The symmetry of finite group schemes, Watanabe type theorem, and the a-invariant of the ring of invariants

MITSUYASU HASHIMOTO*

Dedicated to Professor Mel Hochster and Professor Craig Huneke

Abstract

Let k be a field, and G be a k-group scheme of finite type. Let G_{ad} be the k-scheme G with the adjoint action of G. We call $\lambda_{G,G} = H^0(\operatorname{Spec} k, e^*(\omega_{G_{ad}}))$ the Knop character of G, where $e: \operatorname{Spec} k \to G_{\operatorname{ad}}$ is the unit element, and $\omega_{G_{\operatorname{ad}}}$ is the G-canonical module. We prove that $\lambda_{G,G}$ is trivial in the following cases: (1) G is finite, and $k[G]^*$ is a symmetric algebra; (2) G is finite and étale; (3) G is finite and constant; (4) G is smooth and connected reductive; (5) G is abelian; (6) G is finite, and the identity component G° of G is linearly reductive; (7) G is finite and linearly reductive. Let V be a small G-module of dimension $n < \infty$. We assume that $\lambda_{G,G}$ is trivial. Let $H = \mathbb{G}_m$ be the one-dimensional torus, and let V be of degree one as an H-module so that $S = \operatorname{Sym} V^*$ is a \tilde{G} -algebra generated by degree one elements, where $\tilde{G} = G \times H$. We set $A = S^G$. Then we have (i) $\omega_A \cong \omega_S^G$ as (H, A)-modules; (ii) $a(A) \leq -n$ in general, where a(A) denotes the a-invariant. Moreover, the following are equivalent: (1) The action $G \to GL(V)$ factors through SL(V); (2) $\omega_S \cong S(-n)$ as (\tilde{G}, S) -modules; (3) $\omega_S \cong S$ as (G, S)-modules; (4) $\omega_A \cong A(-n)$ as (H,A)-modules; (5) A is quasi-Gorenstein; (6) A is quasi-Gorenstein and a(A) = -n; (7) a(A) = -n. This partly generalizes recent results of Liedtke-Yasuda arXiv:2304.14711v2 and Goel-Jeffries-Singh arXiv:2306.14279v1.

1. Introduction

Let k be a field, V a finite-dimensional k-vector space, and G a finite subgroup of GL(V). Let $S = \operatorname{Sym} V^* = k[V]$, and $A = S^G$. Hochster and Eagon proved that in non-modular case (that is, the case that the order |G| of G is not divisible by the characteristic of k), A is Cohen–Macaulay. K.-i. Watanabe proved that in non-modular case, $G \subset SL(V)$ if and only if G does not have a pseudo-reflection and A is Gorenstein [Wat1, Wat2]. Since

^{*}Partially supported by JSPS KAKENHI Grant number 20K03538 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165.

²⁰²⁰ Mathematics Subject Classification. Primary 13A50; Secondary 14L15, 16T05. Key Words and Phrases. unimodular Hopf algebra, a-invariant, canonical module, invariant subring, finite group scheme, small action.

then, his result has been generalized by several authors. Fleischmann and Woodcock [FW] and Braun [Bra] proved that if $G \subset GL(V)$ is a finite subgroup without pseudoreflection, then A is quasi-Gorenstein (or equivalently, $\omega_A \cong A$) if and only if $G \subset SL(V)$.

It has been known that the condition that the finite group G does not have a pseudoreflection sometimes can be generalized to more general G. The condition is replaced by the condition that $\pi: V = \operatorname{Spec} S \to \operatorname{Spec} A = V/\!/G$ is a principal G-bundle off codimension two or more, and called an almost principal bundle or quasi-torsor [Has4, C-R], and we call this condition 'V is small.' Namely, we say that V is small if there exist some open subset W of $\operatorname{Spec} A$ and G-stable open subset U of $\pi^{-1}(W)$ such that $\operatorname{codim}(V \setminus U, V) \geq 2$, $\operatorname{codim}(V/\!/G \setminus W, V/\!/G) \geq 2$, and $\pi: U \to W$ is a principal G-bundle (or a G-torsor) in the sense that π is faithfully flat, and $\Phi: G \times U \to U \times_W U$ given by $\Phi(g, u) = (gu, u)$ is an isomorphism. Note that if G is a finite constant group, then V is small if and only if $G \subset GL(V)$, and G does not have a pseudo-reflection.

Knop [Kno] pointed out that the equivalence $\omega_A \cong A \iff G \subset SL(V)$ is not true any more even if G is a (disconnected) reductive group over an algebraically closed field of characteristic zero, and the action is small. Letting $\lambda_{\rm ad}$ be the top exterior power of $\text{Lie}(G)^*$, the dual of the adjoint representation, the triviality of $\det_V \otimes \lambda_{\rm ad}^*$ was important [Kno, Satz 2]. Note that $\lambda_{\rm ad}$ is trivial if G is finite, and we can recover Watanabe's original result.

We define $\lambda_{G,G} = H^0(\operatorname{Spec} k, e^*(\omega_{G_{\operatorname{ad}}}))$, and call it the Knop character of G, where $e: \operatorname{Spec} k \to G_{\operatorname{ad}}$ is the unit element, and $\omega_{G_{\operatorname{ad}}}$ is the G-equivariant canonical module of G_{ad} . If, moreover, G is a normal closed subgroup scheme of another affine k-group scheme \tilde{G} of finite type, then $\lambda_{G,G}$ is a character of \tilde{G} , and we denote it by $\lambda_{\tilde{G},G}$. Note that $\lambda_{G,G} \cong \lambda_{\operatorname{ad}}^*$, if G is k-smooth. By [Has4, (11.22)], it is easy to see that if V is small, then $\omega_A \cong A(a)$ if and only if $\omega_S = S \otimes \det_{V^*} \cong S(a) \otimes_k \lambda_{\tilde{G},G}$ if and only if $\det_V \cong \lambda_{G,G}$ as G-modules, and a = -n. If, moreover, $\lambda_{G,G} \cong k$, then A is quasi-Gorenstein if and only if $G \subset SL(V)$, and if these conditions are satisfied, then a(A) = -n. So it is natural to ask, when $\lambda_{G,G}$ is trivial. In [Has4, (11.21)], it is pointed out that if G is finite and linearly reductive, étale, or connected reductive, then $\lambda_{G,G}$ is trivial, but $\lambda_{G,G}$ is nontrivial if k is a field of characteristic not two and G = O(2).

In this paper, we discuss when $\lambda_{G,G}$ is trivial, assuming that G is finite (but not étale). It is well-known that the group algebra kG is symmetric [SY, Example IV.2.6]. A finite dimensional k-Hopf algebra is Frobenius in general [SY, Theorem VI.3.6]. In general, a finite dimensional k-Hopf algebra H is not symmetric even if H is cocommutative, or equivalently, $H = k[G]^*$ for some finite k-group scheme G, see [LS, p. 85]. We prove that $\lambda_{G,G}$ is trivial if and only if the notions of the left integral and the right integral agree in $H = k[G]^*$. The latter condition is called the unimodular property of H. As the square s_H^2 of the antipode s_H of H is the identity, H is unimodular if and only if H is a symmetric algebra, see [Hum, Rad].

As an application of the G-triviality of $\lambda_{G,G}$, we prove the following.

Theorem 3.6. Let k be a field, G be an affine k-group scheme of finite type, and V be a small G-module of dimension $n < \infty$. We assume that $\lambda_{G,G}$ is trivial. Let $H = \mathbb{G}_m$ be the one-dimensional torus, and let V be of degree one as an H-module so

that $S = \operatorname{Sym} V^*$ is a \tilde{G} -algebra generated by degree one elements, where $\tilde{G} = G \times H$. We set $A = S^G$. Then we have

- (i) $\omega_A \cong \omega_S^G$ as (H, A)-modules;
- (ii) $a(A) \leq -n$ in general, where a(A) denotes the a-invariant.

Moreover, the following are equivalent:

- (1) The action $G \to GL(V)$ factors through SL(V);
- (2) $\omega_S \cong S(-n)$ as (\tilde{G}, S) -modules;
- (3) $\omega_S \cong S$ as (G, S)-modules;
- (4) $\omega_A \cong A(-n)$ as (H, A)-modules;
- (5) A is quasi-Gorenstein;
- (6) A is quasi-Gorenstein and a(A) = -n;
- (7) a(A) = -n.

For the case that G is finite and constant, the theorem was proved (in a stronger form) by Goel, Jeffries, and Singh [GJS]. Note that they do not require that the action of G on V is small. They proved that $a(A) \leq a(S) = -n$ in general. They also proved that the equality a(A) = -n holds if and only if the image of $G \to GL(V)$ is a subgroup of SL(V) without pseudo-reflections for the case that G is finite and constant [GJS, Proposition 4.1, Theorem 4.4]. It is interesting to ask if these are true for any finite group scheme G. Note also that the equivalence $(1)\Leftrightarrow(5)$ for the case that G is finite linearly reductive (but not necessarily constant) was proved recently by Liedtke and Yasuda [LY]. It also follows from [Has4, $(7.61),(11.22)\mathbf{2}$].

Acknowledgment. The author thanks K. Goel, A. Singh, K.-i. Watanabe, and T. Yasuda for valuable communications. He is also grateful to A. Masuoka for valuable advice.

2. Preliminaries

(2.1) Let k be a field, $f: \tilde{G} \to H$ be a homomorphism between affine k-group schemes of finite type with G = Ker f. Let $\mathcal{F}(\tilde{G})$ be the category of \tilde{G} -schemes separated of finite type over k. For $(h_Z: Z \to \operatorname{Spec} k) \in \mathcal{F}(\tilde{G})$, the \tilde{G} -dualizing complex of Z (or better, of h_Z) is $h_Z^!(k)$ by definition, and we denote it by $\mathbb{I}_Z = \mathbb{I}_Z(G)$, where (-)! denotes the twisted inverse [Has2]. The \tilde{G} -canonical module ω_Z is the lowest nonzero cohomology group of \mathbb{I}_Z . It is a coherent \tilde{G} -module. If $Z = \operatorname{Spec} B$ is affine, $H^0(Z, \omega_Z)$ is denoted by ω_B , and is called the \tilde{G} -equivariant canonical module of B. When we forget the \tilde{G} -structure, \mathbb{I}_Z is the dualizing complex of the scheme Z without the \tilde{G} -action [Has2, (31.17)].

- (2.2) A morphism $\varphi: X \to Y$ of \tilde{G} -schemes of finite type over k is called a \tilde{G} -enriched principal G-bundle if G acts trivially on Y, φ is faithfully flat, and the morphism $\Phi: G \times X \to X \times_Y X$ given by $\Phi(g, x) = (gx, x)$ is an isomorphism. As G is affine, flat, and Gorenstein over Spec k, φ is affine, flat, and Gorenstein.
- (2.3) Let X be a scheme and U its open subset. We say that U is n-large if $\operatorname{codim}(X \setminus U, X) \ge n+1$, where we regard that the codimension of the empty set in X is $\infty \ge n+1$.

Definition 2.4 (cf. [Has4, (10.2)]). A diagram of \tilde{G} -schemes of finite type

$$(1) X \stackrel{i}{\longleftrightarrow} U \stackrel{\rho}{\longrightarrow} V \stackrel{j}{\longleftrightarrow} Y$$

is called a \tilde{G} -enriched n-almost rational principal G-bundle if (1) G acts trivially on Y; (2) j is an open immersion, and j(V) is n-large in Y; (3) i is an open immersion, and i(U) is n-large in X; (4) $\rho: U \to V$ is a principal G-bundle. That is, ρ is faithfully flat, and $\Phi: G \times U \to U \times_V U$ given by $\Phi(n, u) = (nu, u)$ is an isomorphism.

- (2.5) In what follows, 1-large and 1-almost will simply be called large and almost, respectively. A \tilde{G} -morphism $\varphi: X \to Y$ is said to be a \tilde{G} -enriched n-almost principal G-bundle with respect to U and V, if U is a \tilde{G} -stable open subset of X, V is an H-stable open subset of Y, and the diagram (1) is a \tilde{G} -enriched n-almost rational principal G-bundle, where $\rho: U \to V$ is the restriction of φ . We say that a \tilde{G} -morphism $\varphi: X \to Y$ is a \tilde{G} -enriched n-almost principal G-bundle if it is so with respect to U and V for some U and V.
- **Lemma 2.6.** Let $\varphi: X \to Y$ be a \tilde{G} -enriched almost principal G-bundle between \tilde{G} schemes of finite over k. Assume that X is normal, and that $\mathcal{O}_Y \to (\varphi_* \mathcal{O}_X)^G$ is an
 isomorphism. Let $\operatorname{Ref}(\tilde{G}, X)$ be the category of coherent $(\tilde{G}, \mathcal{O}_X)$ -modules which are
 reflexive as \mathcal{O}_X -modules, and Let $\operatorname{Ref}(H, Y)$ be the category of coherent (H, \mathcal{O}_Y) -modules
 which are reflexive as \mathcal{O}_Y -modules. Then we have: The functor $\mathcal{G}: \operatorname{Ref}(\tilde{G}, X) \to$ $\operatorname{Ref}(H, Y)$ given by $\mathcal{G}(\mathcal{M}) = (\varphi_* \mathcal{M})^G$ is an equivalence, and $\mathcal{F}: \operatorname{Ref}(H, Y) \to \operatorname{Ref}(\tilde{G}, X)$ given by $\mathcal{F}(\mathcal{N}) = (\varphi^* \mathcal{N})^{**}$ is its quasi-inverse, where $(-)^{**}$ is the double dual.

Proof. Follows immediately from [Has4, (10.13),(11.3)]. A short and self-contained proof for the case that everything is affine can be found in [HK, (2.4)].

(2.7) Let X be a \tilde{G} -scheme, and L be a \tilde{G} -module. Let $h_X: X \to \operatorname{Spec} k$ be the structure map. Then for a quasi-coherent $(\tilde{G}, \mathcal{O}_X)$ -module \mathcal{M} , we denote $\mathcal{M} \otimes_{\mathcal{O}_X} h_X^* L$ by $\mathcal{M} \otimes_k L$. Note that G is a normal closed subgroup scheme of \tilde{G} . So \tilde{G} acts on G by the adjoint action. We denote this scheme by G_{ad} . Let $e:\operatorname{Spec} k \to G_{\operatorname{ad}}$ be the unit element. It is a \tilde{G} -stable closed immersion. We denote the \tilde{G} -module $H^0(\operatorname{Spec} k, e^*(\omega_{G_{\operatorname{ad}}}))$ by $\lambda_{\tilde{G},G}$, and we call it the $Knop\ character$ of G (enriched by \tilde{G}). If G is k-smooth, then $\lambda_{G,G} \cong \operatorname{det}^*_{\mathfrak{g}}$ by [Has2, (28.11)], where $\mathfrak{g} = \operatorname{Lie} G$ is the adjoint representation of G, and det denotes the top exterior power. Its dual $\operatorname{det}_{\mathfrak{g}} = \lambda_{G,G}^*$ is denoted by $\lambda_{\operatorname{ad}}$ in [Kno], and played an important role in studying Gorenstein property of invariant subrings [Kno, Satz 2].

Lemma 2.8. Let $\varphi: X = \operatorname{Spec} T \to Y = \operatorname{Spec} B$ be a \tilde{G} -enriched almost principal G-bundle which is also a morphism in $\mathcal{F}(\tilde{G})$ with X and Y affine normal. Then $\omega_T = (T \otimes_B \omega_B)^{**} \otimes_k \lambda_{\tilde{G},G}^{-}$, where $(-)^{**} = \operatorname{Hom}_T(\operatorname{Hom}_T(-,T),T)$ is the double dual. We also have that $\omega_B = (\omega_T \otimes_k \lambda_{\tilde{G},G}^*)^G$. In particular, if moreover, $\lambda_{\tilde{G},G} \cong k$, then $\omega_T \cong (T \otimes_B \omega_B)^{**}$ and $\omega_B \cong \omega_T^G$.

Proof. This is a special case of [Has4, (11.22)].

(2.9) Let Λ be a finite-dimensional k-algebra. We say that Λ is *Frobenius* if ${}_{\Lambda}\Lambda \cong D(\Lambda_{\Lambda})$ as left Λ -modules, where $D = \operatorname{Hom}_k(-, k)$. This is equivalent to say that there is a nondegenerate bilinear form $\beta: \Lambda \times \Lambda \to k$ such that $\beta(ac, b) = \beta(a, cb)$. If, moreover, we can take such a β to be symmetric, we say that Λ is *symmetric*. This is equivalent to say that the bimodule ${}_{\Lambda}\Lambda_{\Lambda}$ is isomorphic to $D({}_{\Lambda}\Lambda_{\Lambda})$.

(2.10) Let Γ be a finite dimensional k-Hopf algebra. We define

$$\int_{\Gamma}^{l} := \{ x \in \Gamma^* \mid \forall y \in \Gamma^* \ yx = \epsilon(y)x \},\$$

where $\epsilon: \Gamma^* \to k$ is given by $\epsilon(y) = y(1_{\Gamma})$. An element of \int_{Γ}^{l} is called a *left integral* on Γ (or in Γ^* , according to the terminology in [Mon]).

(2.11) Note that

$$\int_{\Gamma}^{l} = (\Gamma^*)^{\Gamma} = \{ \psi \in \Gamma^* \mid \omega_{\gamma^*}(\psi) = \psi \otimes 1 \} = \operatorname{Hom}_{\Gamma}(\Gamma, k).$$

Indeed, if $\gamma_1, \ldots, \gamma_n$ is a k-basis of Γ and $\gamma_1^*, \ldots, \gamma_n^*$ is its dual basis, then the comodule structure ω_{Γ^*} of Γ^* is given by $\omega_{\Gamma^*}(\alpha) = \sum_{i=1}^n \gamma_i^* \alpha \otimes \gamma_i$ for $\alpha \in \Gamma^*$. In other words, $\omega(\alpha) = \sum_{(\alpha)} \alpha_{(0)} \otimes \alpha_{(1)}$ is given by $\sum_{(\alpha)} \langle \beta, \alpha_{(1)} \rangle \alpha_{(0)} = \beta \alpha$ for $\beta \in \Gamma^*$. So $\omega(\psi) = \psi \otimes 1$ is equivalent to say that $\rho \psi = \epsilon(\rho) \psi$ for $\rho \in \Gamma^*$, as desired.

(2.12) We also define $\int_{\Gamma}^{r} = \{x \in \Gamma^* \mid \forall y \in \Gamma^* \ xy = \varepsilon(y)x\}$, and an element of \int_{Γ}^{r} is called a right integral on Γ . It is known that $\dim_k \int_{\Gamma}^{l} = \dim_k \int_{\Gamma}^{r} = 1$ [Swe1, Corollary 5.1.6]. If $\int_{\Gamma}^{l} = \int_{\Gamma}^{r}$, then we say that Γ^* is unimodular. Radford proved [Rad] that Γ^* is a symmetric algebra if and only if Γ^* is unimodular and \mathcal{S}^2 is an inner automorphism of Γ^* , where \mathcal{S} is the antipode of Γ . Suzuki [Suz] constructed an example of a finite dimensional unimodular k-Hopf algebra which is not symmetric.

Lemma 2.13. Let G be a finite k-group scheme, H an affine k-group scheme of finite type, and $\tilde{G} = G \times H$ is the direct product. Let $\Gamma = k[G]$ be the coordinate ring of G. Then the following are equivalent.

- (1) Γ^* is symmetric.
- (2) Γ^* is unimodular.
- (3) $\lambda_{\tilde{G},G} \cong k \text{ as } \tilde{G}\text{-modules.}$

(4) $\lambda_{G,G} \cong k$ as G-modules.

Proof. As Γ^* is cocommutative, $s^2 = \mathrm{id}_{\Gamma^*}$, where s is the antipode of Γ^* . By [Hum, Theorem 1,2] (see also [Rad]), (1) \Leftrightarrow (2) holds.

We prove $(2)\Rightarrow(3)$. Note that Γ^* is a (G,k[G])-module. In other words, Γ^* is a Γ -Hopf module. Let $\zeta:\Gamma^*\to\Gamma^*\otimes_k\Gamma$ be the map given by $\zeta(\gamma)=\sum_{(\gamma)}\gamma_{(0)}(\mathcal{S}\gamma_{(1)})\otimes\gamma_{(2)}$, where \mathcal{S} is the antipode of Γ . By the proof of [Swe1, Theorem 4.1.1], ζ is injective and $\mathrm{Im}\,\zeta=\int_\Gamma^l\otimes k[G]$. Now let us consider the same map $\zeta:k[G_{\mathrm{ad}}]^*\to k[G_{\mathrm{ad}}]^*\otimes k[G_{\mathrm{ad}}]$. It is easy to see that this is a $(G,k[G_{\mathrm{ad}}])$ -homomorphism. Note also that \int_Γ^l is a G-submodule of both $k[G_{\mathrm{ad}}]$ and $k[G_r]$, where G_r is the right regular action. As $\int_\Gamma^l=\int_\Gamma^r$, we have that \int_Γ^l as the submodule of $k[G_{\mathrm{ad}}]$ is also G-trivial (isomorphic to k). Hence ζ induces an isomorphism $k[G_{\mathrm{ad}}]^*\cong k[G_{\mathrm{ad}}]$ of $(G,k[G_{\mathrm{ad}}])$ -modules. As H acts trivially on G_{ad} , the isomorphism is that of $(\tilde{G},k[G_{\mathrm{ad}}])$ -modules. Pulling back this isomorphism by the unit element $e:\mathrm{Spec}\,k\to G_{\mathrm{ad}}$, we get $\lambda_{\tilde{G},G}\cong k$, as we have $k[G_{\mathrm{ad}}]^*\cong \omega_{k[G_{\mathrm{ad}}]}$ by the duality of finite morphisms, see [Has2, (27.8)].

 $(3) \Rightarrow (4)$ is trivial.

 $(4)\Rightarrow (2)$. The argument above shows that $k[G_{\mathrm{ad}}]^*\cong \lambda'\otimes k[G_{\mathrm{ad}}]$, where λ' is \int_{Γ}^{l} as a G-submodule of $k[G_{\mathrm{ad}}]^*$. As \int_{Γ}^{l} is trivial as a G-submodule of $k[G_{l}]$, where G_{l} is G with the left regular action, we have that λ' agrees with \int_{Γ}^{l} as a G-submodule of $k[G_{r}]$. The assumption (4) means $k\cong \lambda\cong \lambda'$. So $\int_{\Gamma}^{l}\subset \int_{\Gamma}^{r}$. As we know that both \int_{Γ}^{l} and \int_{Γ}^{r} are one-dimensional, we have that Γ^* is unimodular.

3. Main theorem

(3.1) Let S be a k-algebra of finite type on which G acts. Let $A = S^G$ be the ring of invariants. If the canonical map $\operatorname{Spec} S \to \operatorname{Spec} A$ is an almost principal G-bundle, then we say that the G-action on S is small. If V is a G-module and $S = k[V] = \operatorname{Sym} V^*$ is small, then we say that the representation V of G is small. If G is a finite (constant) group, then V is small if and only if the action is faithful, and $G \subset GL(V)$ does not have a pseudo-reflection. Letting each element of V^* of degree one, $S = \operatorname{Sym} V^*$ is a graded G-algebra. So letting $H = \mathbb{G}_m$ and $\tilde{G} = G \times H$, we have that S is a \tilde{G} -algebra.

Lemma 3.2 (cf. [Has4, Remark 11.21]). In the following cases, we have that the Knop character $\lambda_{\tilde{G},G}$ is trivial as \tilde{G} -modules.

- (1) G is finite, and $k[G]^*$ is a symmetric algebra;
- (2) G is finite and étale;
- (3) G is finite and constant;
- (4) G is smooth and connected reductive;
- (5) G is abelian;

- (6) G is finite, and the identity component G° of G is linearly reductive;
- (7) G is finite and linearly reductive.

Proof. By Lemma 2.13, (1) is already proved, and it suffices to show that $\lambda_{G,G} \cong k$ for (2)–(7).

For the case that (2), (3), or (4) is assumed, G is k-smooth, and hence $\lambda_{G,G} = \det_{\mathfrak{g}^*} = \bigwedge^{\mathrm{top}} \mathfrak{g}^*$. As the 0th exterior power is always trivial, (4) has been proved. The assertion (3) is a special case of (2) (also, direct proofs are well-known, see for example, [SY, Example IV.2.6]).

We prove (4). We may assume that k is algebraically closed. Let T be a maximal torus of G. As $\lambda_{G,G} = \det_{\mathfrak{g}}^*$ is one-dimensional, it suffices to show that $\det_{\mathfrak{g}}$ is trivial as a T-module. We have $\mathfrak{g} = \mathfrak{g}_0 \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, where Φ is the set of roots (that is, nonzero weights of \mathfrak{g}). It is known that $\dim \mathfrak{g}_{\alpha} = 1$ for each $\alpha \in \Phi$, and $\Phi = -\Phi$. Thus $\det_{\mathfrak{g}}$ has weight $0 + \sum_{\alpha \in \Phi} \alpha = 0$.

We prove (5). If G is abelian, then the action of G on G_{ad} is trivial. So $\omega_{G_{ad}}$ and $\lambda_{G,G}$ are G-trivial.

We prove (6). We may assume that k is algebraically closed of characteristic p>0. By [Swe2, (3.11)], $G^{\circ}=\operatorname{Spec} kM$ for some abelian p-group M. Note that $\pi^{0}(G)=G_{\operatorname{red}}$ is a closed subgroup scheme, and is a constant finite group. Note that $G=G^{\circ}\rtimes G_{\operatorname{red}}$ is a semidirect product. As G_{red} acts on G° by the adjoint action, it acts on the character group $\chi(G^{\circ})=M$. As the action is that of groups, it fixes the unit element 1_{M} of M. As a G° -module, $k[G_{r}^{\circ}]=k[G_{l}^{\circ}]$ is decomposed into the sum of one-dimensional G° -modules as $\bigoplus_{m\in M}k\cdot m$. Note that $k\cdot m$ is isomorphic to k if and only if $m=1_{M}$, and that $\int_{k[G^{\circ}]}^{r}=\int_{k[G^{\circ}]}^{l}$ is generated by the projection $\pi:k[G]\to k$ given by $\pi(1_{M})=1$ and $\pi(m)=0$ for $m\in M\setminus\{1_{M}\}$. As $gm\neq 1_{M}$ if $m\neq 1_{M}$ and $g1_{M}=1_{M}$ for any $g\in G_{\operatorname{red}}$, we have that $g\pi=\pi$ for any $g\in G_{\operatorname{red}}$, where $(g\pi)(m)=\pi(g^{-1}(m))$. This shows that $\lambda_{G,G^{\circ}}\cong k$. As G° is a G-stable (closed and) open neighborhood of the unit element e in G_{ad} , we have that $\lambda_{G,G}=\lambda_{G,G^{\circ}}\cong k$, as desired.

We prove (7). By [Has3, Lemma 2.2], G° is linearly reductive. By (6), the assertion is clear now.

Example 3.3 (cf. [Kno, p. 51]). $\lambda_{G,G}$ is not G-trivial in general, even if k is an algebraically closed field of characteristic zero, and G is k-smooth. Let $k = \mathbb{C}$, and consider

$$G = O_2 = \{ A \in GL_2(\mathbb{C}) \mid {}^t AA = E_2 \},$$

where E_2 is the identity matrix. Then the Lie algebra \mathfrak{g} of G is

$$\{B \in \mathfrak{gl}_2(\mathbb{C}) = \operatorname{Mat}_2(\mathbb{C}) \mid {}^tB + B = O\},$$

on which G acts by the action $(A, B) \mapsto AB^tA$. It is easy to see that the action is nontrivial, and hence $\lambda_{G,G} = \mathfrak{g}^*$ is also nontrivial.

Example 3.4. $\lambda_{G,G}$ is not G-trivial in general, even if G is finite. Consider the restricted Lie algebra (see [Jac, (V.7)] for definition) L over a field k of characteristic p > 0 with the basis e, f with the relations $[f, e] = e, f^p = f$, and $e^p = 0$. Take the restricted universal enveloping algebra V of L. Letting each element of $x \in L$ primitive (i.e., $\Delta(x) = x \otimes 1 + 1 \otimes x$), V is a p^2 -dimensional cocommutative Hopf algebra which is not unimodular, see [LS, p. 85]. Letting $G = \operatorname{Spec} V^*$, we have that $\lambda_{G,G}$ is not trivial by Lemma 2.13.

Lemma 3.5. Let k be a field, G and H be affine k-group schemes of finite type, and $\tilde{G} = G \times H$. Let S be a \tilde{G} -algebra, and assume that the action of G on S is small. We assume that S is normal, and $\lambda_{G,G}$ is trivial. Let L be an (H,A)-module which is projective as an A-module. Then the following are equivalent:

- (1) $\omega_S \cong S \otimes_A L$ as (\tilde{G}, S) -modules;
- (2) $\omega_A \cong L$ as (H, A)-modules,

where the action of G on L is trivial.

Proof. (1) \Rightarrow (2). By Lemma 2.8, $\omega_A \cong \omega_S^G \cong (S \otimes_A L)^G \cong A \otimes_A L \cong L$, since L is G-trivial and A-flat.

 $(2)\Rightarrow(1)$. We have $\omega_S^G \cong \omega_A \cong L$. Applying the functor $(S \otimes_A -)^{**}$, which is the quasi-inverse of $(-)^G : \operatorname{Ref}(\tilde{G}, S) \to \operatorname{Ref}(H, A)$, we get isomorphisms

$$\omega_S \cong (S \otimes_A \omega_S^G)^{**} \cong (S \otimes_A L)^{**} \cong S \otimes_A L$$

of
$$(\tilde{G}, S)$$
-modules.

Theorem 3.6. Let k be a field, G be an affine k-group scheme of finite type, and V be a small G-module of dimension $n < \infty$. We assume that $\lambda_{G,G}$ is trivial. Let $H = \mathbb{G}_m$ be the one-dimensional torus, and let V be of degree one as an H-module so that $S = \operatorname{Sym} V^*$ is a \tilde{G} -algebra generated by degree one elements, where $\tilde{G} = G \times H$. We set $A = S^G$. Then we have

- (i) $\omega_A \cong \omega_S^G$ as (H, A)-modules;
- (ii) $a(A) \leq -n$ in general, where a(A) denotes the a-invariant.

Moreover, the following are equivalent:

- (1) The action $G \to GL(V)$ factors through SL(V);
- (2) $\omega_S \cong S(-n)$ as (\tilde{G}, S) -modules;
- (3) $\omega_S \cong S$ as (G, S)-modules;
- (4) $\omega_A \cong A(-n)$ as (H, A)-modules;
- (5) A is quasi-Gorenstein;

- (6) A is quasi-Gorenstein and a(A) = -n;
- (7) a(A) = -n.

Proof. The assertion (i) is clear by Corollary 2.8. We prove (ii). We have an (H, A)-linear isomorphism $\omega_A \to \omega_S^G$ by assumption, and $\omega_S^G \subset \omega_S = S \otimes_k \det_V$. So $a(A) \leq a(S) = -n$ in general. The equality holds only if \det_V is trivial. Namely, we have $(7) \Rightarrow (1)$.

- (1) is equivalent to say that $\det_V \cong k(-n)$. Combining this with the fact $\omega_S \cong S \otimes_k \det_V$, we get $(1) \Rightarrow (2)$.
 - $(2) \Rightarrow (3)$ is trivial.
 - $(3)\Rightarrow(1)$. $S\otimes_k \det_V \cong \omega_S \cong S$ as (G,S)-modules. So

$$\det_{V} \cong S/S_{+} \otimes_{S} (S \otimes_{k} \det_{V}) \cong S/S_{+} \otimes_{S} \omega_{S} \cong S/S_{+} \otimes_{S} S \cong S/S_{+} \cong k$$

as G-modules. This shows (1).

- (2) \Rightarrow (4). $\omega_A \cong \omega_S^G \cong S(-n)^G \cong A(-n)$ as (H, A)-modules.
- $(4) \Rightarrow (6) \Rightarrow (5)$ is trivial.
- $(5)\Rightarrow(3)$. By assumption, ω_A is projective. As A is positively graded and ω_A is a graded finitely generated module of rank one, we have that $\omega_A \cong A(a)$ for some $a \in \mathbb{Z}$. By Lemma 3.5, we have that $\omega_S \cong S \otimes_A A(a) \cong S(a)$ as (\tilde{G}, S) -modules. Forgetting the grading, we have that $\omega_S \cong S$ as (G, S)-modules, as desired.

$$(6)\Rightarrow(7)$$
 is trivial.

Remark 3.7. Goel–Jeffries–Singh [GJS] proved better theorems than Theorem 3.6 for the case that G is finite and constant. They proved the inequality $a(A) \leq -n$ without assuming that the action is small. They also prove there that a(A) = -n implies that the action is small (and hence $G \subset SL(V)$), see [GJS, Proposition 4.1, Theorem 4.4]. The author does not know if these are true for a general finite group scheme G.

The equivalence $(1)\Leftrightarrow(5)$ for the case that G is finite and constant was first proved by Fleischmann and Woodcock [FW] and Braun [Bra]. The author proved that $\omega_S^G \cong \omega_A$ if G is finite linearly reductive, without assuming that the action is small [Has2, (32.4)]. The equivalence $(1)\Leftrightarrow(5)$ for the case that G is finite linearly reductive was proved by Liedtke–Yasuda [LY, Proposition 4.7] (A is strongly F-regular this case, and hence quasi-Gorenstein is equivalent to Gorenstein there).

Example 3.8. We give an example of higher-dimensional G. Let m, n and t be positive integers such that $2 \le t \le m \le n$. Let $W_1 = k^n$, $W_2 = k^m$, $E = k^{t-1}$, and G = GL(E). We consider that G acts on E as a vector representation, while the actions of G on W_1 and W_2 are trivial. We set $V = \operatorname{Hom}_k(E, W_2) \oplus \operatorname{Hom}_k(W_1, E)$, $S = \operatorname{Sym} V^*$, and $A = S^G$. We define $X = V = \operatorname{Hom}(E, W_2) \times \operatorname{Hom}(W_1, E) = \operatorname{Spec} S = E^n \times (E^*)^m$, and $Y = \operatorname{Spec} A = X//G$. The quotient map $\pi : X \to Y$ is identified with the map $\Pi : X \to Y_t$ given by $(\varphi, \psi) \mapsto \varphi \circ \psi$, where $Y_t = \{ \rho \in \operatorname{Hom}(W_1, W_2) \mid \operatorname{rank} \rho < t \}$ is the determinantal variety, see [DP]. Note that Π is a $GL(W_1) \times G \times GL(W_2)$ -enriched almost principal G-bundle, see [Has1]. So by the theorem, we have that $a(A) \le a(S) = -(m+n)(t-1)$, and the equality holds if and only if A is Gorenstein. Note also that the usual

grading of $A = k[\text{Hom}(W_1, W_2)^*]/I_t$, where I_t is the determinantal ideal, is the one such that each element of $\text{Hom}(W_1, W_2)^*$ is of degree one. However, the grading used here is the one which is inherited from the grading of S, and each element of $\text{Hom}(W_1, W_2)^*$ is of degree two. For the case that k is of characteristic zero, Lascoux's resolution [Las] tells us that $a(A) = 2(-mn + n(m - t + 1)) = -2n(t - 1) \le -(m + n)(t - 1) = a(S)$, doubling the degree to adopt our grading inherited from S. Being a graded ASL over a distributive lattice, A is Cohen–Macaulay, and the Hilbert series of A is independent of k, see [BH]. So a(A) is also independent of k, and we always have a(A) = -2n(t - 1). So a(A) = a(S) if and only if m = n. This shows that A is Gorenstein if and only if m = n, and this is the well-known theorem by Svanes [Sva].

Example 3.9. Let k be an algebraically closed field of characteristic p > 0, and ℓ be a prime number which does not divide p(p-1). In particular, ℓ is odd. Let

$$G = \left\{ \begin{bmatrix} t & \alpha \\ 0 & 1 \end{bmatrix} \middle| t \in \boldsymbol{\mu}_{\ell}, \ \alpha \in \boldsymbol{\alpha}_{p} \right\},$$

where $\alpha_p = \operatorname{Spec} k[a]/(a^p)$ is the first Frobenius kernel of the additive group $\mathbb{G}_a = \operatorname{Spec} k[a] = \mathbb{A}^1$, and $\mu_\ell = \operatorname{Spec} k[T]/(T^\ell - 1) \subset GL_1$. Note that G acts on the vector representation $W = k^2$ in a natural way. Let $V = W \oplus W^*$. It is easy to see that V is small and $G \subset SL(V)$. It is also easy to see that $\lambda_{G,G} = \operatorname{soc} k[(\alpha_p)_{\operatorname{ad}}]^* = (\operatorname{soc} k[a]/(a^p))^* = (ka^{p-1})^*$. With the adjoint action, we have $\sigma_t \cdot a = t^{-2}a$, where $\sigma = \begin{bmatrix} t & 0 \\ 0 & 1 \end{bmatrix}$. By assumption, $\lambda_{G,G}$ is nontrivial. By [Has4, Corollary 11.22], $A = S^G$ is not quasi-Gorenstein, where $A = k[V] = \operatorname{Sym} V^*$.

(3.10) Let G be a finite k-group scheme, H a k-group scheme of finite type, and set $\tilde{G} = G \times H$. Let S be a \tilde{G} -algebra, and $A = S^G$. In [C-R], the trace map $\operatorname{Tr}_{S/A}: S \to A$ is defined. Let $\delta_G: k[G] \to k$ be a non-zero left integral (that is, $\delta_G \in \int_{k[G]}^l \setminus \{0\}$). This is equivalent to say that $\delta_G \in \operatorname{Hom}_G(k[G_l], k) \setminus \{0\}$. For any G-algebra S, let $\operatorname{Tr}_{S/A}: S \to S'$ be the composite

$$S \xrightarrow{\omega_S} S' \otimes_k k[G] \xrightarrow{1_{S'} \otimes \delta_G} S' \otimes_k k = S',$$

where S' is the A-module S with the trivial G-action. By [C-R, Definition-Proposition 3.6], the image of $\operatorname{Tr}_{S/A}$ is contained in $A = S^G$, and hence the map $\operatorname{Tr}_{S/A}: S \to A$ is induced. It is easy to see that $\operatorname{Tr}_{S/A}$ is A-linear.

(3.11) Assume that the Hopf algebra $k[G]^*$ is unimodular. Then δ_G is also a right integral. That is, $\delta_G: k[G_r] \to k$ is G-linear (note that $k[G_r]$ is a k[G]-comodule algebra letting the coproduct $\Delta: k[G_r] \to k[G_r] \otimes k[G_r]$ the coaction). As $\omega_S: S \to S' \otimes_k k[G_r]$ is also G-linear, we have that $\operatorname{Tr}_{S/A}: S \to A$ is (G,A)-linear. Moreover, δ_G is H-linear, since H acts trivially on G_r . Letting the action of H on S' be the same as that on S, we have that $\omega_S: S \to S' \otimes_k k[G_r]$ is also H-linear. Thus $\operatorname{Tr}_{S/A}$ is (\tilde{G},A) -linear.

Theorem 3.12. Let S be a k-algebra of finite type. Let G be a finite k-group scheme, H be a k-group scheme of finite type, and $\tilde{G} = G \times H$. Assume that \tilde{G} acts on S. If $k[G]^*$ is symmetric and either

- (1) The map $\operatorname{Spec} S \to \operatorname{Spec} A$ is a \tilde{G} -enriched principal G-bundle; or
- (2) The action of G on S is small, and S satisfies the (S_2) -condition,

then $\zeta: S \to \operatorname{Hom}_A(S, A)$ $(s \mapsto (t \mapsto \operatorname{Tr}_{S/A}(st)))$ is an isomorphism of (\tilde{G}, S) -modules.

Proof. This is [C-R, Corollary 3.13] except that we need to prove that the map ζ is \tilde{G} -linear. This is done in the discussion above.

References

- [Bra] A. Braun, On the Gorenstein property for modular invariants, *J. Algebra* **345** (2011), 81–99.
- [BH] W. Bruns and J. Herzog, Cohen-Macaulay Rings. 2nd ed., Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1998.
- [C-R] J. Carvajal-Rojas, Finite torsors over strongly F-regular singularities, $\acute{E}pijournal$ $G\acute{e}om.$ $Alg\acute{e}brique$ 6 (2022), Art. 1, 30pp.
- [DP] C. de Concini and C. Procesi, A characteristic free approach to invariant theory, *Adv. Math.* **21** (1976), 330–354.
- [FW] P. Fleischmann and C. Woodcock, Relative invariants, ideal classes and quasicanonical modules of modular rings of invariants, J. Algebra 348 (2011), 110– 134.
- [GJS] K. Goel, J. Jeffries, and A. Singh, Local cohomology of modular invariants, arXiv:2306.14279v1
- [Has1] M. Hashimoto, Another proof of theorems of De Concini and Procesi, *J. Math. Kyoto Univ.* **45** (2005), 701–710.
- [Has2] M. Hashimoto, Equivariant twisted inverses, Foundations of Grothendieck Duality for Diagrams of Schemes (J. Lipman, M. Hashimoto), Lecture Notes in Math. 1960, Springer (2009), pp. 261–478.
- [Has3] M. Hashimoto, Classification of the linearly reductive finite subgroup schemes of SL_2 , $Acta\ Math.\ Vietnam.\ 40\ (2015),\ 527–534.$
- [Has4] M. Hashimoto, Equivariant class group. III. Almost principal fiber bundles, arXiv:1503.02133

- [HK] M. Hashimoto and F. Kobayashi, Generalized F-signatures of the rings of invariants of finite group schemes, arXiv:2304.12138v3
- [Hum] J. E. Humphreys, Symmetry for finite dimensional Hopf algebras, *Proc. Amer. Math. Soc.* **68** (1978), 143–146.
- [Jac] N. Jacobson, Lie Algebras, Dover, 1979.
- [Kno] F. Knop, Der kanonische Modul eines Invariantenrings, J. Algebra 127 (1989), 40–54.
- [LS] R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, *Amer. J. Math.* **91** (1969), 75–94.
- [Las] A. Lascoux, Syzygies des variétés déterminantales, Adv. Math. 30 (1978), 202–237.
- [LY] C. Liedtke and T. Yasuda, Non-commutative resolutions of linearly reductive quotient singularities, arXiv:2304.14711v2
- [Mon] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math. 82, AMS, 1993.
- [Rad] D. E. Radford, The trace function and Hopf algebras, J. Algebra 163 (1994), 583–622.
- [SY] A. Skowroński and K. Yamagata, Frobenius Algebras. I. Basic Representation Theory, European Mathematical Society, 2012.
- [Suz] S. Suzuki, Unimodularity of finite dimensional Hopf algebras, *Tsukuba J. Math.* **20** (1996), 231–238.
- [Sva] T. Svanes, Coherent cohomology on Schubert subschemes of flag schemes and applications, Adv. Math. 14 (1974), 369–453.
- [Swe1] M. E. Sweedler, Hopf Algebras, Benjamin, 1969.
- [Swe2] M. E. Sweedler, Connected fully reducible affine group schemes in positive characteristic are Abelian, *J. Math. Kyoto Univ.* **11-1** (1971), 51–70.
- [Wat1] K. Watanabe, Certain invariant subrings are Gorenstein. I. Osaka Math. J. 11 (1974), 1–8.
- [Wat2] K. Watanabe, Certain invariant subrings are Gorenstein. II. Osaka Math. J. 11 (1974), 379–388.

Mitsuyasu Hashimoto Department of Mathematics Osaka Metropolitan University Sumiyoshi-ku, Osaka 558-8585, JAPAN e-mail: mh7@omu.ac.jp