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Abstract. Pseudo H-type Lie algebras are a special class of 2-step nilpo-
tent metric Lie algebras, intimately related to Clifford algebras Clr,s. In
this work we propose the classification method for integral orthonormal
structures of pseudo H-type Lie algebras. We apply this method for the
full classification of these structures for r ∈ {1, . . . , 16}, s ∈ {0, 1} and ir-
reducible Clifford modules. The latter cases form the basis for the further
extensions by making use of the Atiyah-Bott periodicity. The existence of
integral structures gives rise to the integral discrete uniform subgroups of
the pseudo H-type Lie groups.
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1. Introduction

Two-step nilpotent Lie algebras attracted the attention of G. Métivier [M8́0]
in an attempt to describe hypoelliptic operators in a non-Euclidean setting.
The condition of hypo-ellipticity required the adjoint map with the value on
the center to be surjective. This type of Lie algebras was studied under dif-
ferent names and for different purposes, for instance, in [Ebe94, LT99, MS04,
OW10, GMKMV18]. A. Kaplan [Kap80] showed that if the adjoint operator is
an isometry, then the sub-Laplacian on two-step nilpotent Lie groups, admits
a fundamental solution, reminiscent of that in Euclidean space. His result
extended a theorem obtained by G. Folland on the Heisenberg group [Fol73].
Therefore, the class of these Lie algebras received the name H(eisenberg)-
type Lie algebras. The H-type Lie algebras are in a bijective relation to
Clifford algebras Clr,0, generated by the Euclidean space Rr [Rei01a]. The
definition of H-type Lie algebras related to Clifford algebras Clr,s, s > 0, gen-
erated by pseudo Euclidean spaces Rr,s was extended by P. Ciatti [Cia00]
and received the name pseudo H-type Lie algebras, see also [GMKM13].
The pseudo H-type Lie algebras, which will be denoted by nr,s is a fruitful
source for studies of Damek-Ricci spaces [BTV95], Iwasawa decomposition
of symmetric spaces [CDKR98], Riemannian nilmanifolds [Kap81], rigidity
problems [Rei01b], properties of PDE on Lie groups [CS12, MR92, BFM20]
and many others topics in geometry, analysis, and geometric measure the-
ory. The classification of the pseudo H-type Lie algebras was completed
in [FM17, FM19].

Our work is motivated by the study of uniform discrete subgroups on nilpo-
tent Lie groups, which are crucial for the study of homogeneous spaces, com-
pact nilmanifolds, and spectral problems. The existence of a uniform subgroup
is guaranteed by a presence of a rational structure on the associated Lie algebra
by seminal work of A. I. Malčev [Mc49]. The existence of rational structures
on pseudo H-type Lie algebras was proved in [CD02, Ebe03, FM14]. A com-
plete classification of rational structures in the class of pseudo H-type Lie
algebras exists only on the Heisenberg algebra (related to the Clifford algebra
Cl1,0) [GW86]. Some progress in the study of lattices can be found in [CP08].
In the present work, we describe the set of invariant integral structures,

which are at the core of rational structures of the Lie algebras. An invariant
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integral structure is a span over Z of an orthonormal basis, constructed as an
action of a subgroup G(Br,s) of the invertible elements Pin(r, s) in the Clifford
algebra Clr,s on a suitably chosen normal vector v ∈ V in the Clifford module
V , see Section 3 and Section 3.2. As a result, the basis of the Clifford module
V is invariant under the action of G(Br,s) and the non-vanishing structure con-
stants of the H-type Lie algebra are equal to ±1. We emphasize that invariant
integral structures are particular cases of integral structures (having structure
constants ±1) that are included in a general class of rational structures on
a Lie algebra (having rational structure constants). Two invariant integral
structures are orthogonally isomorphic, if and only if the isotropy subgroups

S(1)
v ⊂ Clr,s and S(2)

v ⊂ Clr,s of v ∈ V belongs to the same equivalence class, see
Definition 4.3 in Section 4. Section 6 is dedicated to showing the isomorphism
properties of invariant integral structures on the H-type Lie algebras concern-
ing the equivalence of the isotropy subgroups. The isomorphism of invariant
integral structures of the Lie algebras leads to the isomorphism of uniform
discrete subgroups on the corresponding Lie groups, which is always extended
to an automorphism of ambient pseudo H-type Lie groups, see [Rag72].

We apply the classification algorithm to isotropy groups Sv for parameters
r ∈ {3, . . . , 16} and s ∈ {0, 1} in Section 5. We note that the restricted range
of r and s in the construction of the list of non-equivalent isotropy groups
corresponds to the first and the second period in r of pseudo H-type Lie
groups concerning the Atiyah-Bott periodicity of the Clifford algebras. The
reader can notice that the second period r ∈ {9, . . . , 16} contains more non-
equivalent subgroups with phenomena, such as disconnectedness, that can not
appear in the first period r ∈ {3, . . . , 8} due to the lack of dimension of the
center of the Lie algebra. The forthcoming paper will be dedicated to the
study of new features in the increasing of the parameter s and the study of
the periodicity in both r and s of the construction of non-equivalent isotropy
groups. Despite this, most of the theorems and the characterizations proved
in Sections 3, 4, and 6 are valid for arbitrary parameters (r, s).

2. Clifford algebras and pseudo H-type Lie algebras

In this section we remind some classical objects and introduce the main ones
of our interest.

2.1. Clifford algebras. We denote by Rr,s the pseudo Euclidean space, that
is the vector space Rr+s endowed with the non-degenerate symmetric bilinear
form

〈x, y〉r,s =
r∑

k=1

xkyk −
r+s∑

k=r+1

xkyk.
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Let Clr,s be a Clifford algebra over R generated by Rr,s. Remind that Clr,s is
a quotient of the tensor algebra

T (U) := R⊕ Rr,s ⊕
( 2
⊗ Rr,s

)
⊕
( 3
⊗ Rr,s

)
⊕
( 4
⊗ Rr,s

)
⊕ . . .

by a two sided ideal Ir,s generated by elements of the form

x⊗ x+ 〈x, x〉r,s1, x ∈ Rr+s,

and 1 is the identity element of the Clifford algebra Clr,s. Consider a repre-
sentation of Clr,s on a real vector space V

J : Clr,s → End(V ).

We call V the Clr,s-module, or simply module if we do not want to specify
the signature (r, s), and will denote by Jzv the action of z ∈ Rr,s on v ∈ V .
Assume also that the module V is equipped with a non-degenerate symmetric
bilinear form 〈. , .〉V satisfying the condition

(2.1) 〈Jzu, v〉V + 〈u, Jzv〉V = 0 for any z ∈ Rr,s and u, v ∈ V.

We call such a module V = (V, 〈. , .〉V ) an admissible module of the Clifford
algebra Clr,s. We write Vmin = (Vmin, 〈. , .〉V ) or simply Vmin for an admissible
Clr,s-module of the minimal dimension and call it aminimal admissible module.
The reader can find more about analogous constructions of 2 step nilpotent
Lie algebras, not related to representation of Clifford algebras in [Ebe04].

We emphasise the difference between an irreducible Clifford module and
a minimal admissible module. Not all irreducible modules can be equipped
with a non-degenerate bilinear symmetric form, satisfying (2.1). For instance,
lack of dimension of an irreducible module can make any bilinear symmetric
form degenerate. An admissible module V of Clr,s has an even dimension
dim(V ) = 2n = N . It is isometric to Rn,n if s > 0 and it is isometric to R±N,0

if s = 0, see [Cia00, Theorem 3.1] and [FM17, Proposition 1]. Any admissible
Clr,s-module can be decomposed into an orthogonal direct sum of minimal
admissible modules [FM19, Proposition 2.3 (2)].

2.2. Pseudo H-type Lie algebras and Lie groups.

Definition 2.1. Let (V, 〈. , .〉V ) be an admissible module of a Clifford algebra
Clr,s with the representation map J . Define the Lie bracket on V × Rr,s by

(2.2) 〈Jzu, v〉V = 〈z, [u, v]〉r,s, z ∈ Rr,s, u, v ∈ V.

The pseudo H-type Lie algebra nr,s(V ) = (V ⊕Rr,s, [. , .]) is a Lie algebra whose
non-vanishing Lie bracket is defined in (2.2).

Note that the Lie algebra nr,s(V ) is 2-step nilpotent where Rr,s is the centre.
Property (2.1) and the representation property J2

z v = −〈z, z〉r,sv for v ∈ V
imply

(2.3) 〈Jzu, Jzv〉r,s = 〈z, z〉r,s〈u, v〉V , 〈Jzu, Jwu〉r,s = 〈z, w〉r,s〈u, u〉V .
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The connected simply connected Lie group Nr,s(V ) of the Lie algebra nr,s(V )
is called the pseudo H-type Lie group. The exponential map exp: nr,s(V ) →
Nr,s(V ) is a global analytic diffeomorphism [CG90, Theorem 1.2.1]. It allows
to induce the coordinates on the Lie group from the Lie algebra by means
of Backer-Campbell-Hausdroff formula. Points g ∈ Nr,s(V ) are considered as
vectors g = (u, z) ∈ V ⊕ Rr,s = nr,s(V ). The group product ∗ on Nr,s(V ) is
given by

∗ : Nr,s(V )× Nr,s(V ) → Nr,s(V ),

(u1, z1) ∗ (u2, z2) =
(
u1 + u2, z1 + z2 +

1

2
[u1, u2]

)
.

2.3. Automorphisms of pseudo H-type Lie algebras. Since automor-
phisms of a Lie algebra define the automorphisms of its connected simply
connected Lie group, we consider only the automorphisms of Lie algebras.
The complete description of the group of automorphisms of pseudo H-type
Lie algebras can be found in [Rie82, Saa96, FM21], see also [AS14].
The automorphisms of pseudo H-type Lie algebras are generated by the

following ones:
[1] The transformations δλ(u, z) = (λu, λ2z), calling the dilations.
[2] Let A : V → V be a nonsingular linear map and C ∈ O(r, s) an

orthogonal transformation of Rr,s. Then the map A ⊕ C is a pseudo H-type
Lie algebra automorphism, if and only if

(2.4) Aτ ◦ Jz ◦ A = JCτ (z), z ∈ Rr,s,

where Aτ , Cτ are transpose maps with respect to the respective bilinear forms

〈Aτu, v〉V = 〈u,Av〉V , 〈Cτz, w〉r,s = 〈z, Cw〉r,s.

[3] Let B : V → Rr,s be a linear map, then (v, z) 7→
(
v, z + Bv

)
is an

automorphism.

2.4. Rational structures, uniform discrete subgroups, lattices. We re-
fer to [Rag72, CG90] for the details discussed in this section.

Definition 2.2. A Lie algebra gQ over rational numbers Q is called the rational
structure of a real Lie algebra g if g is isomorphic to gQ ⊗ R.

A real Lie algebra g has a rational structure if and only if there is a basis for
g such that the structure constants of the Lie algebra are rational numbers.

Definition 2.3. Let G be a Lie group. A subgroup Γ is called uniform subgroup
if Γ is discrete and G/Γ is a compact space.

Definition 2.4. Let G be a Lie group with a measure µ. A subgroup Λ is
called lattice if µ(G/Λ) < ∞.
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LetG be a nilpotent Lie group and µ the Haar measure on it. Then a discrete
subgroup Γ is lattice if and only if it is a uniform subgroup, i.e µ(G/Γ) < ∞
implies that G/Γ is compact. From now on we will not distinguish the lattices
and uniform subgroups. A result from [Mc49] can be formulated as follows.

• If Γ is a uniform subgroup of G, then g has a rational structure gQ such
that gQ = span Q{log (Γ)}.

• If g has a rational structure gQ, then G has a uniform subgroup Γ such
that log(Γ) ⊆ gQ.

Theorem 2.5. [Rag72] Let Γi ⊂ Gi, i = 1, 2 be uniform subgroups of simply
connected nilpotent Lie groups Gi. An isomorphism φ : Γ1 → Γ2 of discrete
subgroups, can be extended to the smooth isomorphism φ̃ : G1 → G2 of the Lie
groups.

3. Invariant basis of a Clifford module

3.1. Definition of invariant integral structure and uniform subgroups.
From now on we will consider only minimal admissible modules of Clifford
algebras Clr,s, denoting them either by V r,s or simply by V . Let nr,s(V ) =
(V ⊕ Rr,s, [. , .]) be a pseudo H-type Lie algebra with Br,s a basis for Rr,s and
B(V ) a basis for V . Note that Rr,s is the centre of nr,s(V ). We write the
structure constants clij for nr,s(V ) with respect to bases B(V ) and Br,s by

(3.1) [vi, vj] =
r+s∑
l=1

clijzl.

Definition 3.1. A basis {B(V ), Br,s} for nr,s(V ) is called integral if the struc-
ture constants clij in (3.1) take the values in {−1, 0, 1}.

We want to study a special class of integral bases of nr,s(V ). To describe it,
we fix an orthonormal basis Br,s = {z1, . . . , zr, zr+1, . . . , zr+s} of Rr,s, where

(3.2)

{
z1, . . . , zr are positive, i.e., 〈zi, zi〉r,s = 1,

zr+1, . . . , zr+s are negative, i.e., 〈zi, zi〉r,s = −1.

Denote by G(Br,s) a finite subgroup of the Pin group in Clr,s defined by

G(Br,s) =
{

±1, ±z1, . . . , ±zr+s, ±zi1 · · · zik |
1 ≤ i1 < · · · < ik ≤ r + s, k = 2, . . . , r + s

}
.

Thus the generators of the group G(Br,s) are {−1, Br,s}. Elements σ ∈ G(Br,s)
satisfy the properties: either σ2 = 1 or σ2 = −1.

We proceed to the construction of bases B(V r,s) for the minimal admissible
module V r,s. In Table (1) the reader finds dimensions of V r,s. We indicated by
red colour the Clifford algebras, where the minimal admissible modules differ
from the irreducible modules. With the subscript ×2 we indicated the presence
of two non-equivalent minimal admissible modules.
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Table 1. Dimensions of minimal admissible modules

8 16 32 64 64×2 128 128 128 128×2 256

7 16 32 64 64 128 128 128 128 256

6 16 16×2 32 32 64 64×2 128 128 256

5 16 16 16 16 32 64 128 128 256

4 8 8 8 8×2 16 32 64 64×2 128

3 8 8 8 8 16 32 64 64 128

2 4 4×2 8 8 16 16×2 32 32 64

1 2 4 8 8 16 16 16 16 32

0 1 2 4 4×2 8 8 8 8×2 16

s/r 0 1 2 3 4 5 6 7 8

(1) If a minimal admissible module V r,s is irreducible, then the set

(3.3) Ov = G(Br,s).v := {Jσv | σ ∈ G(Br,s)}
contains a basis B(V r,s) for any non-zero vector v ∈ V r,s.

(2) If a minimal admissible module V r,s is reducible, then set (3.3) contains
B(V r,s) for any non-zero and non-null vector v ∈ V r,s.
Thus we obtain that V r,s = span R{Ov} = span R{B(V r,s)}. If v ∈ V r,s is

a null vector, then the orbit Ov depends on the choice of v, but even in this
case, one can make a special choice of a null vector v ∈ V r,s, that generates an
entire orbit Ov including B(V r,s). From the other side if V r,s = V r,s

1 ⊕ V r,s
2 is

a decomposition of a minimal admissible module on irreducible modules, then
the bilinear form 〈. , .〉V r,s vanishes identically on V r,s

i , i = 1, 2. In this case

only the union
⋃2

i=1

{
Jσvi | σ ∈ G(Br,s)

}
contains a basis B(V r,s), where one

needs to choose two non-zero vectors vi ∈ V r,s
i .

Based on the latter discussions we restrict ourselves at bases B(V r,s) con-
sisting of non-null vectors and make the following definition.

Definition 3.2. Fix an orthonormal basis Br,s of Rr,s. An orthonormal basis
B(V r,s) of a minimal admissible module V r,s is called invariant basis if it
is invariant under the action of G(Br,s); that is for any vi ∈ B(V r,s) and
zj ∈ Br,s, there exists vk ∈ B(V r,s) such that Jzjvi = vk or Jzjvi = −vk.

Definition 3.2 requires that the maps Jzj , zj ∈ Br,s act on an invariant basis
B(V r,s) by permutations up to the sign ±.

Remark 3.1. We emphasise that we require bases B(V r,s) to be both orthonor-
mal and invariant.

Example A. Consider the Heisenberg Lie algebra n1,0(V ) with the normal-
ized basis B1,0 = {z} for the centre and V 1,0 ∼= R2. Set v1 ∈ V 1,0 ∼= R2,0, and
v2 = Jzv1. Consider also

u1 = Av1, u2 = Av2,
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where A is an orthogonal transformation of V 1,0. Then the basis (V 1,0) =
{u1, u2} is orthonormal. The basis (V 1,0) = {u1, u2} will be invariant under
the action of G(B1,0) if and only if Jz commutes with A. Thus we see that
a basis B(V 1,0) can be orthonormal, but not invariant under the action of
G(B1,0).

Example B. Consider the Lie algebra n0,3(V ) with an orthonormal basis
B0,3 = {z1, z2, z3} for the centre and a minimal admissible module V 0,3 ∼= R4,4

of the Clifford algebra Cl 0,3. We take v ∈ V 0,3, such that 〈v, v〉V 0,3 = 1. The
eight vectors

(3.4) v, Jz1v, Jz2v, Jz3v, Jz1Jz2v, Jz1Jz3v, Jz2Jz3v, Jz1Jz2Jz3v

are linearly independent, have square of the norm equal to ±1, and invariant
under the action of G(B0,3). Note that the value 〈v, Jz1Jz2Jz3v〉V 0,3 = α is
arbitrary and basis (3.4) is orthogonal if and only if α = 0. Nevertheless, the
vector v ∈ V 0,3 always can be chosen to make α = 0, see [FM14, Lemmas 2.8,
2.9]. This is an example, when the basis B(V 0,3) can be invariant, but not
necessary orthonormal.

Proposition 3.3. Let B(V r,s) be an invariant basis. Then it is an integral
basis.

Proof. We claim that for any v ∈ V r,s with 〈v, v〉V r,s 6= 0 we have:

(3.5) Jziv = ±Jzjv, =⇒ zi = zj.

Indeed, (3.5) implies JziJzjv = ±v and therefore
(
JziJzj

)2
v = v. Assume

by contrary that zi 6= zj. Suppose first that both zi and zj are positive or

negative. Then
(
JziJzj

)2
= −J2

zi
J2
zj

= −Id, which is a contradiction. From
the other side, if zi and zj are opposite, then

〈±v,±v〉V r,s = 〈JziJzjv, JziJzjv〉V r,s = 〈zi, zi〉r,s〈zj, zj〉r,s〈v, v〉V r,s = −〈v, v〉V r,s

by (2.3), and v must be a null vector, which is again a contradiction.
Assume now that B(V r,s) = {vj} is an invariant basis for V r,s and that

Jzℓvi = ±vk. Then by definition of the Lie bracket (2.2) we obtain

〈zℓ, [vi, vj]〉r,s = 〈Jzℓvi, vj〉V r,s = 〈±vk, vj〉V r,s = ±δkj.

If k = j, then the orthonormality of Br,s and 〈zℓ, [vi, vj]〉r,s = ±1 imply that
[vi, vj] = ±zℓ, and the structure constants in (3.1) are such that cℓij = ±1. If

k 6= j then cℓij = 0. □
The definition of an invariant basis leads to the definition of an invariant

integral structure on pseudo H-type Lie algebras and (invariant) integral uni-
form subgroup on the respective pseudo H-type Lie groups.

Definition 3.4. Let Br,s = {zk}r+s
k=1 be an orthonormal basis for Rr,s and

B(V r,s) = {vi}Ni=1 an invariant basis for a minimal admissible module V r,s.
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An invariant integral structure on the pseudo H-type Lie algebra nr,s(V ) is the
vector space over Z given by

span Z{B(V r,s)} ⊕ span Z{Br,s} =
{ N∑

i=1

nivi ⊕
r+s∑
k=1

mkzk

∣∣∣ ni,mk ∈ Z
}
.

An (invariant) integral uniform subgroup on the pseudo H-type Lie group
Nr,s(V ) = {(v, z) | v ∈ V r,s, z ∈ Rr,s} is given by the coordinates(( N∑

i=1

nivi | ni ∈ Z
)
,
(1
2

r+s∑
k=1

mkzk | mk ∈ Z
))

.

The main goal of the present work is the classification of invariant integral
structures on pseudo H-type Lie algebras that give rise to classification of
integral uniform subgroups on the corresponding pseudo H-type Lie groups.
Note that invariant integral structures is a subclass of integral (not necessary
invariant and/or orthonormal) structures on pseudo H-type Lie algebras. In
the present work we make a first step and classify only invariant integral struc-
tures. Classification of general integral structures and more general rational
structures is postponed for the future works. In the article [GW86] the au-
thors made a classification of rational uniform subgroups on the Heisenberg
groups, where the starting point was a unique invariant integral basis of the
Heisenberg algebra. Thus, in an essence, we make a first step towards the full
classification of rational structures on two step nilpotent Lie algebras related
to Clifford algebras.

Remark 3.2. We remark that in the cases of r+ s ≤ 2, the invariant integral
structures are unique. If (r, s) ∈ {(1, 0), (0, 1)} and z1 is a vector for Rr,s with
|〈z1, z1〉r,s| = 1, then B(V r,s) = {v, Jz1v} is an invariant basis of the minimal
admissible module V r,s for any choice of a vector v ∈ V r,s with 〈v, v〉V r,s = 1.
Thus {z1, v, Jz1v} gives rise to an invariant integral structure of nr,s(V

r,s) as
in Definition 3.4. The Lie algebras n1,0 and n0,1 are not isometric, but they
are both isomorphic to the Heisenberg Lie algebra.

If (r, s) ∈ {(2, 0), (1, 1), (0, 2)} and Br,s = {z1, z2} is an orthonormal basis
of Rr,s, then B(V r,s) = {v, Jz1v, Jz2v, Jz1Jz2v} is an invariant basis of the
minimal admissible module V r,s for any choice of v ∈ V r,s, 〈v, v〉V r,s = 1.
The bases {Br,s,B(V r,s)} generate a unique invariant integral structure of the
respective H-type Lie algebras. By uniqueness we mean that for any choice
of orthonormal basis Br,s and any v ∈ V r,s as above the invariant integral
structures of the pseudo H-type Lie algebras will give the isomorphic invariant
uniform subgroups in the pseudo H-type Lie groups. The proof is a simplified
version of Theorem 6.2.

3.2. A subgroup S ⊂ G(Br,s) of positive involutions. In the present sec-
tion we study subgroups S of G(Br,s) ⊂ Clr,s which will be a core for the
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construction of invariant bases B(V r,s). Some of the properties of S can be
learned from the definition of the subgroups S, but some of them became clear
by considering their action on minimal admissible modules V r,s.
Recall that the group Pin(r, s) consists of elements of the Clifford algebra

of the form

(3.6) σ = xi1 · · ·xik , 〈xij , xij〉r,s = ±1.

The subgroup Spin(r, s) ⊂ Pin(r, s) is generated by the even number of ele-
ments in (3.6). Thus the group G(Br,s) is a finite subgroup of Pin(r, s).

Definition 3.5. We denote by S a subgroup of G(Br,s) satisfying the condi-
tions

(S1) −1 /∈ S;
(S2) p ∈ Pin(r, 0)× Spin(0, s) and
(S3) p2 = 1.

Elements p ∈ S are called positive involutions.

The name positive involution refers to the action of p ∈ S on V r,s: if
〈v, v〉V r,s > 0

(
〈v, v〉V r,s < 0

)
then 〈Jpv, Jpv〉V r,s > 0

(
〈Jpv, Jpv〉V r,s < 0

)
.

We denote by Sr,s (or just S), the set of all subgroups of G(Br,s) satisfying
Definition 3.5. This set is a partially ordered set with respect to the inclusion
relation among subsets.

Remark 3.3. The groups S ∈ Sr,s are necessarily commutative.

Example 3.1. Consider G(B4,0). Then the example of possible subgroups S
are

S1 = {1, z1z2z3}, S2 = {1, z1z2z4}, S3 = {1, z1z3z4}, S4 = {1,−z1z2z4}
and

S5 = {1, z1z2z3z4}.
The first four groups are isomorphic under the action of the orthogonal group
O(4). A map C ∈ O(4) permutes the basis vectors {zi}, i = 1, 2, 3, 4 or
change their sign. All five groups are isomorphic as abelian groups of order 2.
However, the roles of the first four and the last one are different in construction
of an invariant basis for B(V 4,0).

To avoid the ambiguity occurring with the very similar groups S2 and S4,
we define a bigger group.

Definition 3.6. Let S be a group from Definition 3.5. We denote by Ŝ ⊂
G(Br,s) the extended group

Ŝ = S ∪ {−σ : σ ∈ S}.
In Example 3.1 we have S2,S4 subgroups of G(B4,0), where we fix the basis

{z1, z2, z3, z4}. The subgroups S2,S4 are different, nevertheless

Ŝ4 = Ŝ2 = {±1,±z1z2z4}.
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3.3. Generators for a group S of positive involutions. In this section,
we study groups S ∈ S by describing their generating sets.

Definition 3.7. We denote by PI = { pi }ℓi=1, ℓ = #[PI] is the cardinality of
the set PI, a subset in G(Br,s) satisfying the conditions:

(PI1) 1 /∈ PI, pipj = pjpi for i 6= j, and pi ∈ PI satisfy (S2) − (S3) in
Definition 3.5 for all i = 1, . . . , ℓ.

(PI2) The vectors

(3.7) {1, p1, . . . , pℓ, pi1 · · · pik | 1 ≤ i1 < . . . < ik ≤ ℓ, k = 1, . . . , ℓ}

are linearly independent in the vector space Cl r,s.

Proposition 3.8. The condition (PI2) is equivalent to

(PI2)′ non of the products pi1 · · · pik , 1 ≤ i1 < · · · < ik ≤ ℓ = #[PI], k =
1, . . . , ℓ, is equal to ±1.

Proof. Recall that the elements

(3.8) {ϵ01, ϵi1,...,ikzi1 · · · zik} ⊂ Clr,s,

1 ≤ i1 < · · · < ik ≤ r + s, k = 1, . . . , r + s, where ϵ0 and ϵi1,...,ik can be chosen
to be “+” or “−”, form a basis for Clr,s.

It is obvious that (PI2) implies (PI2)′. Assume that the condition (PI2)′ is
fulfild. Then the collection in (PI2)′ is a reduced collection of linearly indepen-
dent basis vectors from (3.8), and therefore they are linearly independent. □

As an example of a set PI we present the minimal length positive involu-
tions, which can be classified in the following types:

T1


p = zi1zi2zi3zi4 , where all zik are positive basis vectors;

p = zi1zi2zi3zi4 , where all zik are negative basis vectors;

p = zi1zi2zi3zi4 , where two zik are positive and two zil
are negative basis vectors;

T2


q = zi1zi2zi3 , where all zik are positive basis vectors;

q = zi1zi2zi3 , where one zik is positive and two zil
are negative basis vectors.

An easy combinatorial computation shows that generally positive involu-
tions can contain either 3mod 4 or 4mod 4 basis vectors. This observation
inspires us to make a more general definition.

Definition 3.9. A positive involution containing 4mod 4 basis vectors is called
a type T1 involution. A positive involution containing 3mod 4 basis vectors is
called a type T2 involution.
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Notation 3.1. For an element σ = ± zi1 · · · zik ∈ G(Br,s), we denote by
b(σ) = {zi1 , . . . , zik} the set of the vectors in the product σ, and by |b(σ)| we
denote the number of the vectors in b(σ). Analogously, b+(σ)

(
b−(σ)

)
is the

set of positive (negative) vectors in σ and |b+(σ)| (|b−(σ)|) is the cardinality
of the respective sets.

Proposition 3.10. The following properties can be easily verified

(A) Two type T1 involutions p1 and p2 commute if the number |b(p1)∩b(p2)|
is even. The product p1p2 is an involution of type T1.

(B) A type T1 involution p and a type T2 involution q commute if the number
|b(p) ∩ b(q)| is even. The product pq is an involution of type T2.

(C) Two type T2 involutions q1 and q2 commute if the number |b(q1)∩b(q2)|
is odd. The product q1q2 is an involution of type T1.

Proof. The proof is based on the Clifford algebra property

z1z2 + z2z1 = −2〈z1, z2〉r,s1, z1, z2 ∈ Rr,s,

which for orthogonal vectors z1 and z2 leads to z1z2 = −z2z1. □

Notation 3.2. We denote by PIr,s the collection of sets PI satisfying Defini-
tion 3.7. The set PIr,s is partially ordered by the inclusion relation similar to
Sr,s. If PI ∈ PIr,s, then we denote by S(PI) a group generated by the set PI.

Proposition 3.11. (1) Let PI ∈ PI. Then

S(PI) = {1, p1, . . . , pℓ, pi1 · · · pik | 1 ≤ i1 < · · · < ik ≤ ℓ

1 ≤ i1 < · · · < ik ≤ ℓ = #[PI]}(3.9)

is a group of order #[S(PI) ] = 2#[PI] in G(Br,s) and S(PI) ∈ S.
(2) Conversely, let S ∈ S. Then there is a (non unique) set PI ∈ PI such

that S(PI) = S.
(3) Let ε = (ε1, . . . , εℓ) be a tuple consisting of ±1, and PI = {pi}ℓi=1 ∈

PIr,s. Then ε · PI = {ε1p1, . . . , εℓpℓ} ∈ PIr,s and Ŝ(PI) = ̂S(ε · PI).

Proof. Set in (3.7) is linearly independent and coincides with S(PI) in (3.9),
therefore #[S(PI)] = 2#[PI]. If p is in the set (3.7), then −p is not in the
set (3.7), which implies that −1 /∈ S(PI). Any p ∈ S(PI) is a positive
involution by definition of the set PI. We showed (1).

The second property will be proved by induction arguments with respect
to the order of the group S. Let S ∈ Sr,s be given. Assume p1 ∈ S and if
there are no elements in S other than 1, p1, then we can put PI = {p1} and
S(PI) = S.

Assume now that there is a set PI ′ = {p1, . . . , pℓ}ℓ≥2 satisfying Defini-
tion 3.7. If

S(PI ′) = {1, p1, . . . , pℓ, pi1 · · · pik | 1 ≤ i1 < · · · < ik ≤ ℓ, k = 1, . . . , ℓ},
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is a proper subset of S, then there is a positive involution q ∈ S such that
q 6∈ S(PI ′), and q 6= ±1. Consider the set of commuting involutions

S(PI ′)·q = {q, p1q, . . . , pℓq, pi1 · · · pikq | 1 ≤ i1 < · · · < ik ≤ ℓ, k = 1, . . . , ℓ}.
If pi1 · · · pim = pj1 · · · pjm′q, then q ∈ S(PI ′), as a product of involutions
pj1 · · · pjm′ and pi1 · · · pim from S(PI ′). Thus non of the elements in S(PI ′)
can be written in the form pj1 · · · pjm′q for pj1 · · · pjm′ ∈ S(PI ′). If

pi1 · · · pik 6= pj1 · · · pjk′ for pi1 · · · pik , pj1 · · · pjk′ ∈ S(PI ′),

then pi1 · · · pikq 6= pj1 · · · pjk′q. So the set PI ′′ = PI ′ ∪ {q} satisfies Defini-
tion 3.7.

Continuing the procedure, we find in finitely many steps a set PI satisfying
Definition 3.7 such that S(PI) = S.
The proof of the last assertion is easily follows from Definition 3.7. □

3.4. Relation of S and an isotropy subgroup Sv. Now we relate a group
S with the isotropy subgroup Sv for some v ∈ V r,s and show that they are in
a close relation.

Proposition 3.12. Let v ∈ V r,s be a non-null vector and let Sv denote the
isotropy subgroup in G(Br,s) of the vector v:

Sv = {σ ∈ G(Br,s) | Jσv = v}.
Then Sv satisfies Definition 3.5.

Proof. It is clear that −1 /∈ Sv. To check the second property we take σ ∈ Sv ⊂
G(Br,s) and assume by contrary that σ is a product containing an odd number
of negative basis vectors from Br,s. Then for v ∈ V r,s with 〈v, v〉V r,s > 0 we
obtain

0 < 〈v, v〉V r,s = 〈Jσv, Jσv〉V r,s < 0

by (2.3), which is a contradiction. Similar argument is applied for a vector
v ∈ V r,s with 〈v, v〉V r,s < 0. Hence σ ∈ Pin(r, 0)× Spin(0, s).

The square of every element in G(Br,s) equal either 1 or −1. If σ ∈ Sv, then
J2
σ = IdV r,s . Hence σ2 = 1. □
The relation of an arbitrary S to an isotropy group Sv for some v ∈ V r,s is

given in the following statement.

Proposition 3.13. Let S ∈ Sr,s and PI = {p1, . . . , pℓ} ∈ PIr,s be such that
S(PI) = S. Let E+1(pk) = {u ∈ V r,s | Jpku = u}. Then the intersection⋂ℓ

k=1E
+1(pk) contains a non-null vector v. Moreover, the group S(PI) is the

isotropy subgroup Sv of the vector v, and #[S] = #[Sv] = 2#[PI].
If r − s = 3mod 4, and there is pi ∈ PI such that Jpi acts as −Id on the

minimal admissible module V r,s, then the change pi to −pi leads to the above
statement.
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Proof. Let r − s 6= 3mod 4 and let E+1(pk), E
−1(pk) be the eigenspaces of

an involution Jpk with eigenvalue 1 and −1, respectively. If one of the spaces
E±1(pk) is trivial, then the symmetric bi-linear form 〈. , .〉V r,s on the non-trivial
subspace is non-degenerate. If both of E±1(pk) are non-trivial spaces, then
they are orthogonal with respect to 〈. , .〉V r,s and the restriction of 〈. , .〉V r,s

onto E±1(pk) is non-degenerate too.
Assume E+1(p1) 6= {0}. Then the space E+1(p1) is invariant under the ac-

tion of the involution Jp2 . Therefore, E
+1(p1)

⋂
E+1(p2) 6= {0}. By repeating

the procedures we get that E =
⋂ℓ

k=1 E+1(pk) 6= {0} and the restriction of
〈. , .〉V r,s onto E is non-degenerate. Thus there is a non-null vector v ∈ E such
that Jpkv = v for all k = 1, . . . , ℓ. Hence S(PI) = Sv.
If r − s = 3mod 4, then without loss of generality we can assume that Jp1

acts as −Id. We change p1 to −p1 to get E+1(p1) = {u ∈ V r,s | Jp1u = u} and
continue the proof as above. □

Corollary 3.14. Let S ∈ Sr,s, and let Sv = S be an isotropy subgroup of
v as in Proposition 3.13. The orbit Ov = G(Br,s).v, defined in (3.3), con-
tains an invariant basis B(V r,s) of the minimal admissible module V r,s. There
is no canonical way to prescribe the direction u or −u for a basis vector in
B(V r,s). Therefore Ov is a set of basis vectors counted with signes ±. Hence
G(Br,s)/Sv

∼= G(Br,s).v and dim(V r,s) = 1
2
#[G(Br,s).v].

Proof. If the group Sv is an isotropy subgroup of an invariant basis, then

(3.10) #[Sv] ·#[G(Br,s).v] = 2r+s+1 = #[G(Br,s)].

Since the module is minimal admissible and the basis vectors are counted twice
(with plus and minus signs), we conclude #[G(Br,s).v] = 2 dim(V r,s). □

Remark 3.4. We denote by SM
r,s the subset in Sr,s consisting of subgroups

S = S(PI) satisfying (3.10). Furthermore PIMr,s denotes the maximal set of

PI: that is S(PI) ∈ SM
r,s if and only if PI ∈ PIMr,s, see Proposition 3.11. Note

that the correspondence from PIr,s to Sr,s, assigning PI 7→ S(PI) is surjective
but not necessarily injective.

In Proposition 3.13, if S(PI) ∈ SM
r,s, then S(PI) = Sv ∈ SM

r,s. Indeed, since

PI ∈ PIMr,s if and only if S = S(PI) ∈ SM
r,s, we obtain S(PI) = Sv ∈ SM

r,s.

Notation 3.3. We denote by ℓ(r, s) the maximal number of involutions in a
set PIr,s ∈ PIMr,s. The value ℓ(r, s) depends only on the signature (r, s) and it

satisfies 2ℓ(r,s) = 2r+s

dim(V r,s)
by Corollary 3.14.

The orbit Ov = G(Br,s).v gives the invariant basis for V r,s up to a sign.
Since the elements in G(Br,s) either commute or anti-commute with elements
in Sv, we can more precisely describe the construction of an invariant basis for
a minimal admissible module V r,s.
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Theorem 3.15. Let v ∈ V r,s be a unit vector from Proposition 3.13. There is
a set Σ ⊂ G(Br,s) such that the family {Jσv}σ∈Σ is an invariant basis of V r,s.

Proof. Let Sv ∈ SM
r,s. We fix a maximal set PIr,s = {pi}ℓ(r,s)i=1 such that

S(PIr,s) = Sv and write Eεi(pi) = {v ∈ V r,s | Jpiv = εiv}, where εi is ei-
ther +1 or −1. We denote ε = (ε1, . . . , εℓ(r,s)) and define

(3.11) E =

ℓ(r,s)⋂
i=1

E+1(pi), Eε1,...,εℓ(r,s) =

ℓ(r,s)⋂
i=1

Eεi(pi).

Before we continue the proof we note that dim(E) ∈ {1, 2, 4, 8}, and either
dim(V r,s) = dim(E) × 2ℓ(r,s) or dim(V r,s) = dim(E) × 2ℓ(r,s)−1. In the latter
case, one involution Jpi acts as Id or −Id on V r,s, which happens if r − s = 3
mod 4, see details in [FM21]. Thus

dim(E) = 2r+s−2ℓ(r,s) or dim(E) = 2r+s−2(ℓ(r,s)−1).

Let CG(Br,s)(S(PIr,s)) be the centralizer of the subgroup S(PIr,s) in G(Br,s).

Then by choosing a unit vector v ∈ E, we can find representatives {σi}dim(E)
i=1 ∈

CG(Br,s)

(
S(PIr,s)

)/ ̂S(PIr,s), and {τj}2
ℓ(r,s)

j=1 ∈ G(Br,s)
/
CG(Br,s)

(
S(PIr,s)

)
such

that

the vectors {Jσi
v}dim(E)

i=1 form an orthonormal basis for E,

the vectors {JτjJσi
v}dim(E)

i=1
2ℓ(r,s)

j=1 form an orthonormal basis for V r,s.

These {σi}dim(E)
i=1 and {τj}2

ℓ(r,s)

j=1 form the set Σ. □
Proposition 3.16. Fix the group S(PIr,s) and the representatives

{σi}dim(E)
i=1 ∈ CG(Br,s)

(
S(PIr,s)

)/ ̂S(PIr,s),

{τj}2
ℓ(r,s)

j=1 ∈ G(Br,s)
/
CG(Br,s)

(
S(PIr,s)

)
.

Assume that v1, v2 ∈ E generate two sets of invariant bases

Bvk(V
r,s) = {vk, Jσi

vk, Jτjvk, JτjJσi
vk}dim(E)

i=1
2ℓ(r,s)

j=1 , k = 1, 2,

as in Theorem 3.15. Then the invariant integral structures

(3.12)
span Z{Bv1(V

r,s)} ⊕ span Z{Br,s}

span Z{Bv2(V
r,s)} ⊕ span Z{Br,s}

are isomorphic.

Proof. We define the correspondence A : Bv1(V
r,s) → Bv2(V

r,s) by

(3.13)
v1 7→ v2, Jσi

v1 7→ Jσi
v2,

Jτjv1 7→ Jτjv2, JτjJσi
v1 7→ JτjJσi

v2,

and extend it by linearity over Z. Then the map A⊕ Id is an automorphism of
invariant integral structures (3.12). To show that A⊕Id is an isomoprhism, we
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denote the basis vectors from Bv1(V
r,s) by {uα}dim(V r,s)

α=1 and the basis vectors

from Bv2(V
r,s) by {wα}dim(V r,s)

α=1 , where wα = Auα. Then we note that the
bases Bv1(V

r,s) and Bv2(V
r,s) are invariant, which means that for any uα ∈

Bv1(V
r,s) and any zk ∈ Br,s there is uβ ∈ Bv1(V

r,s) such that

(3.14) Jzkuα = ±uβ = ±Jκv1, for some κ ∈ Σ = {σi, τj, τjσi}
The correspondence (3.13) and (3.14) imply that for chosen uα ∈ Bv1(V

r,s)
and zk ∈ Br,s we have

JzkAuα = Jzkwα = ±wβ = ±Jκv2 = ±AJκv1 = AJzkuα.

Note also that AτA = IdV r,s since it maps an othonormal basis to an orthonor-
mal basis. Then we have

〈[Auα, Auβ], zk〉r,s = 〈JzkAuα, Auβ〉V r,s = 〈AJzkuα, Auβ〉V r,s

= 〈AτAJzkuα, uβ〉V r,s = 〈Jzkuα, uβ〉V r,s(3.15)

= 〈[uα, uβ], zk〉r,s.
□

4. Equivalence and connectedness of groups S

We define an equivalence relation between groups S ⊂ G(Br,s) that will
descend to the equivalence of their generating sets PIr,s. We also introduce
parameters to distinguish sets PIr,s for a fixed value (r, s). Different sets of
parameters will lead to non-equivalent generating sets and the groups. Our aim
is to show that equivalent groups S lead to the isomorphic invariant integral
structures on nr,s.

4.1. Equivalence of groups S. We recall Notation 3.1 and extend it to the
sets PI.

Notation 4.1. Let PI ∈ PIr,s. We denote

b+(PI) = {zi | zi is a positive vector in some pi ∈ PI},
b−(PI) = {zi | zi is a negative vector in some pi ∈ PI}.

We set also |b+(PI)|, |b−(PI)| for the cardinality of the respective set, and
|b(PI)| = |b+(PI)|+ |b−(PI)|.

Definition 4.1. A set PI consisting only of the involutions of type T1 will
be called (T1)-type set. A set PI consisting of the involutions of type T1 and
having at least one involution of type T2 will be called (T2)-type set.

Proposition 4.2. Any (T2)-type set can be reduced to (T2)-type set containing
at most one involution of type T2 and the rest of involutions will be of type T1.

Proof. The proof follows directly from Proposition 3.10. □
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Notation 4.2. If C ∈ O(r, s), then we denote by the same letter C its natural
extension C : Cl ∗r,s → Cl ∗r,s to the action on the group of invertible elements
Cl ∗r,s ⊂ Cl r,s.

Let Br,s be a basis as in (3.2). Let C ∈ O(r, s). Then C is a signed
permutation matrix for Br,s having only one nonzero component ”±1” in each
column. We call such a map (signed) re-ordering of Br,s. If σ = zi1 · · · zik ∈
G(Br,s), then C defines an element C(σ) := C(zi1) · · ·C(zik) ∈ G(Br,s). Since
a re-ordering matrix C maps positive basis vectors to positive vectors and
negative basis vectors to negative basis vectors, it induces a map C : PIr,s →
PIr,s. For the particular case (r, r) the map C can be chosen also to map
positive basis vectors to negative vectors and vice versa. The changes for (r, r)
will be discussed separately in a forthcoming paper.

Definition 4.3. We say that the groups S1 and S2 are equivalent, writing
S1 ∼ S2, if there is a map C ∈ O(r, s) such that its natural extention to

Cl∗r,s ⊂ Cl r,s gives the isomorphism between the extended groups Ŝ1 and Ŝ2;

that is C(Ŝ1) = Ŝ2.

Definition 4.4. Let PI1 and PI2 be two sets of involutions. Then we say
that PI1 and PI2 are equivalent, writing PI1 ∼ PI2, if S(PI1) is equivalent
to S(PI2) in the sense of Definition 4.3.

Example 4.1. Recall Example 3.1 and consider G(B4,0). Let PI1 = {z1z2z3}
and PI2 = {z1z2z4}. Then PI1 ∼ PI2, since the groups

̂S(PI1) = {±1, ±z1z2z3} and ̂S(PI2) = {±1, ±z1z2z4}
in Cl4,0 are isomorphic under O(4, 0) which permutes the basis vectors z3 and
z4, fixing z1 and z2. Nevertheless, PI1 is not equivalent to PI3 = {z1z2z3z4},
since there is no extention of C ∈ O(4, 0) to Cl∗r,s which maps ̂S(PI1) to
̂S(PI3) = {±1, ±z1z2z3z4} ⊂ Cl∗4,0.

Example 4.2. In this example we present a construction of a sequence of
subgroups that will be important in Section 5. We call these subgroups standard.
Let Br,s be an orthonormal basis of Rr,s. We form a set of mutually different
pairs

(4.1) πi,j = zizj, i < j, i, j ∈

{
{1, . . . , r} if r is even

{1, . . . , r − 1} if r is odd
,

(4.2) νk,l = zkzl, k < l, k, l ∈

{
{r + 1, . . . , s} if s is even

{r + 1, . . . , s− 1} if s is odd
,

and
b(πi1,j1) ∩ b(πi2,j2) = ∅, b(νk1,l1) ∩ b(νk2,l2) = ∅,



18 K. FURUTANI, I. MARKINA

The cardinalities of the sets of pairs are

p = #{πi,j} =

{
r
2

if r is even
r−1
2

if r is odd
, n = #{νkl} =

{
s
2

if s is even
s−1
2

if s is odd
.

Now we form a set of involutions of type T1, which from now on will be denoted
always by pi. For any positive integers p̄ ∈ {1, . . . ,p} and n̄ ∈ {1, . . . ,n} we
make a product of pairs:
(4.3)
πiα,jαπiβ ,jβ , πiα,jανkγ ,lγ , νkγ ,lγνkδ,lδ , α, β ∈ {1, . . . , p̄}, γ, δ ∈ {1, . . . , n̄}.

We denote by S p̄,n̄ the group generated by involutions (4.3).

Proposition 4.5. In the notation above the groups S p̄,n̄ have the following
properties.

(i) S p̄,n̄ is a subgroup of G(Br,s) for any p̄ ∈ {1, . . . ,p} and n̄ ∈ {1, . . . ,n};
(ii) S p̄−k,n̄ is a subgroup of S p̄,n̄ for any k = 0, 1, . . . , p̄;
(iii) S p̄,n̄−k is a subgroup of S p̄,n̄ for any k = 0, 1, . . . , n̄;
(iv) S p̄−k1,n̄−k2 is a subgroup of S p̄,n̄ for any k1 = 0, 1, . . . , p̄ and k2 =

0, 1, . . . , n̄;
(v) The standard groups S p̄,n̄ are equivalent for fixed (p̄, n̄) in the sense of

Definition 4.3;
(vi) Any set PIr,s satisfying Definition 3.7 and such that Sp,n = S(PIr,s)

will be equivalent in the sense of Definition 4.4;
(vii) Pairs πi,j and νk,l commute with all elements in Sp,n;
(viii) Let θ = zi1 · · · zip+n be a product such that each zit, t = 1, . . . ,p + n

belongs only to one pair from (4.1) or (4.2). Then θ commutes with
all elements in Sp,n.

Proof. Properties (i)-(iv) are obvious. Statements (v) and (vi) follows from
the fact the pairs can be chosen up to a sign permutation of the basis in
Rr,s. Properties (vii) and (viii) are the consequence of the facts that pairs πi,j,
νk,l, and the product θ will have even number of common elements and that
the number of vectors zi in any element of the group Sp,n ⊂ G(Br,s) is also
even. □
Example 4.3. Consider R6,3 with the basis B6,3 = {z1, . . . , z9}. The first
six elements of the basis are positive and the last three are negative. We can
choose the pairs

(4.4) π1,2 = z1z2, π3,4 = z3z4, π5,6 = z5z6, ν78 = z7z8,

up to the sign permutation. They generate a group S3,1 ⊂ G(B6,3) of cardinal-
ity #S3,1 = 8. A possible choice of (T1)-type set of involutions PI generating
S3,1 is

(4.5) PI6,3 = {p1 = π1,2π3,4, p2 = π1,2π5,6, p3 = π1,2π7,8}.
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Any pair from (4.4) will commute with involutions in (4.5) and therefore with
all elements in the group S3,1 ⊂ G(B6,3). Furthermore, θ = z1z3z5z7, which
is chosen up to a sign permutation, commutes with elements in the group
S3,1 ⊂ G(B6,3) as well. The pairs

π1,2, π3,4, π5,6 generates the subgroup S3,0 ⊂ S3,1.

Likewise the pairs

π1,2, π3,4, π7,8 generates the subgroup S2,1 ⊂ S3,1.

Each of the subgroups S3,0 and S2,1 is a representative in its class of equiva-
lence. Nevertheless, the groups S3,0 and S2,1 are not equivalent.

4.2. Connectivity of groups S. Here we introduce another tool of detecting
non-equivalent subgroups S ⊂ G(Br,s), that we call “connectedness” for S =
S(PIr,s).

Definition 4.6. A group S ∈ Sr,s is called connected if there is no two sub-
groups S(1),S(2) ⊂ S, such that S is isomorphic to S(1) × S(2) with b(S(1)) ∩
b(S(2)) = ∅. We write in this case π0(S) = 1.

If a group S ∈ Sr,s admits the decomposition into subgroups S = S(1)× . . .×
S(k) with π0(S(i)) = 1 and b(S(i)) ∩ b(S(j)) = ∅ for any i 6= j, then we say that
S has k connected components and we write π0(S) = k.

Lemma 4.7. Let PI = {pi}ℓ(r,s)i=1 ∈ PIMr,s, and |b(PI)| = r + s. Assume that

there is zα ∈ G(Br,s) such that zα ∈
⋂ℓ(r,s)

i=1 b(pi), and moreover, there is no
σ ∈ S(PI) such that b(σ) ⊂ b(pi) for any pi ∈ PI. Then π0(S(PI)) = 1.

Proof. Note that any product
∏2k+1

j pj of odd number contains zα. Let us
assume that S = S(1) × S(2) is a non-trivial decomposition.

If both subgroups include a product of odd number of involutions
∏2l+1

j pj,

pj ∈ PI, then zα ∈ b(S(1))
⋂

b(S(2)). Therefore S should be connected.

Assume the subgroup S(1) consists of only even products η =
∏2k

j pj of
involutions in PI. We write one of these products in the form η = pi0 · σ ∈
S(1), where pi0 is one of the generators from the set PI and σ is a product
of odd number of some involutions in PI. It implies that σ ∈ S(2). By
the assumption b(σ) 6⊂ b(pi) for any pi ∈ PI, there exists a basis vector
zβ ∈ b(σ) such that zβ /∈ b(pi0). This implies that zβ ∈ b(pi0 ·σ) and therefore
zβ ∈ b(σ) ∩ b(pi0 · σ) ⊂ b(S(2))

⋂
b(S(1)). This shows that the group S is

connected. □
Example 4.4. The standard subgroups Sp,0 ∈ Sr,0 constructed in Example 4.2
are connected for any r ≥ 0.

Proposition 4.8. Let PI1, P I2 ∈ PIMr,s be two generating sets. If PI1 ∼ PI2,
then π0(PI1) = π0(PI2).
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Proof. We write PI1 = {pk}ℓ(r,s)k=1 , PI2 = {qm}ℓ(r,s)m=1 and |b(PIk)| = t. By
the assumption there exists a re-ordering map C of the basis Br,s such that

C
( ̂S
(
{pk}ℓ(r,s)k=1

))
=

̂S
(
{qm}ℓ(r,s)m=1

)
. If

S(PI1) = S(1) × S(2) = S(1)(PI11)× S(2)(PI12),

with
PI11 = {pik}ak=1, |b({pik}ak=1)| = β,

and
PI12 = {pjk}

ℓ(r,s)
k=a+1, |b({pjk}

ℓ(r,s)
k=a+1)| = t− β,

then b({pik}ak=1) ∩ b({pjk}
ℓ(r,s)
k=a+1) = ∅. The re-ordering map C will map the

non intersecting sets b({pik}ak=1) and b({pjk}
ℓ(r,s)
k=a+1) onto non intersecting sets

Z1 = {zi1 , . . . , ziβ} and Z2 = {zjβ+1
, . . . , zit}. The set Z1 (with possible change

of signs) will form the set PI21 = {qik}ak=1 and the set Z2 (again with possible
change of signs) will form the set PI22 = {qjk}tk=a+1. Thus we obtain S(PI2) =
S(PI21)× S(PI22). □
We describe how the Z2 graded product of Clifford algebras can lead to the

construction of disconnected subgroups S ⊂ G(Br,s). Consider the following
decompositions of an orthonormal basis Br,s = {z1, . . . , zr, zr+1, . . . , zr+s}:

z1, . . . , zr1︸ ︷︷ ︸
positive

, zr+1, . . . , zr+s1︸ ︷︷ ︸
negative

, and zr1+1, . . . , zr︸ ︷︷ ︸
positive

, zr+s1+1, . . . , zr+s︸ ︷︷ ︸
negative

.

We put r2 = r − r1 and s2 = s − s1 and consider the decomposition Rr,s ∼=
Rr1,s1 ⊕ Rr2,s2 , where we assume r1 + s1 ≥ r − r1 + s − s1 = r2 + s2. This
decomposition leads to the isomorphism Clr1,s1⊗̂Clr2,s2

∼= Clr1+r2,s1+s2 = Clr,s,
where ⊗̂ denotes the Z2-graded tensor product of Clifford algebras, see [LM89,
Proposition 1.5]. For each of the Clifford algebras Clrk,sk , k = 1, 2, we consider
the minimal admissible modules V rk,sk and the corresponding sets PIrk,sk . For
r = r1 + r2 and s = s1 + s2, we have ℓ(r1, s1) ≤ ℓ(r, s). Let PIr1,s1 ∈ PIMr1,s1
and PIr2,s2 ∈ PIMr2,s2 satisfy

|b+(PIr1,s1)| = r1, |b−(PIr1,s1)| = s1,

|b+(PIr2,s2)| = r2, |b−(PIr2,s2)| = s2,

and PIr1,s1
⋂

PIr2,s2 = ∅. We assume also that each set contains at most one
type T2 involution qk ∈ PIrk,sk , k = 1, 2. Then by non-commutativity of q1
and q2 it is easy to see the following properties:

If one of the sets PIr1,s1 or PIr2,s2 is (T1)-type set, then

PIr1,s1
⋃

PIr2,s2 ∈ PIr,s.

This implies

(4.6) ℓ(r1, s1) + ℓ(r2, s2) ≤ ℓ(r, s).



LATTICE 21

If both PIr1,s1 and PIr2,s2 are (T2)-type sets, containing type T2 invo-
lutions q1 ∈ PIr1,s1 and q2 ∈ PIr2,s2 , then(

PIr1,s1\{q1}
)⋃

PIr2,s2 ∈ PIr,s and PIr1,s1
⋃(

PIr2,s2\{q2}
)
∈ PIr,s.

This implies

(4.7) ℓ(r1, s1) + ℓ(r2, s2)− 1 ≤ ℓ(r, s).

One can state similar properties for any number of components in a decom-
position PI = ∪kPIrk,sk .

Remark 4.1. If the equalities in (4.6) or (4.7) hold, then non-connected sub-
groups S(PIr1,s1) and S(PIr2,s2) can be constructed from lower dimensions
and

S(PIr,s) = S(PIr1,s1)× S(PIr2,s2).

Particularly, if r ≤ 9 and s ∈ {0, 1}, then all the groups are connected. It
follows by showing that the inequalities (4.6) and (4.7) are always strict.

Proposition 4.9. The number ℓ(r, s) has three periodicities:

ℓ(r + 8, s) = ℓ(r + 4, s+ 4) = ℓ(r, s+ 8) = ℓ(r, s) + 4

= ℓ(r, s) + ℓ(8, 0) = ℓ(r, s) + ℓ(0, 8) = ℓ(r, s) + ℓ(4, 4).

Proof. The number ℓ(r, s) is determined by 2ℓ(r,s) · dim(V r,s) = 2r+s, see No-
tation 3.3. Hence,

2ℓ(r+8,s) · dim(V r+8,s) = 2r+8+s = 2r+s28 = 2ℓ(r,s) · dim(V r,s) · 28.

We know that dim(V r+8,s) = 24 dim(V r,s) [FM17, Section 4.1]. Hence it holds
ℓ(r + 8, s) = ℓ(r, s) + 4.

Other equalities hold by the same reason. □

5. Construction of subgroups in SM
r,s, r ∈ {3, . . . , 16}, s ∈ {0, 1}

5.1. General method of the construction. In this section we apply the
previous theory for the classification of groups S ⊂ G(Br,s) and perform
the exact construction of non-equivalent subgroups. We restrict ourself to
r ∈ {1, . . . , 16} and s = 0, 1 because we want to illustrate the main features
that appears in classification without diving into technical details. The clas-
sification for arbitrary S ⊂ G(Br,s) is postponed for the forthcoming paper.

We start from s = 0 and the classification for s = 1 will be the strait
forward generalisation. We classify groups S ⊂ SM

r,0 according to parameters:
π0(S), |b(PIr,0)|, and the type (T1) or (T2) of the set PI generating the group
S ∈ SM

r,s. We use the standard groups and notations introduced in Example 4.2.
For the standard group we will add from none to two additional involutions,
see Step 1 below for details. To distinguish the groups, where all previous
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parameters coincide, we assign the following signature about (TI)-type sets,
I = 1, 2:

(5.1)



(i) We use the signature (TI, π) if an additional involution
is related to product π1,2;

(ii) We use the signature (TI, θ) if an additional involution
is related to product θ;

(iii) We use the signature (TI, π, θ) if there are two additional
involutions, which are related to both products π1,2 and θ;

(iv) Finally we just write (TI) if there is no involutions,
except of standards;

We formulate the results in 15 theorems following the dimension r and il-
lustrate each case by a table. We list the set of generators PI for each group.
The group itself and the set of generators will be given up to a sign permu-
tation. The word unique is understood in the sense of equivalence relation of
Definition 4.3 or Definition 4.4.

5.1.1. Main steps of the construction of S ∈ SM
r,0 for a fixed r > 0. We divide

the construction into three steps.
Step 1. We start from a group satisfying π0(S) = 1 and |b(PIr,0)| = r. First

we find standard subgroup Sp,0 ⊂ S and complement it (if necessary) by invo-
lutions to reach the maximal number ℓ(r, 0) of involutions in PIr,0 generating
S ∈ SM

r,0. The additional involutions will be formed by checking whether the

product of π1,2 and/or θ by zr are involutions commuting with Sp,0. Then we
consider a smaller standard subgroup Sp−1,0 ⊂ Sp,0 and complement it by a
careful choice of involutions to reach the maximal number ℓ(r, 0) for S(PIr,0),
checking whether the connectivity π0(S) = 1 is not violated. We can repeat
the last step several times if the condition π0(S) = 1 still holds.

Step 2. We continue to look on π0(S) = 1 and |b(PIr,0)| = r − 1. In most
cases it will be a simple step back from (r, 0) to (r − 1, 0) as, for example, for
reduction from r = 4 to r = 3.

Step 3. Next we check π0(S) = 2 and S = S(1) × S(2). This step is reduced
to combinations of the previous 2 steps. If needs, we can proceed to higher
number of connected components.

The equivalence of the groups constructed in the previous three steps is
summarised in the following proposition.

Proposition 5.1. Let S = S(PIr,0) ∈ SM
r,0, with |b(PIr,0)| = r and π0(S) = 1.

Then, the maximal standard subgroups, included in a given group S ∈ SM
r,0,

are equivalent modulo reordering by induction arguments with respect to the
dimension (r, 0), see also Proposition 4.5, item (v).

Moreover, once we fix a standard group with its generators of form (4.3), the
maximally complemented sets PI obtained by adding involutions as in Step 1,
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will be equivalent in the sense of Definition 4.4 if they have the same signature
described in (5.1) and π0(S(PI)) = 1.

Lemma 5.2. If r = 3+8k, 5+8k, 6+8k, 7+8k for k ≥ 0, then sets PIr,0 ∈ PIMr,0
satisfying π0(S(PIr,0)) = 1 and |b(PIr,0)| = r are always of (T2)-type.

Proof. We start from r = 3+ 8k. For the case r = 3 there is only one type T2

involution. Let k ≥ 1 and assume, by contrary, that there is a (T1)-type set
PIr,0 ∈ PIMr,0. We have ℓ(r, 0) = ℓ(3 + 8k, 0) = 1 + 4k. The standard subgroup

Sp,0 ⊂ S(PIr,0), p = 1+4k, does not contain zr, since r is odd. Let p1, . . . , p4k
will be involutions generating Sp,0, then zr ∈ b(p1+4k). It implies

{p1, . . . , p4k, zr · p1+4k} ∈ PIMr−1,0.

This contradicts to ℓ(r − 1, 0) = ℓ(2 + 8k, 0) = ℓ(3 + 8k, 0)− 1 = ℓ(r, 0)− 1.
The arguments for the cases r = 5 + 8k, and r = 7 + 8k are similar to the

case r = 3 + 8k.
Let r = 6 + 8k. We assume that there is a (T1)-type set PIr,0 ∈ PIMr,0. We

have ℓ(r, 0) = ℓ(6 + 8k, 0) = 3 + 4k. The standard subgroup Sp,0 ⊂ S(PIr,0),
p = 3 + 4k, contains zr. Let p1, . . . , p2+4k be involutions generating Sp,0,
where we can assume that zr ∈ b(p2+4k) and p3+4k ∈ PI6+8k,0 is the last type
T1 involution.

(1) If zr /∈ b(p3+4k), then

{p1, . . . , p1+4k, zr · p2+4k, p3+4k} ∈ PIMr−1,0.

This contradicts to ℓ(r − 1, 0) = ℓ(5 + 8k, 0) = ℓ(6 + 8k, 0) − 1 =
ℓ(r, 0)− 1.

(2) If zr ∈ b(p3+4k), then we replace p3+4k ∈ PIr,0 by another type T1

involution p̃3+4k = p2+4kp3+4k ∈ P̃ Ir,0. In this case zr /∈ b(p̂3+4k) and
the situation is reduced to the previous step (1). Note that the group

S(PIr,0) is equivalent S(P̃ Ir,0).

We also note that for r = 3 + 8k and r = 7 + 8k the volume forms Ωr =∏r
i=1 zi which are type T2 involutions can be included to PIr,0. It justifies the

(T2)-type set of PIs in cases r = 3 + 8k and r = 7 + 8k. □

5.2. Constructions of groups S ∈ SM
r,0 for r ∈ {3, . . . , 16}.

Theorem 5.3. There is a unique group S ⊂ SM
3,0. It is generated by type T2

involution p = z1z2z3. Thus we have

π0(S) = 1, |b(PI3,0)| = 3, S = {1, p = z1z2z3 = π1,2z3}.

Proof. The group S is unique up to reordering. □
Theorem 5.4. There are two non-equivalent groups in SM

4,0.

Proof. The proof is obvious. □
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Table 2. Groups for r = 4

ℓ(4, 0) π0(S) |b(PI)| Signature PI
S(1) 1 1 4 (T1) p = π1,2π3,4

S(2) 1 1 3 (T2, π) q = π1,2z3

Notation 5.1. From now on we write θi,j to indicate that product in θ starts
from zi and ends with zj containing all zk for odd k between i and j. We have

|b(θi,j)| =
j − i

2
+ 1.

Theorem 5.5. There is unique group in SM
5,0.

Table 3. Groups for r = 5

ℓ(5, 0) π0(S) |b(PI)| Signature PI

S 2 1 5 (T2, θ)
p = π1,2π3,4

q = θ1,3z5 = z1z3z5

Proof. We start from the standard subgroup S2,0 = {1, p = π1,2π3,4} of the
maximal group S ⊂ SM

5,0. The products π1,2 = z1z2 and θ = z1z3 commute

with the involution p. To complete the standard subgroup S2,0 to the maximal
group S ⊂ SM

5,0 we add a type T2 involutions

either q1 = π1,2z5 = z1z2z5 or q2 = θz5 = z1z3z5.

Both choices lead to the equivalent subgroups

{1, p = π1,2π3,4, q1 = z1z2z5} and {1, p = π1,2π3,4, q2 = z1z3z5}
by permutation z2 ↔ z3. □
Theorem 5.6. There is unique group in SM

6,0.

Table 4. Groups for r = 6

ℓ(6, 0) π0(S) |b(PI)| Signature PI

S 3 1 6 (T2, θ)
p1 = π1,2π3,4

p2 = π1,2π5,6

q = θ1,5

Proof. The standard subgroup S3,0 is generated by the involutions

(5.2) p1 = π1,2π3,4, p2 = π1,2π5,6.

We need to add one involution since ℓ(6, 0) = 3. We observe that π1,2zj,
j = 1, . . . , 6, does not commute with generators (5.2), but θ = θ1,5 = z1z3z5
is an involution itself commuting with generators (5.2). Thus we add θ1,5 to
make PI complete. It finishes the proof. □
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Theorem 5.7. There is unique group in SM
7,0.

Table 5. Groups for r = 7

ℓ(7, 0) π0(S) |b(PI)| Signature PI

S 4 1 7 (T2, π, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = θ1,5z7
q = π1,2z7

Proof. The standard subgroup S3,0 ⊂ S is generated by involutions (5.2). We
need to add two involutions since ℓ(7, 0) = 4, at least one of which must
contain z7. We observe that the products π1,2z7 and θ1,5z7 = z1z3z5z7 are both
involutions commuting with generators (5.2) with each other. We append them
both to reach ℓ(7, 0) = 4. The reductions to |b(PI7,0)| = 6 is not possible due
to ℓ(6, 0) < ℓ(7, 0). We finish the proof. □
Theorem 5.8. There are two non-equivalent groups in SM

8,0.

Table 6. Groups for r = 8

ℓ(8, 0) π0(S) |b(PI)| Sinature PI

S(1) 4 1 8 (T1, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = θ1,7

S(2) 4 1 7 (T2, π, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = θ1,5z7
q = π1,2z7

Proof. The standard subgroup S4,0 ⊂ S(1) is generated by involutions

(5.3) p1 = π1,2π3,4, p2 = π1,2π5,6, p3 = π1,2π7,8.

We need to add one involution since ℓ(8, 0) = 4. It is easy to see that only
θ1,7 = z1z3z5z7 commutes with generators (5.3).

Consider standard subgroup S3,0 ⊂ S(2) generated by (5.2). This case is
reduced to r = 7 and it is indicated in Table 6. We finish the proof. □
Theorem 5.9. There are three non-equivalent groups in SM

9,0.

Proof. The standard subgroup S4,0 ⊂ S(1) is generated by involutions in (5.3).
We need to add one involution containing z9 since ℓ(9, 0) = 4 and |b(PI9,0)| =
9. We add q = π1,2z9.
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Table 7. Groups for r = 9

ℓ(9, 0) π0(S) |b(PI)| Signature PI

S(1) 4 1 9 (T2, π)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2z9

S(2) 4 1 8 (T1, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = θ1,7

S(3) 4 1 7 (T2, π, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = θ1,7
q = π1,2z7

We release |b(PI9,0)| = 9 and consider |b(PI9,0)| = 8. It is easy to see that
S(2) is isomorphic to S(1) ∈ SM

8,0.

Consider standard subgroup S3,0 ⊂ S(3) generated by (5.2). This case is
reduced to r = 7 and it is indicated in the table. We finish the proof. □
Theorem 5.10. There are four connected non-equivalent and two disconnected
non-equivalent groups in SM

10,0.

Table 8. Groups for r = 10

ℓ(10, 0) π0(S) |b(PI)| Signature PI

S(1) 4 1 10 (T1, π)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

S(2) 4 1 9 (T2, π)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2z9

S(3) 4 1 8 (T1, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = θ1,7

S(4) 4 1 7 (T2, π, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = θ1,5z7
q = π1,2z7

S(5) 4 2 7
(T1, θ)× (T2, π)

r = 7 + 3

(p1)(1) = π1,2π3,4, (q)(2) = π8,9z10
(p2)(1) = π1,2π5,6,
(p3)(1) = θ1,7,

S(6) 4 2 7
(T2, θ)× (T1)

r = 6 + 4

(p1)(1) = π1,2π3,4, (p1)(2) = π7,8π9,10

(p2)(1) = π1,2π5,6,
(q)(1) = θ1,5,
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Proof. The standard subgroup S5,0 ⊂ S(1) is generated by involutions

(5.4) p1 = π1,2π3,4, p2 = π1,2π5,6, p3 = π1,2π7,8, p4 = π1,2π9,10.

We do not need to add any involution, since ℓ(10, 0) = 4.
The rest of the connected groups comes from lower dimensions.

To construct the disconnected subgroup S(5) = S(5)
(1) ×S(5)

(2) corresponding to

the Z2-graded tensor product of the Clifford algebras Cl10,0 ∼= Cl7,0⊗̂Cl3,0 we

consider standard subgroup S3,0
(1) ⊂ S(5)

(1) generated by (5.2) and add type T1

involution θ1,7. Then S(5)
(2) = {1, π8,9z10}.

To obtain S(6) = S(6)
(1) × S(6)

(2) corresponding to the Z2-graded tensor prod-

uct of the Clifford algebras Cl10,0 ∼= Cl6,0⊗̂Cl4,0 we take standard subgroup

S3,0
(1) ⊂ S(6)

(1) generated by (5.2) and add type T2 involution θ1,5. Then S(6)
(2) =

{1, π7,8π9,10}.
□

Theorem 5.11. There are one connected and two disconnected non-equivalent
subgroups in SM

11,0.

Table 9. Groups for r = 11

ℓ(11, 0) π0(S) |b(PI)| Signature PI

S(1) 5 1 11 (T2, π)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

q = π1,2z11

S(2) 5 2 11
(T1, θ)× (T2, π)

r = 8 + 3

(p1)(1) = π1,2π3,4, (q)(2) = π9,10z11
(p2)(1) = π1,2π5,6,
(p3)(1) = π1,2π7,8,
(p4)(1) = θ1,7,

S(3) 5 2 11
(T2, π, θ)× (T1)

r = 7 + 4

(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6,
(p3)(1) = θ1,7,
(q)(1) = π1,2z7,

Proof. The standard subgroup S5,0 ⊂ S(1) is generated by involutions (5.4).
We need to add one involution, since ℓ(11, 0) = 5. We add q = π1,2z11. A
reduction to the cases |b(PI11,0)| = 10 is not possible due to ℓ(10, 0) < ℓ(11, 0).

To construct the disconnected subgroup S(2) = S(2)
(1) ×S(2)

(2) corresponding to

the Z2-graded tensor product of the Clifford algebras Cl11,0 ∼= Cl8,0⊗̂Cl3,0 we

start from the standard subgroup S4,0
(1) ⊂ S(2)

(1) generated by (5.3) and add type

T1 involution θ1,7. Then S(2)
(2) = {1, π9,10z11}.

To obtain S(3) = S(3)
(1) ×S(3)

(2) corresponding to the Z2-graded tensor product

of the Clifford algebras Cl11,0 ∼= Cl7,0⊗̂Cl4,0 we consider standard subgroup
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S3,0
(1) ⊂ S(3)

(1) generated by (5.2) and add type T1 involution θ1,7 and type T2

involution π1,2z7. Then S(3)
(2) = {1, π8,9π10,11}. □

Theorem 5.12. There are three connected non-equivalent and five discon-
nected non-equivalent subgroups in SM

12,0.

Table 10. Groups for r = 12

ℓ(12, 0) π0(S) |b(PI)| Signature PI

S(1) 5 1 12 (T1, π)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

S(2) 5 1 12 (T2, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

q = θ1,9z11z12

S(3) 5 1 11 (T2, π)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

q = π1,2z11

S(4) 5 2 12
(T1, θ)× (T1)

r = 8 + 4

(p1)(1) = π1,2π3,4, (p1)(2) = π9,10π11,12

(p2)(1) = π1,2π5,6,
(p3)(1) = π1,2π7,8,
(p4)(1) = θ1,7,

S(5) 5 2 12
(T1, θ)× (T2, π)

r = 7 + 5

(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6, (q)(2) = π8,9z12
(p3)(1) = θ1,7,

S(6) 5 2 12
(T2, π)× (T1)

r = 6 + 6

(p1)(1) = π1,2π3,4, (p1)(2) = π7,8π9,10

(p2)(1) = π1,2π5,6, (p2)(2) = π7,8π11,12

(q)(1) = θ1,5,

S(7) 5 2 11
(T1, θ)× (T2, π)

r = 8 + 3

(p1)(1) = π1,2π3,4, (q)(1) = π9,10z11
(p2)(1) = π1,2π5,6,
(p3)(1) = π1,2π7,8,
(p4)(1) = θ1,7,

S(8) 5 2 11
(T2, π, θ)× (T1)

r = 7 + 4

(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6,
(p3)(1) = θ1,7,
(q)(1) = π1,2z7,

Proof. The standard subgroup S6,0 ⊆ S(1) is generated by involutions

(5.5)
p1 = π1,2π3,4, p2 = π1,2π5,6, p3 = π1,2π7,8, p4 = π1,2π9,10,
p5 = π1,2π11,12.

and it coincides with S(1) ∈ SM
12,0.

Consider the standard subgroup S5,0 ⊆ S(2) generated by involutions (5.4).
We need to add one involution containing z11 and z12. We see that q =
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θ1,9z11z12 commutes with all involutions in (5.4). Adding q as the type T2

involution will finish the construction of the maximal group S(2), see Table 10.

To construct the disconnected subgroup S(3) = S(3)
(1) ×S(3)

(2) corresponding to

the Z2-graded tensor product of the Clifford algebras Cl12,0 ∼= Cl8,0⊗̂Cl4,0 we

consider standard subgroup S4,0
(1) ⊂ S(3)

(1) generated by (5.3). We add the involu-

tion p4 = θ1,7 to the set of generators for S4,0
(1) and generate the first component

S(3)
(1) in the product S(3) = S(3)

(1) × S(3)
(2) . Then we set S(3)

(2) = {1, π9,10π11,12}.
Analogously we construct the disconnected subgroups related to the decom-

position of the Clifford algebras Cl12,0 ∼= Cl7,0⊗̂Cl5,0 and Cl12,0 ∼= Cl6,0⊗̂Cl6,0.
In both of these cases we remove one of the type T2 involutions and obtain
5 involutions in the total set PI12,0. Note also that if in the decomposition

Cl12,0 ∼= Cl7,0⊗̂Cl5,0 for S(5) = S(5)
(1) × S(5)

(2) we take the set PI7,0 to be of (T2)-

type set generating S(5)
(1) and PI4,0 for S(5)

(2) to be of (T1)-type set, then we

obtain a group isomorphic to S(8).
If |b(PI12,0)| = 11, then the constructions reduce to the case of S ⊂ SM

11,0. □
Theorem 5.13. There are three connected non-equivalent and three discon-
nected non-equivalent subgroups in SM

13,0.

Proof. The standard subgroup S6,0 ⊆ S ⊂ SM
13,0 is generated by involu-

tions (5.5). We add either q = π1,2z13 or q = θ1,13 as type T2 involutions.

We obtain two connected groups S(1) and S(2).
Consider the standard subgroup S5,0 ⊆ S(3) generated by involutions (5.4).

We need to add two involutions containing z11, z12 and z13. We see that type
T1 involution p5 = θ1,9z11z12z13 commutes with all involutions in (5.4). Adding
p5 as the type T1 involution and q = π1,2z13 as type T2 involution, we obtain
the maximal group S(3), see Table 11.

To construct the disconnected subgroup S(4) = S(4)
(1) × S(4)

(2) corresponding

to the Z2- graded tensor product of the Clifford algebras Cl13,0 ∼= Cl8,0⊗̂Cl5,0
we consider standard subgroup S4,0

(1) ⊂ S(4)
(1) generated by (5.3). We add the

involutions p4 = θ1,7 to the set of generators for S4,0
(1) and generate the first

component S(4)
(1) in the product S(4) = S(4)

(1) × S(4)
(2) . Then we set S(4)

(2) generated

by the set of PI = {(p1)(2) = π9,10π11,12, (q)(2) = π9,10z13}.
Analogously we construct disconnected subgroups S(k) = S(k)

(1) × S(k)
(2) , k =

5, 6, corresponding to the Z2-graded tensor product Cl13,0 ∼= Cl7,0⊗̂Cl6,0. For

k = 5 we choose PI7,0 for the group S(5)
(1) to be (T2)-type set and two standard

involutions in PI6,0 for the groups S(5)
(2) to be (T1)-type set. For k = 6 we

change the type of the sets PI.
There are no groups with |b(PI13,0)| = 12 because ℓ(13, 0) > ℓ(12, 0). □



30 K. FURUTANI, I. MARKINA

Table 11. Groups for r = 13

ℓ(13, 0) π0(S) |b(PI)| Signature PI

S(1) 6 1 13 (T2, π)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

q = π1,2z13

S(2) 6 1 13 (T2, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

q = θ1,13

S(3) 6 1 13 (T2, π, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = θ1,9z11z12z13
q = π1,2z12

S(4) 6 2 13
(T1)× (T2)
r = 8 + 5

(p1)(1) = π1,2π3,4, (p1)(2) = π9,10π11,12

(p2)(1) = π1,2π5,6, (q)(2) = π9,10z13
(p3)(1) = π1,2π7,8,
(p4)(1) = θ1,7,

S(5) 6 2 13
(T2, π, θ)× (T1)

r = 7 + 6

(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6, (p2)(2) = π8,9π12,13

(p3)(1) = θ1,7,
(q)(1) = π1,2z7,

S(6) 6 2 13
(T1, θ)× (T2, θ)
r = 7 + 6

(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6, (p2)(2) = π8,9π12,13

(p3)(1) = θ1,7, (q)(2) = z8z10z12

Theorem 5.14. There are two connected non-equivalent and two disconnected
non-equivalent subgroups in SM

14,0.

Proof. The standard subgroup S7,0 ⊆ S(1) ⊂ SM
14,0 is generated by involutions

(5.6)
p1 = π1,2π3,4, p2 = π1,2π5,6, p3 = π1,2π7,8, p4 = π1,2π9,10,
p5 = π1,2π11,12, p6 = π1,2π13,14.

We add type T2 involution q = θ1,13 and obtain the connected group S(1).

Next we consider the standard subgroup S6,0 ⊆ S(2) generated by involu-
tions (5.5). We need to add two involutions containing z13 and z14. We see
that type T1 involution p6 = θ1,11z13z14 commutes with involutions in (5.5).
Adding either q1 = π1,2z13 or q2 = π1,2z14 as type T2 involution, we obtain
the maximal group S(2), see Table 12. Adding q1 or q2, we create equivalent
groups S(2).

To construct the disconnected subgroup S(3) = S(3)
(1) × S(3)

(2) corresponding

to the Z2-graded tensor product of the Clifford algebras Cl14,0 ∼= Cl8,0⊗̂Cl6,0
we consider standard subgroup S4,0

(1) ⊂ S(3)
(1) generated by (5.3). We add the
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Table 12. Groups for r = 14

ℓ(14, 0) π0(S) |b(PI)| Signature PI

S(1) 7 1 14 (T2, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = π1,2π13,14

q = θ1,13

S(2) 7 1 14 (T2, π, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = θ1,11z13z14
q = π1,2z14

S(3) 7 2 14
(T1, θ)× (T2, θ)

r = 8 + 6

(p1)(1) = π1,2π3,4, (p1)(2) = π9,10π11,12

(p2)(1) = π1,2π5,6, (p2)(2) = π9,10π13,14

(p3)(1) = π1,2π7,8, (q)(2) = θ9,13
(p4)(1) = θ1,7,

S(4) 7 2 14
(T2, π, θ)× (T1, θ)

r = 7 + 7

(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6, (p2)(2) = π8,9π12,13

(p3)(1) = θ1,7, (p3)(2) = θ9,13z14
(q4)(1) = π1,2z7,

involutions p4 = θ1,7 to the set of generators for S4,0
(1) and generate the first

component S(3)
(1) in the product S(3) = S(3)

(1) × S(3)
(2) . Then we set S(3)

(2) to be

generated by

PI = {(p1)(2) = π9,10π11,12, (p2)(2) = π9,10π13,14, (q)(2) = θ9,13}.

The disconnected subgroup S(4) = S(4)
(1)×S(4)

(2) corresponding to the Z2-graded

tensor product of the Clifford algebras Cl14,0 ∼= Cl7,0⊗̂Cl7,0, generated similarly.

We remove the type T2 involution from one of the sets PI7,0 generating S(4)
(k) ,

k = 1 or k = 2 in order to get a commutative set for S(4) with ℓ(14, 0) = 7.
There are no groups with |b(PI14,0)| = 13 because ℓ(14, 0) > ℓ(13, 0). □

Theorem 5.15. There are one connected and one disconnected subgroups in
SM
15,0.

Proof. The standard subgroup S7,0 ⊆ S(1) ⊂ SM
15,0 is generated by involu-

tions (5.6) We add type T1 involution p7 = θ1,15 and type T2 involution

q = π1,2z15. We obtain the connected group S(1).

To construct the disconnected subgroup S(2) = S(2)
(1) ×S(2)

(2) corresponding to

the Z2-graded tensor product of the Clifford algebras Cl15,0 ∼= Cl8,0⊗̂Cl7,0 we
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Table 13. Groups for r = 15

ℓ(15, 0) π0(S) |b(PI)| Signature PI

S(1) 8 1 15 (T2, π)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = π1,2π13,14

p7 = θ1,13z15
q = π1,2z15

S(2) 8 2 15
(T1, θ)× (T2, π, θ)

r = 8 + 7

(p1)(1) = π1,2π3,4, (p1)(2) = π9,10π11,12

(p2)(1) = π1,2π5,6, (p2)(2) = π9,10π13,14

(p3)(1) = π1,2π7,8, (p3)(2) = θ9,15
(p4)(1) = θ1,7, (q)(2) = π9,10z15

proceed as in the case r = 14 for S(3)
(1) , and set S(3)

(2) to be generated by

PI = { (p1)(2) = π9,10π11,12, (p2)(2) = π9,10π13,14,

(p3)(2) = θ9,13, (q)(2) = π9,10z15}.
There are no groups with |b(PI15,0)| = 14 because ℓ(15, 0) > ℓ(14, 0). □

Theorem 5.16. There are two connected non-equivalent and two disconnected
non-equivalent subgroups in SM

16,0.

Table 14. Groups for r = 16

ℓ(16, 0) π0(S) |b(PI)| Signature PI

S(1) 8 1 16 (T1, π, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = π1,2π13,14

p7 = θ1,13z15
p8 = π1,2z15z16

S(2) 8 1 15 (T2, π, θ)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = π1,2π13,14

p7 = θ1,13z15
q = π1,2z15

S(3) 8 2 16
(T1, θ)× (T1, θ)

r = 8 + 8

(p1)1 = π1,2π3,4, (p1)2 = π9,10π11,12

(p2)1 = π1,2π5,6, (p2)2 = π9,10π13,14

(p3)1 = π1,2π7,8, (p3)2 = π9,10π15,16

(p4)1 = θ1,7, (p4)2 = θ9,15

S(4) 8 2 15
(T1, θ)× (T2, π, θ)

r = 8 + 7

(p1)1 = π1,2π3,4, (p1)2 = π9,10π11,12

(p2)1 = π1,2π5,6, (p2)2 = π9,10π13,14

(p3)1 = π1,2π7,8, (p3)2 = θ9,15
(p4)1 = θ1,7, (q)2 = π9,10z15
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Proof. The standard subgroup S8,0 ⊆ S(1) ⊂ SM
16,0 is generated by involutions

(5.7)
p1 = π1,2π3,4, p2 = π1,2π5,6, p3 = π1,2π7,8, p4 = π1,2π9,10

p5 = π1,2π11,12, p6 = π1,2π13,14, p7 = π1,2π15,16.

We add type T1 involution p7 = θ1,15 and obtain the connected group S(1).

To construct the disconnected subgroups S(2) = S(2)
(1) × S(2)

(2) corresponding

to the Z2-graded tensor product of the Clifford algebras Cl16,0 ∼= Cl8,0⊗̂Cl8,0
and Cl16,0 ∼= Cl8,0⊗̂Cl7,0 we proceed as in the previous cases.
The group with |b(PI16,0)| = 15 coincides with the group S(1) ∈ SM

15,0. □
Theorem 5.17. Theorems 5.3 – 5.16 are true for H-type Lie algebras nr,1,
r ∈ {3, . . . , 16}.

Proof. For s = 1, the negative basis vector plays no role in forming the invo-
lutions, see Definition 3.5. □

Table 15. Number of non-equivalent groups

r 1 2 3 4 5 6 7 8
π0(S) = 1 0 0 1 2 1 1 1 2
π0(S) = 2 0 0 0 0 0 0 0 0

r 9 10 11 12 13 14 15 16
π0(S) = 1 3 4 1 3 3 2 1 2
π0(S) = 2 0 2 2 5 3 2 1 2

6. Isomorphism of invariant integral structures

Theorem 6.1. If

(6.1) (r, s) ∈ {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2)},
then for any orthonormal basis Br,s = {zj} and v ∈ V r,s, with 〈v, v〉V 1,0 =
±1 the invariant orthonormal structures spanned by bases as in Table 16 are
isomorphic.

Table 16. Invariant integral structures for (r, s) in Theorem 6.1

2 {v, Jz1v, Jz2v, Jz1Jz2v, z1, z2}
1 {v, Jz1v, z1} {v, Jz1v, Jz2v, Jz1Jz2v, z1, z2} {v, Jz1v, Jz2v, Jz1Jz2v, z1, z2}
0 v {v, Jz1v, z1} {v, Jz1v, Jz2v, Jz1Jz2v, z1, z2}
s/r 0 1 2

Proof. There are only trivial groups S ⊂ SM
r,s for (r, s) as in (6.1) since there

are no involutions. The proof of uniqueness is literally repeats the proof of
Proposition 3.16. See also discussions in Remark 3.2. □
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6.1. Isomorphic invariant integral structures. We fix an orthonormal
basis Br,s = {z1, . . . , zr+s} and a group S = S(PIr,s). Recall the construction
of an invariant basis Bv(V

r,s) on the minimal admissible module V r,s from
Theorem 3.15, which used the centraliser of the isotropy group S = S(PIr,s) =
Sv of a unit vector v ∈ V r,s. The invariant integral structure on the Lie algebra
nr,s(V

r,s) given by S will be denoted by

L(S) = span Z{Bv(V
r,s)} ⊕ span Z{Br,s}.

Theorem 6.2. If two groups S1 and S2 are equivalent; that is there exists a

map C ∈ O(r, s) such that C(Ŝ1)) = Ŝ2, then the invariant integral structures
L(S1) and L(S2) are isomorphic under a map A⊕C, where A : V r,s → V r,s is
an orthogonal map with respect to 〈. , .〉V r,s; that is AτA = IdV r,s.

Proof. The proof is a light generalisation of Proposition 3.16. Let S1 = S(PI1)
and S2 = S(PI2) be equivalent groups. It imply that there is C ∈ O(r, s) such

that C(Ŝ1) = Ŝ2 where we denoted by the same letter C the extention of the
orthogonal map to the group Cl∗r,s ⊂ Clr,s of invertible elements of the Clifford
algebra Clr,s. Let

(6.2) Bv(V
r,s) =

{
v, Jσi

(v), Jτj(v), JτjJσi
(v) | σi, τj, σiτj ∈ Σ(S1)

}
be the invariant basis, constructed in Theorem 3.15 by making use the eigenspaces
of involutions from PI1. The set PI1 is equivalent to PI2 under C. We use
the method of Theorem 3.15 and obtain a basis

Bw(V
r,s) =

{
w, JC(σi)(w), JC(τj)(w), JC(τj)JC(σi)(w) |

C(σi), C(τj), C(σi)C(τj) ∈ Σ(S2)
}
,(6.3)

where S2
∼= S(PI2) ∼= S(C(PI1)) and the set PI2 was replaced by C(PI1).

Note that since C(Br,s) = Br,s we also have G(Br,s) = G
(
C(Br,s)

)
.

We construct a correspondence A : Bv(V
r,s) → Bw(V

r,s) by

v 7−→ w, Jσi
(v) 7−→ JC(σi)(w), Jτj(v) 7−→ JC(τj)(w),

Jτj(v)Jσi
(v) 7−→ JC(τj)(w)JC(σi)(w),

and C : zk 7−→ C(zk). The correspondence A ⊕ C extended to a linear map
over R or Z is an orthogonal map on V r,s since it maps orthonormal basis (6.2)
to orthonormal basis (6.3). To show that the linear map A⊕ C is an isomor-
phism of invariant integral structures, we argue as in Proposition 3.16. By the
invariance of the bases Bv(V

r,s) and Bw(V
r,s) we have

JC(zk)Auα = ±JC(κ)v2 = ±AJκv1 = AJzkuα
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for any uα ∈ Bv(V
r,s), zk ∈ Br,s, and for some κ ∈ Σ = {σi, τj, τjσi}. It implies

〈[Auα, Auβ], C(zk)〉r,s = 〈JC(zk)Auα, Auβ〉V r,s = 〈AJzkuα, Auβ〉V r,s

= 〈AτAJzkuα, uβ〉V r,s = 〈Jzkuα, uβ〉V r,s

= 〈[uα, uβ], zk〉r,s.
for any uα, uβ ∈ Bv(V

r,s) and zk ∈ Br,s. □
Theorem 6.3. Let S1,S2 ∈ SM and L(S1), L(S2) be the corresponding invari-
ant integral structures. If there is an isomorphism

(6.4) A⊕ C : L(S1) → L(S2)

with A : V r,s → V r,s such that AτA = IdV r,s, then S1 and S2 are equivalent in
the sense of Definition 4.3.

Proof. Let

L(S1) = span Z{Bv(V
r,s)} ⊕ span Z{Br,s} = L1 ⊕ span Z{Br,s}

L(S2) = span Z{Bu(V
r,s)} ⊕ span Z{Br,s} = L2 ⊕ span Z{Br,s}

be the invariant integral srtuctures generated by the groups S1 and S2. Here we
also assume that S1 = Sv is the isotropy subgroup of a unit vector v ∈ V r,s and
S2 = Su is the isotropy subgroup of a unit vector u ∈ V r,s. Since A⊕ C is an
isomorphism, we obtain A(L1) = L2. By noting that A−1(L2) = Aτ (L2) = L1,
we deduce that AτA(L1) = L1.

We denote by the same letter A ⊕ C ∈ Aut(nr,s) the automorphism of
nr,s(V

r,s) which restriction to L(S1) gives map (6.4). The properties AτA =
IdV r,s and AτJC(z)A = Jz imply AJzx = JC(z)Ax for x ∈ L1 and C ∈ O(r, s),
the latter one being an orthogonal transformation over Z as well. For v ∈
Bv(V

r,s) we find a basis vector uj ∈ Bu(V
r,s) such that Av = uj. If there

holds Av = −uj, then the proof is similar. By renumbering the basis vectors
{uj} we can assume that Av = u. We have for the stationary group of Av

SAv = {σ̃ ∈ G
(
C(Br,s)

)
| Jσ̃Av = Av}

= {σ̃ ∈ G
(
C(Br,s)

)
| Jσ̃u = u} = Su(6.5)

Since σ̃ = C(zi1) . . . C(zik), and AJzx = JC(z)Ax, x ∈ L1 we have

Av = Jσ̃Av = JC(zi1 )
. . . JC(zik )

Av = AJzi1 . . . Jzikv = AJσv.

This implies v = Jσv for any σ ∈ G(Br,s). Thus we conclude that if σ̃ ∈ SAv,
for σ̃ = C(zi1) . . . C(zik) ∈ G(C(Br,s)) then σ = zi1 . . . zik ∈ Sv. Thus the
groups SAv and Sv are equivalent. The equalities (6.5) shows that S2 = Su =
SAv and S1 = Sv are equivalent. □
Table 17 shows the classical groups A such that the map A⊕ Id with A ∈ A

is the automorphism of H-type Lie algebras nr,s(V
r,s), see also [FM21, Table 3]

for non-minimal admissible modules. The groups Sp(n),O(n,C),U(n),O∗(n)
are subgroups of orthogonal transformations.
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Table 17. Groups A

8 GL(1,R)
7 O(1,R) U(1) Sp(1) Sp(1)× Sp(1)
6 O(2,C) O∗(2) GL(1,H) Sp(1)
5 O∗(4) O∗(2)×O∗(2) O∗(2) U(1)
4 GL(1,H) O∗(2) O(1,C) O(1R) GL(1,R)
3 Sp(1) U(1) O(1,R) O(1,R)×O(1,R) O(1) U(1) Sp(1) Sp(1)× Sp(1)
2 Sp(2,C) Sp(2,R) GL(2,R) O(2R) O(2,C) O∗(2) GL(1,H) Sp(1)
1 Sp(2,R) Sp(2,R)× Sp(2,R) Sp(4,R) U(2) O∗(4) O∗(2)×O∗(2) O∗(1) U(1)
0 Sp(2,R) Sp(2,C) Sp(1) GL(1H) O∗(2) O(1,C) O(1,R) GL(1,R)

0 1 2 3 4 5 6 7 8

Theorem 6.4. Let (r, s) be such that the groups A in Table 17 is a subgroup of
orthogonal transformations. The groups S1,S2 ∈ SM

r,s are equivalent in sense of
Definition (4.4), if and only if the corresponding invariant integral structures
L(S1) and L(S2) are isomorphic.

Proof. If (r, s) as in the statement of Theorem 6.4 then for an automorphism
Ã ⊕ Id of nr,s(V

r,s) we have Ãτ Ã = IdV r,s . It implies that the general auto-
morphisms A⊕ C of nr,s(V

r,s) also satisfies AτA = IdV r,s , see [FM21, Section
3.2].

Thus if the invariant integral structures L(S1) and L(S2) are isomorphic,
then they will be isomorphic under a map A⊕C with AτA = IdV r,s . It implies
that the group S1 and S2 are equivalent by Theorem 6.3.

Conversely, if we assume now that the groups S1 and S2 are equivalent,
then by Theorem 6.2 the corresponding invariant integral structures will be
isomorphic. □

6.2. Non-isomorphic invariant integral structures.

Theorem 6.5. Let S1 = S(PI1) ∈ SM
r,s and S2 = S(PI2) ∈ SM be non-

equivalent groups such that there is a type T1 involution in p ∈ PI1 and an
involution q ∈ PI2 such that p·q = −q·p. Then the invariant integral structures
L(S1) and L(S2) are not isomorphic.

Proof. Let nr,s(V
r,s) be a pseudo H-type Lie algebra and p ∈ PI1, q ∈ PI2 as

in the statement of Theorem 6.5. We denote by E(p) = {x ∈ V r,s | Jpx = x}
the eigenspace of type T1 involution p ∈ PI1 and by

E+(q) = {x ∈ E(p) | Jqx = x}, E−(q) = {x ∈ E(p) | Jqx = −x}
the non-trivial eigen spaces of q ∈ PI2. Then the subspaces in the direct sum
E(p) = E+(q)⊕ E−(q) are orthogonal.

Let us assume that there exists an isomorphism A⊕C : L(S1) → L(S2) and
write

F (p) = A
(
E(p)

)
, F± = F±

(
C(q)

)
= {y ∈ F (p) | JC(q)y = ±y}.

Note the following: since AJp = JpA, we obtain that AτA
(
E(p)

)
= E(p). The

map C, extended to the Clifford algebra Clr,s, satisfies C(p)C(q) = −C(q)C(p).



LATTICE 37

Therefore

(6.6) F (p) = F+ ⊕ F−,

where F+, F− are non-trivial orthogonal vector spaces.
Let x ∈ E(p) and put Ax = y+(x) + y−(x), where y+(x) ∈ F+ and y−(x) ∈

F−. We also have

Ax = AJpx = JC(p)Ax = JC(p)(y+(x) + y−(x)) = JC(p)y+(x) + JC(p)y−(x).

Since

JC(p) : F+ → F−, and JC(p)y+(x) ∈ F−, JC(p)y−(x) ∈ F+

we obtain y+(x) = JC(p)y−(x) and y−(x) = JC(p)y+(x) by the uniqueness of
the decomposition into a direct sum of vector spaces. We conclude

Ax = y+(x) + JC(p)y+(x).

Let {vi} be an orthonormal basis of the space E(p), which is a part of the
invariant basis on V r,s defined by the S1. The matrix components aij of the
operator AτA : E(p) → E(p) with respect to the basis {vi} have the form

aij = 〈AτAvi, vj〉V r,s = 〈Avi, Avj〉V r,s

= 〈y+(vi) + JC(p)(y+(vi)), y+(vj) + JC(p)y+(vj)〉V r,s

= 2〈y+(vi), y+(vj)〉V r,s ,

where we used the orthogonality of the vector spaces F+ and F− in (6.6).
Hence the non-vanishing components of the matrix AτA are always even

numbers, so that A can not be invertible in SL(n,Z). It implies that there
are no an isomorphism A⊕C between the invariant integral structures L(S1)
and L(S2). □

Corollary 6.6. Let S1 and S2 be in SM
r,s and assume

(1) S1 = S1(PI1) and S2 = S2(PI2) are not equivalent in the sense of the
Definition 4.4,

(2) one of the sets PIk, k = 1, 2 is of (T1)-type.

Then Theorem 6.5 holds.

Proof. Since a generating set PI1 of S1 consists only of involutions of type T1,
the non-existence of an involution q ∈ PI2 such that pq = −qp for any p ∈ PI1
requires that PI1 ⊂ S2 by the maximality of the groups S1 and S2. But then
S1 = S2 which is a contradiction. □

There are 3 pairs consisting of non-equivalent groups for (r, 0), which does
not satisfies the conditions of Theorem 6.5 For r = 12 we have two non-
equivalent groups S(5) and S(8) violating the conditions of Theorem 6.5, see
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Table 10. The generating set is presented here

PI(5) = { p1 = z1z2z3z4, p2 = z1z2z5z6, p3 = z1z3z5z7, p4 = z8z9z10z11,
κ1 = z8z9z12},

P I(8) = { p1 = z1z2z3z4, p2 = z1z2z5z6, p3 = z1z3z5z7, p4 = z8z9z10z11,
κ2 = z1z2z7}

For r = 13 there are two sets of pairs of non-equivalent groups violating
the conditions of Theorem 6.5, see Table 11. The first collection contains the
groups S(k), k = 1, 2 which are all connected. The second collection contains
the groups S(k), k = 5, 6 which are products of two smaller subgroups. The
generating sets for the first collection are:

PI(1) = { p1 = z1z2z3z4, p2 = z1z2z5z6, p3 = z1z2z7z8, p4 = z1z2z9z10,
p5 = z1z2z11z12, ρ1 = z1z2z13},

P I(2) = { p1 = z1z2z3z4, p2 = z1z2z5z6, p3 = z1z2z7z8, p4 = z1z2z9z10,
p5 = z1z2z11z12, ρ2 = z1z3z5z7z9z11z13},

The generating sets for the second collection are:

PI(5) = { p1 = z1z2z3z4, p2 = z1z2z5z6, p3 = z1z3z5z7, p4 = z8z9z10z11,
p5 = z8z9z12z13, τ1 = z1z2z7},

P I(6) = { p1 = z1z2z3z4, p2 = z1z2z5z6, p3 = z1z3z5z7, p4 = z8z9z10z11,
p5 = z8z9z12z13, τ2 = z8z10z12},

We formulate three theorems and prove them. The method is essentially
the same and differs only by a choice of a convenient basis for the space E
invariant under the action of type T1 involutions. We start from r = 13 since
the dimension of E is equal to four and the calculations are more transparent.

Theorem 6.7. Let r = 13. The invariant orthogonal lattices L(S(5)) and
L(S(6)) defined by non-equivalent groups S(5) = S(PI(5)) and S(6) = S(PI(6))
are not isomorphic.

Proof. The minimal admissible module V 13,0 is isometric to R128,0. Let E =
{x ∈ V 13,0 | Jpi(x) = x, i = 1, 2, 3, 4, 5} be the eigenspace of involutions of
type T1. Then dim(E) = 4 and E = E+(τ1) ⊕ E−(τ1), there E±(τ1) are the
eigenspaces of τ1. Let v ∈ E+(τ1), 〈v, v〉V 13,0 = 1. The vectors

v1 = v, v2 = Jz8Jz9v, v3 = Jz8Jz10Jz12v = Jτ2v, v4 = Jz9Jz10Jz12v = Jz9Jτ2v,

form an orthonormal basis of E. In fact,

〈v, v1〉V 13,0 = 〈v, Jz8Jz9v〉V 13,0 = −〈z8, z9〉R13,0〈v, v〉V 13,0 = 0,

and analogously 〈v2, v3〉V 13,0 = 0. Furthermore, from one side

(6.7) 〈v, v3〉V 13,0 = 〈Jτ1v, Jτ2v〉V 13,0 = 〈v, Jτ1Jτ2v〉V 13,0 = −〈v, Jτ2Jτ1v〉V 13,0 ,
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But from other side

(6.8) 〈v, v3〉V 13,0 = 〈Jτ1v, Jτ2v〉V 13,0 = 〈Jτ2Jτ1v, v〉V 13,0 .

The equalities (6.7) and(6.8) imply the orthogonality of v and v3. The or-
thogonality of the rest of vectors are reduced to the calculations as in (6.7)
and(6.8), where we only used that the skew symmetry of Jzk with respect to
product 〈. , .〉V 13,0 and skew symmetry of the Clifford product JzkJzl = −JzlJzk .

Assume that there exists an isomorphism A⊕ C : n13,0 → n13,0 between the
invariant orthogonal lattices L(S(5)) to L(S(6)).

We show that A is an orthogonal transformation. In fact, we have

〈Av1, Av2〉V 13,0 = 〈Av, JC(z8)JC(z9)Av〉V 13,0

= 〈C(z8), C(z9)〉R13,0〈Av,Av〉V 13,0 = 0.

Furthermore, by making use of the fact that the product Jτ2Jτ1 contains 6
numbers of different Jzk , we get

〈Av1, Av3〉V 13,0 = 〈Av,AJτ2v〉V 13,0 = 〈Av,AJτ2Jτ1v〉V 13,0

= 〈Av, JC(τ2)JC(τ1)Av〉V 13,0 = (−1)11〈JC(τ2)JC(τ1)Av,Av〉V 13,0 .(6.9)

In the last step we used the skew symmetry of JC(zk) with respect to 〈. , .〉V 13,0

and skew symmetry JC(zk)JC(zl) = −JC(zl)JC(zk). It shows Av1 and Av3 are
orthogonal. Analogously we obtain 〈Av1, Av4〉V 13,0 = 0.

Next we show

〈Av2, Av3〉V 13,0 = 〈AJz8Jz9v, AJτ2v〉V 13,0 = 〈JC(z8)JC(z9)Av, JC(τ2)JC(τ1)Av〉V 13,0

= −〈Av, JC(z9)JC(z10)JC(z12)JC(τ1)Av〉V 13,0

= (−1)12〈Av, JC(z9)JC(z10)JC(z12)JC(τ1)Av〉V 13,0 = 0,

by using the same arguments as in (6.9). The value 〈Av2, Av4〉V 13,0 = 0 is
shown in the same way.

Finally,

〈Av3, Av4〉V 13,0 = 〈JC(τ2)JC(τ1)Av, JC(z9)JC(τ2)JC(τ1)Av, 〉V 13,0

= 〈JC(z8)Av, JC(z9)Av〉V 13,0 = 0.

This shows that AτA = λ = ||A(v)||V 13,0IdV 13,0 and then AτA ∈ SL(4,Z)
requires ||A(v)||V 13,0 = 1. Hence by Theorem 6.3, the groups S(5) and S(6) are
equivalent, that is a contradiction. □

Theorem 6.8. Let r = 13. The invariant orthogonal lattices L(S(1)) and
L(S(2)) defined by non-equivalent groups S(1) = S(PI(1)) and S(2) = S(PI(2))
are not isomorphic.

Proof. As in Theorem 6.7 we define E = {x ∈ V 13,0 | Jpi(x) = x, i =
1, 2, 3, 4, 5} and E = E+(ρ1) ⊕ E−(ρ1). Let v ∈ E+(ρ1), 〈v, v〉V 13,0 = 1. Note
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that ρ1ρ2 = −ρ2ρ1 and the product Jρ1Jρ2 contains six different maps Jzk . We
show as in Theorem 6.7 that the vectors

v1 = v, v2 = Jz1Jz2v, v3 = Jρ2v, v4 = Jz2Jρ2v,

form an orthonormal basis of E. Assuming that there is an isomorphism A⊕
C : n13,0 → n13,0 mapping the invariant orthogonal lattices L(S(1)) to L(S(2))
we show that AτA = IdV 13,0 and obtain the contradiction as in Theorem 6.7.

□
Theorem 6.9. Let r = 12. The invariant orthogonal lattices L(S(5)) and
L(S(8)) defined by non-equivalent groups S(5) = S(PI(5)) and S(8) = S(PI(8))
are not isomorphic.

Proof. The minimal admissible module V 12,0 is isometric to R128,0. Let E =
{x ∈ V 12,0 | Jpi(x) = x, i = 1, 2, 3, 4} be the eigenspace of involutions of
type T1. Then dim(E) = 8 and E = E+(κ2)⊕ E−(κ2), there E±(κ2) are the
eigenspaces of Jκ2 = Jz1Jz2Jz7 . Let v ∈ E+(κ2), 〈v, v〉V 12,0 = 1. The vectors

v1 = v, v2 = Jz8Jz9v = Iv,
v3 = Jz8Jz10v = Jv, v4 = Jz9Jz10v = Kv,
v5 = Jκ1v = Jz8Jz9Jz12v, v6 = Iv5 = Jz12v,
v7 = Jv5 = −Jz9Jz10Jz12v, v8 = Kv5 = Jz8Jz10Jz12v,

form an orthonormal basis of E by making of calculations as in (6.7) and (6.8).
Note that the space E is two dimensional quaternion space with the quaternion
structure

I = Jz8Jz9 , J = Jz8Jz10 , K = Jz9Jz10 , I2 = J2 = K2 = IJK = −1.

Then we continue the proof as in Theorem 6.7 and obtain a contradiction. □
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