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Abstract

We study asymptotic behavior of maximizers for the critical Trudinger-Moser
inequalities associated with a scaling parameter. In particular, we show the
point condensation of the maximizers. We also clarify the location of the
peak of maximizers in the critical case, as well as in the subcritical case.
The location of the peak of maximizer depends on geometric properties of a
bounded domain.
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1. Introduction

Let Q C R? be a smooth bounded domain. It is well-known that there
is a Sobolev embedding Wy () «— L?*/=P)(Q) for p € [1,2). If we look at
the limiting Sobolev case p = 2, then H(Q) := W,?(Q) — L(Q) for any
q > 1, but H}(Q) 4 L>*(Q2). To fill this gap, it is natural to look for the
maximal growth function g : R — R, such that

sup /g(u)d:v < 00,
weHE (@) J@

[Vaull2<1
where |Vul|3 = [, |Vu|*dz denotes the Dirichlet norm of u. Pohozaev [20]
and Trudinger [23] proved independently that the maximal growth is of ex-
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ponential type and more precisely that there exists a constant « such that

2
sup / e dr < oo.
ueH}(Q) JQ

[Vull2<1

Later, this inequality was sharpened by Moser [14] as follows:

2 < CQ if <4
sup / e dx i 1 @= (1)
uweHL(Q) JQ =00 if o> 4nr.
[Vull2<1

Lions [13] showed that for (1) there is a loss of compactness at the limiting
exponent o = 4mw. However, despite the loss of compactness, the existence
of a function which attains the supremum in (1) for @ = 47 is shown by
Carleson and Chang [2] if €2 is a unit ball. This result was extended to
arbitrary bounded domains in R? by Flucher [6].

In this paper, we study the properties of maximizers of the Trudinger-
Moser functional

E,(u) := /Q (ea“2 — 1) de, a>0

constrained to the manifold

My = {u c H'(Q) ‘ /Q (|Vul® + Au?) do = 1}

or
20 = {u € Hy () ‘ / (IVul® + M?) do = 1} :
Q

where A > 0 is a parameter. By considering a transformation wuy(z) =
u((z—p)/VA) foru € H'(Q), X > 0 and p € R?, the existence of a maximizer
for sup,cs, Euo(u) on €2 is equivalent to that for sup,cs, Fo(u) on Qy =
{\/Xx +p ‘ S Q} The situation of X9 is same. By means of the parameter
A, we focus on asymptotic behavior of maximizers for the Trudinger-Moser
inequalities on the scaling of €).

It is known that sup,cy, Fo(u) is attained for a € (0,27) and A > 0 by
the continuity of E, with respect to weak convergence sequence in . In
the critical case a = 2w, by Yang [24], it is shown that sup,cy, For(u) is
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attained for all A > 0. Similarly, sup,cso Eo(u) is attained for a € (0, 47)
and A > 0, and it is proved that sup,csy Far(u) is attained for A > 0 by Ruf
21].

Asymptotic behaviors of critical points for E,|s, were considered in the
subcritical case a € (0,2m) by the author [8]. In [8], the following Euler-
Lagrange equation of critical points for E,|s, was studied.

—AU + )\U = m n Q, (2>
% =0 on 0f).

In the case of large ), it is shown that shape of maximizers of sup,,cx, Fo(u)
depends on the exponent a. There exists o, € (0,27) such that for a €
(s, 2m) any maximizer of sup,y, Fo(u) possesses a single spike-layer with
its unique peak locating on the boundary of 2. On the other hand, for

a € (0, a,) alimit of maximizers vanishes in the sense of C'(§2) as A — oco. In
the case of small A, all positive critical points for E,|s, are close to (AlQ) 2,
which is the constant solution of (2). However, the critical case a = 2w was
not dealt with in [8]. In this study, we consider the critical case a = 2,
and then the asymptotic expansion of the best constant sup,cy, Fo(u) for
a € (ay, 2.

The first result we prove is the following.

Theorem 1.1. Assume that uy is a mazimizer of sup,cy, Far(u) for large
A. Then, there exist positive constants My, and M, independent of A such
that
My < supuy(z) < My
€

holds, and uy has a unique mazximum which is attained at a point on OS).

In addition to Theorem 1.1, we observe that u, is sufficiently small outside
a small ball centered at the maximum point. Then, similar to the case of
@ € (ay, 2m), maximizers for sup,cx,, For(u) exhibit the phenomenon of point
condensation. The proof of the theorem is based on blow-up analysis and
the techniques in [8].

To state the next result, we define a constant «, introduced in [8]. This
is defined by

a, = inf{a € (0,27) | I, > a},



where

(eo‘“z — 1) dx

and R? := {z € R? | 2, > 0} is the half space. Note that a, € (0,2m) holds
and the constant «, is the threshold in terms of existence of a maximizer
of 1, that is I, is attained for a@ € (a, 27| while I, is not attained for
a € (0, ) (see Appendix in [8]). The next result is the behavior of the peak
of maximizer for sup,cy, Fa(u).

I, = sup /
ueH' (R?) R
fRi (|Vu\2+u2)dz§1

2
+

Theorem 1.2. Assume that o € (ov., 27, uy is @ mazimizer of sup,,cx;, Fo(u)
and x € 00 satisfies ux(xy) = max,.qux(z) for large X. Then, we have

lim H(xy) = gé%éH(x),

A—00
where H(x) denotes curvature of 02 at x.

In order to prove Theorem 1.2, we consider the asymptotic expansion of
sup,ex, Fo(w). Through translation and rotation of the coordinate system
for a neighborhood N of z,, Q2 N N can be represented by

1
vy = SH(a)23 +o(a?)

with the curvature H(xy) at z) € 0. By means of the representation, we

derive that
E.(uy) = % {[a + TH({L’,\)% +o (\/X—1> }

as A — 0o, where 7 is a positive constant. This is the key estimate to prove
Theorem 1.2.
Next, we consider the case of X9. For § € (0, 47] we define dg and f, by

dg == sup / (65”2 - 1) dx
u€H(R?) R2
fR2<|Vu\2+u2)dx§1
and
B, :=inf {B € (0,47) | dy > B},

It holds that dg = 215/ and f, = 2c, (see Appendix in [8]). Then, we obtain
the following results.



Theorem 1.3. Assume that a € (0,47] and vy is a mazimizer of sup,eso Eo(u)
for large X\. Then the following statements hold:

(I) If a« € (Bs, 4], then there exist positive constants Ay, My and My such
that for any A > Ay we have

My < supuvy(x) < My,
z€Q

(II) If a € (0, B.), then we have
vy —0 in C°Q)
and
/ |Vuy|*dxr — 0, )\/ vide — 1
Q Q
as A — 00.

Theorem 1.4. Assume that o € (B, 4|, vy is a mazimizer ofsupuezg E.(u)

and xy € Q satisfies vx(ry\) = max, g vx(z) for large . Then, we have

lim dist(xy,0) = maxdist(x, 0).
A—00 e

In the case of XY, maximizers vy exhibits point condensation for o €
(Bs, 4] and vanishing phenomenon for o € (0, 8,). The asymptotic expan-
sion of sup,exo Ea(u) for a € (B, 47] is

sup Ey(u) = {da -+ exp [—yVAdist(,09) + (V)] }

uEEg A

as A — oo, where 7y is a positive constant. The expansion leads Theorem 1.4.
Concerning asymptotic behavior of least energy solutions for semilinear
elliptic equations, in [12, 18, 16], they considered the following Neumann
problem for power type nonlinearity:
2 .
—e*Au+u = f(u) in €,
{ (3)

Gu—0 on 09,



where € is a parameter and f satisfies some conditions with f(¢) = O(tP)
as t — oo for p > 1. The following Dirichlet boundary condition is also
considered in [19].

4
u=10 on €, )

{—82Au +u= f(u) in Q,
In the case of small ¢, it is proved by [12, 18, 16] that a solution at this least
energy level for the Neuamnn problem (3) possesses just one local maximum
point, which lies on the boundary, and concentrates (up to subsequences)
around a point where mean curvature maximizes. On the other hand, Ni and
Wei [19] show that a least energy solution of the Dirichlet problem (4) nec-
essarily concentrates around a “most centered point” of the domain, namely
around a point of maximum distance to the boundary. In both problems the
method employed consists of a combination of the variational characteriza-
tion of the solutions and exact estimates of the value of the energy functional
based on a precise asymptotic analysis of the solutions.
We remark that if f(u) = u” in (3) or (4), then least energy solutions
attain the best constant of corresponding minimization problem

Sy inf Jo el Vul? + u?)dx o Jo e Vul? + u?)dx

5 or D = 3 i
I (o lule 1) T Y (fo lulptida) "

and the opposite statement is also true provided suitable normalization.
However, the relationship between least energy solution of an equation and
extremal function for corresponding variational problem is open for gen-
eral setting on f including exponential nonlinearity. Moreover, the Euler-
Lagrange equation of maximizers for the Trudinger-Moser inequalities is non-
local equation. Although there is the difference, in this paper, we apply the
methods of [12, 18, 16, 19] to the framework of maximizers for the Trudinger-
Moser equation.

This paper is organized as follows. In Section 2, we will prove Theorems
1.1 and 1.2. In Section 3, we will prove Theorems 1.3 and 1.4. To prove
Theorems 1.1 and 1.3, we use the blow-up analysis and the strategy in [8].
The proof of Theorems 1.2 and 1.4 follows the techniques in [4].



2. Maximizer for sup,cs, Eo(u): Proofs of Theorems 1.1 and 1.2

2.1. Proof of Theorem1.1

In this section we prove Theorem 1.1. We study a nonlocal elliptic equa-
tion to derive the asymptotic behavior of u,.
Assume that A, is a sequence with )\, — oo as n — oo and w,, := u,, is
a maximizer for sup,es, Ey(u). First, we prove the existence of a constant
C such that
sup () < C.
z€eQ
where C' is independent of n. For simplicity, we write ¢, = sup,cq un().
Assume the contrary that ¢, — co as n — oo and derive a contradiction. To
derive a contradiction, we estimate the value of Ey,(u,). We will prove the
lower bound
Iy <liminf A\, Eor(uy,).
n—oo

On the other hand, we will derive the upper bound

T
lim sup A, Bor (u,) < §€4WK+1

n—o0

)

where K is an explicit constant. Then, it is known that me*™5+! < d .
by [11]. Combining these results and the fact that dy, = 2I5,, we derive a
contradiction.

Proposition 2.1. Assume that uy is a mazimizer for sup,cs, Ear(u) with
large A\. Then, we have

127r S lim inf /\EQW(’LL)\).
A—00

Proof. Without loss of generality, we may assume that 0 € 9Q and Q C R2.
Let U € H'(R?%) be a maximizer of I, and set

Up(z) :=U <\/Xx> :

Since fRi (|IVU|?* + U?)dz = 1, we have

/ (VUL + \U;) da g/
Q

(VUL + AU2) de = / (VU2 + U%) de = 1.
RZ R



Then, it follows that
Eor(uy) > / <e2”U’% — 1) dx
Q
/ (eQ’TU% — 1> dx

= )\T_Ll/ (627TU2 — 1) dz,
anmBR

where 2, = {\/ AnT ’ x € Q} The smoothness of the boundary of €2 gives

Vv

n—oo

lim inf A, For (u,) > / (627TU2 — 1) dx.
BrNR%

By letting R — oo, we conclude that

liminf A\, Eay (uy,) > Ior.

n—o0

A maximizer u,, satisfies the following Euler-Lagrange equation.

—Auy, + My, = Lyu,e2™n in €,
{ (5)

%LV”:O on 0f),

-1
where L, is the Lagrange multiplier characterized by ( fQ ufle%“idx> A

maximum point of w, is denoted by z,. In the following, we assume the
contrary that ¢, = sup,cq U, (z) = 0o as n — oo.

Here, we introduce a diffeomorphism straightening a boundary portion
around a point on 0f2, which was introduced in [12, 18, 16]. Fix P € 9f.
Through translation and rotation of the coordinate system we may assume
that P is the origin and the inner normal to 0) at P is pointing in the
direction of the positive xo-axis. In a neighborhood N of P, 9Q N N can be
represented by

vy = (er) = GH(P) +ofa?),

where H is the curvature of 92 at P. Define amap x = ®(y) = (®1(y), P2(y))
by

By(y) =1 — mj—z@o, Daly) = v + (). (6)



Since ¢'(0) = 0, the differential map D® of ® satisfies D®(0) = I, the
identity map. Thus, ® has the inverse mapping y = ®~!(z) for small |z|. We
write U(z) = (Vy(z), ¥s(x)) instead of d~1(z).

We define r,, such that

7“;2 = anie%ci. (7)

By the characterization of L,,, we see that

2

) CieQﬂc” >\ 2

Pt = c

n 2 p2mu? — nTn
Jo uzer i dx

or
—1
T < (\/)\nCn) . (8)
Then, we derive the following results.

Lemma 2.2. We have
dist(z,,, 0Q) = o(ry)

and
lim lim L, / w2 dy = 1, (9)
R—00 n—o0 QN®(Brr, (Pn))

where P, = V(z,).

Proof. First, we prove that dist(z,,0Q) = O(r,). If dist(x,,0Q)/r, — oo,
we define Q,, .= {(z — z,)/r, | v € Q} and

¢n(y) = C;I’U«n(rny + xn) (RS Qn7
Mn(Y) = cn(Un(rny +20) — Cp) Yy € Q.

Then, ¢,, and n,, satisfy
—Ayn + Anr2dn = ¢ e (1),

_Aynn + Anricigbn = ¢n€a(1+¢n)7ln. (1())

Since (8) and dist(x,,,0)/r, — oo hold, for any R > 0 there exists N such
that Bgr(x,) C Q, for any n > N. Thus, by the elliptic regularity theory
and the maximum principle, we see that

G —do=1 in CE.(R?), —Apy=0 in R2

9



Using the behavior of ¢,, we estimate \,r2c2 in (10). Since u, € Xy,, we
have

2
1 > )\n/uidx > Anci/ <%> dr = Anciri (/ﬁidy
Q Ban(l’n) Cn BR

_ Ancgrg/ (1+ 0(1))2dy = Anc2r2| Bpl (1 + (1))
Br

for any R > 0, and thus \,c?r? — 0 as n — oo. Applying the elliptic

n

regularity theory to (10), we have
Nn— 1M in C2(R*), —Any=¢™ in R

Moreover, it follows that

/ e™0dy = lim lim / B2 e2r(1Hn)in gy
R? Br

R—00 n—o0

. . 2
< lim lim L, / uZe*™ndx
Ban(l’n)

R—00 n—o0

< 1, (11)

and then, by the characterization result of [3], we have
1 T
= —5-log (1+ ZIyP).
o = —5—log (1+ Syl

On the other hand, by a direct computation, we have

/ e dy = 2,
R2

which contradicts (11). Hence dist(z,,0Q) = O(r,).

Next, we prove dist(x,,02) = o(r,). One may assume that x,, — zo €
0f) by passing to a subsequence if necessary. Consider the diffeomorphism
y = V(z) that straightens a boundary portion near zp, as in (6). We may

assume that ¢ = U~ is defined in an open set containing the closed ball
Bay, k > 0, and that P, := ¥(z,) € B for all n. Put

Un(y) == u,(®(y)) for ye€ By,

10



and extend it to Bs, by reflection:

_ Un (Y if ye B,
un(y) — 3 ( ) 2
un((y1, —y2)) ity € By,
where B,, = {y € By, ‘ Yo < 0}. Moreover, we define a scaled function
in(2) by

Up(2) :=Up(rnz + P,) for ze By,
and then ¢,, and 7, are defined by

¢n(z) = C_lﬁn(z>

N (2) = cn(tn(2) — c).
Let P, := (pn,qnrn). The condition dist(z,, Q) = O(r,) implies that ¢, <
oo. By (5), ¢, and 7, satisfy the following elliptic equations:

2

S ) e TP 4 M = ),
1 j=1

aziaz]

o Z U 82 az Z bn ann + )\ T ¢n ¢n m(Lt+en)n n7
1U<g .

4,j=1 Jj=1

where a%, 07 are defined as follows: First, put

aly) = sz NSR0) 1< <

bily) = (A¥;)(P(y)) 1<j<2

Then, set
ar(z) = aij(P" +752) Za 2 Y
ij (_1)6i2+532a ((pn + 121, — (@ + 22)70) 29 < Qn,
bn( ) bJ(Pn + Tnz) 22 2 —(n,
|2 g
’ (_1)6j2bj<(pn + rnzl)y _(Qn + ZQ)Tn) zZ9 < —(n,

11



where ¢;; is the Kronecker symbol. Using the elliptic regularity theory, we
have

¢ —do=1 in Cp.(R?), —Apy=0 in R?
N — 7o In CZQOC(RZ), —An0:e47”7° in R

Computing [5, €™ dz in the same manner as in (11), we have

R—o0 n—o0

/ e*™dz < lim lim 2Ln/ u?e?™ndy < 2. (12)
R? QN (Bg,, (Pn))

Hence, we see that
L (1 + 2 |2>
=——1Io —|z
Mo o7 g 92 )

and then, g, — 0, which implies that dist(x,, Q) = o(r,,).
By a direct computation, we have

/ ey = 9.
R2

The above computation and (12) yield (9). O

By Lemma 2.2, we may assume that, up to a subsequence, x,, = z € 0€2.
For A > 1, let u! = min{u,,c,/A}. We have the following result.

Lemma 2.3. For any A > 1, we have

1
limsup/ (IVul? + Aplugy [?) do < —.
Q A

n—oo

Proof. Multiplying (5) by uZ, integrating over { and using (9), we have

/ (Vu, Vug + Augul) do
0

< L, / unuﬁe%“%dx—l—[/n / uieQ’”‘%dx
QN®(Brry, (Pn)) N\@(BRry, (Pn))

=+ onll) +on(1)

where 0,(1) — 0 as n — oo and og(1) — 0 as R — co. Since

/ (IVul? + ApJus |?) da < / (Vu, Vi + Auqul) de,
0 0

12



we deduce that

1
/ (IVul|? + Ao|u|?) do < 7+ on(1) + ogr(1).
Q

Letting R — oo after n — oo, we derive Lemma 2.3. O

Lemma 2.4. There exists a positive constant C' such that

An
. S
hq?l g.}f 2L, C

holds.
For the proof the lemma, we recall the following result.

Proposition 2.5. There exist a operator T and a positive constant M such
that
T:HY(Q) — H'Y(R?)
and
/ (IV(Tu)Pdx + |Tul?) dz < M/ (IVul® + v?) dz, (13)
R2 Q
where M 1s independent of the scaling of §2.
Proof. We have

MBEor(tn) = A / (&mi _ 1) dz + A, /
[un>%‘] [

Un <

A A
A2y ( 2t _ 1) da. 14
2L + /Q e T (14)

Using (13) and Lemma 2.3, we have

\ /<€2n|u£2_1) dr < / (Tt VA 1) do < dyre (15)
) R?

for large A. Moreover, by Proposition 2.1, the convexity of the function e®—1
and the existence of maximizer for Io,, we see that

lim inf Egﬂ-(un) > Ly > 21, = dgﬂ. (16)
n—oo

IN

Combining (14)-(16), we have

5 < A%liminf j”

n—oo  Cy Ly

for some positive constant 6. Hence, we conclude Lemma 2.4. O

13



Set a point z € 0N such that |z, — 2z} | = dist(x,,0Q2). In the following,
we consider U, (z) = u,(z/v/ A, + x) and the equation

_AAn An - ﬂA'n 27”1% i Q'm
{ Uy + U o Une n (17>

Oty __
e =0 on 082,

where Q,, := {/X,(z — 2) | # € Q}. Obviously, sup,cq, @, = ¢,. Define &,
by a maximum point of @, and put 7, = v/ A,r,, where r, is defined in (7).
By Lemma 2.2, we observe that

|2, | = dist(Z,,, 0,) = o(7) (18)
and that

lim lim ==

R—o0n—00 \, QuN®(Brs, (Pn))

where P, = U(&,). We also have

| (vade+iadpyar< 5

Qn
for any n € N, A > 1 and 42 = min{4,, c,/A} by Lemma 2.3.

Lemma 2.6. For any ¢ € C(R?) with |[¢||~®2) < 0o it follows that
lim = [ depine?™ dz = (0).

Proof. Fix ¢ € C(R?). We divide L,\," [, Veniine?™ndy into three parts
as follows.

L, L, N
N wcnﬁnQQﬂ—ui dl‘ = wcnunQQﬂ—U% dl'
L, N
4+ @/}Cnune%“i dx
An [Qn\gp(BRm(Pn)) N[tn><g]
L, i
L n @Z)CnanGQWui dx
An [2\@(Brs, (o)) | N[n <]

14



For I, by (18) and (19), setting 79 = —(27) ! log (1 + 7|z|?/2)we have

I1 = / w (‘I)(TAnZ + ]Sn)> (1 + O(1))€2w(2+0(1))(n0+0(1))dz
R%NBR

= (¥(0) + on(1)) (1 + 0n(1) + 0&(1)),

where 0,(1) — 0 as n — oo for each R and og(1) — 0 as R — oco. Thus,
letting n — oo first, and then R — oo, we derive that

lim I, = 1(0).

n—oo

For I, it follows that

AL” ~ U
1] < [l = / @2ty
n JQp\®(BRs, (Pn))

By (19) and the fact that L,\," [, 42e* i dz = 1, we deduce that

lim sup |I5] = 0.

n—oo

Finally, we estimate I3. It holds that

|13]
CnLn > |G
< Yl e 3 /Q e 2 da
nLn N . .
= “wHLOO(R?)C)\ {/g; uﬁ <e2”|u§?\2 _ 1) dx _'_/Q U’:dl‘]
nLn N N Ln . .
< Mol B2 [ [ it (et =)o+ 22 [ i)
L s 3 ’ 1
< HwHLOO(R%CT;\ < (/Q ”LAL;?Fd.%) |:/ <e477|11§3|2 _ 1) dx]
Cn

L” Ln ~ U
+H¢”L°°(]R2) h ()\—/ 'LLneZ gtdx)

cnly, ( dax L, . ord
S ||¢||L°°(R2) h\ (ﬁﬁ-)\—/ Un62 %dl’)

provided that A satisfies M < A, where M is a constant as in (13). By
Lemma 2.4, we have ¢, L, /), = o(1) and L,/\, = o(1). Hence, we derive

15



that
L, . 22 L, . 22
—/ Vel ndr = (0) + o (—/ cnune%“ndaj> +o(1)
A Ja, A Ja,

for any ¢ € C(R?) with |[¢)|| r2) < co. Consequently, Lemma 2.6 holds
for ¢p = 1 first, and then Lemma 2.6 holds for any ¢ € C(R?) satisfying
||¢HL°°(R2) < 0Q0. D

Lemma 2.7. We have

lim sup/ (|Va, > + a2) de = O(R™)
Q.\Br

n—0o0
as R — oo.

Proof. Consider a function 7 € C*(R?) such that

0 if B 2
(z) = e o Vr(z)] < —=.
1 if reR \BQRO, Ry

Then, multiplying (17) by 71, and integrating on €,, we have

Ly, o 9ra2
/ 7 (| V| +ap) do + / u, VTVu,dr = —/ T02e*™ i dy,
Qn Qn )\ Qn

n

Using Lemma 2.6, we derive that

/ (Vi + i2) da
Qn\Bzr,

1 1
< Vil (/ |Vﬂn|2dm> (/ aid:c> +o(1)
Qn Qn

< 2 o)
— +o(1).
= R
Hence, we obtain desired estimate. Il

Lemma 2.8. There exist ng, Ry > 0 and Cy > 0 such that for any n > ng
we have

sup Cnlin(x) < Cy.
2€Q2\Bar, (én)

16



Proof. For the proof, we employ Proposition 9.20 in [7] as follows.

Proposition 2.9. Let u € W2%(D) and L is an elliptic operator. Suppose
that Lu > f, where f € L*(D). Then, for any ball Bor(y) C D and p > 0,
we have

1 » R
s ) <4 @)+ U s |
2€Br(y) | B2rl| J,p 1

where |Bag| is the Lebesgue measure of Bag, the constant Ay denotes the min-
imum eigenvalue of the coefficient matriz of operator L and C' is independent

of D.

We apply the proposition to u,. By Lemma 2.7, for sufficiently large R,
and a ball By (y) C Q, \ Bag, it follows that

L, 2\
/ (—cnﬂneQW“%)l) dx
BQn(y) )\n
2L2 .
< 0”2" (/ ﬁidw) (/ egmidx)
/\” Bay(y) B2y (y)

= o(1). (20)

=
IS

Moreover, we have

L, R N
/ cplndr < —/ Cnline®™ndy < 1+ o(1).
Qn\BQRO )\n Qn

Thus, by the estimate, (20) and Proposition 2.9 with L = A — 1, f =
— Ly Cp iy €2 n /A, and p = 1, we have

) Ck

sup  Cpt, < —

2€ By (1) A
for Bok(y) C Q, \ Bag,. In the neighborhood around 0 (2, \ B2g,), defining
Wy, as the extension of @, by the diffeomorphism straightening a boundary
portion at each point of 9 as in (6) and the reflection, we apply Proposition
2.9 to w,. Hence, Lemma 2.8 holds. Il

Lemma 2.10. Let R be sufficiently large. Then, there exists a positive con-
stant C' such that for any n and any x € Q, N Br \ {Z,} we have

Crtin () < Clog ( OA ) )




Proof. First, we recall properties of a function G, which is a solution of
~AG,+G, =6, in R

By the characterization of G, the function is radially symmetric with respect
toy € R* G, € C3.(R*\ {y}) and

: 1 1
i Gute) s ()] =

with some positive constant K.

Fix R > 0 sufficiently large and y € €2,, N Br. Then, by the properties of
Gy, the diffeomorphism straightening a boundary portion around 0 € JS2 as
in (6) and the reflection, the solution of

—Ahy + hy =0 in Qn N B2R7

%Lyy = _5(;;/3/ on aQnﬂBgR,
satisfies . o
hn(x) S Ry IOg
2 [z =y

for any x € Q, N Byg, where C' is independent of n. Thus a function Gy
which is a solution of

~AG, +G, =6, in Q,N By,

2, on 90,0 Bar, 1)
G’y =0 on £,N aBgR
satisfies c
G, (x) < C'log < ) 22
/) o=l -

for any n, y € 2, N Bg and x € 2, N Bag.
Using (22), we follow [1]. First, we assume that |z, — y,| = O(%,).
Recalling that
L,
Fr2 = 202 627rc%

n )\nn ?

18



we have

C 1 L, 1 L,
lOgm Z 510g (A—nc2e2ﬂ'c ) 5 (log )\—C + 2rc ) (23)
On the other hand, for & > 0, we see that
L, L,
1= ﬁ’i 27rundx < _626040 / (27r & u”d.ﬁE
)\n Qn >\n n

If & is close to 2w, we have

L, -
0< log/\—ci—l—ozci—l—C

n

for some constant C'. Thus, combining (23) and the inequality, we have

log — >

T— (2r —a)c; —C].

N | —

Since
Cnlin (Yn) < €2,

it follows that o
Cnln(yn) < Clog (A—)
|xn - yn|

for y,, with |Z,, — yn| = O(7,). R
Next, we assume that |Z,, — y,|/7, — oo. Since G, is the solution of
(21), we have

Ln a { 0@
Cnﬂn(yn) -3 / Gyncnﬂne%ru%dx + / Yn CnﬂndO'. (24)
>\’I’L QnﬂBQR QnﬂaBgR al/

Since y,, € ), N By, using Lemma 2.8, we have

aG,,

QnNOBag v

Calindo| < C|0Byg NRZ|. (25)

Let us set

Ql,n = (Qn N BQR) \ Qn,Aa
QZ,n - Qn,A N B|£n—yn|/2(yn)7
Qs = (N Bar)\ (nUQs,),

19



where
Qn,A = {x € Qn N Bap

b C }
Up > — ¢ .
A
Applying the techniques of Step 3 in the section 3 in [1], we have
L, . .
sup |z, — x|2—ui62”ui <C, (26)
z€Q, )\n

where C' is independent of n.
By Lemma 2.4 and (22), we first compute that

L . R
L, = —n/ G'yncnﬂne%“%dx
>\TL Ql,n
1 1 1
I . 1 ) 1
< = G, dx / (cntly)?da / eSmn dg;
)\'ﬂ Ql,n Q1,n Ql,n
< 06" @27)

for sufficiently large A.
Next, we deduce by (22) and (26) that

Ln A ~

L, = — Gyncnune%ﬁ%dx
)\n QQ,n
1
SA/ —log( ¢ )ACde
Qo T T =yl ) |20 — 2]
A 2 C
< —CA—Q log <—> dx
T [Zn = Ynl Blap—yn|/2(Un) [ = ]
AC ! 2C
= —WN-1 lOg I ——— Td?“
™ 0 |xn - yn|r
C
< con () (28)

with some positive constant C'.
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Finally, we derive by (22) that
Ly,

A R 2
I; = ~ Gy, Clin €™ d
n QS,n

2C L, R o
< Clog (—) = / Cnl €7 dz
|xn - yn| An Q3.

< AClog _ 2 VEIn / a2 dy
B |i'n_yn| /\n Q3.n "

< AClog (L) :

‘i'n _yn’

Hence, by (24), (25) and (27)-(29), we have

Cnln (Yn) < C'log (L) )

|j3n - yn’

for y,, with |Z,, — y,|/7n — 00. Consequently, we conclude Lemma 2.10.

Lemma 2.11. We have
Calin(P(a = W(2))) = Go in Cj (B3 \ {0}),
where Gy € C3_(R?\ {0}) is the solution of

—AGy + Gy = do.

Proof. By Lemma 2.10 and the regularity theory, we derive Lemma 2.11.

Lemma 2.12. [t holds that

n

lim sup A, Far(u,) < limsup

5 .
n—00 n—00 CnLn

Proof. Going back to the computation (14), we have

A A2
oBor(u,) < A2 4N, <2w|un\ “1)4
AnFor(u,) < C%Ln—i-)\/ﬂ e )x

A A2
— A2 0 <27r|un\ —1>d
C%Ln—i_/gn e x

21
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for any A > 1. We estimate an (62“‘%'2 — 1> dr. We recall that u, € Iy,

which implies [, (|Vi,|*>+42)dz = 1. Then, it follows from Lemma 2.11
that @,(®(z —U(Z,))) — 0 weakly in H'(BgrNR%) for each R > 0. The fact
and Lemma 2.7 yield that

lim (e%l“A‘z 1) dr =0

n—oo 0
n

for any A > 1. Consequently, letting A — 1, we derive that

lim sup A, For(u,) < limsup

n—00 n—+00 C

Lemma 2.13. It holds that

T
lim sup Ar K41
n—oo Cp L 2

where

K = lim (Go(x) - ilog ! )

|z|—0 2

and Gy is a function as in Lemma 2.11.

Proof. We follow [25] (see also Section 4 in [15]). Fix ¢ small. We consider a
function G solution of

—Aéno = 50 in Qn N BE,
agzo =0 on 09, N B,

Gn, g log% on (2, NOJOB..

Using a reflection argument, one can obtain the existence of én,o, which can
be represented by

Goo(z) = — log(| |) + wn (), (30)

where w,, = O(e) uniformly with respect to n.
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For ¢; < ¢y we define a space of functions by

An Clvc2>a b)

{uEH1 gémogcg]) ’

U = a on [Gmozcl}? u=2>bon [énp:@], %—OOH@QHQBE}.

It can be seen that inf,cx, f

[e1<Gn 0<es] |Vul?dx is attained by a function B

having the form 3 3
b(Gn,O - 01) - G(Gn,o - Cz)

Co— (1

B:

and satisfying
|b—al?

/ VB2de = L (31)
[Clﬁén,OSCQ] C2—C1

Choose y, € QN B such that |y,| = Ri7, for some large constant R;. Set

S, = {x € QN B. | Grola) = émo(yn)} .

If z € S, then by (30), we see that
o] = [y,

which implies the existence of a constant ¢ > 0 independent of n such that
e “Rirn < x| < eF Ry

Consequently, we get

Sp C QN (Beeepy, \ Be-ceryiy, ) -
We recall that
(i (B2 — () — ) =0 = —o-log (14 712) in CRL(FD)

By the fact and Lemma 2.11, we have

inf @ (x) > by = cn Mo(€“ R1) + on (1)

TES) Cn

(32)
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and o
S x)+ oplE
sup  Uy(z) < a, = UPscanos, Golw) n(€)

z€QNOB: Cp

where 0,(R;) — 0, o,(¢) — 0 as n — oo for fixed Ry, e, and Gy is the
function as in Lemma 2.11. If n is large, we have a, < b,. Put G, =

{x e Q,N B, ~n,0(x) > énﬁo(yn)}, and set U, = min{max{ty, a, }, b, }.

From (32) and (33), we get U, € A, <—(27r)_1 loga,énﬁo(yn),an,bn). By
(31), we obtain

, (33)

bn - Un
VU, [2dz > — al . (34)
Gn " Gro(yn) + 5z 1oge
Notice that B
Bo-cepyr, N, [ > Grolyn)] -
Taking R, large, we get
VU, |*dx
On
< Vi, |*dx
Gn
< / Vi, |*da —/ |V, |*da
Q,NB- By cop s
< 1—/ (IVa, | + a2 )dx—/ Vi, |*dx
Qn\Be BechRl'fn
< 1 —/ (|Va, > +a2) dx—/ Vi, |*dz.
(QTL\BE)QBRQ Be_C*:len
Following the computations in Section 4 in [15], we derive that
- 171 1 1
VU de < 1+—(—log— —K— —1 —
o, | Vlldr < +cg(2w0gRl 78 o

Fu(1) +0.00) + on, (1) + om, (1))
Using (32)-(34) and estimating [ |VU,|*dz from below, we have
1 A, 1 1
log + K+ — 4 0,(1) + 0-(1) + 0g, (1) + og,(1).

Am 02L 4 2 47
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Letting n — oo, and then ¢ — 0, R; — oo and Ry — 00, we obtain

. A T
limsup —— < —¢mEFL

<~ e
n—00 C%Ln 2

]

Now we are in a position to prove the boundedness of ¢,,. By Proposition
2.1 and Lemmas 2.12, 2.13, we derive that

Lr < liminf A\, Eor(u,) < limsup A, Eoq(u,) < ge4ﬂK+1'

n—oo n—oo

It is known that me* 5+ < d,, and dy, = 2[5,. Thus, we derive that

T AK+L < i inf A For(uy,) < limsup A, Eor (u,) < ge‘l”K“,

2 n—0o0 n—o00

which is a contradiction. Therefore, it holds that ¢, < M; for some constant
M5 which is independent of n.

Applying the techniques of [8], we have ¢, > M; with a positive constant
M. Consequently, we complete the proof of Theorem 1.1.

2.2. Proof of Theorem 1.2

Fix a € (o, 2w]. We assume that A\, — oo as n — oo and u,, = uy, is a
maximizer of SUPyes, E,(u) for large n. In order to summarize properties of
Uy, We set G, (7) = up (/v Ayt+1,) and Q,, 1= {\/Xn(x —z,) |z € Q}, where
T, is a maximum point of u,. In Proposition 2.14 below, the uniqueness of

maximum point of u, will be obtained. Then, we write V,* := €, N By, -
Under the setting, we have the next proposition.

Proposition 2.14. We have the following results.

(I) It holds that

M, < supuy,(x) < M,
e

where My and My are positive constants independent of n.

(1) For n sufficiently large, u, has a unique mazimum and the mazximum
point lies on the boundary of §2.
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(III) For anye > 0, there exist positive constants R and N such that for any
n > N we have

up(z) < Maee #0@VA for g € Q\ Bg s (22),

where x,, € O is the unique mazimum point of u,, 6(x) = min {dist (z, IBg,5-(x2)) 2}
and Ms, pq, o are positive constants depending only on 2.

(IV) There exists ug which is a mazimizer of I, such that

lim (IV (@, — wo) |* + |, — uo*) dz = 0.

(V) There exists a positive constant C such that

Un(z) < Ce™ el for z eV

Proof. If a € (a, 2m), (I)-(IIT) are obtained by [8]. If & = 27, by Theorem
1.1 and the techniques in [8], we obtained (I)-(III).
For the proof of (IV), we recall the following convergence in the subsection

2.2 of [8].
n (@n (\/LA_H + xn>) Suy in C2,(RZ). (35)

By (35), we have

lim (IVin|? + [@n)?) dz > lim (IVa,* + |4, ]?) d

n—00 n—>00
Vi QnNBagr

_ / (1ol + [up|?) da
BRﬂRi

for any R > 0. Letting R — oo, we derive that

lim [ (V| + |@,]?) do > 1.
n—oo VT,:

Moreover, since u,, € 2y, , we have

/ (IVinl + i) da g/ (Vi + | ]?) de = 1
v

n
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for any n. Thus, it follows that

lim/ (IVitnl? + [ ?) do = 1. (36)
\Z

n—oo

Using (35) again, we observe that

lim (Vii, Vug + tiyug) dz = / (IVuol® + |uol?) dz = 1. (37)

n—oo V,,;f R+

Combining (36) and (37), we have

lim (IV (@, — wo) |* + |t — uo|*) dz = 0.

Hence, (IV) holds.
Finally, we prove (V). Applying the proof of (4.30) in [16], we derive that
for any R > 0 there exists N such that for n > N it holds that

sup  Up(r) < sup Gy, (x).
x€VF\BRr z€VyNOBR

Hence, by (III), we obtain (V) in the same way as the proof of (3.5) in [16].
Consequently, we conclude (I)-(V). O

We assume that x, — zo € 0 after passing to a subsequence. More-
over, after a rotation and a translation n-dependent we may assume that
x, = 0. Then, Q can be described in a small ball By.(x,) as the set
{z = (x1,22) | x2 > ¥,(x1)}, where 9, is represented by

Un(2) = 3 H(ra)a? + o(a?).

The set QN By (x,) is denoted by V,,. Further, we may also assume that i,
converges locally in a C%-sense to 1)y, a corresponding parametrization at z.
First, we obtain the upper bound of A, E,(u,). We write again 4, (z) =

Un (2 /v A+ 24), Q= {\/Xn(x —z,) |z € Q} and V7 := Q,, N B, /- For
an open set X and v € H'(X), put

Jx (V) ::/X(|Vv|2+112) dx

27



and
J%(v) = /X <627”’2 - 1) dzx.

We note that for any function v defined in V7 U (B, /x- NR%) it holds that

Tl = Tl sy 00 R 0= Ty () (39
and that
2 _ 2 g2
JV,’Lk (?)) =J QKNHR?&- (’U) +J ;{\Ri (U) J(B%m”Ri)\VJ (U> (39)
We define a function u} on V' U (B, x- NR%) by
U, V),
u@)=q 0@ e
U (21, Y(21/VA0)) (€ V),
and take a function 7* € C°°(R?) such that
1 if ze€B 2
h(x) = LS e V()| < |
0 if zeR \BQRm7 R/ )\n
By (38) and Proposition 2.14 (III), we derive that
T (i)
= by, g (T000) + s (Tr07) - J(lB%mﬂRi)\v; (73 t)
+0(e V) (40)

with some positive constant c. Then, we have the following results:
. 1 * ok
Ji o= JVg\Ri (Tnun)

267/ An 0
- / {/ (IV (Thul)|? + |7rus ) dxg] dxy
~2nv/An LR (@A)

+O0(e™ V). (41)

— 1 *, %
T = o et )

26V A VAR (1/vVAR)
-/ (VG + ) dos | da
—26vVAn 0
+O(e= V). (42)
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By Proposition 2.14 (IV), (V), (41) and (42), applying the dominated con-
vergence theorem, we have

lim /A, (71— J2)

1 +o0
= —§H($0)/ (|Vuo(z1,0)|* + |ug(z1,0)?) 2idz;. (43)

For simplicity, we write

+o00
I = / (|Vuo(z1,0)|* + |ug(z1,0)[?) zidz;.

o0

Since Jy.(u;) < 1, combining (40)-(43), we obtain

L T1 1 -1
1> g, e (o) = EH(UUO)\/—/\—H +o(vVA )
or
1 * ok Tl 1 / -1
JB%\/VQR?F (Tnun) <1+ ?H(ZL‘()) \/E + 0( An ) (44>

Using (44), we estimate A, J3(u,,). By Proposition 2.14 (III) and (39), we
see that

= JXQ/g (1) + O(eVAn)
Bl JBQ“NQR?F (Tnun) +J \RY (Tnun) - J<B2KNQR?L)\VJ (Tnun)
+O(e=e). )

with some positive constant ¢. Computing in the same way as (41)-(43), we
derive that

lim /A, [J\%;\Ri (Thur) — J(QanmmRi)\V; (T;u;;)]

n—oo
1 e 27 |ug (21,0)|? 2
= —§H(a:0) (e S — 1) xidx. (46)
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Moreover, we have

J? U
B%\/EQR?#( n n)

/RQ {exp (H%H(ﬂco) 1 +o(\/A—n_1)> el >]—1}dx

VAn anm“m(ﬁ;u’*@
-1
< Ipp+ 7T H(xo) uge%“gdx +o(v/ A ). (47)

IA

1
V)\n Ri
Thus, (45)-(47) yield

T 1 —1
/\nJS%(un) < Iy + 7H(x0) +o(vV A\ ),

where

= ()

u%e%“%d:c> (|Vuo(x1,0)|* + |ug(z1,0)]?)

2
+

. <627r|u0(m1,0)‘2 — 1) :|,’13%d£lf
Hence, we obtain

T 1 -1
)\nEa(Un) = )\nJé(un) S [27r + 7[’](270)\/—)\_” + O(\/ )\n )

Here, we prove the positivity of T*. We recall that ug is a maximizer of
I5,, and thus it holds that

2
u0627ru0

—Aug+ug = ————5—
2 ,2mu?
uie*™odx
i 8

in R, wy€ H'(RY).

Multiplying both sides by 230ug/dzs and integrating it on R3 , we have
9 L0
/ x%ﬂ (—Aug + ug) dx — (/ uge%“?)dac) / x%ﬂuoe%“gdx
R2 al/ R2 R2 81/
+ T i
=0

By a direct computation in the same way as the proof of Lemma 3.3 in [18],
we have T > 0.
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Next, we estimate \,FE,(u,) below. Computing Jo, (7 ug) directly, we

have - .
-1
An i (Tttn) = Toe + —- H (x0) =t o(v/ A ).
Thus,
B (1) > Ton + = H(z0)—— + o(/2n )
n~a\Un) = 127 9 0 \/x n .

Consequently, we obtain the following energy expansion

T* _
b oA,

/\nE27r(un) 1271’ + H T

Then we have
lim H(z,) = max H(x),

n—00 €I

which completes the proof of Theorem 1.2.

3. Maximizer for sup,cx¢ Ea(u): Proofs of Theorems 1.3 and 1.4

We fix a € (0,47 and assume that A, is a sequence with A, — oo as
n — 0o0. Suppose that v, := v,, is a maximizer for SUP,es0 E,(u). Assume

that z,, € Q is a maximum point of v,, and set 0, () = v, (/v Ay + 7).

First, we check that lim,, oo Ay Fo(v,) = dq, and thus, 0, is a maximiz-
ing sequence of d,. We take a positive constant R and xy € 2 satisfying
Bsr(rg) C Q. Then, we define a function 7z € C*°(R?) by

1 if ze BR,
— \V4 < C’
TR(:L‘) {0 if ze ]R2 \ BQR, | T(x)| o

and we set g, () = 7r ((x — z9)/V/An). Forany ¢ € H*(R?) with [o, (|V¢|* + ¢?) do =
1, we see that

M, = / (|V (Tra?) > + |TR7n¢|2) dr =1+ o(1).
]RQ

Thus, for R* > 0 with R* < 2R+/\,, we have

(TRn®)?
/ (ean - 1) de < / (eo‘ S 1) dx + o(1)
Bpr+(z0) By ran (%0)

< AnEa(vn) +o(1).
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Letting n — oo, and then R* — oo, we derive that

n—oo

/ (e‘“"2 — 1> dx <liminf A\, E,(vy,).
R2

Hence, it holds that d, < liminf, . A\,Eq(v,). On the other hand, by
extending v, by 0 outside 2, it holds that A\, E,(v,) < d, for any n. Hence,
we obtain that lim, . A\ Eo(v,) = d, and 0, is a maximizing sequence of

dy,.

3.1. Proof of Theorem 1.3

In the case a < 47, we derive (I) and (II) by applying the techniques in
[8]. In the case a = 4w, we first obtain that sup,cq v,(r) < My for some
positive constant My independent of n. The proof follows Section 2. Then,
we prove (I) in the same way as the proof of Theorem 1.1 (I) in [8]. In this
case, the theorem is also obtained by Theorem 1.2 in [10] and the fact that
U, 18 a maximizing sequence of d,,.

3.2. Proof of Theorem 1.4

We fix a € (Bs,4w]. In order to prove Theorem 1.4, we summarize the
properties of v,,.

Proposition 3.1. We have the following results.

(I) It holds that

Ml S Sup'Un<£C> S M27
e

where My and My are positive constants independent of n.

(II) For n sufficiently large v, has a unique mazximum at x, € §, and it
holds that
lim /A, dist(z,, 0Q2) = co.

n—oo

(III) There exists vy which is a maximizer of d, such that
b vy in Cp(R?),

where 0, () = v, (/v I + 1,).
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We may assume that, up to a subsequence, z, — 7o € Q as n — 0.
Then,
dy, := dist(z,, 0Q) — dy = dist(xg, 092).

Set Q,, = {\/)\n(x — ) | T € Q} and 0, = v,(x/v/ A + ). The function
U, satisfies

—Aby 4 Dy = LpOpe®™  in Q,
0, =0 on 0%,
—1
where L,, = ()\n o vie“”id:ﬁ> . We note that L, <1+ X\;(Q)/A, holds for

any n, where A\ (€2) denotes the first eigenvalue of —A with the zero Dirichlet
boundary condition on 2. The function vy in Proposition 3.1 (III) satisfies

2
Vo QY%

Jgo vie0da

—Avy + vy =

or
—Avg 4 Logvg = (1 — Log)vp(e®® —1) in R?,

1
where L, =1 — ( Jeo v2e dx) . By the Pohozaev identity, we have L., €

(0,1). It follows from the upper bound of L,, and Proposition 3.1 that 1 —
L, — Lo as n — oco. We define a constant as

1

2
Sz vie0dx

L= max{l —

vy 1s a maximizer of da} )

We note that by the precompactness of maximizers of d,, there exists v €

H'(R?) such that
1

e 05215 da

We first prepare the following lemma.

1 s (48)

Lemma 3.2. Let K and c¢ be positive constants and let f be a positive
function such that f(r) — 0 as r — oo. For a positive constant p and
R e (0,p—1), assume that w, is a solution of

—w' —iw'+ Kw=fw in (R,p),
w(B)=c. w(p)=0
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and that we, s a solution of

—w’ —iw'+ Kw=fw in (R,o0),
w(R) =¢, w(oco)=0.

Then, for large p and R, there exists € > 0 such that ¢ — 0 as R — oo,

e—PVE+e) < wy(p—1) < o~ P(VE—e) (49)

and
e PVEr) < (p—1) < e PVE=9), (50)

Proof. Since the proof of (50) is same as the proof of (49), we only prove
(49). Fix large p and R with p — 1 > R. We take small ; such that
K — f(R) > (VK — €)% Then, we consider the equation

2
—w" + (\/f—&) w=0 in (R,p),
w(R)=¢, w(p)=0.
The solution of the above equation is a supersolution of w,, and thus
wy(p — 1) < e PVE==),

For the lower bound, we choose g5 such that (R’l +VR 2+ 4K) /2 < VEK+
€5. We consider the equation

—w' —fw' +Kw=0 in (R,p),
w(R) =¢, w(p)=0.

Since the solution of the equation is a subsolution of w,, by a direct compu-
tation, we have
wP(p —-1)> e_P(\/E—&-Q)'

Hence, taking ¢ = max{e, e}, we derive (49). By appropriate choices of &;
and e, it holds that ¢ — 0 as R — oo. O

By Proposition 3.1 (III) and Lemma 3.2, we have

i(1) < o171 (VEsto(1)) (51)
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for |x| > p with large p and in particular, we have

t() = e I(VEsto1) (52)
for p < |z| < d,v/ A — 1. Moreover, it holds that

%(1’*) < — e~V (VLooto(1))
ov "~ ’

where z} € 09, satisfies |z} | = d,v/A,. Thus, using Proposition 3.1 (III)
and considering suitable ordinary differential equation, we have

0ty
00 4) < — ST for 5 €00,NBy(w)  (5)
14

with k£ > 0 independent of n. By (51) and the regularity theory, we have
/ (IV 0]+ 02) d < e72(VEoetoll)), (54)
\B,

Set
doo = max dist(z, 082) = dist(zn, 09).
S
We prove the following lower estimate of A, Fq(vy,).

Proposition 3.3. It holds that

AnEu(vp) > dy — e 2oeVAn (VL +o(1))

as n — Q.

Proof. We first consider a lower estimate of
D(a,p) = sup / (eo‘“2 - 1) dx
ueHG(Bp) B,
fBP(\Vu|2+u2)dx:1

as p — 0o. We take v} a maximizer of d,, satisfying (48). The function v is
a solution of

{—w '+ ZLw=(1-Lw (eo‘w2—1) in (0,00),
w'(0) =0, w(oco)=0.
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Thus, by Lemma 3.2, we have
vj(p = 1) = e (VZ )

as p — 00. Let W, be a solution of

A+ LY =0 in B,\ B,_1,
Y = v on 0B,_,
v=0 on 0B,.

By (55), (56) and the regularity theory, we observe that

/ (VP ) da = )
R2\B,_,

and
/B (IV,[? + W2) dy = =2 VZHo),

p\Bﬂfl

Define a function v, by

(@) = {Ué(m) (el <p =),

Up(z)  (p—1< 2] <p)

Then, we have

/ (|V9p|2 + |Qp|2) dx

By

_ /(]Vv8\2+]v§]2)dm+
R? By\Bp-1

—/ (VP 4 P) de
R

2\3971
= 1+/ (IVE, >+ 92) dx—/
BP\Bpfl R2\BP*1

= ]_—|—T1—T2
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(IVU,|* 4+ 02) dx

(55)

(57)

(58)

(IVugl* + [vg]?) do



Using this equality, we have
D(a, p)

02
> / exp — —1pdx
fB (VL[> + v, ) de
] e
BP
2 T2 Tl 2
> avy 1> d e -4 avpd
> /Bp<e x+oz1+T1 Tg/ z

= d, —l—/ (e‘ﬂ’fz’ - 1) dr — / (ea|v3\2 - 1) dz
Bo\By—1 R*\B,—1

+Gf(T2 - Tl)/ 2 wa’dl‘ -+ O (( Tl) ) .

P

By (57), we see that

—/ (ea\US‘Q — 1) d:c+aT2/ 1126“” dx
R2\B,—1 Bp
a
> Vi > + |vil?) de — (L + o,(1 /
PRt [ / o (VP4 o= (2 o) [

+0 / lvs|*dr
R2\B,_1
> O(e—4p<¢§+om>>_

Moreover, by (58), we have

/ (66&,% — 1) dr — o1y / v2eo“’ﬂdx
Bo\Bp—1 By
Qa
_ VU 12+ (Z +0,(1)) V3] dz
g—f-Op(l) /BP\Bpl [| P| ( P( )) p]

_ @ o= 20(VZ+0(1))
g“"op(l)
_ 20 (VZ+o(1)).

v

Hence, (57)-(61) yield
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(59)

|vz;|2da:]



as p — 00.
Using (62), we estimate of A, E,(v,) from below. Since we may assume
that H}(By, (1)) C HL(Q), by the scaling, we have

AEo(vn) > D(a, doo\/)‘_n)'

Consequently, the inequality and (62) yield that

A Ba(v) > dyy — ™2V An(VZ0(1)

and complete the proof of Proposition 3.3. n
Next, we prove the following upper estimate of A, E,(vy,).

Proposition 3.4. It follows that

A Eo(vy) < dy — 7280V An(VIecto(1)

as n — Q.

Proof. Let ®,, be a solution of

—Adp+(1—La)o=f¢ in R*\ By /5 _1

¢ = Uy on 8Bdnm,1,
o(z) =0 as |z| — oo.

where f is a rapidly decreasing function as |r| — oo. By (52), applying
Lemma 3.2 and the regularity theory, we have

By (z) = e~ oI(VEmo(D) (63)
for |z| > d,v/ A\ — 1 and
/ (|V<I>n|2 + fbi) dr = e~ 2dnV2n(VIsoto(1)) (64)
R\B,
Set
Tn(z) = O () (|z] < duv/An — 1),
! Py, (2) (lz] = dnv/An = 1)
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It follows that

/(|wn|2+@g)dx

Qn

/ (\Wn|2+@i)d:z:+/
R2 Qn\
-/

(V0> + 07) da

By, vxn-1
(|V<I>n]2 + @i) dx

By, 3 -1
= T1 —+ T2 — Tg.

Then, using (54) and (64), we have

)\nEa(Un)
= / (eaf”% — 1) dz
Qn
ﬁ aT3 Ty o 2
= / (e Tie T 1) dx
Qn
oln T —T olh - =\2
_ / (e 7, 1)da;+a 3 2/ 2e Tldx+0((T3—T2>)
Q. 1 n
2
= / (eaf? 1) dxr + « T3—T2>/ b a““dx—i—O( 4d°m(\/§+o(1))>
Qn Qn
w2 02 o7
= /(efl—l)d:v—i-/ (eaT—)dx—/ <e o1
R2 n\Bd VAn—1 RQ\Bdnm71

a(Ty — 2)/ 02 a””d:r;—i—O( 4d0m(m+0(1))>
B

P
(e"‘”" — 1) dr — / (eaq}i — 1> dz
Q\Bg,, /a1 R

a ( ~3 . TQ) / ~2 Ow"d{L‘ +0 ( —4dom(\/m+o(1))> )
Q

n

IN

By, xm—1

+
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(65)



We derive that

~9 ~ ~ ~2
/ <e°‘”” - 1) dx — ozTg/ 02 e dy
Qn\Ba, 3 -1 B

P

[[V0n)* + (Loo + 0(1)) 02] da

«
= 1-— Loo + 0(1) /Q”\Bdn\/ﬁ—l

+0 ( / @j;dx>
Qn\BdnmA

« / ( 8®n> o d
= — ——2 ) d,do
I~ Lot 0o(1) Jon, o \ 00

10 <e—4dom(m+0(l))> (66)

and that

2 ~ R A2
— / (eo‘\y" — 1> dx + oTj / D2e*ndy
RAB g, /xn-1 n

[[V®,|* + (Loo + 0(1)) @2] da

(e}
1 — Ly +o0(1) /R2\Bdnm_1

o 0P
= ——2 | ®,do
1-— Loo + 0(1) /Q\Bdnml < aV )

Lo <6—4d0m(@+0(1))> ' (67)

Combining (65)-(67), we have

MEa(v) < do+ a / (%@n - %@n) o
1 — Lo +0(1) 9B, sy \ OV ov

10 <€—4do¢mm+o(1>)>

Since 0, = ®, on 0B, - 1, by (53), (63) and the Hopf boundary lemma,
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we have

[ (ot
OBy /1 ov

~ <8””<1> - aq)"@n) do
OB ov

e
aA
= / Y P, do — /
o, v Qu\By, /51

_ / avnq) dg+0< _4do\/mm+o(1>>)
o0, OV

=20V Aa(Looto() | () <e—4dnm<m+o(1>>>.

A0, P, dx + / A, v, dx

R2\Bdn\//\nfl

Hence, we obtain the upper estimate

A Bo(vn) < dyy — =240V n(Looto(1)

Consequently, we conclude Proposition 3.4. O

Finally, Proposition 3.3 and 3.4 yield that L., = % and dy = d,, which
complete the proof of Theorem 1.4.
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