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Abstract

Let R = @,~, Ri be a Noetherian commutative non-negatively graded ring such
that (Rp,mg) is a Henselian local ring. Let m be its unique graded maximal ideal
mg + P, Ri. Let T be a module-finite (non-commutative) graded R-algebra. Let
T grmod denote the category of finite graded left T-modules, and M € T grmod.
Then the following are equivalent: (1) M is an indecomposable T—module, where

(/*\) denotes the m-adic completion; (2) My, is an indecomposable Ty-module; (3)
M is an indecomposable T-module; (4) M is indecomposable as a graded T-module.
As a corollary we prove that for two finite graded left T-modules M and N, the
following are equivalent: (1) If M = M} & ---® Mgz and N = Ny @ --- @ N; are
decompositions into indecomposable objects in T grmod, then s = ¢, and there exist
some permutation o € S, and integers dy, ..., ds such that N; & M,;(d;), where
—(d;) denotes the shift of degree; (2) M = N as T-modules; (3) My = Ny as
Tw-modules; (4) M = N as T-modules. As an application, we compare the FFRT
property of rings of characteristic p in the graded sense and in the local sense.

1. Introduction

In many cases, a theory in Noetherian local rings has its graded version or *version.
Moreover, such a graded version often determines the ring-theoretic property of the
graded ring A as a non-graded ring.

We give an easy illustrative example. Let A = €D, be a finitely generated positively
graded (that is, Ag = k) commutative algebra over a field k. Then we can define a
homogeneous system of parameters of A to be a sequence x1,...,xzy4 of homogeneous
elements of positive degrees such that dimy A/(z1,...,24) < oo, and the length of
the sequence d is small as possible among such sequences. It is well-known that a
sequence 1, ..., x, of homogeneous elements of positive degree is a homogeneous system
of parameters if and only if their images in the local ring Ay, is a system of parameters in
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the local sense. In particular, if x1,..., x4 is a homogeneous system of parameters, then
we have d = dim Ay,. What is interesting is dim A = dim Ay, in fact [BH, Section 1.5].
Moreover, there is a homogeneous system of parameters which is a regular sequence if
and only if Ay is Cohen-Macaulay if and only if A is Cohen-Macaulay [MR].

Some important results in this direction can be found in the textbook [BH].

In this paper, we compare the indecomposability of finitely generated module M
over a module-finite algebra over a graded ring along this line, and we get the following.
Namely, we have

Theorem 3.8. Let R = @, R be a Noetherian commutative graded ring such that
(Ro,mg) is Henselian local, Ry = @,;.qRi, m = Ry +mg, and T a Z-graded module-
finite (non-commutative) R-algebra. Let M be a finitely generated graded left T-module.
Then the following are equivalent.

1) M is indecomposable as a T-module, where (/—\) denotes the m-adic completion.

2) My is indecomposable as a Ty-module.
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(1)
(2)
(3) M is indecomposable as a T-module.
(4) M is indecomposable as a graded T-module.

As a corollary, we prove

Corollary 3.9. Let M and N be objects in T grmod, the category of finitely generated
graded left T-modules. Then the following are equivalent.

(1) If M = Mi®---®&M; and N = N1®- - -®N; are decompositions into indecomposable
objects in T grmod, then s = t, and there exist some permutation o € &4 and
integers dy, . ..,ds such that N; = My;(d;), where —(d;) denotes the shift of degree.

(2) M = N as T-modules.
(3) My = Ny as Ty-modules.
(4) M = N as T-modules.

As an application, we prove a comparison theorem for the finite F-representation
type (FFRT for short) property of an F-finite non-negatively graded ring R = @,~ R;
such that (Rg,mg) is an F-finite Henselian local ring of a prime characteristic p in
the graded sense and the FFRT property of the m-adic completion of R, where m =
mg + P, Ri (Corollary 3.10). See Corollary 3.10 for the definition of FFRT. This
property for rings of characteristic p was defined by K. E. Smith and M. Van den Bergh
[SVdB], and has been studied extensively [AK, DQ, HB, HO, Shil, Shi2].
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2. Preliminaries

(2.1) For a ring A, we denote the set of units of A by A*. We say that A is local if
A\ A% is an additive subgroup of A. This is equivalent to say that A # 0, and A\ A*
is closed under addition. If so, A\ A* is the unique maximal left ideal of A. It is also
the unique maximal right ideal of A, and agrees with the radical rad A. Note that A is
local if and only if A/rad A is a division ring, see [L, (19.1)].

(2.2) Let B =@, Bi be a graded ring, and M = @,., M; be a graded left module.
A left graded submodule N is said to be *maximal if IV is a maximal element of the
set {N C M | N is a graded submodule of M and N # M}. The intersection of all the
*maximal graded submodules is denoted by *rad M. If f : M — M’ is a homomorphism
of graded left B-modules, then f(*rad M) C *rad M'. In particular, if b € B;, then
(*rad B)b C *rad(B(i)) = (*rad B)(i), and *rad B is a two-sided ideal.

Lemma 2.3. Let B be as above. Then any nonzero finitely generated left graded module
M has a *mazximal submodule. In particular, M # *rad M.

Proof. Let T' be the set of graded proper submodules of M. As M is nonzero, I is
nonempty. If Q is a non-empty chain of I', then > .o N # M, and ) y.q N € T.
Indeed, if ) oo N = M, then there exists some N that contains all the generators of
M. This implies N = M € Q C I' and this is a contradiction. So by Zorn’s lemma, I"
has a maximal element, and this is what we wanted to prove. ]

Corollary 2.4. Let B be as above, and assume that B # 0. Then B has a left *maximal
ideal. In particular, B # *rad B. ]

Lemma 2.5. Let B be as above, i € Z, and b € B;. Then the following are equivalent.

1) For anyce B_;, 1+cbe By.

2) For anyc€ B_;, 1 +cbe B*.

4) b € *rad B°P, where B°P is the opposite ring of B.

5

(1)
(2)
(3) b€ *rad B.
(4)
(5) For any ce€ B_;, 1 +bce B*.
(6)

6) For any c€ B_;, 1+ bc € By.

Proof. It is obvious that By C By N B*. Conversely, if € By N B* and zy = 1 with
y = > y; (y; € Bj), then zyo = 1, and hence z € BJ. So (1)<(2) and (5)<(6) are
obvious.
If b ¢ *rad B, then b ¢ m for some *maximal left ideal m of B. So B = Bb+m, and
1+ ¢b € m for some ¢ € B_;. Thus we have (2)=-(3). Similarly, (5)=(4) is proved.
(3)=(2). If b € *rad B and ¢ € B_;, then ¢b € (rad B)g. So 1 4 ¢b € By is not
contained in any *maximal ideal of B, and hence B(1 + ¢b) = B. So there exists some



d € By such that d(1 + ¢b) = 1. If d € m for some *maximal ideal m of B, then
d + dcb € m, since dcb € *rad B. This shows that 1 = d(1 + ¢b) € m, which is absurd.
So d € B*, and hence 1+ ¢b € B*.

(3)=(5). As b € *rad B and *rad B is a two-sided ideal, bc € *rad B. So by the
assertion (3)=-(2), which we have already proved, we have that 1 + bc € B*.

(4)=(2) follows from (3)=(5) above, applied to the graded ring B°P. O

Lemma 2.6. Let B be as above. Then the following are equivalent.

1) By is local.
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(1)

(2) B has a unique *mazimal left ideal.

(3) B has a unique *mazimal right ideal.

(4) For eachi € Z, B; \ B* is an additive subgroup of B;.

Proof. (1)=(2). If B = 0, then By = 0, and By is not local. So B # 0, and B has a
*maximal left ideal by Lemma 2.3. If B has two *maximal left ideals m; and ms with
my # mo, then there exists some a1 € my N By and as € mo N By such that a1 + a2 =1,
and By is not local.

(2)=(4). Let m be the unique *maximal left ideal. If b € B; \ B*, then b € Bb C m,
and BZ\B>< = B;Nm.

(4)=-(1). This is trivial.

(1)<(3) follows from (1)<>(2), which already has been proved, applied to B°P. [

(2.7) We say that B is *local if B satisfies the equivalent conditions in Lemma 2.6.

Lemma 2.8 (graded Nakayama’s lemma). Let B be as above, and J = *rad B. If M
is a finitely generated graded left B-module and JM = M, then M = 0.

Proof. For any homogeneous element m of M, x — xm is a graded homomorphism
of left B-modules B — M (—degm), and *rad B is mapped to *rad M by this map.
This shows that JM C *rad M C M. By assumption, we have that *rad M = M. By
Lemma 2.3, we have that M = 0. O

3. Main results

Lemma 3.1. Let (A, m) be a Henselian local ring, and A a module-finite (non-commutative)
A-algebra. Then A is semi-perfect, and the category of finite left A-modules is Krull-
Schmidt.

For Henselian local rings, see [LW, Section A.3] and [M].

Proof. Let V be a simple left A-module. Let A = A/radA. As mA C radA (by
Nakayama’s lemma applied to the finite A-module A), we have that A is a finite-

dimensional A/m-algebra with the trivial radical. So A is semi-simple. As V is a



simple A-module, there exists some idempotent & of A such that V = Ae. By [LW, Theo-
rem A.30], € lifts to an idempotent e of A. Let P = Ae. Then P/JP = (A/J)e = Ae = V.
By Nakayama’s lemma, J P is the unique maximal submodule of P, and hence the canon-
ical surjective map P — P/JP =V is a projective cover by [Kra, Lemma 3.6]. So A
is semi-perfect, and the category of left A-modules is Krull-Schmidt, see [Kra, Proposi-
tion 4.1]. O

(3.2) Let R = @,.(Ri be a Noetherian Zxg-graded commutative ring such that
(Ro,mg) is Henselian local. We set m = R, + mg, where R, = @, R;.

Lemma 3.3. Let M be a finite graded R-module. Then ﬂQl m"'M =0.

Proof. Let N = (),>;m"M. Note that N is a finite graded R-submodule of M. By
Artin—Rees lemma, there exists some ¢ > 1 such that

N=Nnw"M=m(NNm°M) CcmN C N.
AsmN = N, N =0 by graded Nakayama’s lemma. O

Let T' = @,., T be a graded R-algebra which is a finite R-module. Let .J be the
*radical *radT of T'.

Lemma 3.4. J" C mT C J for some r > 1.

Proof. If mT ¢ J, then there exists some *maximal left ideal n of T' such that n+m7T = T.
By graded Nakayama’s lemma, n = 7', and this is absurd. So mT C J.

To prove that J" C mT for some r > 1, we may assume that m = 0. Then T is
a finite-dimensional Ry/mg-algebra. As J" = J"*! for some » > 1, J" = 0 by graded
Nakayama’s lemma again. O

Lemma 3.5. Let e be an idempotent of T, where T is the m-adic completion of T'. If
ee JT =J, then e =0. In particular, if e is an idempotent of T such that e € J, then
e=20.

Proof. By Lemma 3.4, we can take r > 1 such that J” C mT. Soe =¢" € mT. As
e=e" em"l for any n > 1,s0 e € (),~; m"T = 0. Since T'— T is injective, the last
assertion follows immediately. O

Lemma 3.6. If T' is *local, then J = radTy + @, 4L, and T/J = Tp/radTp is a
division ring.

Proof. Replacing T by T'/J, we may assume that J = 0. Then mT C J = 0. Replacing
R by R/m, we may assume that R = Ry is a field concentrated in degree zero. Then
T is a finite-dimensional R-algebra. If i # 0, a € R;, and a is a unit, then R;. # 0 for
r € Z, and R cannot be finite-dimensional. So T; C *radT for ¢ # 0. On the other

hand, we have
(* I‘adT)o = TU \TX = To \ TOX =rad To.

So *radT = rad Ty + @i;&OTi‘ Hence T/*rad T = Ty/rad Ty. As Tj is local, this is a
division ring. O



(3.7) Let Tgrmod denote the category of finitely generated graded left T-modules.
We say that M € T grmod is *indecomposable if it is an indecomposable object of
T grmod. For M € grmodT, the endomorphism ring of M as an object of T grmod
is Fg = (Endp M), the degree zero component of E = Endp M, the endomorphism
ring of M as a (non-graded) T-module. Note that Ej is finite as an Rp-module. As we
assume that Ry is Henselian local, Fjy is semi-perfect, and hence the additive category
T grmod is Krull-Schmidt by Lemma 3.1. In particular, M is *indecomposable if and
only if F is *local, that is, Ejy is local.

Theorem 3.8. Let R = @, Ri be a Noetherian commutative graded ring such that
(Ro, mg) is Henselian local, Ry = @,;.qRi, m = Ry +mg, and T a Z-graded module-
finite (non-commutative) R-algebra. Let M be a finitely generated graded left T-module.
Then the following are equivalent.

—

1) M is indecomposable as a T-module, where (=) denotes the m-adic completion.

2 m 18 indecomposable as a Ty-module.

(1)
(2) M,
(3) M is indecomposable as a T-module.
(4)

4) M 1is indecomposable as a graded T-module.

Proof. (1)=(2). If M = N1 & N> as a Ty, module with Ny # 0 and Na # 0, then taking
the completion, M = Ny ® Ng, and N # 0 and N # 0, and M is not indecomposable.
If My =0, then M = 0, and M is not indecomposable.

(2)=(3). If M = 0, then My, = 0. Assume that there is a decomposition M =
My & Ms with My # 0 and Ms # 0 in the category of T-modules. Let m; and mo be
non-zero elements of M and Ma, respectively. Then it is easy to see that there exists
some r > 1 such that both m; and mgy are nonzero in M/m"M by Lemma 3.3. Then
M;/m"M; # 0 and My/m"Ms # 0. This shows (Mi)m # 0 and (Ma)n # 0. This
contradicts the indecomposability of My, since My = (M1)m © (M2)m.

(3)=(4). Set E = Endr M. Then E # 0, and E does not have a non-trivial idempo-
tent. So Fy # 0, and Ej does not have a non-trivial idempotent. As the endomorphism
ring of M as an object of T grmod is Ey, we have that M is indecomposable as an object
of T grmod.

(4)=(1). Let é be an idempotent of F = End, M. If é € J, then é = 0 by
Lemma 3.5. If 1 —¢é € j, then 1 — é = 0. So if é is nontrivial, then the image of € in
E / J > E, /Jo must be still nontrivial, but this is absurd, since Ey/Jy is a division ring
where there is no nontrivial idempotent. ]

Corollary 3.9. Let M and N be objects in T grmod, the category of finitely generated
graded left T-modules. Then the following are equivalent.

(1) If M = M1®---®Ms and N = N1®- - -®&N; are decompositions into indecomposable
objects in T grmod, then s = t, and there exists some permutation o € G5 and
integers dy, . ..,ds such that N; = My;(d;), where —(d;) denotes the shift of degree.



(2) M = N as T-modules.
(3) My = Ny as Tyy-modules.
(4) M = N as T-modules.

Proof. (1)=(2)=(3)=(4) is trivial. We prove (4)=(1). As R is a Noetherian complete
local ring and T is its module-finite algebra, the category of finite T-modules is Krull-
Schmidt. As M = Ml @D Ms and N = Nl @D Nt are decompositions into
indecomposable T-modules by Theorem 3.8, we have that s = ¢, and after change of
indices (if necessary), there are isomorphisms M; = N; for i = 1,...,5. So we may
assume that s =t = 1.

Let QB : M — N be a T—isomorphism, and let 1& : N = M be its inverse. We
can write gz§ =Y ,a;¢; and 1[1 = Zj I;jwj with ¢; € Homp(M,N)y,, wi € Z, a; € R,
; € Homp(N,M),,, v; € Z, and b; € R. So 1y, = ¢ = 3, dsbjrdi. As 1y ¢ J,
there exists some (4,j) such that ;¢; ¢ J, where J = *radEndr M. As v¢;¢; is a
homogeneous element of £ = Endr M, which is *local, we have that 1);¢; is a unit of E.
In particular, v; is a split epimorphism. As N is also indecomposable, we have that ; is
a T-isomorphism. So we have that ¢; : N — M (v;) is an isomorphism in 7 grmod. O

Corollary 3.10. Let R = @, R; be a Noetherian Z>o-graded commutative ring such
that (Ro,mg) is an F-finite Henselian local ring of prime characteristic p. Let m =
mg + R4, where Ry = ®i>0 R;. Let R be the m-adic completion of R. Let My,..., M,
be finitely generated Q-graded R-modules. Then the following are equivalent.

(1) R has finite F-representation type (FFRT for short) in the graded sense with
My, ..., M,. That is,
(1-a) For each i, M; is indecomposable;

(1-b) For each i, there exists some e > 0 and ¢ € Q such that M;(c) is a direct
summand of °R;

(1-c) For each e > 0, any indecomposable direct summand of R is isomorphic to
M;(c) for some 1 <1i<r andc€ Q.

(2) The local ring R has FFRT with My, ..., M,. That is,

(2-a) For each i, M; is indecomposable;
(2-b) For each i, there exists some e > 0 such that M; is a direct summand of ¢R;

(2-c) For each e > 0, any indecomposable direct summand of ‘R is isomorphic to
M; for some 1 <i<r.

In particular, R has FFRT in the graded sense if and only if R has FFRT.

Proof. By Theorem 3.8, (1-a) and (2-a) are equivalent.



Note that for each e,

“R = 1im“(R/m") = lim “R/*(m") = lim “R/*((m™)""]) = lim “R/(m")° R = °R,
where m[P'] is the ideal of R generated by {a?" | a € m}. )

(1-a)=(2-a). If M;(c) is a direct summand of °R, then M; is a direct summand of
‘R="°R. ) )

(2-a)=-(1-a). Assume that M; is a direct summand of °R. If we have a decomposition
(1) ‘REN1 @ & Ny,
where each N; is an indecomposable Q-graded R-modules, then

(2) ‘ReCR=N,@---@N,.

This is the decomposition into indecomposable modules by Theorem 3.8. So by the
Krull-Schmidt property of the category of R-modules, M; = Nj for some j. By Corol-
lary 3.9, N; = M;(c) for some c € Q.

(1-¢)=(2-c). Let N be a direct summand of ¢R. By assumption, there is a decompo-
sition (1) such that each Nj is isomorphic to M;;(c;) for some 1 <i(j) <7 and ¢; € Q.
Then the isomorphism (2) holds, and by the Krull-Schmidt property, N~ N MZ(])

(2-¢)=(1-c). Let L be a direct summand of *R. Then L is a direct summand of ®R.
So L = M; for some i. Hence by Corollary 3.9, L = M;(c) for some ¢ € Q.

We prove the last assertion. The ‘only if” part is clear from what we have proved
above. We prove the ‘if’ part. Let R have FFRT with the finite indecomposable R-
modules f/l, ..., Ly. So for each i, L; is a direct summand of ¢R for some e. Now let (1)
be the decomposition of ¢ R into indecomposable Q-graded R-modules. Then we have an
isomorphism (2), which is a decomposition into indecomposables by Theorem 3.8. By
the Krull-Schmidt, L; = N for some J- In particular, there is a finite indecomposable
Q-graded module M; such that M; =~ L;. By what we have proved above, R has FFRT
with Mi,..., M, in the graded sense, as required. ]
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