ) × D3 in Y , there is an orientation-preserving

diffeomorphism f : Y → Y S with f(k∗) = k(γS
∗ ). Since a regular neighborhood

N(f(γ)) of f(γ) in Y S is isotopic to Y D in Y S, the diffeomorphism f : Y → Y S is
modified to have f(γ) = γS. Given any spin structures on Y and Y S, note that there is
an orientation-preserving spin-structure-changing diffeomorphism : S1×S3 → S1×S3

(see [4] for a similar diffeomorphism on S1 × S2). Thus, by composing f with the
orientation-preserving spin-structure-changing diffeomorphisms on some connected
summands of Y S which are copies of S1 × S3, the diffeomorphism f : Y → Y ′

is modified into an orientation-preserving spin-structure-preserving diffeomorphism.
This completes the proof of Lemma 3.2. □

The following corollary is directly obtained from Lemmas 2.3, 3.1 and 3.2.

Corollary 3.3. Let γγ′ be a legged Heegaard loop system of a homotopy 3-sphere
M associated with a Heegaard splitting V ∪ V ′ of genus n, and Y (M ; γγ′) the 4D
closed homology handlebody obtained from the 4-sphere X(M) by surgery along the
spun S2-link S(γγ′) of γγ′. Then the 4D closed homology handlebody Y (M ; γγ′) is
diffeomorphic to the 4D closed handlebody Y S of genus 2n.

A surface-link L in S4 is a ribbon surface-link if L is equivalent to a surface-link
obtained from a trivial S2-link L0 in S4 by surgery along embedded 1-handles on L0

(see [18]). The following lemma is obtained by using lemma 3.2.

Lemma 3.4. Any S2-link L in S4 with free fundamental group π1(S
4 \ L, v) is a

ribbon S2-link.

Proof of Lemma 3.4. LetKi (i = 1, 2, . . . , n) be the components of L. The following
observation is used to determine a ribbon S2-link.

(3.4.1) Let (S3
i )

(1+mi) (i = 1, 2, . . . , n) be a system of mutually disjoint compact
(1 +mi)-punctured 3-spheres in S4 such that the boundary ∂(S3

i )
(1+mi) is the union

of the component Ki and an S2-link Oi of mi components. If the union O = ∪n
i=1Oi

is a trivial S2-link in S4, then the S2-link L = ∪n
i=1Ki is a ribbon S2-link in S4.

Proof of (3.4.1). Let K ′
i be a 2-sphere obtained from Oi by surgery along mutually

disjoint 1-handles hi (i = 1, 2, . . . ,mi − 1) in (S3
i )

(1+mi), whose closed complement is
diffeomorphic to the spherical shell S2 × [0, 1]. This means that the component Ki

with reversed orientation is isotopic to the 2-sphere K ′
i in (S3

i )
(1+mi). This shows that

L = ∪n
i=1Ki is a ribbon S2-link in S4, completing the proof of (3.4.1). □
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Let Y be the 4-manifold obtained from S4 by surgery along L. Let γ be a legged
loop system in Y induced from a meridian system γL of L in S4. Let k(γ) = k∗
be the loop system of γ in Y . By Lemma 3.2, Y is identified with the closed 4D
handlebody Y S of genus n. Let S1 × S3

i = kS
i × S3 (i = 1, 2, . . . , n) be the 4D closed

handle summands in Y = Y S. For every i, let S3
i = pi × S3

i be the 3-sphere factor
of the 4D closed handle kS

i × S3 for a point pi ∈ kS
i , and kS

i = kS
i × p′i the loop

factor for a point p′i ∈ S3. Let γS be a standard legged loop system of Y = Y S with
k(γS) = kS

∗ and with the same vertex v. The legged loop systems γ and γS are made
disjoint except for the vertex v. Let xi = [kS

i ] (i = 1, 2, . . . , n) be a basis of the free
group π1(Y, v) of rank n represented by γS for every i. Let yi = [ki] (i = 1, 2, . . . , n)
be an element system in π1(Y, v) represented by γ for every i. By a basis change
of the basis xi (i = 1, 2, . . . , n), assume that the product x−1

i yi is in the commutator
subgroup [π1(Y, v), π1(Y, v)] of π1(Y, v) for every i.

Consider the meeting situation of the loop system k∗ with the 3-sphere system
S3
∗ . There is a transverse intersecting point qi between ki and S3

i for every i such that
except for this point system q∗ the loop ki meets S3

j transversely with a finite number
of point pairs (aijs, bijs) (s = 1, 2, . . . , tij) with opposite signs. Let αijs be the arc in
the open arc ki \ {qi} cut by the pair (aijs, bijs). For every i and j, the pair system
(aijs, bijs) (s = 1, 2, . . . , tij) is a coupling system if

αijs ⊂ αijs′ or αijs ∩ αijs′ = ∅

for every s < s′. The pair system (aijs, bijs) (s = 1, 2, . . . , tij) is always indexed to
be a coupling system. For every j (j = 1, 2, . . . , n), let B(qj), B(a∗j∗), B(b∗j∗) be the
3-ball neighborhoods (ki ×D3)∩ S3

j of the points qj, aijs, bijs for all i (1 ≤ i ≤ n) and
s (s = 1, 2, . . . , tij) in S3

j , which are sections of the normal 3-disk bundle ki ×D3 over
ki. Let U{ijs} be the 3-ball obtained from B(aijs) and B(bijs) by adding a 1-handle
hijs in S3

j thickening an arc βijs joining B(aijs) and B(bijs) whose interior does not
meet (k∗×D3)∩S3

j , where note that the 1-handle hijs is unique by an isotopy keeping

the attaching part. Let (S3)
(0)
j = cl(S3

j \ B(qj)). Let (S3)
(1+mj)
j be the compact mj-

punctured 3-sphere of S3
j with mj = Σn

i=1tij obtained by removing the interiors of
the 3-balls B(qj), Uijs (i = 1, 2, . . . , n, s = 1, 2, . . . , tij). Let S(qj) and Sijs be the
boundary spheres of B(qj) and Uijs, respectively. Do the surgery of Y along a normal
3-disk bundle system k∗×D3 of k∗ in Y to obtain the 4-sphere X = S4 where ki×D3

is changed into the normal 2-disk bundle system D2 × Ki of the component Ki of
the S2-link L in X. The compact mj-punctured 3-sphere (S3)

(1+mj)
j is canonically

embedded in X where the 2-sphere S(qj) is identified with the component Kj of L
and the 2-sphere Sijs is a section of the S2-bundle (∂D2) × Ki over the circle ∂D2.
The following claim is shown.
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(3.4.2) The 2-spheres Sijs (i, j = 1, 2, . . . , n, s = 1, 2, . . . , tij) form a trivial S2-link in
X.

By (3.4.1) and (3.4.2), the S2-link L = ∪n
j=1Kj is shown to be a ribbon S2-link in

S4.

Proof of (3.4.2). Let XS be the 4-sphere S4 obtained from Y by surgery along
γS, and LS = ∪n

i=1K
S
i be the trivial S2-link in XS with KS

i the boundary of a once-
punctured compact manifold (S3

i )
(0) of S3

i .

First consider the meeting between the loop system k∗ and the compact once-
punctured 3-sphere (S3

1)
(0). There are disjoint disks ∆i (i, j = 1, 2, . . . , n) in the

4-sphere XS with ∂∆i = ki (i = 1, 2, . . . , n) such that

(i) The intersection ∆1 ∩ (S3
1)

(0) is a disjoint union of the point q1 and disjoint simple
arcs α′

s (s = 1, 2, . . . , n11) with ∂α′
11 = ∂α11 = {a11, b11} (s = 1, 2, . . . , t11),

(ii) For every i ≥ 2, the intersection ∆i∩(S3
1)

(0) is a transverse intersection arc system
consisting of simple arcs α′

i1s (s = 1, 2, . . . , ni1) with ∂α′
i1s = ∂αi1s = {ai1, bi1} (s =

1, 2, . . . , ti1), and

(iii) For every i = 1, 2, . . . , n and every s = 1, 2, . . . , ti1, the union ℓi1s = α′
i1s ∪ αi1s is

a simple loop which bounds a disk δi1s in ∆i.

Do the surgery of the 4-sphere XS into the 4-sphere X along a normal 3-disk
bundle system k∗ ×D3 of k∗ in XS and a normal 2-disk bundle system KS

∗ ×D2 of
KS

∗ in XS where k∗×D3 is changed into a normal 2-disk bundle system D2×L of the
S2-link L in X and KS

∗ ×D2 is changed into a normal 3-disk bundle system D3 × kS
∗

in X. Note that the boundary sphere system ∂(S3
1)

(1+m1) in X consists of the spheres
K1 = S(q1) and Si1s (i = 1, 2, . . . , n, s = 1, 2, . . . , ti1). Let α̂′

i1s = α′
i1s ∩ (S3

1)
(1+m1)

for every j and s. Let ∆̂i be the 2-disk obtained from ∆i by removing the annulus
∆i ∩ (ki × D3) and then taking the closure for every i. Let (α̂i1s; âi1s, b̂i1s) be a
translation of the arc (αi1s; ajs′ , bi1s) in the loop ki = ∂∆i into the loop ∂∆̂i so that
∂α̂i1s = ∂α̂′

i1s = {âi1s, b̂i1s} where âi1s ∈ S(ai1s) and b̂i1s ∈ S(bi1s). Note that the arcs
α̂i1s and α̂′

i1s are isotopic through the disk δi1s ∩ ∆̂i relative to the 2-spheres S(ai1s)
and S(bi1s). The following observation on the spherical shell S2× [0, 1] is used for the
proof of (3.4.2) (whose proof is omitted since it is an easy exercise).

Observation 3.4.3 The 2-sphere S ′ obtained from the 2-spheres S2 × {0, 1} by
surgery along a 1-handle h′ thickening the arc p× [0, 1] (p ∈ S2) bounds the unique 3-
ball B′ = cl(S2× [0, 1]\h′). Further, let S ′′ obtained from the 2-spheres S2×{1

4
, 3
4
} by
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surgery along a 1-handle h′′ thickening the arc p× [1
4
, 3
4
], and B′′ = cl(S2× [1

4
, 3
4
] \h′′)

the 3-ball bounded by S ′′. If the 1-handle h′ is thinner than the 1-handle h′′, then
the 3-ball B′′ is in the interior of the 3-ball B′.

Consider the 2-sphere S ′
i1s obtained from the 2-spheres S(ai1s) and S(bi1s) by

surgery along a 1-handle thickening the arc α̂i1s in the spherical shell S2×α̂i1s bounded
by S(ai1s) and S(bi1s) in the S2-bundle (∂D2) × Ki. By Observation 3.4.3, the 2-
spheres Si1s for all i, s (i = 1, 2, . . . , n, s = 1, 2, . . . , ti1) form a trivial S2-link in X.
Also, consider the 2-sphere S ′′

i1s obtained from the 2-spheres S(ai1s) and S(bi1s) by
surgery along a 1-handle thickening the arc α̂′

i1s. By the isotopy between the arcs
α̂i1s and α̂′

i1s through the disk δi1s ∩ ∆̂i relative to the 2-spheres S(ai1s) and S(bi1s),
the 2-spheres S̃ ′

i1s for all i, s (i = 1, 2, . . . , n, s = 1, 2, . . . , ti1) form a trivial S2-link
in X. Since S̃ ′

i1s is identified with Si1s, it is shown that the 2-spheres Si1s for all
i, s (i = 1, 2, . . . , n, s = 1, 2, . . . , ti1) form a trivial S2-link in X.

Next consider the meeting between the loop system k∗ and the compact once-
punctured 3-sphere (S3

2)
(0). For this purpose, take a 3-disk fiber D3 of the normal

3-disk bundle system k∗ × D3 of k∗ in XS larger than the 3-disk fiber D3 of the
normal 3-disk bundle system k∗ × D3 of k∗ in XS used for the meeting between k∗
and (S3

1)
(0). Then by a similar argument on the meeting between k∗ and (S3

1)
(0), it

is shown that the 2-spheres Sijs for all i, j, s (i = 1, 2, . . . , n; j = 1, 2, s = 1, 2, . . . , tij)
form a trivial S2-link in X, where note that there is an isotopic deformation from α̂′

i2s

to α̂i2s avoiding intersection with the arc system α̂∗1∗ by general position.

By continuing this process, the 2-spheres Sijs (i, j = 1, 2, . . . , n, s = 1, 2, . . . , tij)
form a trivial S2-link in X. This completes the proof of (3.4.2). □

This completes the proof of Lemma 3.4. □

A group presentation (y1, y2, . . . , yn+s| r1, r2, . . . , rs) of deficiency n is a Wirtinger
presentation if every relator ri is written as a form y−1

ji
wjyj′iw

−1
i for two generators

yjji, yj′i with distinct indexes ji, j
′
i and a word wi in the letters yj (j = 1, 2, . . . , n+ s).

It is known that the fundamental group of an n-component ribbon S2-link has a
Wirtinger presentation of deficiency n for some s (cf. [7, p. 193], [18, pp. 56-60]).
An algebraic version of Lemma 3.4 means the following result in combinatorial group
theory.

Corollary 3.5. Let Fn be the free group of rank n with a basis xi (i = 1, 2, . . . , n). Let
x′
i (i = 1, 2, . . . , n) be a set of elements normally generating the free group Fn written

as words in the letters xi (i = 1, 2, . . . , n) such that the products x′
ix

−1
i (i = 1, 2, . . . , n)

belong to the commutator subgroup [Fn,Fn] of Fn. Then the free group Fn admits
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a Wirtinger presentation

(y1, y2, . . . , yn+s| r1, r2, . . . , rs)

of deficiency n for some s such that the elements yi (i = 1, 2, . . . , n + s) are written
as words in the letters xi (i = 1, 2, . . . , n) containing the elements x′

i (i = 1, 2, . . . , n)
as the given words.

4. Main result: Proof of Lemma 1.2

The following observation relates a knot to a Heegaard splitting of a closed con-
nected orientable 3-manifold.

Lemma 4.1. For any knot k in any closed connected orientable 3-manifold M , there
is a Heegaard splitting V ∪V ′ of M such that the knot k is equivalent to a component
of the loop system k(γ) of a spine γ of V in M .

Proof of Lemma 4.1. By considering k as a polygonal loop in M , there is a
triangulation T of M whose 1-skeleton T (1) contains the knot k. The graph T (1) is
deformed into a legged loop system γ in M so that k is a component of the loop
system k(γ). Let V be a regular neighborhood of γ in M which is a handlebody. The
closed complement V ′ = cl(M \ V ) is also a handlebody, so that we have a Heegaard
splitting V ∪ V ′ of M . The legged loop system γ is deformed into a spine of the
handlebody V . □

By combining Lemmas 2.3, 3.4 with Lemma 4.1, the following corollary is ob-
tained, because any component of a ribbon S2-link in S4 is a ribbon S2-knot in S4.

Corollary 4.2. For any knot k in any homotopy 3-sphere M , the spun S2-knot S(k)
of k in X(M) = S4 is a ribbon S2-knot in S4.

A chord diagram is a diagram C in S2 consisting of a based loop system o (i.e.,
a trivial oriented link diagram ) and a chord system α joining the based loops where
intersections among the chords are permitted (see [8, 9, 10, 11, 12] for the detailed
arguments). From a chord diagram C = C(o, α) in S2, a ribbon surface-link R(C) in
the 4-sphere S4 is constructed in a unique way. In fact, the ribbon surface-link R(C)
is obtained from a trivial oriented S2-link L0 in S4 constructed from the based loop
system o by surgery along an embedded 1-handle system h(α) on L0 thickening the
chord system α. The ribbon surface-link R(C) in S4 is uniquely constructed from
the chord diagram C by using the Horibe-Yanagawa’s lemma in [18] for uniqueness of
the trivial S2-link L0 constructed from the based loop system o and an argument in
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[6] for uniqueness of the embedded 1-handle system h(α) constructed from the chord
system α. For a disk δ in S2, a chord diagram in δ is the intersection C ∩ δ for a
chord diagram C = C(o, α) in S2 such that the circle ∂δ does not meet the based
loop system o and meets the chord system α transversely.

Lemma 4.3. Let a∗ be an oriented arc system in a compact once-punctured manifold
M (o) = cl(M\B) of a homotopy 3-sphereM which is obtained from an oriented proper
arc diagram Dδ in a disk δ contained in the boundary 2-sphere S of M (o) by pushing
the interior of an upper-arc around every crossing point of Dδ into the interior of
M (o). Then the spun S2-link S(a∗) in X(M) is a ribbon S2-link in X(M) with a
chord diagram Cδ in δ obtained from the arc diagram Dδ by changing every crossing
point as in Fig. 2.

Figure 2: Changing a crossing point into a based loop with chords

Proof of Lemma 4.3. This fact is observed in [12, Theorem 2.3 (3)] for an inbound
arc diagram whose closure is a knot chord diagram. The present claim is similarly
shown for any oriented arc diagram. □

In Lemma 4.3, note that the arc diagram Dδ is recovered from the chord diagram
Cδ by taking the upper-arc of every based loop. The proof of Lemma 1.2 is given as
follows.

4.4: Proof of Lemma 1.2. Let k be a non-trivial knot in a homotopy 3-sphere
M . By Corollary 4.2, the spun S2-knot S(k) in the 4-sphere X(M) = S4 is a ribbon
S2-knot. The spun torus-knot of k in the 4-sphere X(M) is given by the inclusions

T (k) = k × S1 ⊂ M (o) × S1 ⊂ M (o) × S1 ∪ S ×D2 = X(M).

The spun S2-knot S(k) in X(M) is obtained from T (k) by a 2-handle surgery and
conversely the spun torus-knot T (k) is obtained from the spun S2-knot S(k) by 1-
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Figure 3: A diagram of the two arcs of k on the disk di

handle surgery. By definition, the spun torus-knot T (k) is a ribbon torus-knot and
hence bounds a ribbon solid torus VR in X(M). Let

VR = ∪n
i=1Bi ∪ hi

for a disjoint 3-ball system Bi (i = 1, 2, . . . , n) in X(M) and an embedded disjoint
1-handle system hi (i = 1, 2, . . . , n), denoted by h∗, on the 2-sphere system ∂Bi (i =
1, 2, . . . , n) in X(M) so that the 1-handle hi spans ∂Bi and ∂Bi+1 for every i by taking
Bn+1 = B1, and every 3-ball Bi meets transversely h∗ with just a meridian disk d′i
of a 1-handle of h∗ embedded in the interior of Bi. Since the knot k is non-trivial in
M (o) and there is a canonical isomorphism

π1(M
(o) \ k, v) → π1(X(M) \ T (k), v)

by the van Kampen theorem, the longitude of k in M (o) represents an infinite order
element in the fundamental group π1(X(M) \T (k), v), which implies that a meridian
loop of VR (i.e., a simple loop of T (k) bounding a meridian disk of VR) is a uniquely
determined loop in T (k) up to isotopies of T (k). Fix an orientation of knot k. Then
the construction of T (k) determines uniquely the meridian disk orientation of the
ribbon solid torus VR and the ribbon solid torus VR determines uniquely a disjoint
oriented meridian disk system di (i = 1, 2, . . . , n) in VR deformed from the 3-ball
system Bi (i = 1, 2, . . . , n) so that the knot k meets the disk di with just one bound-
ary arc orientation-coherently and just one interior point transversely and the union
k(d∗) = k ∪n

i=1 di (called a disk-chord system) recovers VR uniquely by thickening k
and di (i = 1, 2, . . . , n) (see the left figure of Fig. 3). The following observation is
used.

Observation 4.4.1. The disk system di (i = 1, 2, . . . , n) is deformed into M (o) by an
isotopy of X(M) keeping the knot k fixed.

Proof of Observation 4.4.1. Llet αi be a simple arc in di joining the point k∩Int(di)
with a point in the arc k∩∂di for all i. The arc system αi (i = 1, 2, . . . , n) is deformed
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into a bi-collar neighborhood M (o)× [−1, 1] of M (o) with M (o)×0 = M (o) in X(M) by
an isotopy keeping M (o) fixed. Then the arc system αi (i = 1, 2, . . . , n) is projected
into M (o) by a general position argument. A deformed disk system di (i = 1, 2, . . . , n)
in M (o) is obtained from the arc system αi (i = 1, 2, . . . , n) in M (o) by extending them
as a small disk system, completing the proof of Observation 4.4.1. □

By Observation 4.4.1, consider that the disk-chord system k(d∗) is in M (o). Let
k(d∗)

× be the graph in M (o) obtained from the disk-chord system k(d∗) by shrinking
every disk di into a 4-degree vertex for every i. By taking a maximal tree τ(k(d∗)

×)
of k(d∗)

×, one finds a disk δ in M (o) containing the maximal tree τ(k(d∗)
×). Let

ei (i = 1, 2, . . . , n + 1) be the arc system cl(k(d∗)
× \ τ(k(d∗)

×)) where the number
n + 1 is uniquely determined by the Euler characteristic χ(k(d∗)

×) = −n. Then the
disk-chord system

k(d∗)δ = cl(k(d∗) \ (∪n+1
i=1 ei))

gives a chord diagram Cδ in the disk δ with the based loop system oi = ∂di (i =
1, 2, . . . , n) and with two arcs of k on the disk di for every i drawn as bold lines in the
right figure of Fig. 3. Let aj (j = 1, 2, . . . , n+1) be the arc system cl(k \∪n+1

i=1 ei). The
chord diagram Cδ in the disk δ consists of the basel loop system oi (i = 1, 2, . . . , n)
and the chord system obtained from aj (j = 1, 2, . . . , n + 1) by deleting the interiors
of the intersection arcs between oi (i = 1, 2, . . . , n) and aj (j = 1, 2, . . . , n + 1). In
Fig. 2, leave the two arcs of k by forgetting the disk or the based loop. Then the
chord diagram Cδ changes into a proper arc diagram Dδ of the arc system aj (j =
1, 2, . . . , n+1) in the disk δ with the crossing points corresponding to the based loop
system oi (i = 1, 2, . . . , n). Deform the disk δ into the 2-sphere S = ∂M (o) so that a
collar δ× [0, 1] of δ in M (o) with δ× 0 = δ belongs to a boundary collar S× [0, 1] of S
in M (o) with S× 0 = S. The arc system ai (i = 1, 2, . . . , n+1) is realized as a proper
arc system in the collar δ×[0, 1] from the arc diagram Dδ by pushing the interior of an
upper-arc around every crossing point of Dδ into the interior of δ× [0, 1] and then by
further pushing the interior of the arc system ai (i = 1, 2, . . . , n+1) into the interior of
δ×[0, 1]. Then the disk-chord system k(d∗)δ is also realized in δ×[0, 1]. By Lemma 4.3,
the spun S2-link S(a∗) of the arc system ai (i = 1, 2, . . . , n + 1) in M (o) in X(M) is
given by the chord system Cδ in δ constructed from the arc diagram Dδ and hence
given by the disk-chord system k(d∗)δ in δ× [0, 1]. Let M

(o)
δ = cl(M (o) \ δ× [0, 1]) be

a once-punctured manifold of M with S ′ = ∂M
(o)
δ the boundary 2-sphere, and X ′(M)

the spun 4-sphere of M on M
(o)
δ . The arc system ei (i = 1, 2, . . . , n + 1) is a prper

arc system in M
(o)
δ . The ribbon solid torus VR bounded by the spun torus-knot T (k)

can be considered as a thickenning of the disk-chord system k(d∗) in M (0). Since
the disk-chord system k(d∗) contains the disk-chord system k(d∗)δ, the spun S2-link

S(e∗) in X ′(M) of the arc system ei (i = 1, 2, . . . , n+1) in M
(o)
δ bounds disjoint 3-balls
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in VR and hence a trivial S2-link in X ′(M). By Lemma 2.5, the proper arc system

ei (i = 1, 2, . . . , n + 1) is in a boundary-collar S ′ × [0, 1] of M
(o)
δ . For a small disk d′

in S ′ \ δ × 1 such that b× [0, 1] does not meet the arc system ei (i = 1, 2, . . . , n+ 1),
the union cl(S ′ \ d′)× [0, 1]∪ δ× [0, 1] is a 3-ball in M (o) containing the knot k. This
completes the proof of Lemma 1.2. □

This completes the proof of Theorem 1.1.
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