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Abstract. We propose a power type approximation of the Moser–Trudinger

functional and show that its concentration level converges to the Carleson–
Chang limit.

1. Introduction

Let N ≥ 2, 1 < p < N , B be the unit ball in RN , and W 1,p
0 (B) be the com-

pletion with respect to the Sobolev norm ∥u∥W 1,p(B) = (∥u∥pLp(B) + ∥∇u∥pLp(B))
1/p

of smooth compactly supported functions in B. Then, the Sobolev inequality in B
states that, there exists a constant C > 0 such that

(1.1) ∥u∥Lp∗ (B) ≤ C∥∇u∥Lp(B)

for every u ∈W 1,p
0 (B), where p∗ = Np/(N − p) is the critical Sobolev exponent.

In the borderline situation where p = N , the inequality (1.1) is known to hold
when p∗ is replaced by any number greater than or equal to 1. However, a stronger
result, proved by Trudinger [24] (see also [19, 26]) is available. This is

(1.2) sup
u∈W 1,N

0 (B)
∥∇u∥LN (B)≤1

∫
B

eα|u|
N

N−1
dx ≤ C|B|

and is true for some constants α and C, depending only on N . Moser [18] sharpened
the inequality to

(1.3) sup
u∈W 1,N

0 (B)
∥∇u∥LN (B)≤1

∫
B

eα|u|
N

N−1
dx

{
≤ C|B| if α ≤ αN ,

= +∞ if α > αN ,

where αN = Nω
1

N−1

N−1 and ωN−1 is the surface measure of the unit sphere in RN .
The Trudinger inequality (1.2) is considered to be a limiting case of the Sobolev

inequality in the framework of Orlicz spaces. After the contribution of Adams [1],
Cianchi [7] established the optimal extension of inequalities (1.1) and (1.2) to the
case where Lebesgue norms are replaced by any Orlicz norm. This extension coin-

cides with (1.1) for W 1,p
0 (B) and (1.2) for W 1,N

0 (B), respectively. Even though the
Sobolev inequality (1.1) and its limiting case (1.2) were unified in [7], the latter is
not obtained via a direct limiting procedure in the former as p→ N .
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In this paper, we focus on this discontinuity and propose an equivalent form of
the Lp∗

norm that converges to the Moser–Trudinger functional in (1.3) as p→ N .
To state our result, we define a function Fp : R → R+ for p ∈ (1, N) by

(1.4)


Fp(s) :=

[
1 +

N − p

N(p− 1)
αp|s|

p
p−1

]N(p−1)
N−p

,

αp :=
(
α

N−1
N

N |B|
1
p−

1
N

) p
p−1

.

Proposition 1.1. Let u be a smooth compactly supported function in B. Then
there holds

c1∥u∥p
∗

Lp∗ (B)
≤
∫
B

[Fp(u)− 1] dx ≤ c2∥u∥p
∗

Lp∗ (B)

for some c1, c2 > 0 depending on p, N , and |B|. Furthermore, there holds∫
B

Fp

(
u
)
→
∫
B

eαN |u|
N

N−1
dx (p→ N).

Proposition 1.1 clearly follows from lims→∞ Fp(s)/s
p∗

= c for some constant
c > 0. Furthermore, as we will see, the proposed function Fp yields new insight
into the concentration level of the Moser–Trudinger functional in (1.3).

The concentration level of the Moser–Trudinger functional (1.3) for α = αN was
first investigated by Carleson–Chang [6]. Let Bε be the ball centered at the origin
with radius ε > 0 and

G(u) :=

∫
B

eαN |u|
N

N−1
dx.

It is revealed in [6] that

(1.5) lim sup
n→∞

G(un) ≤ |B|(1 + e
∑N−1

k=1
1
k )

if {un} is a concentrating sequence, that is limn→∞ ∥∇un∥LN (Bε) = 1 holds for
every ε > 0. The maximal limit in (1.5) on concentrating sequences is called the

Carleson–Chang limit. Later, de Figueiredo–do Ó–Ruf [9] constructed a concen-

trating sequence {yn} such that limn→∞G(yn) = |B|(1 + e
∑N−1

k=1
1
k ), which means

the value of the Carleson–Chang limit is the right hand side of (1.5). It should also
be mentioned that Carleson–Chang [6] considered (1.5) to prove the existence of a
function which attains the supremum in (1.3) for α = αN . Specifically, they de-

scribed a function u∗ such that G(u∗) > |B|(1+ e
∑N−1

k=1
1
k ), and combined this fact,

the concentration compactness argument, and (1.5) to show that all maximizing
sequences of the supremum in (1.3) with α = αN are precompact. This method
has been extended to more general cases, as shown in the works of Struwe [22],
Flucher [10] and Li [15]. See also [20, 14, 12, 17, 11] and references therein for other
discussion of maximizing problems related to the Moser–Trudinger functional.

We define Bp and Xp by

(1.6) Bp :=
{
u ∈W 1,p

0,rad(B)
∣∣∣ ∥∇u∥p ≤ 1

}
,

where W 1,p
0,rad(B) denotes the set of radially symmetric functions belonging to

W 1,p
0 (B), and

(1.7) Xp :=
{
{un} ⊂ Bp

∣∣∣ lim
n→∞

∥∇un∥Lp(Bε) = 1 for any ε > 0
}
.
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The main result of the presented paper shows that the concentration level associated
with Fp converges to the Carleson–Chang limit.

Theorem 1.2. It holds that

sup
{un}∈Xp

(
lim sup
n→∞

∫
B

Fp(un)dx

)
→ |B|(1 + e

∑N−1
k=1

1
k ) (p→ N).

Remark 1.3. It is important to notice the derivation of Fp. In the proof of (1.5),
the following inequality, termed Alvino’s inequality or the radial lemma, plays an
essential role:

(1.8) |u(x)| ≤ α
−N−1

N

N

(
N log

1

|x|

)N−1
N

∥∇u∥LN (B)

for every x ∈ B and u ∈W 1,N
0,rad(B). It is easy to check that (1.8) is equivalent to

eαN(|u(x)|/∥∇u∥LN (B))
N

N−1 ≤ 1

|x|N
.

Similarly, for the case of 1 < p < N , it holds that

(1.9) |u(x)| ≤
(
|B|

1
p−

1
N α

N−1
N

N

)−1
{
N
p− 1

N − p

(
|x|−

N−p
p−1 − 1

)} p−1
p

∥∇u∥Lp(B)

for every x ∈ B and u ∈ W 1,p
0,rad(B). The function Fp is defined so that (1.9) is

equivalent to

Fp

(
u(x)/∥∇u∥Lp(B)

)
≤ 1

|x|N
.

We prove (1.9) at the end of Section 2 for the convenience of readers.

Remark 1.4. Theorem 1.2 can be rewritten by using q-exponential function and
q-logarithmic function, which are defined by

expq(r) := [1 + (1− q)r]
1

1−q , lnq r :=
r1−q − 1

1− q
,

for q > 0, q ̸= 1, and r > 0. It is easy to verify that

(1.10) lim
q→1

lnq r = log r and lim
q→1

expq r = er

for every r > 0 and

(1.11) expq(lnq r) = lnq(expq r) = r

for every q > 0, q ̸= 1, and r > 0. These modified functions were originally
introduced by Tsallis [25] to study nonextensive statistics. Then, it clearly holds
that

(1.12) Fp(u) = expNp+p−2N
N(p−1)

(
αp|u|

p
p−1

)
.

These relations in (1.10)–(1.12) make the proof clearer.
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2. Proofs

In this section we prove Theorem 1.2. The best possible constant in (1.1) ob-
tained by Aubin [4] and Talenti [23] is
(2.1)

Sp := inf
u∈W 1,p

0 (B)

∥∇u∥Lp(B)

∥u∥Lp∗ (B)

=
√
πN

1
p

(
N − p

p− 1

) p−1
p

Γ
(

N
p

)
Γ
(
N + 1− N

p

)
Γ(N)Γ

(
1 + N

2

)


1
N

,

This plays a crucial role. First we define Bp, Xp by (1.6), (1.7), and then we set a
constant Mp by

Mp := sup
{un}∈Xp

(
lim sup
n→∞

∫
B

Fp(un)dx

)
.

With this setting, we divide the rest of the proof into two steps.

Proposition 2.1. If p > 2N/(N + 1) then

Mp = |B|+
[
N − p

N(p− 1)
αp

]N(p−1)
N−p

S−p∗

p .

Proposition 2.2. It holds that

lim
p→N

Mp = |B|(1 + e
∑N−1

k=1
1
k ).

Theorem 1.2 follows from Propositions 2.1 and 2.2.

Proof of Proposition 2.1. For any positive constants a, b and γ > 1, it holds that

aγ + bγ ≤ (a+ b)γ ≤ aγ + bγ + γ2γ−1
(
abγ−1 + aγ−1b

)
.

Thus, for p > 2N/(N + 1) we have that

(2.2) 1 +

[
N − p

N(p− 1)
αp

]N(p−1)
N−p

|s|p
∗
≤ Fp(s)

and

(2.3) Fp(s) ≤ 1 +

[
N − p

N(p− 1)
αp

]N(p−1)
N−p

|s|p
∗
+H(s),

where H(s) = C1|s|
p

p−1 + C2|s|p
∗− p

p−1 with positive constants C1, C2.
We take any sequence {un} ∈ Xp. We prove that

(2.4)

∫
B

H(un)dx = o(1)

as n→ ∞. In order to prove this, we set

τ1 :=

∫
B

|un|
p

p−1 dx, τ2 :=

∫
B

|un|p
∗− p

p−1 dx and κn,ε = un|∂Bε .

Recall that the embedding

(2.5) W 1,p
rad(B \Bε) ↪→ C0

(
B \Bε

)
holds for every ε > 0, and for every q ∈ [1, p∗] there is a constant Sq such that

(2.6) Sq∥u∥Lq(B\Bε)
≤ ∥∇u∥Lp(B\Bε)
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for every u ∈ W 1,p
rad

(
B \Bε

)
with u = 0 on ∂B. By the definitions of Bp and Xp,

we obtain ∥∇un∥Lp(B\Bε)
= o(1), and then ∥un∥Lp(B\Bε)

→ 0 as n → ∞ for any

ε > 0 by (2.6). It holds from the embedding (2.5) that κn,ε → 0 as n→ ∞ for any
ε > 0. Using this fact and (2.6) again, we observe that

τ1 =

∫
Bε

|un|
p

p−1 dx+

∫
B\Bε

|un|
p

p−1 dx

≤
(
∥un − κn,ε∥

L
p

p−1 (Bε)
+ ∥κn,ε∥

L
p

p−1 (Bε)

) p
p−1

+

∫
B\Bε

|un|
p

p−1 dx

=

(
∥un − κn,ε∥Lp∗ (Bε)|Bε|

(p−1)p∗
(p−1)p∗−p + on(1)

) p
p−1

+ on(1)

≤
(
S−1
p ∥∇un∥Lp(Bε)|Bε|

(p−1)p∗
(p−1)p∗−p + on(1)

) p
p−1

+ on(1)

= oε(1) + on(1),

where on(1) → 0 as n → ∞ and oε(1) → 0 as ε → 0. Letting ε → 0 after n → ∞,
we obtain τ1 = o(1) as n → ∞. Similarly, we deduce that τ2 = o(1) as n → ∞.
Thus, we obtain (2.4).

Applying (2.4) to (2.3) with the aid of the Sobolev inequality, we have

∫
B

Fp(un)dx ≤
∫
B

1 +

[
N − p

N(p− 1)
αp

]N(p−1)
N−p

|un|p
∗
+H(un)

 dx(2.7)

≤ |B|+
[
N − p

N(p− 1)
αp

]N(p−1)
N−p

S−p∗

p ∥∇un∥p
∗

Lp(B) + o(1)

≤ |B|+
[
N − p

N(p− 1)
αp

]N(p−1)
N−p

S−p∗

p + o(1).

This proves the upper estimate of Mp.
Next, it remains to prove the lower estimate of Mp. We define

U(x) = (1 + |x|
p

p−1 )−
N−p

p ,

and then for εn → 0 as n→ ∞, set

(2.8) Wn(x) = Kn

[
εn

−N−p
p (U(x/εn)− Uεn)

]
,

where Uεn := (1 + εn
− p

p−1 )−
N−p

p and Kn is the constant satisfying ∥∇Wn∥p = 1.
It is easy to see that {Wn} ∈ Xp. By direct computation, we have

∫
B

|Wn|p
∗
dx = S−p∗

p + o(1)
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as n→ ∞. Combining this with (2.2), we have

|B|+
[
N − p

N(p− 1)
αp

]N(p−1)
N−p

S−p∗

p(2.9)

= lim
n→∞

∫
B

1 +

[
N − p

N(p− 1)
αp

]N(p−1)
N−p

|Wn|p
∗

 dx

≤ sup
{un}∈Xp

lim sup
n→∞

∫
B

Fp(un)dx.

Hence, the lower estimate is obtained, and consequently (2.7) and (2.9) yield Propo-
sition 2.1. □

Proof of Proposition 2.2. It follows from (1.4), (2.1), and Proposition 2.1 that

Mp = |B|+

 N − p

N(p− 1)

|B|
1
p∗

√
πN

Γ
(
1 + N

2

) 1
N


p

p−1


N(p−1)
N−p

×

√
πN

1
p

(
N − p

p− 1

) p−1
p

Γ
(

N
p

)
Γ
(
N + 1− N

p

)
Γ(N)Γ

(
1 + N

2

)


1
N


−p∗

= |B|+ |B|

 Γ(N)

Γ
(

N
p

)
Γ
(
N + 1− N

p

)


p
N−p

.

Let q := Np−N+p
Np . We observe that

 Γ(N)

Γ
(

N
p

)
Γ
(
N + 1− N

p

)


p
N−p

= expq

lnq

 Γ(N)

Γ
(

N
p

)
Γ
(
N + 1− N

p

)


p
N−p

 .

Due to the continuity of the q-exponential function, it suffices to prove that

lim
p→N

lnq

 Γ(N)

Γ
(

N
p

)
Γ
(
N + 1− N

p

)


p
N−p

=

N−1∑
k=1

1

k
.
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By the definition of the q-logarithmic function with q = Np−N+p
Np , we have

lnq

 Γ(N)

Γ
(

N
p

)
Γ
(
N + 1− N

p

)


p
N−p

=

 Γ(N)

Γ
(

N
p

)
Γ
(
N + 1− N

p

)


p
N−p (1−

Np−N+p
Np )

− 1

1− Np−N+p
Np

=
N

Γ
(

N
p

) 1
N

Γ
(
N + 1− N

p

) 1
N

Γ(N)
1
N − Γ

(
N
p

) 1
N

Γ
(
N + 1− N

p

) 1
N

N
p − 1

 .
Putting t = N

p − 1, we derive that

lim
p→N

lnq

 Γ(N)

Γ
(

N
p

)
Γ
(
N + 1− N

p

)


p
N−p

= lim
t→0

N

Γ (t+ 1)
1
N Γ (N − t)

1
N

(
Γ(N)

1
N − Γ (t+ 1)

1
N Γ (N − t)

1
N

t

)

=
N

Γ (N)
1
N

d

dt

(
−Γ (t+ 1)

1
N Γ (N − t)

1
N

)∣∣∣∣
t=0

=
Γ′(N)

Γ(N)
− Γ′(1)

Γ(1)

=
d

dz
log(Γ(z))

∣∣∣∣
z=N

+
d

dz
log(Γ(z))

∣∣∣∣
z=1

.

Here d
dz log(Γ(z)) = Γ′(z)

Γ(z) is called the digamma function. It is known that the

digamma function is written by (see for example Section 13.2 in [3])

d

dz
log(Γ(z)) = −γ +

∞∑
j=1

(
1

j
− 1

z − 1 + j

)
,

where γ denotes Euler’s constant. Thus, it holds

lim
p→N

lnq

 Γ(N)

Γ
(

N
p

)
Γ
(
N + 1− N

p

)


p
N−p

=

N−1∑
k=1

1

k
.

This completes the proof of Proposition 2.2. □

We give a proof of (1.9) for the convenience of readers.

Proof of (1.9). Let 1 < p < N and fix u ∈W 1,p
0,rad(B). Then there exists v : [0, 1) →

R such that u(x) = v(|x|). By the fundamental theorem of calculus and the Hölder
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inequality, we have

|v(r)| ≤
∫ 1

r

|v′(s)|ds ≤
(∫ 1

r

sN−1|u′(s)|pds
) 1

p
(∫ 1

r

s−
N−1
p−1 ds

) p−1
p

≤ ω
− 1

p

N−1∥∇u∥Lp(B)

{
N − p

p− 1

(
r−

N−p
p−1 − 1

)} p−1
p

.

The conclusion follows from ω
− 1

p

N−1 = N
p−1
p

(
|B|

1
p−

1
N α

N−1
N

N

)−1

. □

3. Additional remarks

In a final section, we state some remarks.

Remark 3.1. Theorem 1.2 still holds for more general settings. Indeed, Propo-
sition 2.1, and hence Theorem 1.2, holds when Bp and Xp are replaced by the
following sets, without assuming radially symmetric conditions:

Cp :=
{
u ∈W 1,p

0 (B)
∣∣∣ ∥∇u∥Lp(B) ≤ 1

}
,

X̂p :=
{
{un} ⊂ Cp

∣∣∣ un ⇀ 0 weakly in W 1,p
0 (B)

}
.

We give a sketch of the proof. Since {Wn} constructed in (2.8) belongs to X̂p,
the lower estimate of Proposition 2.1 holds by the same argument as in the proof
for Xp. For the upper estimate, it is enough to prove

∫
B
H(un)dx = o(1) for any

{un} ∈ X̂p, where H is defined in (2.3). This computation is a direct consequence of
the definition of H and the compactness of subcritical Sobolev embeddings. Hence,
Proposition 2.1 holds for X̂p.

Remark 3.2. By Lions [16], it has been proven that if a sequence {un} ⊂ CN satisfies

un ⇀ u0 weakly in W 1,N
0 (B) and

lim inf
n→∞

∫
B

eαN |un|
N

N−1
dx >

∫
B

eαN |u0|
N

N−1
dx,

then {un} ∈ X̂N . This means that the Moser–Trudinger functional can be discon-

tinuous only for some sequences in X̂N . However, the situation p < N is different.
Indeed, one can construct a sequence {un} ⊂ Cp such that un ⇀ u0 ̸≡ 0 weakly in

W 1,p
0 (B) and lim infn→∞

∫
B
Fp(un)dx >

∫
B
Fp(u0)dx as follows:

We first consider

Tp(s) = Fp(s)−
[
N − p

N(p− 1)
αp

]N(p−1)
N−p

|s|p
∗
.

By (2.2) and (2.3), we observe that 1 ≤ Tp(s) ≤ 1 +H(s). Applying a variant of
the dominated convergence theorem, we have∫

B

Tp(un)dx→
∫
B

Tp(u0)dx

for any {un} ⊂ W 1,p
0 (B) with un ⇀ u0 weakly in W 1,p

0 (B). Therefore, it suffices

to identify a sequence {un} ⊂ Cp such that un ⇀ u0 ̸≡ 0 weakly in W 1,p
0 (B) and

lim infn→∞
∫
B
|un|p

∗
dx >

∫
B
|u0|p

∗
dx.



W 1,p APPROXIMATION OF THE MOSER–TRUDINGER INEQUALITY 9

Take ϕ, ψ ∈ W 1,p
0 (B) with ∥∇ϕ∥pp = 1/2, ∥∇ψ∥pp = 1/2 and consider zero exten-

sion of ψ outside of B. Define a sequence by

un(x) = Cn

(
ϕ(x) + n

N−p
p ψ(nx)

)
,

where Cn is taken such that ∥∇un∥p = 1. Under the setting, we see that

Cn → 1, un ⇀ ϕ weakly in W 1,p
0 (B)

as n → ∞. Therefore, {un} does not belong to X̂p. Moreover, it follows from the
theorem of Brezis and Lieb [5] that

lim
n→∞

∫
B

|un|p
∗
dx =

∫
B

|ϕ|p
∗
dx+ lim

n→∞

∫
B

|ψn|p
∗
dx >

∫
B

|ϕ|p
∗
dx,

hence the sequence {un} satisfies the desired condition.

Remark 3.3. Several inequalities forW 1,N functions can be derived fromW 1,p cases
using the direct limiting procedure as p→ N . For instance, W 1,p approximation of
the Alvino inequality (1.8) and the Hardy inequality in the half space was obtained
in [13] and [21], respectively.

Remark 3.4. The optimal constant sup∥∇u∥Lp(B)≤1

∫
B
Fp(u)dx is lower semicontin-

uous as p→ N , namely there holds

lim inf
p↑N

(
sup

∥∇u∥Lp(B)≤1

∫
B

Fp(u)dx

)
≥ sup

∥∇u∥LN (B)≤1

∫
B

eαN |u|
N

N−1
dx.

Indeed, it follows from ∥∇u∥Lp(B) ≤ |B|
1
p−

1
N ∥∇u∥LN (B) that

sup
∥∇u∥Lp(B)≤1

∫
B

Fp(u)dx

= sup

∥∇u∥Lp(B)≤|B|
1
p
− 1

N

∫
B

[
1 +

N − p

N(p− 1)
αp

(
|B|

1
N − 1

p |u|
) p

p−1

]N(p−1)
N−p

dx

= sup

∥∇u∥Lp(B)≤|B|
1
p
− 1

N

∫
B

[
1 +

N − p

N(p− 1)
α

p(N−1)
N(p−1)

N |u|
p

p−1

]N(p−1)
N−p

dx

≥ sup
∥∇u∥LN (B)≤1

∫
B

[
1 +

N − p

N(p− 1)
α

p(N−1)
N(p−1)

N |u|
p

p−1

]N(p−1)
N−p

dx

→ sup
∥∇u∥LN (B)≤1

∫
B

eαN |u|
N

N−1
dx (p→ N).

The continuity of the optimal constant remains open.

References

[1] R. A. Adams, On the Orlicz–Sobolev imbedding theorem, J. Funct. Anal. 24 (1977), 241–257.

[2] A. Alvino, Sulla diseguaglianza di Sobolev in spazi di Lorentz, Boll. Un. Mat. Ital. A (5) 14
(1977), no. 1, 148–156.

[3] G. B. Arfken, H. J. Weber, F. E. Harris, Mathematical methods for physicists, Seventh

edition, Elsevier Inc., 2013, ISBN: 978-0-12-384654-9
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