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1 Introduction

This paper is intended to be a survey on recent advances on nonlinear Schrödinger equations
with dissipative structure based on the authors’ recent works [21], [22], [23], [24]. We refer
the readers to these papers and the references cited therein for the detailed expositions.
This paper is organized as follows. In Section 2, we summarize typical previous results for

nonlinear Schrödinger equations with the power-type nonlinearities. Section 3 is devoted to
the case where the nonlinear term depends also on the derivative of the unknown function.
Special attentions are paid to the weakly dissipative nonlinearities which never appear in the
power-type nonlinearity situation. In Section 4, we focus our attentions on a two-component
Schrödinger system which tells us that the system case is much more delicate than the
single case. Finally, we enumerate the results obtained in [25] concerning general nonlinear
Schrödinger systems of derivative type in the Appendix. Throughout this paper, we denotes
by L the standard free Schrödinger operator i∂t+

1
2
∂2x for (t, x) ∈ R×R with i =

√
−1. The

free evolution group e
it
2
∂2
x is written as U(t). The function space Hk stands for the L2-based

Sobolev space of order k equipped with the norm ∥ϕ∥Hk =
∑

0≤j≤k ∥∂jxϕ∥L2 , and the weighted

Sobolev space Hk,m is defined by {ϕ ∈ L2 | ⟨ · ⟩mϕ ∈ Hk} with ⟨x⟩ =
√
1 + x2. Several non-

negative constants will be denoted by the same letter C, unless otherwise specified.
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2 Brief review on the basic facts

First of all, let us recall some of well-known results on large-time behavior of small data
solutions to the cubic power-type nonlinear Schrödinger equation in the form

Lu = λ|u|2u, t > 0, x ∈ R, (2.1)

where λ is a constant. What is interesting in (2.1) is that the large-time behavior of the
solution is actually affected by the coefficient λ even if the initial data is sufficiently small,
smooth and decaying fast as |x| → ∞. If λ ∈ R, it is shown by Ozawa [32] and Hayashi–
Naumkin [5] that the solution to (2.1) with small data behaves like

u(t, x) =
1√
it
α(x/t)ei{

x2

2t
−λ|α(x/t)|2 log t} + o(t−1/2) as t→ +∞

with a suitable C-valued function α(y). An important consequence of this asymptotic ex-
pression is that the solution decays like O(t−1/2) in L∞(Rx), while it does not behave like
free solutions unless λ = 0. In other words, the additional logarithmic factor in the phase
reflects the long-range character of the cubic nonlinear Schrödinger equations in one space
dimension. If λ ∈ C\R in (2.1), another kind of long-range effect can be observed. For
instance, according to [37] (see also [19], [10], [3], etc.), the small data solution u(t, x) to
(2.1) decays like O(t−1/2(log t)−1/2) in L∞(Rx) as t → +∞ if Imλ < 0. This gain of addi-
tional logarithmic time decay should be interpreted as another kind of long-range effect (see
also [1], [2], [3], [4], [6], [7], [8], [10], [11], [13], [15], [17], [19], [21], [22], [25], [31], [35], [36],
and so on). Time decay in L2-norm is also investigated by several authors. Among others,
it is pointed out by Kita-Sato [18] that the optimal L2-decay rate is O((log t)−1/2) in the
case of (2.1) with Imλ < 0. We are interested in extending L2-decay results of this kind to
derivative nonlinearity case or system case.

3 Nonlinear Schrödinger equations of derivative type:

Weak dissipativity

In this section, we focus on the initial value problem in the form

Lu = N(u, ∂xu), t > 0, x ∈ R (3.1)

with

u(0, x) = φ(x), x ∈ R, (3.2)

where φ is a prescribed C-valued function on R. The nonlinear term N(u, ∂xu) is a cubic
homogeneous polynomial in (u, u, ∂xu, ∂xu) with complex coefficients. If φ isO(ε) inH3∩H2,1

with 0 < ε ≪ 1, what we can expect for general cubic nonlinear Schrödinger equations in
R is the lower estimate for the lifespan Tε in the form Tε ≥ exp(c/ε2) with some c > 0 not

2



depending on ε, and this is best possible in general (see [14] for an example of small data
blow-up). More precise information on the lifespan is available under the restriction

N(eiθ, 0) = eiθN(1, 0), θ ∈ R (3.3)

and the initial condition

u(0, x) = εψ(x), x ∈ R, (3.4)

instead of (3.2), where ψ ∈ H3 ∩H2,1 is independent of ε. In fact we have the following.

Theorem 3.1 ([33], [38], [39]). Assume that ψ ∈ H3 ∩ H2,1. Suppose that the nonlinear
term N satisfies (3.3). Let Tε be the supremum of T > 0 such that the initial value problem
(3.1)–(3.4) admits a unique solution in C([0, T );H3 ∩H2,1). Then it holds that

lim inf
ε→+0

ε2 log Tε ≥
1

2 sup
ξ∈R

(|ψ̂(ξ)|2Im ν(ξ))
(3.5)

with the convention 1/0 = +∞, where the function ν : R → C is defined by

ν(ξ) =
1

2πi

∮
|z|=1

N(z, iξz)
dz

z2
, ξ ∈ R, (3.6)

and ψ̂ denotes the Fourier transform of ψ, i.e.,

ψ̂(ξ) = Fψ(ξ) = 1√
2π

∫
R
e−iyξψ(y) dy, ξ ∈ R.

Note that (3.3) excludes just the worst terms u3, |u|2u, u3. It is known that these three
terms are quite difficult to handle in the present setting, and we do not pursue this case here
(cf. [28]).
In view of the right-hand side in (3.5), it may be natural to expect that the sign of Im ν(ξ)

has something to do with global behavior of small data solutions to (3.1). In fact, it has
been pointed out in [33] that typical results on small data global existence and large-time
asymptotic behavior for (3.1) under (3.3) can be summarized in terms of Im ν(ξ) as follows:

• Small data global existence holds in C([0,∞);H3 ∩H2,1) under the condition

Im ν(ξ) ≤ 0, ξ ∈ R. (A)

(See also Theorem A.1 in Appendix.)

• The global solution has (at most) logarithmic phase correction if

Im ν(ξ) = 0, ξ ∈ R. (A0)

Also it is not difficult to see that there is no L2-decay under (A0) for generic initial
data of small amplitude.
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• L2-decay of the global solution occurs under the condition

sup
ξ∈R

Im ν(ξ) < 0. (A+)

(See also Theorem A.2 in Appendix.)

Note that ν(ξ) = λ if N = λ|u|2u. So these results cover the results in the power-type
nonlinearity case mentioned in Section 2. However, as pointed out in [23], an interesting
case is not covered by these classifications, that is the case where (A) is satisfied but (A0)
and (A+) are violated. For example, if N = −i|∂xu|2u, we can easily check that Im ν(ξ) =
−ξ2 ≤ 0, while the inequality is not strict because of vanishing at ξ = 0. This is what we
are interested in.
To going further, let us remember the fact that, if (A) is satisfied but (A0) and (A+) are

violated, then there exist c0 > 0 and ξ0 ∈ R such that Im ν(ξ) = −c0(ξ − ξ0)
2. The converse

is also true. This fact naturally leads us to the following definition of the weak dissipativity.

Definition 3.2. We say that a cubic nonlinear term N is weakly dissipative if the following
two conditions (i) and (ii) are satisfied:

(i) N(eiθ, 0) = eiθN(1, 0) for θ ∈ R.

(ii) There exist c0 > 0 and ξ0 ∈ R such that Im ν(ξ) = −c0(ξ − ξ0)
2.

The following two results reveal the L2-decay property in the weakly dissipative case.

Theorem 3.3 ([24]). Suppose that N is weakly dissipative and that ε = ∥φ∥H3∩H2,1 is suf-
ficiently small. Then there exists a positive constant C, not depending on ε, such that the
global solution u to (3.1)–(3.2) satisfies

∥u(t)∥L2
x
≤ Cε

(1 + ε2 log(t+ 1))1/4

for t ≥ 0.

Theorem 3.4 ([24]). Suppose that N is weakly dissipative and that the Fourier transform
of ψ does not vanish at the point ξ0 coming from (ii) in Definition 3.2. Then we can choose
ε0 > 0 such that the global solution u to (3.1)–(3.4) satisfies

lim inf
t→+∞

((log t)1/4∥u(t)∥L2
x
) > 0

for ε ∈ (0, ε0].

Remark 3.5. According to [18], the optimal L2-decay rate is O((log t)−1/2) in the case where
N = λ|u|2u with Imλ < 0. This should be contrasted with Theorems 3.3 and 3.4, because
these tell us that the optimal L2-decay rate in the weakly dissipative case is O((log t)−1/4).
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Now, let us explain heuristically why L2-decay rate should be O((log t)−1/4) if ψ̂(ξ0) ̸= 0.
For this purpose, let us first remember the fact that the solution u0 to the free Schrödinger
equation (i.e., the case of N = 0) behaves like

∂kxu
0(t, x) ∼

(
ix

t

)k
e−iπ/4

√
t
φ̂
(x
t

)
ei

x2

2t + · · ·

as t → +∞ for k = 0, 1, 2, . . .. Viewing it as a rough approximation of the solution u for
(3.1), we may expect that ∂kxu(t, x) could be better approximated by(

ix

t

)k
1√
t
A
(
log t,

x

t

)
ei

x2

2t

with a suitable function A(τ, ξ), where τ = log t, ξ = x/t and t≫ 1. Note that

A(0, ξ) = e−iπ/4 φ̂(ξ)

and that the extra variable τ = log t is responsible for possible long-range nonlinear effect.
Substituting the above expression into (3.1) and keeping only the leading terms, we can see
(at least formally) that A(τ, ξ) should satisfy the ordinary differential equation

i∂τA = ν(ξ)|A|2A+ · · ·

under (3.3). If N is weakly dissipative, we see that

∂τ |A|2 = −2c0(ξ − ξ0)
2|A|4 + · · · .

Then it follows that

|A(τ, ξ)|2 = |φ̂(ξ)|2

1 + 2c0(ξ − ξ0)2|φ̂(ξ)|2τ
+ · · · ,

whence

∥u(t)∥L2
x
∼ ∥A(log t)∥L2

ξ
∼

(∫
R

|φ̂(ξ)|2

1 + 2c0(ξ − ξ0)2|φ̂(ξ)|2 log t
dξ

)1/2

(t→ +∞).

By considering the behavior as t→ +∞ of this integral carefully, we see that L2-decay rate
in the weakly dissipative case should be just O((log t)−1/4) if φ̂(ξ0) ̸= 0. Indeed, we have the
following lemma.

Lemma 3.6 ([24]). Let θ ∈ L∞ and ξ0 ∈ R. We set

S(τ) =

∫
R

|θ(ξ)|2

1 + (ξ − ξ0)2|θ(ξ)|2τ
dξ

for τ ≥ 1.
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(1) We have
S(τ) ≤ 4∥θ∥L∞τ−1/2, τ ≥ 1.

(2) Assume that there exists an open interval I with I ∋ ξ0 such that infξ∈I |θ(ξ)| > 0.
Then we can choose a positive constant C∗, which is independent of τ ≥ 1 (but may
depend on θ and ξ0), such that

S(τ) ≥ C∗τ
−1/2, τ ≥ 1.

Our strategy of the proof of Theorems 3.3 and 3.4 is to justify the above heuristic argument,
which has been carried out in [23] and [24]. The key is to concentrate on the function

α(t, ξ) = F [U(−t)u(t, ·)](ξ),

which is expected to play the role of A(log t, ξ) in the above argument. For the details, see
[23] and [24].

4 A two-component system of nonlinear Schrödinger

equations

In this section, we turn our attentions to the system case. Our goal is to reveal that the
system case is much more delicate than the single case by considering the specific two-
component system {

Lu1 = −i|u2|2u1,
Lu2 = −i|u1|2u2,

(t, x) ∈ (0,∞)× R (4.1)

under the initial condition

uj(0, x) = φ0
j(x), x ∈ R, j = 1, 2. (4.2)

When φ0
1 = φ0

2, the system (4.1)–(4.2) is reduced to the single equation (2.1) with λ = −i,
so we can adapt the previous approach to see that ∥u(t)∥L2

x
→ 0 as t → +∞. However, as

we will see below, this is an exceptional case. It turns out that highly non-trivial behavior
can be observed in (4.1)–(4.2) for generic small initial data.

4.1 The initial value problem for (4.1) with generic small data

We start the discussion with the following basic result.

Theorem 4.1 ([21]). Suppose that φ0 = (φ0
1, φ

0
2) ∈ H2∩H1,1 and that ∥φ0∥H2∩H1,1 is suitably

small. Let u = (u1, u2) ∈ C([0,∞);H2 ∩ H1,1) be the solution to (4.1)–(4.2). Then there
exists φ+ = (φ+

1 , φ
+
2 ) ∈ L2 with φ̂+ = (φ̂+

1 , φ̂
+
2 ) ∈ L∞ such that

lim
t→+∞

∥uj(t)− U(t)φ+
j ∥L2

x
= 0, j = 1, 2. (4.3)

Moreover we have
φ̂+
1 (ξ) · φ̂+

2 (ξ) = 0, ξ ∈ R. (4.4)
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The global existence part of this asssertion is just a special case of more general result (see
Theorem A.1 below). On the other hand, we emphasize that (4.4) should be regarded as
a consequence of non-trivial long-range nonlinear interactions because such a phenomenon
does not occur in the usual short-range situation. Note also that the system (4.1) possesses
two conservation laws

d

dt

(
∥u1(t)∥2L2

x
+ ∥u2(t)∥2L2

x

)
= −4

∫
R
|u1(t, x)|2|u2(t, x)|2 dx

and
d

dt

(
∥u1(t)∥2L2

x
− ∥u2(t)∥2L2

x

)
= 0. (4.5)

However, these are not enough to assert that the solution u = (u1, u2) is asymptotically
free in the sense of (4.3). It is worthwhile to mention that (4.5) tells us that at least one
component u1(t) or u2(t) does not decay as t → +∞ in L2(Rx) if ∥φ0

1∥L2 ̸= ∥φ0
2∥L2 . In

particular, it is far from obvious whether or not both u1(t) and u2(t) can behave like non-
trivial free solutions as t → +∞. That is why we are interested in (non-)triviality of each
component of the scattering state.

4.2 Criteria for (non-)triviality of the scattering state

To investigate the relation (4.4) in more detail, let us point out that we also have the following
proposition.

Proposition 4.2 ([21]). We put φ+
j = lim

t→+∞
U(−t)uj(t) in L2, j = 1, 2, for the global solu-

tion u = (u1, u2) to (4.1)–(4.2), whose existence is guaranteed by Theorem 4.1. There exists
a function m : R → R such that the following holds for each ξ ∈ R

• m(ξ) > 0 implies φ̂+
1 (ξ) ̸= 0 and φ̂+

2 (ξ) = 0;

• m(ξ) < 0 implies φ̂+
1 (ξ) = 0 and φ̂+

2 (ξ) ̸= 0;

• m(ξ) = 0 implies φ̂+
1 (ξ) = φ̂+

2 (ξ) = 0.

In fact, m(ξ) has the following expression:

m(ξ) = |α1(2, ξ)|2 − |α2(2, ξ)|2 +
∫ ∞

2

ρ(τ, ξ)dτ,

where

αj(t, ξ) = F
[
U(−t)uj(t, ·)

]
(ξ), (4.6)

ρ(t, ξ) = 2Re
[
α1(t, ξ)R1(t, ξ)− α2(t, ξ)R2(t, ξ)

]
,

R1 =
1

t
|α2|2α1 −FU(−t)

[
|u2|2u1

]
, R2 =

1

t
|α1|2α2 −FU(−t)

[
|u1|2u2

]
. (4.7)
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Note that (4.4) follows from Propisition 4.2 immediately. In other words, Propisition 4.2
is more precise than the relation (4.4), and the function m(ξ) plays an important role in it.
This indicates that better understanding of m(ξ) will bring us more precise information on
the scattering state φ+. To address this point, we put a small parameter ε in front of the
initial data to distinguish information on the amplitude from the others, that is, we replace
the initial condition (4.2) by

uj(0, x) = εψj(x), j = 1, 2, (4.8)

where ψj ∈ H2 ∩H1,1 is independent of ε. Then we have the following.

Theorem 4.3 ([22]). Let m be the function given in Proposition 4.2 with the initial condition
(4.2) replaced by (4.8). We have

m(ξ) = ε2
(
|ψ̂1(ξ)|2 − |ψ̂2(ξ)|2

)
+O(ε4)

as ε→ +0 uniformly in ξ ∈ R.

As a consequence of Theorem 4.3, we have the following criteria for (non-)triviality of the
scattering state φ+ = (φ+

1 , φ
+
2 ) for the initial value problem (4.1)–(4.8).

Corollary 4.4 ([22]). Assume that there exist points ξ∗ ∈ R and ξ∗ ∈ R such that

|ψ̂1(ξ
∗)| > |ψ̂2(ξ

∗)| (4.9)

and

|ψ̂1(ξ∗)| < |ψ̂2(ξ∗)|, (4.10)

respectively. Then, for sufficiently small ε, we have ∥φ+
1 ∥L2 > 0 and ∥φ+

2 ∥L2 > 0.

Corollary 4.5 ([22]). Assume that

|ψ̂1(ξ)| > |ψ̂2(ξ)| (4.11)

for all ξ ∈ R. Then, for sufficiently small ε, φ+
2 vanishes almost everywhere on R, while

∥φ+
1 ∥L2 > 0.

It follows from (4.3) and Corollary 4.4 that both u1(t) and u2(t) behave like non-trivial
free solutions as t → +∞. In particular, we see that L2 decay does not occur for u1(t) and
u2(t) under (4.9) and (4.10). To the contrary, Corollary 4.5 tells us that only the second
component u2(t) is dissipated as t → +∞ in the sense of L2 under (4.11). We emphasize
again that such phenomena do not occur in the usual short-range settings. In this sense,
the dynamics for the system (4.1) is much more delicate than that for the single Schrödinger
equation (2.1) with a dissipative cubic nonlinear term.
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At the end of this subsection, let us mention the sketch of the proof of Theorem 4.3 briefly.
The key is to focus on the function αj given by (4.6). By the reduction similar to that in
the previous section, we see that the leading part of uj as t→ +∞ can be given by

1√
it
αj

(
t,
x

t

)
ei

x2

2t

and that the evolution of α = (α1, α2) is governed by the system

∂tα1 = −|α2|2

t
α1 +R1, ∂tα2 = −|α1|2

t
α2 +R2,

where R1 and R2 are given by (4.7). If R1 and R2 are shown to be harmless, we have

sup
ξ∈R

∣∣∣m(ξ)−
(
|α1(2, ξ)|2 − |α2(2, ξ)|2

)∣∣∣ ≤ Cε4. (4.12)

Moreover we can show that

αj(2, ξ) = ûj(0, ξ)− i

∫ 2

0

F
[
U(−t)Luj(t, ·)

]
(ξ) dt

= εψ̂j(ξ) +O(ε3) (4.13)

as ε → +0, uniformly in ξ ∈ R, j = 1, 2, provided that we have a good control of u. By
(4.12) and (4.13), we reach the conclusion. For the technical details, see [21] and [22] (see
also [30] and [29] for closely related works on the wave equation case.)

4.3 The final state problem for (4.1)

To see the role of the relation (4.4) from a different angle, let us consider the final state
problem for (4.1), that is, finding a solution u = (u1, u2) to (4.1) which satisfies

lim
t→+∞

∥uj(t)− U(t)ψ+
j ∥L2

x
= 0, j = 1, 2 (4.14)

for a prescribed final state ψ+ = (ψ+
1 , ψ

+
2 ). Roughly speaking, the propositions below imply

that (4.14) holds if and only if

ψ̂+
1 (ξ) · ψ̂+

2 (ξ) = 0, ξ ∈ R. (4.15)

Remember that (4.14) should hold in the short-range case regardless of whether (4.15) is
true or not. In other words, our problem must be distinguished from the usual short-range
situation.
The precise statements are as follows.

Proposition 4.6 ([21]). Let T0 ≥ 1 be given, and let u be a solution to (4.1) for t ≥ T0
satisfying

sup
t≥T0

(
t−γ∥U(−t)u(t)∥H1,1

x
+ ∥FU(−t)u(t)∥L∞

ξ

)
<∞

with some γ ∈ (0, 1/12). If there exists ψ+ ∈ L2 with ψ̂+ ∈ L∞ such that (4.14) holds, then
we must have (4.15).
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Proposition 4.7 ([21]). Suppose that ψ+ satisfies ψ̂+ ∈ H0,s ∩ L∞ with some s > 1, and
that δ = ∥ψ̂+∥L∞ is suitably small. If (4.15) holds, then there exist T ≥ 1 and a unique
solution u to (4.1) for t ≥ T satisfying U(−t)u ∈ C([T,∞);H0,1) and (4.14).

The proof of Proposition 4.6 is based on a contradiction argument. Proposition 4.7 can
be shown by rewriting the system (4.1) in the form of integral equations and applying a
suitable fixed point argument. See [21] and [20] for the details of the proof.

A Appendix: General nonlinear Schrödinger systems

of derivative type

For the convenience of the readers, we collect the results obtained in [25] without proof. We
consider general n-component nonlinear Schrödinger systems in the form{

Lmj
uj = Nj(u, ∂xu), t > 0, x ∈ R, j = 1, . . . , n,

uj(0, x) = φj(x), x ∈ R, j = 1, . . . , n,
(A.1)

where Lmj
= i∂t +

1
2mj

∂2x, mj ∈ R\{0}, and u = (uj(t, x))1≤j≤n is a Cn-valued unknown

function. The nonlinear term N = (Nj)1≤j≤n is assumed to be a cubic homogeneous poly-
nomial in (u, ∂xu, u, ∂xu). We set In = {1, . . . , n} and I♯n = {1, . . . , n, n + 1, . . . , 2n}. For
z = (zj)j∈In ∈ Cn, we write

z♯ = (z♯k)k∈I♯n := (z1, . . . , zn, z1, . . . , zn) ∈ C2n.

Then general cubic nonlinear term N = (Nj)j∈In can be written as

Nj(u, ∂xu) =
1∑

l1,l2,l3=0

∑
k1,k2,k3∈I♯n

C l1,l2,l3
j,k1,k2,k3

(∂l1x u
♯
k1
)(∂l2x u

♯
k2
)(∂l3x u

♯
k3
)

with suitable C l1,l2,l3
j,k1,k2,k3

∈ C. With this expression of N , we define p = (pj(ξ;Y ))j∈In :
R× Cn → Cn by

pj(ξ;Y ) :=
1∑

l1,l2,l3=0

∑
k1,k2,k3∈I♯n

C l1,l2,l3
j,k1,k2,k3

(im̃k1ξ)
l1(im̃k2ξ)

l2(im̃k3ξ)
l3Y ♯

k1
Y ♯
k2
Y ♯
k3

for ξ ∈ R and Y = (Yj)j∈In ∈ Cn, where

m̃k =

 mk (k = 1, . . . , n),

−m(k−n) (k = n+ 1, . . . , 2n).

We denote by ⟨·, ·⟩Cn the standard scalar product in Cn, i.e.,

⟨z, w⟩Cn =
n∑

j=1

zjwj

10



for z = (zj)j∈In and w = (wj)j∈In ∈ Cn.
With these notations, let us introduce the following conditions:

(a) For all j ∈ In and k1, k2, k3 ∈ I♯n,

mj ̸= m̃k1 + m̃k2 + m̃k3 implies C l1,l2,l3
j,k1,k2,k3

= 0, l1, l2, l3 ∈ {0, 1}.

(b0) There exists an n× n positive Hermitian matrix H such that

Im ⟨p(ξ;Y ),HY ⟩Cn ≤ 0

for all (ξ, Y ) ∈ R× Cn.

(b1) There exist an n×n positive Hermitian matrix H and a positive constant C∗ such that

Im ⟨p(ξ;Y ),HY ⟩Cn ≤ −C∗|Y |4

for all (ξ, Y ) ∈ R× Cn.

(b2) There exist an n × n positive Hermitian matrix H and a positive constant C∗∗ such
that

Im ⟨p(ξ;Y ),HY ⟩Cn ≤ −C∗∗⟨ξ⟩2|Y |4

for all (ξ, Y ) ∈ R× Cn.

(b3) p(ξ;Y ) = 0 for all (ξ, Y ) ∈ R× Cn.

We have the following.

Theorem A.1 ([25]). Assume the conditions (a) and (b0) are satisfied. Let φ = (φj)j∈In ∈
H3 ∩ H2,1, and assume ε := ∥φ∥H3 + ∥φ∥H2,1 is sufficiently small. Then (A.1) admits a
unique global solution u = (uj)j∈In ∈ C([0,∞);H3 ∩H2,1). Moreover we have

∥u(t)∥L∞
x
≤ Cε√

1 + t
, ∥u(t)∥L2

x
≤ Cε

for t ≥ 0, where C is a positive constant not depending on ε.

Theorem A.2 ([25], [23]). Assume the conditions (a) and (b1) are satisfied. Let u be the
global solution to (A.1), whose existence is guaranteed by Theorem A.1. Then we have

∥u(t)∥L∞
x
≤ Cε√

(1 + t){1 + ε2 log(2 + t)}

for t ≥ 0, where C is a positive constant not depending on ε. We also have

∥u(t)∥L2
x
≤ Cε

(1 + ε2 log(2 + t))3/8−δ
,

where δ > 0 can be taken arbitrarily small.
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Theorem A.3 ([25]). Assume the conditions (a) and (b2) are satisfied. Let u be as above.
Then we have

∥u(t)∥L2
x
≤ Cε√

1 + ε2 log(2 + t)

for t ≥ 0, where C is a positive constant not depending on ε.

Theorem A.4 ([25]). Assume the conditions (a) and (b3) are satisfied. Let u be as above.
For each j ∈ In, there exists φ+

j ∈ L2(Rx) with φ̂
+
j ∈ L∞(Rξ) such that

uj(t) = e
i t
2mj

∂2
xφ+

j +O(t−1/4+δ) in L2(Rx)

and

uj(t, x) =

√
mj

it
φ̂+
j

(mjx

t

)
ei

mjx
2

2t +O(t−3/4+δ) in L∞(Rx)

as t→ +∞, where δ > 0 can be taken arbitrarily small.

In the system case, many interesting problems are left unsolved. For more recent progress
or related issues, we refer the readers to [9], [12], [11], [13], [16], [26], [27], [34], and so on.
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