Indecomposability of graded modules over a graded ring

MITSUYASU HASHIMOTO* YUNTIAN YANG

Abstract

Let $R = \bigoplus_{i \geq 0} R_i$ be a Noetherian commutative non-negatively graded ring such that (R_0, \mathfrak{m}_0) is a Henselian local ring. Let \mathfrak{m} be its unique graded maximal ideal $\mathfrak{m}_0 + \bigoplus_{i > 0} R_i$. Let T be a module-finite (non-commutative) graded R-algebra. Let T grmod denote the category of finite graded left T-modules, and $M \in T$ grmod. Then the following are equivalent: (1) \hat{M} is an indecomposable \hat{T} -module, where $\widehat{(-)}$ denotes the \mathfrak{m} -adic completion; (2) $M_{\mathfrak{m}}$ is an indecomposable $T_{\mathfrak{m}}$ -module; (3) M is an indecomposable T-module; (4) M is indecomposable as a graded T-module. As a corollary we prove that for two finite graded left T-modules M and N, the following are equivalent: (1) If $M = M_1 \oplus \cdots \oplus M_s$ and $N = N_1 \oplus \cdots \oplus N_t$ are decompositions into indecomposable objects in T grmod, then s = t, and there exist some permutation $\sigma \in \mathfrak{S}_s$ and integers d_1, \ldots, d_s such that $N_i \cong M_{\sigma i}(d_i)$, where $-(d_i)$ denotes the shift of degree; (2) $M \cong N$ as T-modules; (3) $M_{\mathfrak{m}} \cong N_{\mathfrak{m}}$ as $T_{\mathfrak{m}}$ -modules; (4) $\hat{M} \cong \hat{N}$ as \hat{T} -modules. As an application, we compare the FFRT property of rings of characteristic p in the graded sense and in the local sense.

1. Introduction

In many cases, a theory in Noetherian local rings has its graded version or *version. Moreover, such a graded version often determines the ring-theoretic property of the graded ring A as a non-graded ring.

We give an easy illustrative example. Let $A = \bigoplus_{i \geq 0}$ be a finitely generated positively graded (that is, $A_0 = k$) commutative algebra over a field k. Then we can define a homogeneous system of parameters of A to be a sequence x_1, \ldots, x_d of homogeneous elements of positive degrees such that $\dim_k A/(x_1, \ldots, x_d) < \infty$, and the length of the sequence d is small as possible among such sequences. It is well-known that a sequence x_1, \ldots, x_r of homogeneous elements of positive degree is a homogeneous system of parameters if and only if their images in the local ring $A_{\mathfrak{m}}$ is a system of parameters in

^{*}Partially supported by JSPS KAKENHI Grant number 20K03538 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0619217849.

²⁰²⁰ Mathematics Subject Classification. Primary 16W50; Secondary 13A02. Key Words and Phrases. graded ring, indecomposable module

the local sense. In particular, if x_1, \ldots, x_d is a homogeneous system of parameters, then we have $d = \dim A_{\mathfrak{m}}$. What is interesting is $\dim A = \dim A_{\mathfrak{m}}$ in fact [BH, Section 1.5]. Moreover, there is a homogeneous system of parameters which is a regular sequence if and only if $A_{\mathfrak{m}}$ is Cohen–Macaulay if and only if A is Cohen–Macaulay [MR].

Some important results in this direction can be found in the textbook [BH].

In this paper, we compare the indecomposability of finitely generated module M over a module-finite algebra over a graded ring along this line, and we get the following. Namely, we have

Theorem 3.8. Let $R = \bigoplus_{i \geq 0} R_i$ be a Noetherian commutative graded ring such that (R_0, \mathfrak{m}_0) is Henselian local, $R_+ = \bigoplus_{i \geq 0} R_i$, $\mathfrak{m} = R_+ + \mathfrak{m}_0$, and T a \mathbb{Z} -graded module-finite (non-commutative) R-algebra. Let M be a finitely generated graded left T-module. Then the following are equivalent.

- (1) \hat{M} is indecomposable as a \hat{T} -module, where $\widehat{(-)}$ denotes the \mathfrak{m} -adic completion.
- (2) $M_{\mathfrak{m}}$ is indecomposable as a $T_{\mathfrak{m}}$ -module.
- (3) M is indecomposable as a T-module.
- (4) M is indecomposable as a graded T-module.

As a corollary, we prove

Corollary 3.9. Let M and N be objects in T grmod, the category of finitely generated graded left T-modules. Then the following are equivalent.

- (1) If $M = M_1 \oplus \cdots \oplus M_s$ and $N = N_1 \oplus \cdots \oplus N_t$ are decompositions into indecomposable objects in T grmod, then s = t, and there exist some permutation $\sigma \in \mathfrak{S}_s$ and integers d_1, \ldots, d_s such that $N_i \cong M_{\sigma i}(d_i)$, where $-(d_i)$ denotes the shift of degree.
- (2) $M \cong N$ as T-modules.
- (3) $M_{\mathfrak{m}} \cong N_{\mathfrak{m}}$ as $T_{\mathfrak{m}}$ -modules.
- (4) $\hat{M} \cong \hat{N}$ as \hat{T} -modules.

As an application, we prove a comparison theorem for the finite F-representation type (FFRT for short) property of an F-finite non-negatively graded ring $R = \bigoplus_{i\geq 0} R_i$ such that (R_0, \mathfrak{m}_0) is an F-finite Henselian local ring of a prime characteristic p in the graded sense and the FFRT property of the \mathfrak{m} -adic completion of R, where $\mathfrak{m} = \mathfrak{m}_0 + \bigoplus_{i>0} R_i$ (Corollary 3.10). See Corollary 3.10 for the definition of FFRT. This property for rings of characteristic p was defined by K. E. Smith and M. Van den Bergh [SVdB], and has been studied extensively [AK, DQ, HB, HO, Shi1, Shi2].

Acknowledgment. The essential part of this joint work was done in 2019, and is recorded as [Y]. In [Y], Theorem 3.8 and Corollary 3.9 for the case that R = T was proved. The authors are grateful to Professor Osamu Iyama for valuable discussions.

2. Preliminaries

- (2.1) For a ring A, we denote the set of units of A by A^{\times} . We say that A is *local* if $A \setminus A^{\times}$ is an additive subgroup of A. This is equivalent to say that $A \neq 0$, and $A \setminus A^{\times}$ is closed under addition. If so, $A \setminus A^{\times}$ is the unique maximal left ideal of A. It is also the unique maximal right ideal of A, and agrees with the radical rad A. Note that A is local if and only if $A/\operatorname{rad} A$ is a division ring, see [L, (19.1)].
- (2.2) Let $B = \bigoplus_{i \in \mathbb{Z}} B_i$ be a graded ring, and $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a graded left module. A left graded submodule N is said to be *maximal if N is a maximal element of the set $\{N \subset M \mid N \text{ is a graded submodule of } M \text{ and } N \neq M\}$. The intersection of all the *maximal graded submodules is denoted by *rad M. If $f: M \to M'$ is a homomorphism of graded left B-modules, then $f(\text{*rad }M) \subset \text{*rad }M'$. In particular, if $b \in B_i$, then $(\text{*rad }B)b \subset \text{*rad}(B(i)) = (\text{*rad }B)(i)$, and *rad B is a two-sided ideal.

Lemma 2.3. Let B be as above. Then any nonzero finitely generated left graded module M has a *maximal submodule. In particular, $M \neq * \operatorname{rad} M$.

Proof. Let Γ be the set of graded proper submodules of M. As M is nonzero, Γ is nonempty. If Ω is a non-empty chain of Γ , then $\sum_{N\in\Omega} N \neq M$, and $\sum_{N\in\Omega} N \in \Gamma$. Indeed, if $\sum_{N\in\Omega} N = M$, then there exists some N that contains all the generators of M. This implies $N = M \in \Omega \subset \Gamma$ and this is a contradiction. So by Zorn's lemma, Γ has a maximal element, and this is what we wanted to prove.

Corollary 2.4. Let B be as above, and assume that $B \neq 0$. Then B has a left *maximal ideal. In particular, $B \neq * \operatorname{rad} B$.

Lemma 2.5. Let B be as above, $i \in \mathbb{Z}$, and $b \in B_i$. Then the following are equivalent.

- (1) For any $c \in B_{-i}$, $1 + cb \in B_0^{\times}$.
- (2) For any $c \in B_{-i}$, $1 + cb \in B^{\times}$.
- (3) $b \in {}^* \operatorname{rad} B$.
- (4) $b \in {}^* \operatorname{rad} B^{\operatorname{op}}$, where B^{op} is the opposite ring of B.
- (5) For any $c \in B_{-i}$, $1 + bc \in B^{\times}$.
- (6) For any $c \in B_{-i}$, $1 + bc \in B_0^{\times}$.

Proof. It is obvious that $B_0^{\times} \subset B_0 \cap B^{\times}$. Conversely, if $x \in B_0 \cap B^{\times}$ and xy = 1 with $y = \sum y_j \ (y_j \in B_j)$, then $xy_0 = 1$, and hence $x \in B_0^{\times}$. So $(1) \Leftrightarrow (2)$ and $(5) \Leftrightarrow (6)$ are obvious.

If $b \notin {}^* \operatorname{rad} B$, then $b \notin \mathfrak{m}$ for some ${}^* \operatorname{maximal}$ left ideal \mathfrak{m} of B. So $B = Bb + \mathfrak{m}$, and $1 + cb \in \mathfrak{m}$ for some $c \in B_{-i}$. Thus we have $(2) \Rightarrow (3)$. Similarly, $(5) \Rightarrow (4)$ is proved.

 $(3)\Rightarrow(2)$. If $b \in {}^*\operatorname{rad} B$ and $c \in B_{-i}$, then $cb \in (\operatorname{rad} B)_0$. So $1 + cb \in B_0$ is not contained in any ${}^*\operatorname{maximal}$ ideal of B, and hence B(1 + cb) = B. So there exists some

 $d \in B_0$ such that d(1+cb) = 1. If $d \in \mathfrak{m}$ for some *maximal ideal \mathfrak{m} of B, then $d + dcb \in \mathfrak{m}$, since $dcb \in *$ rad B. This shows that $1 = d(1+cb) \in \mathfrak{m}$, which is absurd. So $d \in B^{\times}$, and hence $1 + cb \in B^{\times}$.

 $(3)\Rightarrow(5)$. As $b \in {}^*\operatorname{rad} B$ and ${}^*\operatorname{rad} B$ is a two-sided ideal, $bc \in {}^*\operatorname{rad} B$. So by the assertion $(3)\Rightarrow(2)$, which we have already proved, we have that $1+bc \in B^{\times}$.

 $(4)\Rightarrow(2)$ follows from $(3)\Rightarrow(5)$ above, applied to the graded ring B^{op} .

Lemma 2.6. Let B be as above. Then the following are equivalent.

- (1) B_0 is local.
- (2) B has a unique *maximal left ideal.
- (3) B has a unique *maximal right ideal.
- (4) For each $i \in \mathbb{Z}$, $B_i \setminus B^{\times}$ is an additive subgroup of B_i .

Proof. (1) \Rightarrow (2). If B=0, then $B_0=0$, and B_0 is not local. So $B\neq 0$, and B has a *maximal left ideal by Lemma 2.3. If B has two *maximal left ideals \mathfrak{m}_1 and \mathfrak{m}_2 with $\mathfrak{m}_1\neq \mathfrak{m}_2$, then there exists some $a_1\in \mathfrak{m}_1\cap B_0$ and $a_2\in \mathfrak{m}_2\cap B_0$ such that $a_1+a_2=1$, and B_0 is not local.

- $(2)\Rightarrow (4)$. Let \mathfrak{m} be the unique *maximal left ideal. If $b\in B_i\setminus B^{\times}$, then $b\in Bb\subset \mathfrak{m}$, and $B_i\setminus B^{\times}=B_i\cap \mathfrak{m}$.
 - $(4) \Rightarrow (1)$. This is trivial.
 - $(1)\Leftrightarrow(3)$ follows from $(1)\Leftrightarrow(2)$, which already has been proved, applied to B^{op} . \square
- (2.7) We say that B is *local if B satisfies the equivalent conditions in Lemma 2.6.

Lemma 2.8 (graded Nakayama's lemma). Let B be as above, and $J = {}^*\operatorname{rad} B$. If M is a finitely generated graded left B-module and JM = M, then M = 0.

Proof. For any homogeneous element m of M, $x \mapsto xm$ is a graded homomorphism of left B-modules $B \to M(-\deg m)$, and *rad B is mapped to *rad M by this map. This shows that $JM \subset *$ rad $M \subset M$. By assumption, we have that *rad M = M. By Lemma 2.3, we have that M = 0.

3. Main results

Lemma 3.1. Let (A, \mathfrak{m}) be a Henselian local ring, and Λ a module-finite (non-commutative) A-algebra. Then Λ is semi-perfect, and the category of finite left Λ -modules is Krull-Schmidt.

For Henselian local rings, see [LW, Section A.3] and [M].

Proof. Let V be a simple left Λ -module. Let $\bar{\Lambda} = \Lambda/\operatorname{rad}\Lambda$. As $\mathfrak{m}\Lambda \subset \operatorname{rad}\Lambda$ (by Nakayama's lemma applied to the finite A-module Λ), we have that $\bar{\Lambda}$ is a finite-dimensional A/\mathfrak{m} -algebra with the trivial radical. So $\bar{\Lambda}$ is semi-simple. As V is a

simple $\bar{\Lambda}$ -module, there exists some idempotent \bar{e} of $\bar{\Lambda}$ such that $V=\bar{\Lambda}\bar{e}$. By [LW, Theorem A.30], \bar{e} lifts to an idempotent e of Λ . Let $P=\Lambda e$. Then $P/JP=(\Lambda/J)e=\bar{\Lambda}\bar{e}=V$. By Nakayama's lemma, JP is the unique maximal submodule of P, and hence the canonical surjective map $P\to P/JP\cong V$ is a projective cover by [Kra, Lemma 3.6]. So Λ is semi-perfect, and the category of left Λ -modules is Krull–Schmidt, see [Kra, Proposition 4.1].

(3.2) Let $R = \bigoplus_{i>0} R_i$ be a Noetherian $\mathbb{Z}_{\geq 0}$ -graded commutative ring such that (R_0, \mathfrak{m}_0) is Henselian local. We set $\mathfrak{m} = R_+ + \mathfrak{m}_0$, where $R_+ = \bigoplus_{i>0} R_i$.

Lemma 3.3. Let M be a finite graded R-module. Then $\bigcap_{r>1} \mathfrak{m}^r M = 0$.

Proof. Let $N = \bigcap_{r \geq 1} \mathfrak{m}^r M$. Note that N is a finite graded R-submodule of M. By Artin–Rees lemma, there exists some $c \geq 1$ such that

$$N = N \cap \mathfrak{m}^{c+1}M = \mathfrak{m}(N \cap \mathfrak{m}^c M) \subset \mathfrak{m}N \subset N.$$

As $\mathfrak{m}N = N$, N = 0 by graded Nakayama's lemma.

Let $T = \bigoplus_{i \in \mathbb{Z}} T_i$ be a graded R-algebra which is a finite R-module. Let J be the *radical * rad T of T.

Lemma 3.4. $J^r \subset \mathfrak{m}T \subset J$ for some $r \geq 1$.

Proof. If $\mathfrak{m}T \not\subset J$, then there exists some *maximal left ideal \mathfrak{n} of T such that $\mathfrak{n}+\mathfrak{m}T=T$. By graded Nakayama's lemma, $\mathfrak{n}=T$, and this is absurd. So $\mathfrak{m}T\subset J$.

To prove that $J^r \subset \mathfrak{m}T$ for some $r \geq 1$, we may assume that $\mathfrak{m} = 0$. Then T is a finite-dimensional R_0/\mathfrak{m}_0 -algebra. As $J^r = J^{r+1}$ for some $r \geq 1$, $J^r = 0$ by graded Nakayama's lemma again.

Lemma 3.5. Let e be an idempotent of \hat{T} , where \hat{T} is the \mathfrak{m} -adic completion of T. If $e \in J\hat{T} = \hat{J}$, then e = 0. In particular, if e is an idempotent of T such that $e \in J$, then e = 0.

Proof. By Lemma 3.4, we can take $r \geq 1$ such that $J^r \subset \mathfrak{m}T$. So $e = e^r \in \mathfrak{m}\hat{T}$. As $e = e^n \in \mathfrak{m}^n\hat{T}$ for any $n \geq 1$, so $e \in \bigcap_{n \geq 1} \mathfrak{m}^n\hat{T} = 0$. Since $T \to \hat{T}$ is injective, the last assertion follows immediately.

Lemma 3.6. If T is *local, then $J = \operatorname{rad} T_0 + \bigoplus_{i \neq 0} T_i$, and $T/J \cong T_0/\operatorname{rad} T_0$ is a division ring.

Proof. Replacing T by T/J, we may assume that J=0. Then $\mathfrak{m}T\subset J=0$. Replacing R by R/\mathfrak{m} , we may assume that $R=R_0$ is a field concentrated in degree zero. Then T is a finite-dimensional R-algebra. If $i\neq 0$, $a\in R_i$, and a is a unit, then $R_{ir}\neq 0$ for $r\in \mathbb{Z}$, and R cannot be finite-dimensional. So $T_i\subset {}^*\operatorname{rad} T$ for $i\neq 0$. On the other hand, we have

$$(* \operatorname{rad} T)_0 = T_0 \setminus T^{\times} = T_0 \setminus T_0^{\times} = \operatorname{rad} T_0.$$

So * rad $T = \operatorname{rad} T_0 + \bigoplus_{i \neq 0} T_i$. Hence $T/^* \operatorname{rad} T \cong T_0/\operatorname{rad} T_0$. As T_0 is local, this is a division ring.

(3.7) Let T grmod denote the category of finitely generated graded left T-modules. We say that $M \in T$ grmod is *indecomposable if it is an indecomposable object of T grmod. For $M \in \operatorname{grmod} T$, the endomorphism ring of M as an object of T grmod is $E_0 = (\operatorname{End}_T M)_0$, the degree zero component of $E = \operatorname{End}_T M$, the endomorphism ring of M as a (non-graded) T-module. Note that E_0 is finite as an R_0 -module. As we assume that R_0 is Henselian local, E_0 is semi-perfect, and hence the additive category T grmod is Krull-Schmidt by Lemma 3.1. In particular, M is *indecomposable if and only if E is *local, that is, E_0 is local.

Theorem 3.8. Let $R = \bigoplus_{i \geq 0} R_i$ be a Noetherian commutative graded ring such that (R_0, \mathfrak{m}_0) is Henselian local, $R_+ = \bigoplus_{i \geq 0} R_i$, $\mathfrak{m} = R_+ + \mathfrak{m}_0$, and T a \mathbb{Z} -graded module-finite (non-commutative) R-algebra. Let M be a finitely generated graded left T-module. Then the following are equivalent.

- (1) \hat{M} is indecomposable as a \hat{T} -module, where $\widehat{(-)}$ denotes the \mathfrak{m} -adic completion.
- (2) $M_{\mathfrak{m}}$ is indecomposable as a $T_{\mathfrak{m}}$ -module.
- (3) M is indecomposable as a T-module.
- (4) M is indecomposable as a graded T-module.

Proof. (1) \Rightarrow (2). If $M_{\mathfrak{m}} \cong N_1 \oplus N_2$ as a $T_{\mathfrak{m}}$ module with $N_1 \neq 0$ and $N_2 \neq 0$, then taking the completion, $\hat{M} \cong \hat{N}_1 \oplus \hat{N}_2$, and $\hat{N}_1 \neq 0$ and $\hat{N}_2 \neq 0$, and \hat{M} is not indecomposable. If $M_{\mathfrak{m}} = 0$, then $\hat{M} = 0$, and \hat{M} is not indecomposable.

- $(2)\Rightarrow(3)$. If M=0, then $M_{\mathfrak{m}}=0$. Assume that there is a decomposition $M=M_1\oplus M_2$ with $M_1\neq 0$ and $M_2\neq 0$ in the category of T-modules. Let m_1 and m_2 be non-zero elements of M_1 and M_2 , respectively. Then it is easy to see that there exists some $r\geq 1$ such that both m_1 and m_2 are nonzero in M/\mathfrak{m}^rM by Lemma 3.3. Then $M_1/\mathfrak{m}^rM_1\neq 0$ and $M_2/\mathfrak{m}^rM_2\neq 0$. This shows $(M_1)_{\mathfrak{m}}\neq 0$ and $(M_2)_{\mathfrak{m}}\neq 0$. This contradicts the indecomposability of $M_{\mathfrak{m}}$, since $M_{\mathfrak{m}}=(M_1)_{\mathfrak{m}}\oplus (M_2)_{\mathfrak{m}}$.
- $(3)\Rightarrow (4)$. Set $E=\operatorname{End}_T M$. Then $E\neq 0$, and E does not have a non-trivial idempotent. So $E_0\neq 0$, and E_0 does not have a non-trivial idempotent. As the endomorphism ring of M as an object of T grmod is E_0 , we have that M is indecomposable as an object of T grmod.
- $(4)\Rightarrow(1)$. Let \hat{e} be an idempotent of $\hat{E}=\operatorname{End}_{\hat{T}}\hat{M}$. If $\hat{e}\in\hat{J}$, then $\hat{e}=0$ by Lemma 3.5. If $1-\hat{e}\in\hat{J}$, then $1-\hat{e}=0$. So if \hat{e} is nontrivial, then the image of \hat{e} in $\hat{E}/\hat{J}\cong E_0/J_0$ must be still nontrivial, but this is absurd, since E_0/J_0 is a division ring where there is no nontrivial idempotent.

Corollary 3.9. Let M and N be objects in T grmod, the category of finitely generated graded left T-modules. Then the following are equivalent.

(1) If $M = M_1 \oplus \cdots \oplus M_s$ and $N = N_1 \oplus \cdots \oplus N_t$ are decompositions into indecomposable objects in T grmod, then s = t, and there exists some permutation $\sigma \in \mathfrak{S}_s$ and integers d_1, \ldots, d_s such that $N_i \cong M_{\sigma i}(d_i)$, where $-(d_i)$ denotes the shift of degree.

- (2) $M \cong N$ as T-modules.
- (3) $M_{\mathfrak{m}} \cong N_{\mathfrak{m}}$ as $T_{\mathfrak{m}}$ -modules.
- (4) $\hat{M} \cong \hat{N}$ as \hat{T} -modules.

Proof. $(1)\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)$ is trivial. We prove $(4)\Rightarrow(1)$. As \hat{R} is a Noetherian complete local ring and \hat{T} is its module-finite algebra, the category of finite \hat{T} -modules is Krull–Schmidt. As $\hat{M}=\hat{M}_1\oplus\cdots\oplus\hat{M}_s$ and $\hat{N}=\hat{N}_1\oplus\cdots\oplus\hat{N}_t$ are decompositions into indecomposable \hat{T} -modules by Theorem 3.8, we have that s=t, and after change of indices (if necessary), there are isomorphisms $\hat{M}_i\cong\hat{N}_i$ for $i=1,\ldots,s$. So we may assume that s=t=1.

Let $\hat{\phi}: \hat{M} \to \hat{N}$ be a \hat{T} -isomorphism, and let $\hat{\psi}: \hat{N} \to \hat{M}$ be its inverse. We can write $\hat{\phi} = \sum_i \hat{a}_i \phi_i$ and $\hat{\psi} = \sum_j \hat{b}_j \psi_j$ with $\phi_i \in \operatorname{Hom}_T(M, N)_{u_i}, \ u_i \in \mathbb{Z}, \ \hat{a}_i \in \hat{R}, \ \psi_j \in \operatorname{Hom}_T(N, M)_{v_j}, \ v_j \in \mathbb{Z}, \ \text{and} \ \hat{b}_j \in \hat{R}.$ So $1_{\hat{M}} = \hat{\psi}\hat{\phi} = \sum_{ij} \hat{a}_i \hat{b}_j \psi_j \phi_i$. As $1_{\hat{M}} \notin \hat{J}$, there exists some (i, j) such that $\psi_j \phi_i \notin J$, where $J = {}^*\operatorname{rad} \operatorname{End}_T M$. As $\psi_j \phi_i$ is a homogeneous element of $E = \operatorname{End}_T M$, which is ${}^*\operatorname{local}$, we have that $\psi_j \phi_i$ is a unit of E. In particular, ψ_j is a split epimorphism. As N is also indecomposable, we have that ψ_j is a T-isomorphism. So we have that $\psi_j: N \to M(v_j)$ is an isomorphism in T grmod. \square

Corollary 3.10. Let $R = \bigoplus_{i \geq 0} R_i$ be a Noetherian $\mathbb{Z}_{\geq 0}$ -graded commutative ring such that (R_0, \mathfrak{m}_0) is an F-finite Henselian local ring of prime characteristic p. Let $\mathfrak{m} = \mathfrak{m}_0 + R_+$, where $R_+ = \bigoplus_{i \geq 0} R_i$. Let \hat{R} be the \mathfrak{m} -adic completion of R. Let M_1, \ldots, M_r be finitely generated \mathbb{Q} -graded R-modules. Then the following are equivalent.

- (1) R has finite F-representation type (FFRT for short) in the graded sense with M_1, \ldots, M_r . That is,
 - (1-a) For each i, M_i is indecomposable;
 - (1-b) For each i, there exists some $e \geq 0$ and $c \in \mathbb{Q}$ such that $M_i(c)$ is a direct summand of eR;
 - (1-c) For each $e \geq 0$, any indecomposable direct summand of eR is isomorphic to $M_i(c)$ for some $1 \leq i \leq r$ and $c \in \mathbb{Q}$.
- (2) The local ring \hat{R} has FFRT with $\hat{M}_1, \dots, \hat{M}_r$. That is,
 - (2-a) For each i, \hat{M}_i is indecomposable;
 - (2-b) For each i, there exists some $e \geq 0$ such that \hat{M}_i is a direct summand of $e\hat{R}$;
 - (2-c) For each $e \geq 0$, any indecomposable direct summand of $e\hat{R}$ is isomorphic to \hat{M}_i for some $1 \leq i \leq r$.

In particular, R has FFRT in the graded sense if and only if \hat{R} has FFRT.

Proof. By Theorem 3.8, (1-a) and (2-a) are equivalent.

Note that for each e,

$${}^e\hat{R}\cong \varliminf^e(R/\mathfrak{m}^n)=\varliminf^eR/{}^e(\mathfrak{m}^n)=\varliminf^eR/{}^e((\mathfrak{m}^n)^{[p^e]})=\varliminf^eR/(\mathfrak{m}^n)^eR=\widehat{{}^eR},$$

where $\mathfrak{m}^{[p^r]}$ is the ideal of R generated by $\{a^{p^r} \mid a \in \mathfrak{m}\}.$

 $(1-a)\Rightarrow (2-a)$. If $M_i(c)$ is a direct summand of eR , then \hat{M}_i is a direct summand of ${}^e\widehat{R}={}^e\hat{R}$.

 $(2-a)\Rightarrow (1-a)$. Assume that \hat{M}_i is a direct summand of \hat{R} . If we have a decomposition

(1)
$${}^{e}R \cong N_{1} \oplus \cdots \oplus N_{r},$$

where each N_j is an indecomposable \mathbb{Q} -graded R-modules, then

(2)
$${}^{e}\hat{R} \cong \widehat{{}^{e}R} \cong \hat{N}_{1} \oplus \cdots \oplus \hat{N}_{r}.$$

This is the decomposition into indecomposable modules by Theorem 3.8. So by the Krull-Schmidt property of the category of \hat{R} -modules, $\hat{M}_i \cong \hat{N}_j$ for some j. By Corollary 3.9, $N_j \cong M_i(c)$ for some $c \in \mathbb{Q}$.

 $(1-c)\Rightarrow (2-c)$. Let \hat{N} be a direct summand of ${}^e\hat{R}$. By assumption, there is a decomposition (1) such that each N_j is isomorphic to $M_{i(j)}(c_j)$ for some $1 \leq i(j) \leq r$ and $c_j \in \mathbb{Q}$. Then the isomorphism (2) holds, and by the Krull-Schmidt property, $\hat{N} \cong \hat{N}_j \cong \hat{M}_{i(j)}$.

 $(2-c)\Rightarrow(1-c)$. Let L be a direct summand of eR . Then \hat{L} is a direct summand of ${}^e\hat{R}$. So $\hat{L}\cong \hat{M}_i$ for some i. Hence by Corollary 3.9, $L\cong M_i(c)$ for some $c\in\mathbb{Q}$.

We prove the last assertion. The 'only if' part is clear from what we have proved above. We prove the 'if' part. Let \hat{R} have FFRT with the finite indecomposable \hat{R} -modules $\hat{L}_1, \ldots, \hat{L}_r$. So for each i, \hat{L}_i is a direct summand of ${}^e\hat{R}$ for some e. Now let (1) be the decomposition of eR into indecomposable \mathbb{Q} -graded R-modules. Then we have an isomorphism (2), which is a decomposition into indecomposables by Theorem 3.8. By the Krull-Schmidt, $\hat{L}_i \cong \hat{N}_j$ for some j. In particular, there is a finite indecomposable \mathbb{Q} -graded module M_i such that $\hat{M}_i \cong \hat{L}_i$. By what we have proved above, R has FFRT with M_1, \ldots, M_r in the graded sense, as required.

References

- [AK] K. Alhazmy and M. Katzman, FFRT properties of hypersurfaces and their F-signatures, J. Algebra 18 (2019), 1950215, 15 pp.
- [BH] W. Bruns and J. Herzog, Cohen-Macaulay Rings. 2nd ed., Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1998.
- [DQ] H. Dao and P. H. Quy, On the associated primes of local cohomology, *Nagoya Math. J.* **237** (2020), 1–9.
- [HO] N. Hara and R. Ohkawa, The FFRT property of two-dimensional normal graded rings and orbifold curves, *Adv. Math.* **30** (2020), 107215, 37 pp.

- [HB] M. Hochster and L. Núñez-Betancourt, Support of local cohomology modules over hypersurfaces and rings with FFRT, *Math. Res. Lett.* **24** (2017), 401–420.
- [Kra] H. Krause, Krull–Schmidt categories and projective covers, *Expo. Math.* **33** (2015), 535–549.
- [L] T. Y. Lam, A First Course in Noncommutative Rings, Springer, 1991.
- [LW] G. J. Leuschke and R. Wiegand, Cohen-Macaulay Representations, Mathematical Surveys and Monographs 181, AMS, 2012.
- [MR] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen–Macaulay rings, J. Math. Kyoto Univ. 14 (1974), 125–128.
- [M] J. S. Milne, Étale cohomology, Princeton University Press, 1980.
- [Shi1] T. Shibuta, One-dimensional rings of finite F-representation type, J. Algebra **332** (2011), 434–441.
- [Shi2] T. Shibuta, Affine semigroup rings are of finite F-representation type, Comm. Algebra 45 (2017), 5465–5470.
- [SVdB] K. E. Smith and M. Van den Bergh, Simplicity of rings of differential operatiors in prime characteristic, *Proc. London Math. Soc.* (3) **75** (1997), 32–62.
- [Y] Y. Yang, Jisuutsuki kagunno doukeito chokkiyakuseini tsuite (in Japanese, Isomorphisms and indecomposability of graded modules), Master Thesis, Okayama University, 2020.

Mitsuyasu Hashimoto Department of Mathematics Osaka Metropolitan University Sumiyoshi-ku, Osaka 558-8585, JAPAN e-mail: mh7@omu.ac.jp

Yuntian Yang Saitama, JAPAN

e-mail: yyt0317@hotmail.co.jp