Hochster-Eagon type theorem for Serre's (S_n) condition

Mitsuyasu HASHIMOTO*

Abstract

Let $(A, \mathfrak{m}) \to (B, \mathfrak{n})$ be a pure homomorphism between Noetherian commutative rings. If $B/\mathfrak{m}B$ is an Artinian ring, then we have dim $A = \dim B$ and depth $A \ge depth B$. Using this version of Hochster-Eagon theorem, we prove the following. Let $A \to B$ be a pure homomorphism between Noetherian commutative rings. Assume that the fiber ring $\kappa(\mathfrak{p}) \otimes_A B$ is Artinian for each $\mathfrak{p} \in \operatorname{Spec} A$, and B satisfies Serre's (S_n) condition. Then A also satisfies Serre's (S_n) condition. In particular, if a finite group G acts on B and the order |G| of G is invertible in B, and if B is Noetherian with the (S_n) condition, then the ring of invariants $A = B^G$ also satisfies the (S_n) condition.

1. Introduction

We say that a homomorphism of commutative rings $f : A \to B$ is *pure* if for any *A*-module *W*, the map $j_W : W \to B \otimes_A W$ given by $j_W(w) = 1 \otimes w$ is injective. If $f : A \to B$ is pure, many good ring-theoretic properties of *B* are inherited by *A*. For example, if *B* is Noetherian (resp. a normal domain), then so is *A* [HR, (6.15)]. The Hochster–Eagon theorem [HE, Proposition 12], a striking result in this direction appeared in 1971, states that if $f : A \to B$ is an integral homomorphism between commutative rings, *B* is Noetherian and Cohen–Macaulay, and *A* is a direct summand subring of *B* through *f* (that is, there is a left inverse $g : B \to A$ as an *A*-linear map (that is, $gf = 1_A$)), then *A* is also Noetherian and Cohen–Macaulay. As an application, Hochster and Eagon proved that the non-modular invariant subring of a finite group action on a Cohen–Macaulay ring is again Cohen–Macaulay [HE]. The assumption of integral extension is necessary, as any finitely generated domain over

^{*}Partially supported by JSPS KAKENHI Grant number 20K03538 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0619217849.

²⁰²⁰ Mathematics Subject Classification. Primary 13E05; Secondary 13A50. Key Words and Phrases. pure homomorphism, Serre's (S_n) condition, Hochster–Eagon theorem

a field, Cohen–Macaulay or not, is a direct summand subring of a finitely generated Cohen–Macaulay domain by Kawasaki's arithmetic Macaulayfication theorem [Kaw, Theorem 1.3]. Although Cohen–Macaulay property is not inherited by a pure subring in genral, some important results in this direction are known, see [Bou, HH, HR, Sch].

In this paper, we prove an analog of Hochster-Eagon theorem for Serre's (S_n) condition. We say that a Noetherian commutative ring R satisfies the condition (S_n) if depth $R_{\mathfrak{p}} \geq \min(n, \dim R_{\mathfrak{p}})$ for any $\mathfrak{p} \in \operatorname{Spec} R$. This is equivalent to say that for any $\mathfrak{p} \in \operatorname{Spec} R$ such that depth $R_{\mathfrak{p}} < n$, we have $R_{\mathfrak{p}}$ is Cohen-Macaulay. Our main theorem is the following.

Theorem 2.8. Let $f : A \to B$ be a pure ring homomorphism. Let B be a Noetherian ring which satisfies Serre's (S_n) condition. If the fiber ring $B \otimes_A \kappa(\mathfrak{p})$ is zerodimensional for any prime ideal \mathfrak{p} of A, then A satisfies (S_n) , too.

If $f: (A, \mathfrak{m}) \to (B, \mathfrak{n})$ is a pure local homomorphism such that $B/\mathfrak{m}B$ is Artinian, then we have that dim $A = \dim B$ and depth $A \ge \operatorname{depth} B$ (Proposition 2.6), and the proof of Theorem 2.8 is reduced to this version of Hochster-Eagon theorem. As a corollary, we have a result in non-modular invariant theory of finite groups; if a finite group G acts on a Noetherian ring B and the order |G| of G is invertible in B, the (S_n) property of B is inherited by A for any $n \ge 1$ (Corollary 2.9).

2. The results

(2.1) Let R be a commutative ring and $f: M \to N$ be an R-linear map between R-modules. We say that f is *pure* or R-pure if for any R-module W, the map $f \otimes 1_W : M \otimes_R W \to N \otimes_R W$ is injective. Clearly, a pure linear map is injective. A ring homomorphism between commutative rings $\varphi : A \to B$ is said to be pure if it is so as an A-linear map. For each A-module W, we denote by $j_W : W = A \otimes_A W \to B \otimes_A W$ the map $\varphi \otimes 1_W$. So φ is pure if and only if j_W is injective for any A-module W. If A is a subring of B and the inclusion map $A \hookrightarrow B$ is pure, then we say that A is a pure subring of B.

(2.2) Let $\varphi : A \to B$ be a pure ring homomorphism, and $\mathfrak{p} \in \operatorname{Spec} A$. Then $\kappa(\mathfrak{p}) = A \otimes_A \kappa(\mathfrak{p}) \to B \otimes_A \kappa(\mathfrak{p})$ is injective, and hence the fiber ring $B \otimes_A \kappa(\mathfrak{p})$ is not zero, where $\kappa(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ is the residue field of $A_{\mathfrak{p}}$. It follows that ${}^a\varphi : \operatorname{Spec} B \to \operatorname{Spec} A$ is surjective, since $({}^a\varphi)^{-1}(\mathfrak{p}) \cong \operatorname{Spec}(B \otimes_A \kappa(\mathfrak{p})) \neq \emptyset$ for each \mathfrak{p} . In particular, a pure ring homomorphism between local rings is a local homomorphism.

(2.3) Let $\varphi : A \to B$ be a pure homomorphism. If B is Noetherian, then so is A [HR, (6.15)].

Lemma 2.4. Let (A, \mathfrak{m}) be a Noetherian local ring, and $f : A \to B$ be a pure ring homomorphism. Then there exists some maximal ideal \mathfrak{n} of B such that $\mathfrak{n} \cap A = \mathfrak{m}$, and $A \to B_{\mathfrak{n}}$ is pure.

Proof. Let $E = E_A(A/\mathfrak{m})$ be the injective hull of the residue field of A. Then $j_E(1) \neq 0$ in $B \otimes_A E$ [HR, (6.11)], where 1 is the image of $1 \in A/\mathfrak{m}$ in E. So there exists some maximal ideal \mathfrak{n} of B such that $j_E(1)$ is still nonzero in $B_{\mathfrak{n}} \otimes_A E$. Then $A \to B_{\mathfrak{n}}$ is pure by [HR, (6.11)] again. As Spec $B_{\mathfrak{n}} \to$ Spec A is surjective, we must have $\mathfrak{n} \cap A = \mathfrak{m}$.

Lemma 2.5. If A is a Noetherian ring and $f : A \to B$ is a pure ring homomorphism, then dim $A \leq \dim B$.

Proof. Let $\mathfrak{p}_0 \supseteq \mathfrak{p}_1 \supseteq \mathfrak{p}_2 \supseteq \cdots \supseteq \mathfrak{p}_d$ be a chain of prime ideals of A. Note that $A_{\mathfrak{p}_0} \to B_{\mathfrak{p}_0}$ is pure by [HR, (6.2)]. By Lemma 2.4, there exists some prime ideal P_0 of B lying over \mathfrak{p}_0 such that $A_{\mathfrak{p}_0} \to (B_{\mathfrak{p}_0})_{P_0B_{\mathfrak{p}_0}} = B_{P_0}$ is pure. Using this argument to the pure ring homomorphism $A_{\mathfrak{p}_0} \to B_{P_0}$, we know that there exists some prime ideal $P_1 \subset P_0$ such that $P_1 \cap A = \mathfrak{p}_1$ and $A_{\mathfrak{p}_1} \to B_{P_1}$ is pure. Continuing this, we can take a chain of prime ideals

$$P_0 \supsetneq P_1 \supsetneq P_2 \supsetneq \cdots \supsetneq P_d$$

such that $P_i \cap A = \mathfrak{p}_i$ and $A_{\mathfrak{p}_i} \to B_{P_i}$ is pure. This proves the lemma.

Proposition 2.6. Let $f : (A, \mathfrak{m}) \to (B, \mathfrak{n})$ be a pure local ring homomorphism such that B is Noetherian and the fiber ring $B/\mathfrak{m}B$ is Artinian. Then dim $A = \dim B$ and depth $A \ge \operatorname{depth} B$.

Proof. We have dim $A \leq \dim B \leq \dim A + \dim B/\mathfrak{m}B = \dim A$ by Lemma 2.5 and the assumption that dim $B/\mathfrak{m}B$ is Artinian.

Let $r = \operatorname{depth} A$ and $s = \operatorname{depth} B$. We prove that $r \ge s$ by induction on s. If s = 0, then the assertion is trivial. Assume that s > 0. If r = 0, then there exists some $x \in \mathfrak{m}$ such that $0 :_A x = \mathfrak{m}$. As f is an injective map, $\mathfrak{m} B \subset 0 :_B x \subset \mathfrak{n}$. As $B/\mathfrak{m} B$ is Artinian, $B/(0 :_B x)$ is Artinian and is nonzero. Hence

$$\operatorname{Ass}_B B \supset \operatorname{Ass}_B Bx = \operatorname{Ass}_B B/(0:_B x) = \{\mathfrak{n}\},\$$

and s = 0. This is a contradiction. So r > 0. For each $P \in Ass B$, we have $P \cap A \neq \mathfrak{m}$, since $\mathfrak{n} \cap A = \mathfrak{m}$, $P \subsetneq \mathfrak{n}$, and $B/\mathfrak{m}B$ is zero-dimensional. By prime avoidance, there exists some

$$y \in \mathfrak{m} \setminus \left(\left(\bigcup_{P \in \operatorname{Ass} B} (P \cap A) \right) \cup \left(\bigcup_{\mathfrak{p} \in \operatorname{Ass} A} \mathfrak{p} \right) \right).$$

So y is A-regular B-regular. By [HR, (6.2)], $A/yA \to B/yB$ is pure, and $(B/yB)/\mathfrak{m}(B/yB)$ is Artinian. By induction assumption, we have

$$r-1 = \operatorname{depth} A/yA \ge \operatorname{depth} B/yB = s-1$$

and hence $r \geq s$, as required.

Theorem 2.7 (Hochster-Eagon [HE]). Let $f : A \to B$ be a pure ring homomorphism. Let B be Noetherian and Cohen-Macaulay. If the fiber ring $B \otimes_A \kappa(\mathfrak{m})$ is zero-dimensional for any maximal ideal \mathfrak{m} of A, then A is Cohen-Macaulay.

Proof. It suffices to show that $A_{\mathfrak{m}}$ is a Cohen-Macaulay local ring for any maximal ideal \mathfrak{m} of A. Replacing f by $f_{\mathfrak{m}} : A_{\mathfrak{m}} \to B_{\mathfrak{m}}$, we may assume that (A, \mathfrak{m}) is local. Then we can find a maximal ideal \mathfrak{n} of B lying over \mathfrak{m} such that $A \to B_{\mathfrak{n}}$ is pure. As a localization of a zero-dimensional ring is still zero-dimensional, we may assume that f is a local homomorphism between local rings. By the Cohen-Macaulay property of B and Proposition 2.6, we have

$$\operatorname{depth} A \ge \operatorname{depth} B = \operatorname{dim} B = \operatorname{dim} A \ge \operatorname{depth} A,$$

and the assertion follows.

Theorem 2.8. Let $f : A \to B$ be a pure ring homomorphism. Let B be a Noetherian ring which satisfies Serre's (S_n) condition. If the fiber ring $B \otimes_A \kappa(\mathfrak{p})$ is zerodimensional for any prime ideal \mathfrak{p} of A, then A satisfies (S_n) , too.

Proof. Let \mathfrak{p} be a prime ideal of A such that depth $A_{\mathfrak{p}} < n$. Then we can find a prime ideal P of B lying over \mathfrak{p} such that the local homomorphism $A_{\mathfrak{p}} \to B_P$ is pure. Note that the dimension of the fiber ring $\kappa(\mathfrak{p}) \otimes_{A_{\mathfrak{p}}} B_P$ is zero-dimensional. Since depth $B_P \leq \text{depth } A_{\mathfrak{p}} < n$ by Proposition 2.6 and B satisfies the (S_n) condition, we have that B_P is Cohen-Macaulay. By Theorem 2.7, we have that $A_{\mathfrak{p}}$ is Cohen-Macaulay. \Box

Corollary 2.9. Let G be a finite group acting on a Noetherian ring B. Assume that the order |G| of G belongs to B^{\times} , the unit group of B. If B satisfies Serre's (S_n) condition, then so does the ring of invariants B^G .

Proof. For $b \in B$, the polynomial $f(t) = \prod_{g \in G} (t - gb)$ is monic and lies in $B^G[t]$. As f(b) = 0, the element b is integral over B^G . This shows that $B^G \hookrightarrow B$ is an integral extension, and all the fiber rings are zero-dimensional.

Let $R = \mathbb{Z}[|G|^{-1}]$, and define the Reynolds operator to be $\rho = |G|^{-1} \sum_{g \in G} g \in RG$. It is a central idempotent of the group algebra RG of G over R. As RG acts on B, the G-linear map $\rho : B \to B$ is defined. It is easy to see that $\rho(B) \subset B^G$ and ρ is the identity map on B^G . So $\rho(B) = B^G$, and $\rho : B \to B^G$ is the left inverse of the inclusion $j : B^G \to B$. Moreover,

$$\rho(ab) = |G|^{-1} \sum_{g \in G} a(gb) = a(\rho b)$$

for $a \in B^G$ and $b \in B$. Namely, ρ is the left inverse of j as a B^G -linear map, and thus B^G is a direct summand subring of B. It follows that B^G is a pure subring of B. The corollary follows from Theorem 2.8.

References

- [Bou] J.-F. Boutot, Singularité rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), 65–68.
- [HE] M. Hochster and J. A. Eagon, Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci, *Amer. J. Math.* **93** (1971), 1020–1058.
- [HH] M. Hochster and C. Huneke, Applications of the existence of big Cohen– Macaulay algebras, *Adv. Math.* **113** (1995), 45–117.
- [HR] M. Hochster and J. Roberts, Rings of invariants of reductive groups action on regular rings are Cohen–Macaulay, *Adv. Math.* **13** (1974), 115–175.
- [Kaw] Takesi Kawasaki, On arithmetic Macaulayfication of Noetherian rings, Trans. Amer. Math. Soc. **354** (2002), 123–149.
- [Sch] H. Schoutens, Pure subrings of regular rings are pseudo-rational, *Trans. Amer. Math. Soc.* **360** (2008), 609–627.

Mitsuyasu HASHIMOTO Department of Mathematics Osaka Metropolitan University Sumiyoshi-ku, Osaka 558-8585, JAPAN e-mail: mh7@omu.ac.jp