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ABSTRACT

Whitehead aspherical conjecture says that every connected subcomplex
of every aspherical 2-complex is aspherical. For every contractible finite 2-
complex, an argument on ribbon sphere-links allows us to confirm that the
conjecture is true. In this paper, by generalizing this argument, this conjecture
is confirmed to be true for every aspherical 2-complex.
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1. Introduction
A 2-complex is a finite or countably-infinite CW 2-complex, which is constructed

from a finite or countably-infinite CW 1-complex homeomorphic to a simplicial 1-
complex (namely, a graph) by attaching a finite or countably-infinite family of 2-cells
with attaching maps. A 2-complex is homotopy equivalent to a simplicial 2-complex
by taking a simplicial 1-complex homeomorphic to the CW 1-complex and a simpli-
cial approximation of every attaching map of a 2-cell. By this homotopy equivalence,
every subcomplex of a 2-complex is also homotopy equivalent to a simplicial sub-
complex of the simplicial 2-complex (cf. Spanier Spanier for a general reference).
The 2-complex of a group presentation < x1, x2, . . . , xn, . . . | r1, r2, . . . , rm, · · · > is
the 2-complex obtained from the 1-complex whose fundamental group is isomor-
phic to the free group with a basis of the generationg set x1, x2, . . . , xn, . . . and the
attaching 2-cells given by the relators r1, r2, . . . , rm, . . . . Up to homotopy equiva-
lences, every connected 2-complex can be considered as the 2-complex of a group
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presentation < x1, x2, . . . , xn, . . . | r1, r2, . . . , rm, · · · > and every connected subcom-
plex of it is the 2-complex of the group presentation given by a sub presentation
< xi1 , xi2 , . . . , xis , . . . | rj1 , rj2 , . . . , rjt , · · · >. A path-connected space X is aspherical
if the universal cover X̃ of X is contractible (i.e., homotopy equivalent to a point).
For a connected 2-complex P , it is equivalent to saying that the second homotopty
group π2(P, v) = 0. The Whitehead asphericity conjecture is the following conjecture
(see ([2, 14]).

Whitehead Aspherical Conjecture. Every connected subcomplex of any aspher-
ical 2-complex is aspherical.

The purpose of this paper is to claim that this conjecture is yes. That is,

Theorem 1.1. Whitehead Aspherical Conjecture is true.

In [9], it is shown that every connected subcomplex of any finite contractible 2-
complex is aspherical by using some properties of a ribbon sphere-link in the 4-sphere,
which is a partial affirmartive solution of this conjecture. The proof of Theorem 1.1
is done by a generalization of this method.

The author found on the Internet the preprint of E. Pasku [12] reporting the same
result which appears obtained by a purely group theoretic argument, much different
from the present argument.

The proof is organised as follows. In Section 2, the conjecture for every connected
subcomplex of any aspherical 2-complex is reduced to the conjecture for every finite
connected subcomplex of any locally finite contractible 2-complex. In Section 3, base
changes on an infinite rank free abelian group and an infinite rank free group are
observed. In Section 4, every locally finite, infinite group presentation of the trivial
group is realized as a locally linked, infinite ribbon link in the 4-space such that the
free faudamental group is the free group with the generating set as a basis and and the
relator set as a meridian system of the ribbon sphere-link. In Section 5, the conjecture
for every finite connected subcomplex of any locally finite contractible 2-complex is
confirmed to be true.

2. Reducing to the conjecture for a finite subcomplex

In this section, it is explained that Theorem 1.1 (Whitehead Asphericity Conjec-
ture) is obtained from the following theorem.

Theorem 2.1. Every connected finite subcomplex of any locally finite contractible
2-complex is aspherical.
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For this reduction, the following lemma is used.

Lemma 2.2. Every connected finite subcomplex of an infinite connected 2-complex
P is a subcomplex of a locally finite connected 2-complex P ′ homotopy equivalent to
P .

Proof of Lemma 2.2. Let P be a connected infinite 2-complex, and P0 a connected
finite subcomplex of P . Let

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pn ⊂ . . .

be a sequence of connected finite subcomplexes Pn (n = 0, 1, 2, . . . , n, . . . ) of P such
that P = ∪+∞

n=0Pn. Let Pn = Pn−1∪Jn for a subcomplex Jn of Pn with γn = Pn−1∩Jn
a graph for all n. Triangulate the rectangle a × [0, 1] for every 1-simplex a of γn
by introducing a diagonal and regard the product γn × [0, 1] as a 2-complex. To
construct a desired 2-complex P ′, make the connected finite subcomplexes Jn (n =
1, 2, 3, . . . , n, . . . ) disjoint. Let P ′

n = Pn−1∪γn× [0, 1] be the 2-complex obtained from
the subcomplexes Pn−1 and gamman × [0, 1] by identifying γn(⊂ Pn−1) with γn × 0
and γn × 1 with γn(⊂ Jn) in canonical ways. The sequence

P0 = P ′
0 ⊂ P ′

1 ⊂ P ′
2 ⊂ · · · ⊂ P ′

n ⊂ . . .

of connected finite subcomplexes P ′
n (n = 0, 1, 2, . . . , n, . . . ) is obtained. By con-

struction, P ′ = ∪∞
n=0P

′
n is a connected locally finite 2-complex containing P0 as a

subcomplex and homotopy equivalent to P . □

By using Lemma 2.2, Theorem 1.1 is obtained from Theorem 2.1 as follows.

2.3: Proof of Theorem 1.1 assuming Theorem 2.1. Since the universal cover
P̃ of an aspherical 2-complex P is a contractible 2-complex, every subcomplex Q of
P lifts to a subcomplex Q̃ of P̃ , and the second homotopy group is independent of
a covering by the lifting property (cf. [13]), Theorem 1.1 will be obtained from the
following assertion.

(2.3.1) Every connected subcomplex of a contractible 2-complex is aspherical.

Because the topology of the polyhedron |P | of an infinite simplicial 2-complex P
is the topology cohertent with the simplexes of P (see [13, p.111]), the image f(S2)
of the 2-sphere S2 by any map f : S2 → |P | is in the polyhedron |P f | of a finite
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connected subcomplex P f of P . Thus, the assertion (2.3.1) is obtained from the
following assertion.

(2.4.1) Every connected finite subcomplex of a contractible 2-complex is aspherical.

By lemma 2.2, every connected finite subcomplex of a contractible 2-complex is
a connected finite subcomplex of a locally finite contractible 2-complex. Hence the
assertion (2.4.1) is obtained from Theorem 2.1. Thus, Theorem 1.1 is obtained from
Theorem 2.1. □

3. Base changes on an infinite rank free abelian group and an infinite rank
free group

A base change of a free group F on a basis xi (i = 1, 2, . . . , n, . . . ) is a consequence
of a finite number of the following operations, called Nielsen transformations (see
[11]):

(1) Exchange two of xi (i = 1, 2, . . . , n, . . . ),
(2) Replace an xi by x−1

i ,
(3) Replace an xi by xixj (i ̸= j).

A base change of a free abelian group A on a basis ai (i = 1, 2, . . . , n, . . . ) is a
consequence of a finite number of the following operations:

(1) Exchange two of ai (i = 1, 2, . . . , n, . . . ),
(2) Replace an ai by −ai,
(3) Replace an ai by ai + aj (i ̸= j).

The following lemma is well-known for a finite rank free abeliang group A.

Lemma 3.1. LetA be a free abelian group with a countable basis ai (i = 1, 2, . . . , n, . . . ).
Let bi (i = 1, 2, . . . , n, . . . ) be a countable basis of A such that any row or colum vector
of the base change matrix C given by

(b1b2 . . . bn . . . ) = (a1a2 . . . an . . . )C

has only a finite number of non-zero entries. Then for every positive integer m, there
is a base change of A on ai (i = 1, 2, . . . , n, . . . ) such that C is equal to the block sum
Em ⊕ C ′ for the unit matrix Em of size m and a matric C ′.

Proof of Lemma 3.1. For every i (i = 1, 2, . . . , n, . . . ), let

bi = ci1a1 + ci2a2 + . . . cinan + . . .
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be a linear combination with cij integers which are 0 except for a finite number
of j (j = 1, 2, . . . , n, . . . ). Note that for every i, the non-zero integer system of
ci1, ci2, . . . , cin, . . . is a coprime integer system. By a base change, assume that c11 is
a smallest positive integer in the integers |c1j| (except for 0). Write c1j = c̃1jc11 + d1j
for 0 ≤ d1j < c11. By a base change on ai (i = 1, 2, . . . , n, . . . ), assume that

b1 = c11a1 + d12a2 + . . . d1nan + . . .

By continuing this process, it can be assumed that b1 = a1. Next, consider the linear
combination

b2 = c21a1 + c22a2 + . . . c2nan + . . . .

Note that for every i ≥ 2, the non-zero integer system of c22, c23, . . . , c2n, . . . is co-
prime. By a base change on ai (i = 2, 3, . . . , n, . . . ), it can be assumed that that
b2 = c21a1 + a2. By an inductive argument, it can be assumed that

bi = ci1a1 + ci2a2 + . . . ci i−1ai−1 + ai (i = 3, 4, . . . ,m).

Let m+ ≥ m be an integer such that for every i > m+, cij = 0 (j = 1, 2, . . . ,m). By
continuing the inductive argument, it can be assumed that

bi = ci1a1 + ci2a2 + . . . ci i−1ai−1 + ai (i = m+ 1,m+ 2, . . . ,m+).

By a base change replacing ai to ai − ci1a1 − ci2a2 − · · · − ci i−1ai−1 (i = 2, 3, . . . ,m+),
it is obtained that

bi = ai (1 ≤ i ≤ m+), cij = 0 (i > m+, 1 ≤ j ≤ m)

This completes the proof of Lemma 3.1. □

4. A locally finite 2-complex and an infinite ribbon sphere-llink
Let X be an open connected oriented smooth 4D manifold. A countably infinite

family of disjoint compact sets Xi (i = 1, 2, . . . , n, . . . ) in X is descrete if the set
{xi| i = 1, 2, . . . , n, . . . } made from any one point xi ∈ Xi for every i is discrete in
X. A sphere-link, also called an S2-link in X is the union L of a finite or countably
infinite discrete family of disjoint 2-spheres smoothly embedded in X. An S2-link
in X is trivial if it bounds a discrete family of mutually disjoint 3-balls smoothly
embedded in X, and ribbon if it is obtained from a trivial S2-link O by surgery along
a discrete family of disjoint 1-handles embedded in X. An S2-link L in X is finite if
the number of the components of L is finite Otherwise, L is infinite.

Let R4 be the 4-space. Let H4 = {(x, y, z, w)| −∞ < x, y, z < +∞, 0 ≤ w} be the
upper-half 4-space of R4 with boundary ∂H4 = {(x, y, z, 0)| − ∞ < x, y, z < +∞}
identifying the 3-space R3 = {(x, y, z)| −∞ < x, y, z < +∞}.
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For two oriented open 4D manifolds X and Y , assume that there are smooth
embeddings iX : H4 → X and iY : H4 → Y such that X ′ = cl(X \ iX(H4)) and Y ′ =
cl(Y \ iY (H4)) are oriented 4D manifolds with boundaries ∂X ′ = iX(∂H

4) and ∂Y ′ =
iY (∂H

4) diffeomorphic to R3, respectively. The oriented open 4D manifold obtained
from X ′ and Y ′ by pasting ∂X ′ and ∂Y ′ with an orientation-reversing diffeomorphism
is called an R3-connected sum of X and Y and denoted by X#R3Y . The open 4D
handlebody

Y O = R4#+∞
i=1S

1 × S3
i

with a discrete family of connected summands S1 × S3
i (i = 1, 2, . . . , n, . . . ) has an

important role of this paper.

Lemma 4.1. Assume that the 2-complex of a group presentation

< x1, x2, . . . xn, . . . | r1, r2, . . . , rm, · · · >

is a locally finite contractible 2-complex (in other words, every generator xi appears
only in a finite number of the relators r1, r2, . . . , rm, . . . ). Then there is a ribbon
S2-link L with components Ki (i = 1, 2, . . . , n, . . . ) in R4 such that

• the fundamental group π1(R
4 \ L, v) is isomorphic to the free group with basis

xi (i = 1, 2, . . . , n, . . . ) by an isomorphism sending a meridian system of Ki (i =
1, 2, . . . , n, . . . ) to the relator system ri (i = 1, 2, . . . , n, . . . ), and

• anR3-connected sum Y#R3X for the 4D manifold Y obtained from R4 by surgery
along L and a contractible smooth open 4D manifold X is diffeomorphic to the open
4D handlebody Y O.

The ribbon S2-link L in R4 is referred to as a ribbon S2-link associated with the
group presentation < x1, x2, . . . xn, . . . | r1, r2, . . . , rm, · · · >.

Proof of Lemma 4.1. Since the 2-complex of the group presentation is a locally
finite contractible 2-complex, every generator xi appears in only a finite number of
the relators r1, r2, . . . , rm, . . . and the inclusion homomorphism

< r1, r2, . . . , rm, · · · >→< x1, x2, . . . xn, · · · >

induces an isomorphism on the abelianized groups which are free abelian groups. By a
base change on xi (i = 1, 2, . . . , n, . . . ), it is assumed from Lemma 3.1 that the word r1
is equal to the letter x1 in the abelianized group of the free group < x1, x2, . . . xn, · · · >.
Letm be a positive integer such that every letter xj contained in the word r1 belongs to
the letters xi (i = 1, 2, . . . ,m). Further, by a base change on xi (i = 1, 2, . . . , n, . . . ),
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it is assumed from Lemma 3.1 that the words ri (i = 1, 2, . . . ,m) are equal to the
letters xi (i = 1, 2, . . . ,m), respectively in the abelianized group of the free group
< x1, x2, . . . xn, · · · >. In the open 4D handlebody Y O = R4#+∞

i=1S
1 × S3

i , let xi =
[kO

i ] (i = 1, 2, . . . , n, . . . ) be a basis of the free group π1(Y
O, v) represented by the

loop kO
i = S1 × 1i, and ri = [ki] (i = 1, 2, . . . , n, . . . ) an element system in π1(Y

O, v)
represented by γ for every i. By assumption, the loop ki meets transversely 1 × S3

i

with the intersection number +1. Every loop kj (j ̸= i) does not meet 1× S3
i except

for a finite number of j and when it meets, it meets transversely with the intersection
number 0. Let X be the smooth open 4D manifold obtained from Y O by surgery
along the loops ki (i = 1, 2, . . . , n, . . . ) using a normal D3-bundle ki ×D3 of ki in Y O,
which are changed into normal D2-bundles Di×S2 (i = 1, 2, . . . , n, . . . ) of the S2-link
L = ∪+∞

i=1Ki with Kı = 0i × S2 in X.

(4.1.1) The open 4D manifold X is contractible.

Proceed with the proof by assuming (4.1.1). By an argument of [8, Lemma 3.4],
the 2-sphere K1 is isotopic to a ribbon S2-knot in X obtained from a finite trivial S2-
link O1 split from L by surgery along a finite number of disjoint 1-handles whose core
arcs possibly pass through only the meridians of the S2-knots Kj ((j = 1, 2, . . . ,m).
Every the 2-sphere Ki has a similar situation. This means that the S2-link L is a
ribbon S2-link in X. Consider X as an R3-connected sum X#R3R4 by taking a
smooth embedding iX : H4 → X for the upper-half 4-space H4. Then the ribbon
S2-link L can be moved into the connected summand R4 of the R3-connected sum
X#R3R4, since L is obtained from a trivial S2-link which is movable into R4 by
surgery along a discrete family of disjoint 1-handles which is also movable into the
connected summand R4. Let Y be the open 4D manifold obtained from R4 by surgery
along L. Then an R3-connected sum Y#R3X is diffeomorphic to Y O. This completes
the proof of Lemma 4.1. □

The proof of (4.1.1) is done as follows.

Proof of (4.1.1). By van Kampen theorem, X is simply connected because the loops
ki (i = 1, 2, . . . , n, . . . ) normally generate the fundamental group π1(Y

O, v). Since X
is an open 4D manifold, to know that Xis contractible, it is enough to show that
Hq(X;Z) = 0 (q = 2, 3). By the excision isomorphism

Hq(Y
O, k∗ ×D3;Z) ∼= Hq(X,D∗ × S2;Z),

we have H3(X,D∗ × S2;Z) = 0, so that H3(X;Z) = 0. Note that the Nielsen
transformations are realized by orientation-preserving diffeomorphisms of Y O. Then
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by Lemma 3.1, for each loop ki in Y D, there is a 3-sphere S3
i in Y D meeting ki

with intersection number +1 and meeting only finitely many loops kj (j ̸= i) with
intersection number 0. Thus, the S2-knot Ki bounds in X a once-punctured 3D
manifold of a 3D closed handlebody S3#sS1 × S2 for some s not meeting the other
S2-knots Kj (j ̸= i). This means that the inclusion homomorphism H2(D∗×S2;Z) →
H2(X;Z) is the zero map. Since H2(X,D∗ × S2;Z) ∼= H2(Y

O, k∗ × D3;Z = 0, we
have H2(X;Z) = 0. This completes the proof of (4.1.1). □

5. Proof of Theorem 2.1
Let α be the reflection in R4 sending (x, y, z, w) to (x, y, z,−w). The image α(H4)

of the upper-half 4-space H4 by α is given by the lower-half 4-space {(x, y, z, w)| 0 <
x, y, z < +∞, w ≤ 0}. A disk-link LD in H4 is a (finite or countably infinite) discrete
family of disjoint disks smoothly and properly embedded in H4. The disk-link LD in
H4 is trivial if it is obtained from a discrete family of disjoint disks in R3 by pushing
the interiors into the interior of H4, and ribbon if it is obtained from a trivial disk-link
in H4 and a discrete family of spanning bands in R3 by pushing the interior of the
disk family which is the union of the trivial disk-link and the spanning bands into the
interior of H4. The closed exterior of a ribbon disk-link LD in H4. is the 4D manifold
E(LD) = cl(H4 \ N(LD)) for a regular neighborhood of LD in H4. The following
lemma is analogous to [9, Lemma 4.1], but for completeness the proof for an infinite
ribbon disk-link LD is given.

Lemma 5.1. The closed exterior E(LD) of every ribbon disk-link LD in H4 has a
handle decomposition consisting of H4, a discrete family of disjoint 1-handles and
a discrete family of disjoint 2-handles. In particular, the closed exterior E(LD) is
homotopy equivalent to a connected 2-complex.

Proof of Lemma 5.1. The ribbon disk-link LD in H4 is given by the union

∪+∞
i=1 di ∪+∞

j=1 bj

for a trivial proper disk system di (i = 1, 2, . . . , n, . . . ) in H4 and a band system
bj (j = 1, 2, . . . , n, . . . ) lifting the band system b0j (j = 1, 2, . . . , n, . . . ) in ∂H4 = R3.
Let hj (j = 1, 2, . . . , n, . . . ) be the 1-handle system obtained as the lifting trace of the
band system b0j (j = 1, 2, . . . , n, . . . ) in ∂H4 to the band system bi (i = 1, 2, . . . , n, . . . )
in H4. Let

d∗ = ∪+∞
i=1 di, L̄D = d∗ ∪+∞

j=1 hj.

The closed exteriors of d∗ and L̄D in H4 are the 4D manifolds

E(d∗) = cl(H4 \N(d∗)), E(L̄D) = cl(H4 \N(L̄D))
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for regular neighborhoods N(d∗), N(L̄D) of d∗, L̄
D inH4, respectively. Then the closed

exterior E(L̄D) is diffeomorphic to the closed exterior E(d∗) which is considered as
a 4D manifold obtained from H4 by attaching a discrete family of disjoint 1-handles
along ∂H3. The closed exterior E(LD) is obtained from E(L̄D) by adding a discrete
system of disjoint 2-handles arising from the the band system b0j (j = 1, 2, . . . , n, . . . ).
This completes the proof of Lemma 5.1. square

In the following lemma, (1) is essentially a consequence of Lemma 4.1, and (2) is
a generalization of [9, Lemma 3.3].

Lemma 5.2. Assume that the 2-complex of a group presentation

< x1, x2, . . . xn, . . . | r1, r2, . . . , rm, · · · >

is a locally finite contractible 2-complex. Then there is a ribbon disk-link LD with
components KD

i (i = 1, 2, . . . , n, . . . ) in H4 such that

(1) the fundamental group π1(H
4 \LD, v) is isomorphic to the free group with basis

xi (i = 1, 2, . . . , n, . . . ) by an isomorphism sending a meridian system of KD
i (i =

1, 2, . . . , n, . . . ) to the relator system ri (i = 1, 2, . . . , n, . . . ), and

(2) For every sublink LD
1 of LD, the second homotopy group π2(H

4 \ LD
1 , v) = 0.

Proof of Lemma 5.2. For (1), by Lemma 4.1 there is a ribbon S2-link L with com-
ponents Ki (i = 1, 2, . . . , n, . . . ) in R4 such that the fundamental group π1(R

4 \L, v)
is isomorphic to the free group with basis xi (i = 1, 2, . . . , n, . . . ) by an isomor-
phism sending a meridian system of Ki (i = 1, 2, . . . , n, . . . ) to the relator system
ri (i = 1, 2, . . . , n, . . . ). Then the ribbon S2-link L in R4 is the union of a ribbon
disk-link LD with components KD

i (i = 1, 2, . . . , n, . . . ) in H4 and the image α(LD)
with components α(KD

i ) (i = 1, 2, . . . , n, . . . ) in α(H4) by the reflection α (see [1]
for homotopical deformations of 1-handles and [10, II:Lemma5.11] for an α-invariant
deformation of L). By [9, Lemma 3.3], the inclusion (H4, LD) → (R4, L) induces an
isomorphism

π1(H
4 \ LD, v) → π1(R

4 \ L, v).

Thus, the ribbon disk-link LD has the property (1).
The proof of (2) is analogous to the proof of [9, Lemma 3.3], but for completeness

the proof for the infinite ribbon disk-link LD in H4 is given. Let LD
1 be a sublink of

LD. Let S̃ be an immersed 2-sphere in the closed exterior E(LD
1 ), which is considered

as an immersed 2-sphere in the closed exterior E(LD) by taking the ribbon disk
system LD \ LD

1 in a thin boundary collar of H4. Let L be a ribbon S2-link in R4

obtained from LD as the double by α. Let Y be the 4D manifold obtained from R4
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by surgery along L. By Lemma 4.1, the second homotopy group π2(Y v) = 0. Hence
the immersed sphere S̃ in E(LD) bounds an immersed 3-ball B̃ in Y . Let k(L) be
the loop system in Y occurring from the surgery along L. By general position, the
loop system k(L) meets transversely the immersed 3-ball B̃ in a finite set, say an s
point set. Then there is a compact s-punctured immersed 3-ball B̃(s) in the closed
exterior E(L) of L in S4 such that ∂B̃(s) ⊃ S̃ and ∂B̃(s) \ S̃ is a 2-sphere system
Si (i = 1, 2, . . . , s) in the boundary ∂E(L). Note that the closed exterior E(L) is
the union of the closed exterior E(LD) and the other copy α(E(LD)), the inmage of
E(LD) by the reflection α. By transforming the intersection part B̃(s) ∩ α(E(LD))
into E(LD) by the reflection α, the punctured immersed 3-ball B̃(s) is taken in the
compact exterior E(LD) so that the (possibly singular) 2-spheres Si (i = 1, 2, . . . , s)
are in LD×S1 ⊂ ∂E(L). Since each component of LD×S1 is aspherical, the immersed
2-speres Si (i = 1, 2, . . . , s) bounds singular 3-balls in LD × S1. This means that the
immersed sphere S̃ is null-homotopic in E(LD) ⊂ E(KD

1 ). Hence π2(E(LD
1 ), v) = 0.

This completes the proof of Lemma 5.2. □

The proof of Theorem 2.1 is done as follows.

5.3: Proof of Theorem 2.1. Let P be a contractible locally finite 2-complex which
is the 2-complex of the group presentation < x1, x2, . . . , xn, . . . | r1, r2, . . . , rm, · · · >.
Let P1 be any finite connected subcomplex of P , which is the 2-complex of the group
presentation given by a finite sub presentation < xi1 , xi2 , . . . , xis | rj1 , rj2 , . . . , rjt >.
Let P2 be the 2-complex of the group presentation given by a finite sub presentation
< x1, x2, . . . xn, . . . | rj1 , rj2 , . . . , rjt >. Then the 2-complex P2 is homotopy equivalent
to the 2-complex obtained from P1 by joining a half straight line with circles attached
which correspond to the generators xi for all i except for i1, i2,· · ·s. Thus, P1 is aspher-
ical if and only if P2 is aspherical. By Lemma 5.2 (1) , let LD be a ribbon disk-link
with components KD

j (j = 1, 2, . . . , n, . . . ) in H4 such that the fundamental group
π1(H

4 \LD, v) is isomorphic to the free group with basis xi (i = 1, 2, . . . , n, . . . ) by an
isomorphism sending a meridian system of KD

j (j = 1, 2, . . . , n, . . . ) to the relator sys-
tem rj (j = 1, 2, . . . , n, . . . ). Let LD

2 be a ribbon disk-link in H4 with the components
KD

j for all j except for j1, j2, . . . , jt. By van Kampen theorem, the fundamental group
π1(H

4 \ LD
2 , v) has the group presentation < x1, x2, . . . xn, . . . | rj1 , rj2 , . . . , rjt >. By

Lemmas 5.1 and 5.2 (2), the closed exterior E(LD
2 ) is aspherical. On the other hand,

by Lemma 5.2 (2) the closed exterior E(LD) is homotopy equivalent to a 1-complex R
which is a straight line with loops attached corresponding to the generators xi for all i
and the closed exterior E(LD

2 ) is homotopy equivalent to the 2-complex obtained from
R by attaching the meridiak 2-cells of the components of LD corresponding to the
relators rj1 , rj2 , . . . , rjt . Hence the closed exterior E(LD

2 ) is homotopy equivalent to
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the 2-complex P2. Thus, P2 is aspherical and hence P1 is aspherical. This completes
the proof of Theorem 2.1. □

The asphericity of the closed exterior of every finite ribbon disk-link in H4 is
shown in [9] by using the results of the smooth unknotting conjecture for a surface-
link in [3, 4, 5] and the 4D smooth Poincaré conjecture in [6, 7]. Actually, this result
holds without use of them since all the results of this paper containing the following
corollary are done without use of them.

Corollary 5.4. The closed exterior E(LD) of every (finite or infinite) ribbon disk-link
LD in H4 is aspherical.

Proof of Corollary 5.4. By Lemma 5.1, the closed exterior E(LD) is homotopy
equivalent to a connected 2-complex P and made contractible by attaching meridian
disks of LD, so that the 2-complex P is a connected subcomplex of a contractible
2-complex and aspherical by Theorem 1.1. This completes the proof of Corollary 5.4.
□
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