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Abstract

Let k& be a field, and G be a k-group scheme of finite type. Let G.q be the
k-scheme G with the adjoint action of G. We call A, = H°(Speck, e*(wg,,)) the
Knop character of G, where e : Speck — G,q is the unit element, and wg,, is the
G-canonical module. We prove that Ag ¢ is trivial in the following cases: (1) G is
finite, and k[G]* is a symmetric algebra; (2) G is finite and étale; (3) G is finite
and constant; (4) G is smooth and connected reductive; (5) G is abelian; (6) G is
finite, and the identity component G° of G is linearly reductive; (7) G is finite and
linearly reductive. Let V be a small G-module of dimension n < co. We assume
that Ag,¢ is trivial. Let H = G,, be the one-dimensional torus, and let V' be of
degree one as an H-module so that S = Sym V* is a G-algebra generated by degree
one elements, where G = G x H. We set A = S Then we have (i) wa = o§
as (H, A)-modules; (i) a(4) < —n in general, where a(A) denotes the a-invariant.
Moreover, the following are equivalent: (1) The action G — GL(V') factors through
SL(V); (2) ws = S(—n) as (G, S)-modules; (3) wg = S as (G, S)-modules; (4)
wa = A(—n) as (H, A)-modules; (5) A is quasi-Gorenstein; (6) A is quasi-Gorenstein
and a(A) = —n; (7) a(A) = —n. This partly generalizes recent results of Liedtke-
Yasuda arXiv:2304.14711v2 and Goel-Jeffries-Singh arXiv:2306.14279v1.

1. Introduction

Let k be a field, V' a finite-dimensional k-vector space, and G a finite subgroup of GL(V').
Let S = Sym V* = k[V], and A = S¢. Hochster and Eagon proved that in non-modular
case (that is, the case that the order |G| of G is not divisible by the characteristic of k),
A is Cohen-Macaulay. K.-i. Watanabe proved that in non-modular case, G C SL(V) if
and only if G does not have a pseudo-reflection and A is Gorenstein [Watl, Wat2]. Since
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then, his result has been generalized by several authors. Fleischmann and Woodcock
[FW] and Braun [Bra] proved that if G C GL(V) is a finite subgroup without pseudo-
reflection, then A is quasi-Gorenstein (or equivalently, wa = A) if and only if G C SL(V).

It has been known that the condition that the finite group G does not have a pseudo-
reflection sometimes can be generalized to more general G. The condition is replaced
by the condition that m : V = SpecS — SpecA = V//G is a principal G-bundle
off codimension two or more, and called an almost principal bundle or quasi-torsor
[Has4, C-R], and we call this condition ‘V" is small.” Namely, we say that V is small if
there exist some open subset W of Spec A and G-stable open subset U of 7~1(W) such
that codim(V \ U,V) > 2, codim(V//G\ W,V//G) > 2, and 7 : U — W is a principal
G-bundle (or a G-torsor) in the sense that 7 is faithfully flat, and ® : G x U — U xyw U
given by ®(g,u) = (gu,u) is an isomorphism. Note that if G is a finite constant group,
then V is small if and only if G C GL(V), and G does not have a pseudo-reflection.

Knop [Kno] pointed out that the equivalence wq = A <= G C SL(V) is not
true any more even if G is a (disconnected) reductive group over an algebraically closed
field of characteristic zero, and the action is small. Letting \,q be the top exterior
power of Lie(G)*, the dual of the adjoint representation, the triviality of dety @A’, was
important [Kno, Satz 2]. Note that \,q is trivial if G is finite, and we can recover
Watanabe’s original result.

We define \¢.¢ = H°(Speck, e*(we,,)), and call it the Knop character of G, where
e : Speck — Gjq is the unit element, and wg,, is the G-equivariant canonical module
of Gaq. If, moreover, G is a normal closed subgroup scheme of another affine k-group
scheme G of finite type, then Ag,q is a character of G, and we denote it by )‘G,G' Note
that Ag,¢ = X, if G is k-smooth. By [Has4, (11.22)], it is easy to see that if V' is small,
then wy = A(a) if and only if wg = S®dety= = S(a) ®y )‘C?',G if and only if dety = A\g.¢
as G-modules, and a = —n. If, moreover, A\g.g = k, then A is quasi-Gorenstein if and
only if G C SL(V), and if these conditions are satisfied, then a(4) = —n. So it is
natural to ask, when A\g ¢ is trivial. In [Has4, (11.21)], it is pointed out that if G is
finite and linearly reductive, étale, or connected reductive, then A\g ¢ is trivial, but Ag ¢
is nontrivial if k is a field of characteristic not two and G = O(2).

In this paper, we discuss when Ag ¢ is trivial, assuming that G is finite (but not
étale). It is well-known that the group algebra kG is symmetric [SY, Example 1V.2.6].
A finite dimensional k-Hopf algebra is Frobenius in general [SY, Theorem VI.3.6]. In
general, a finite dimensional k-Hopf algebra H is not symmetric even if H is cocom-
mutative, or equivalently, H = k[G]* for some finite k-group scheme G, see [LS, p. 85].
We prove that A\g ¢ is trivial if and only if the notions of the left integral and the right
integral agree in H = k[G]*. The latter condition is called the unimodular property of
H. As the square s%l of the antipode sy of H is the identity, H is unimodular if and
only if H is a symmetric algebra, see [Hum, Rad].

As an application of the G-triviality of A\g g, we prove the following.

Theorem 3.6. Let k be a field, G be an affine k-group scheme of finite type, and
V' be a small G-module of dimension n < oco. We assume that \g,q s trivial. Let
H = G,, be the one-dimensional torus, and let V' be of degree one as an H-module so



that S = SymV* is a G-algebra generated by degree one elements, where G = G x H.
We set A= S%. Then we have

(1) wa 2 w§ as (H, A)-modules;

(ii)) a(A) < —n in general, where a(A) denotes the a-invariant.
Moreover, the following are equivalent:
(1) The action G — GL(V') factors through SL(V');
(2) ws (—n) as (G, S)-modules;
(3) ws =S as (G, S)-modules;
(4) wa = A(—n) as (H, A)-modules;
(5) A
(6) A
(7)

€

5

is quasi- Gorenstein;

6

is quasi-Gorenstein and a(A) = —n;

a(A) = —n.

For the case that G is finite and constant, the theorem was proved (in a stronger
form) by Goel, Jeffries, and Singh [GJS]. Note that they do not require that the action
of G on V is small. They proved that a(A4) < a(S) = —n in general. They also proved
that the equality a(A) = —n holds if and only if the image of G — GL(V') is a subgroup
of SL(V') without pseudo-reflections for the case that G is finite and constant [GJS,
Proposition 4.1, Theorem 4.4]. It is interesting to ask if these are true for any finite
group scheme G. Note also that the equivalence (1)< (5) for the case that G is finite
linearly reductive (but not necessarily constant) was proved recently by Liedtke and
Yasuda [LY]. It also follows from [Has4, (7.61),(11.22)2].
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2. Preliminaries

(2.1) Let k be a field, f: G — H be a homomorphism between affine k-group schemes
of finite type with G = Ker f. Let F (G’) be the category of G-schemes separated of finite
type over k. For (hy : Z — Speck) € F(Q), the G-dualizing complex of Z (or better,
of hyz) is hy(k) by definition, and we denote it by Iy = I7(G), where (—)' denotes the
twisted inverse [Has2]. The G-canonical module wy is the lowest nonzero cohomology
group of I;. It is a coherent G-module. If Z = Spec B is affine, H°(Z,wyz) is denoted
by wg, and is called the G-equivariant canonical module of B. When we forget the

G-structure, I is the dualizing complex of the scheme Z without the G-action [Has2,
(31.17)].



(2.2) A morphism ¢ : X — Y of G-schemes of finite type over k is called a G-
enriched principal G-bundle if G acts trivially on Y, ¢ is faithfully flat, and the morphism
®:Gx X — X xy X given by ®(g,z) = (g, x) is an isomorphism. As G is affine, flat,
and Gorenstein over Spec k, ¢ is affine, flat, and Gorenstein.

(2.3) Let X be a scheme and U its open subset. We say that U is n-large if codim(X \
U, X) > n+1, where we regard that the codimension of the empty set in X is co > n+1.

Definition 2.4 (cf. [Has4, (10.2)]). A diagram of G-schemes of finite type

(1) X<toy-foyciy

is called a G-enriched n-almost rational principal G-bundle if (1) G acts trivially on Y;
(2) j is an open immersion, and j(V') is n-large in Y; (3) i is an open immersion, and
i(U) is n-large in X; (4) p: U — V is a principal G-bundle. That is, p is faithfully flat,
and @ : G x U = U xy U given by ®(n,u) = (nu,u) is an isomorphism.

(2.5) In what follows, 1-large and l-almost will simply be called large and almost,
respectively. A G-morphism p: X — Y is said to be a G-enriched n-almost principal
G-bundle with respect to U and V, if U is a G-stable open subset of X, V is an H-stable
open subset of Y, and the diagram (1) is a G-enriched n-almost rational principal G-
bundle, where p : U — V is the restriction of ¢. We say that a G-morphism p: X =Y
is a G-enriched n-almost principal G-bundle if it is so with respect to U and V for some
U and V.

Lemma 2.6. Let ¢ : X = Y be a G-enriched almost principal G-bundle between G-
schemes of finite over k. Assume that X is normal, and that Oy — (p.Ox)% is an
isomorphism. Let Ref(G, X) be the category of coherent (G,Ox)-modules which are
reflexive as Ox-modules, and Let Ref(H,Y") be the category of coherent (H, Oy )-modules
which are reflevive as Oy-modules. Then we have: The functor G : Ref(G,X) —
Ref(H,Y) given by G(M) = (M) is an equivalence, and F : Ref(H,Y) — Ref(G, X)
gwen by F(N) = (¢*N)** is its quasi-inverse, where (—)** is the double dual.

Proof. Follows immediately from [Has4, (10.13),(11.3)]. A short and self-contained proof
for the case that everything is affine can be found in [HK, (2.4)]. O

(2.7) Let X be a G-scheme, and L be a G-module. Let hy : X — Speck be the
structure map. Then for a quasi-coherent (é, Ox)-module M, we denote M ®o, h% L
by M®y, L. Note that G is a normal closed subgroup scheme of G. So G acts on G by the
adjoint action. We denote this scheme by G,q4. Let e : Spec k — G,q be the unit element.
It is a G-stable closed immersion. We denote the G-module H(Spec k,e*(wa,,)) by
Aé g and we call it the Knop character of G (enriched by G). If G is k-smooth, then
Ag,g = dety by [Has2, (28.11)], where g = Lie G is the adjoint representation of G, and
det denotes the top exterior power. Its dual dety = A - is denoted by A,q in [Knol, and
played an important role in studying Gorenstein proberty of invariant subrings [Kno,
Satz 2].



Lemma 2.8. Let ¢ : X = SpecT — Y = SpecB be a G-enriched almost principal

G-bundle which is also a morphism in F(G) with X and Y affine normal. Then wr =
(T ®p wB)™ @k A& o, where (=)™ = Homp(Homp(—,T),T) is the double dual. We

~

also have that wp = (wr ® )‘*G,G)G' In particular, if moreover, )‘G,G =k, then wp =

(T ®@p wp)*™ and wp = wg.

Proof. This is a special case of [Has4, (11.22)]. O

(2.9) Let A be a finite-dimensional k-algebra. We say that A is Frobenius if AA =
D(Ap) as left A-modules, where D = Homy(—, k). This is equivalent to say that there is
a nondegenerate bilinear form 5 : A x A — k such that S(ac,b) = S(a,cb). If, moreover,
we can take such a § to be symmetric, we say that A is symmetric. This is equivalent
to say that the bimodule A, is isomorphic to D(AAp).

(2.10) Let I' be a finite dimensional k-Hopf algebra. We define
l * *
Jp=A{z eT*|Vy eI yz = e(y)z},

where € : I'"" — k is given by €(y) = y(1r). An element of f1£ is called a left integral on
I (or in I'*, according to the terminology in [Mon]).

(2.11) Note that

Jh= @) = {0 € I* | wy () = ¥ © 1} = Homp(T', k).

Indeed, if v1,...,7vy is a k-basis of I and 77, ..., , is its dual basis, then the comodule
structure wr« of I'* is given by wr+(a) = Y ' ;7o ® v, for @« € I'*. In other words,
w(a) = Z(a) (o) ® a(yy is given by Z(a)<ﬁ, aqy) ) = Pa for € T*. Sow(y) =y ®1
is equivalent to say that py = e(p)y for p € I'*, as desired.

(2.12) We also define [ = {z € I'* | Vy € I'* 2y = (y)z}, and an element of
J¢ is called a right integral on I'. Tt is known that dimy f1£ = dimy, [{ = 1 [Swel,

Corollary 5.1.6]. If f1£ = [, then we say that I'* is unimodular. Radford proved [Rad]
that I'* is a symmetric algebra if and only if I'* is unimodular and S? is an inner
automorphism of I'*, where S is the antipode of I'. Suzuki [Suz] constructed an example
of a finite dimensional unimodular k-Hopf algebra which is not symmetric.

Lemma 2.13. Let G be a finite k-group scheme, H an affine k-group scheme of finite
type, and G = G x H is the direct product. Let I' = k[G] be the coordinate ring of G.
Then the following are equivalent.

(1) T* is symmetric.
(2) T is unimodular.

(3) Agg =k as G-modules.



(4) Ag.¢ =k as G-modules.

Proof. As I'* is cocommutative, s?> = idp«, where s is the antipode of I'*. By [Hum,
Theorem 1,2] (see also [Rad]), (1)< (2) holds.

We prove (2)=>(3). Note that I'* is a (G, k[G])-module. In other words, I'* is a I'-
Hopf module. Let ¢ : T — I' ®; I" be the map given by ((vy) = Z(v) Y0)(S7(1)) @ V(2)5
where S is the antipode of I'. By the proof of [Swel, Theorem 4.1.1}, { is injective and
Im¢ = flf ®k[G]. Now let us consider the same map ¢ : k[Gaq]* — k[Gaa|* @ k[Gag]. Tt is
easy to see that this is a (G, k[Gaq])-homomorphism. Note also that fli is a G-submodule
of both k[G.q] and k[G,|, where G, is the right regular action. As fli = [¢, we have

that f1£ as the submodule of k[G,q] is also G-trivial (isomorphic to k). Hence ¢ induces
an isomorphism k[G.q]* = k[Gaq| of (G, k[Gaq])-modules. As H acts trivially on G,q,
the isomorphism is that of (G, k[Gaq])-modules. Pulling back this isomorphism by the
unit element e : Speck — Gad, we get As o = k, as we have k[Gaal® & wyja,,) by the
duality of finite morphisms, see [Has2, (27.8)].

(3)=-(4) is trivial.

(4)=(2). The argument above shows that k[G.q]* = N ® k[Gaq], where X is fli as a
G-submodule of k[Gq]*. As f1£ is trivial as a G-submodule of k[G}], where G is G with
the left regular action, we have that A" agrees with frl as a G-submodule of k[G,]. The

assumption (4) means k = X\ = ). So fli C Ji. As we know that both fli and [ are
one-dimensional, we have that I'* is unimodular.

3. Main theorem

(3.1) Let S be a k-algebra of finite type on which G acts. Let A = S be the ring of
invariants. If the canonical map Spec S — Spec A is an almost principal G-bundle, then
we say that the G-action on S is small. If V' is a G-module and S = k[V] = Sym V* is
small, then we say that the representation V of G is small. If G is a finite (constant)
group, then V' is small if and only if the action is faithful, and G C GL(V) does not
have a pseudo-reflection. Letting each element of V* of degree one, S = Sym V™ is a
graded G-algebra. So letting H = G,, and G = G x H, we have that S is a G-algebra.

Lemma 3.2 (cf. [Has4, Remark 11.21]). In the following cases, we have that the Knop
character Az - is triwial as G-modules.

1) G is finite, and k[G]* is a symmetric algebra;

2) G s finite and étale;

4

(1)

(2)

(3) G is finite and constant;

(4) G is smooth and connected reductive;
()

5

G is abelian;



(6) G is finite, and the identity component G° of G is linearly reductive;
(7) G is finite and linearly reductive.

Proof. By Lemma 2.13, (1) is already proved, and it suffices to show that Ag ¢ = k for
(2)-(7).

For the case that (2), (3), or (4) is assumed, G is k-smooth, and hence \g g =
detg- = AP g*. As the 0 exterior power is always trivial, (4) has been proved. The
assertion (3) is a special case of (2) (also, direct proofs are well-known, see for example,
[SY, Example 1V.2.6]).

We prove (4). We may assume that k is algebraically closed. Let T' be a maximal
torus of G. As A\g,¢ = det; is one-dimensional, it suffices to show that dety is trivial as
a T-module. We have g = go ® @ g Ja, Where @ is the set of roots (that is, nonzero
weights of g). It is known that dim g, = 1 for each a € ®, and & = —®. Thus dety has
weight 04> cp @ = 0.

We prove (5). If G is abelian, then the action of G on G,q is trivial. So wg,, and
Ag,q are G-trivial.

We prove (6). We may assume that & is algebraically closed of characteristic p > 0.
By [Swe2, (3.11)], G° = Spec kM for some abelian p-group M. Note that 7°(G) = Greq
is a closed subgroup scheme, and is a constant finite group. Note that G = G° X Gyeq 1S
a semidirect product. As Gieq acts on G° by the adjoint action, it acts on the character
group x(G°) = M. As the action is that of groups, it fixes the unit element 1,; of M. As
a G°-module, k[G}] = k[G}] is decomposed into the sum of one-dimensional G°-modules
as @,,car k - m. Note that k- m is isomorphic to k if and only if m = 1,7, and that
f,:[GO} = f’i[G"] is generated by the projection 7 : k[G] — k given by 7(13) = 1 and
m(m) =0 for m e M\ {1x}. As gm # 17 if m # 1y and gly; = 1y for any g € Greq,
we have that gm = 7 for any g € Gieq, where (g7)(m) = m(g~1(m)). This shows that
Ag,.ge =2 k. As G° is a G-stable (closed and) open neighborhood of the unit element e
in Gaq, we have that A\g.¢ = Ag,ge = k, as desired.

We prove (7). By [Has3, Lemma 2.2], G° is linearly reductive. By (6), the assertion
is clear now. O

Example 3.3 (cf. [Kno, p. 51]). Ag,q is not G-trivial in general, even if k is an alge-
braically closed field of characteristic zero, and G is k-smooth. Let k = C, and consider

G =09 = {A S GLQ((C) | tAA = EQ},
where Ej5 is the identity matrix. Then the Lie algebra g of G is
{B € gly(C) = Mat(C) | *B + B = O},

on which G acts by the action (A4, B) — AB'A. It is easy to see that the action is
nontrivial, and hence A\g,¢ = g* is also nontrivial.



Example 3.4. \g ¢ is not G-trivial in general, even if G is finite. Consider the restricted
Lie algebra (see [Jac, (V.7)] for definition) L over a field k of characteristic p > 0 with
the basis e, f with the relations [f,e] = e, fP = f, and e’ = 0. Take the restricted
universal enveloping algebra V' of L. Letting each element of x € L primitive (i.e.,
Alr)=z®1+1®z), V is a p’-dimensional cocommutative Hopf algebra which is not
unimodular, see [LS, p. 85]. Letting G = Spec V*, we have that A\g ¢ is not trivial by
Lemma 2.13.

Lemma 3.5. Let k be a field, G and H be affine k-group schemes of finite type, and
G =G x H. Let S be a G-algebra, and assume that the action of G on S is small.
We assume that S is normal, and \g ¢ is trivial. Let L be an (H, A)-module which is
projective as an A-module. Then the following are equivalent:

(1) ws = S®4 L as (G, S)-modules;
(2) wa = L as (H, A)-modules,
where the action of G on L is trivial.

Proof. (1)=>(2). By Lemma 2.8, wq = w§ = (S®4 L)Y 2 A®4 L = L, since L is
G-trivial and A-flat.

(2)=(1). We have w§ = wy = L. Applying the functor (S ®4 —)**, which is the
quasi-inverse of (=) : Ref(G, S) — Ref(H, A), we get isomorphisms

ws = (S@AwE)* = (SQAL)* = S®, L
of (é, S)-modules. 0

Theorem 3.6. Let k be a field, G be an affine k-group scheme of finite type, and
V' be a small G-module of dimension n < oco. We assume that \g,q s trivial. Let
H = G,, be the one-dimensional torus, and let V' be of degree one as an H-module so
that S = SymV* is a G-algebra generated by degree one elements, where G = G x H.
We set A= S%. Then we have

(1) wa 2 w§ as (H, A)-modules;

(ii)) a(A) < —n in general, where a(A) denotes the a-invariant.
Moreover, the following are equivalent:
The action G — GL(V) factors through SL(V');
ws = S(—n) as (G, S)-modules;

(1)

(2)

(3) ws = S as (G, S)-modules;

(4) wa = A(—n) as (H, A)-modules;
(5)

A is quasi-Gorenstein;



(6) A is quasi-Gorenstein and a(A) = —n;
(7) a(A) = —n.

Proof. The assertion (i) is clear by Corollary 2.8. We prove (ii). We have an (H, A)-linear
isomorphism wy — w§ by assumption, and w§ C wg = S@ydety. Soa(A) < a(S) = —n
in general. The equality holds only if dety is trivial. Namely, we have (7)=-(1).

(1) is equivalent to say that dety = k(—n). Combining this with the fact wg =
S @y dety, we get (1)=(2).

(2)=-(3) is trivial.

(3)=(1). S ® dety 2 wg = S as (G, S)-modules. So

dety = S/S; ®g (S @k dety) = S/SL @swg =25/ ®sS=S/S =k

as G-modules. This shows (1).

(2)=(4). wa 2 w§ =2 S(—n)% = A(—n) as (H, A)-modules.

(4)=(6)=(5) is trivial.

(5)=(3). By assumption, w4 is projective. As A is positively graded and wy is a
graded finitely generated module of rank one, we have that ws = A(a) for some a € Z.
By Lemma 3.5, we have that wg = S®4 A(a) = S(a) as (G, S)-modules. Forgetting the
grading, we have that wg = S as (G, S)-modules, as desired.

(6)=(7) is trivial. O

Remark 3.7. Goel-Jeffries—Singh [GJS] proved better theorems than Theorem 3.6 for
the case that G is finite and constant. They proved the inequality a(A) < —n without
assuming that the action is small. They also prove there that a(A) = —n implies that
the action is small (and hence G C SL(V)), see [GJS, Proposition 4.1, Theorem 4.4].
The author does not know if these are true for a general finite group scheme G.

The equivalence (1)< (5) for the case that G is finite and constant was first proved
by Fleischmann and Woodcock [FW] and Braun [Bra]. The author proved that w§ = w4
if G is finite linearly reductive, without assuming that the action is small [Has2, (32.4)].
The equivalence (1)< (5) for the case that G is finite linearly reductive was proved
by Liedtke—Yasuda [LY, Proposition 4.7] (A is strongly F-regular this case, and hence
quasi-Gorenstein is equivalent to Gorenstein there).

Example 3.8. We give an example of higher-dimensional G. Let m, n and t be positive
integers such that 2 <t <m <n. Let Wy = k", Wo = k™, E =k, and G = GL(E).
We consider that G acts on E as a vector representation, while the actions of G on
Wy and Wy are trivial. We set V' = Homy(E, Wa) @ Homy (W1, E), S = Sym V*, and
A = 8% We define X = V = Hom(FE, W3) x Hom(W;, E) = SpecS = E" x (E*)™,
and Y = Spec A = X//G. The quotient map 7 : X — Y is identified with the map
IT: X — Y; given by (¢,v) — o, where Y; = {p € Hom(W7, Ws) | rank p < ¢} is the
determinantal variety, see [DP]. Note that II is a GL(W7) x G x GL(W3)-enriched almost
principal G-bundle, see [Hasl]. So by the theorem, we have that a(A4) < a(S) = —(m +
n)(t — 1), and the equality holds if and only if A is Gorenstein. Note also that the usual



grading of A = k[Hom (W, Wa)*|/I;, where I, is the determinantal ideal, is the one such
that each element of Hom(W7, W5)* is of degree one. However, the grading used here
is the one which is inherited from the grading of S, and each element of Hom (W7, Ws)*
is of degree two. For the case that k is of characteristic zero, Lascoux’s resolution [Las]
tells us that a(A) = 2(—mn+n(m—t+1)) = —2n(t—1) < —(m +n)(t — 1) = a(9),
doubling the degree to adopt our grading inherited from S. Being a graded ASL over a
distributive lattice, A is Cohen—Macaulay, and the Hilbert series of A is independent of
k, see [BH]. So a(A) is also independent of k, and we always have a(4) = —2n(t — 1).
So a(A) = a(S) if and only if m = n. This shows that A is Gorenstein if and only if
m = n, and this is the well-known theorem by Svanes [Sva].

Example 3.9. Let k be an algebraically closed field of characteristic p > 0, and ¢ be a
prime number which does not divide p(p — 1). In particular, ¢ is odd. Let

{1

where oy, = Speck[a]/(aP) is the first Frobenius kernel of the additive group G, =
Speckla] = A', and p, = Speck[T]/(T* — 1) C GL;. Note that G acts on the vec-
tor representation W = k? in a natural way. Let V = W @ W*. It is easy to see
that V is small and G C SL(V). It is also easy to see that Ag.q = sock[(ap)ad]* =
(sockla]/(aP))* = (kaP~')*. With the adjoint action, we have oy - a = t~2a, where
o= é (1) . By assumption, A\g ¢ is nontrivial. By [Has4, Corollary 11.22], A = S¢ is
not quasi-Gorenstein, where A = k[V] = Sym V*.

te;z,z,oaeap},

(~3.10) Let G be a ﬁnit~e k-group scheme, H a k-group scheme of finite type, and set
G = G x H. Let S be a G-algebra, and A = S. In [C-R], the trace map Trg/a:8 — A
is defined. Let dg : k]G] — k be a non-zero left integral (that is, dg € fkl:[G] \{0}).

This is equivalent to say that d¢ € Homg(k[Gi], k) \ {0}. For any G-algebra S, let
Trg/4 : S — S’ be the composite

S 28, §' w0y K[G] ~2%¢ &' @y k= S,

where S is the A-module S with the trivial G-action. By [C-R, Definition-Proposition 3.6],
the image of Trg/ 4 is contained in A = S and hence the map Trg/4 0 S — Ais induced.
It is easy to see that Trg 4 is A-linear.

(3.11) Assume that the Hopf algebra k[G]* is unimodular. Then d¢ is also a right
integral. That is, dg : k[Gr] — k is G-linear (note that k[G,] is a k[G]-comodule algebra
letting the coproduct A : k[G,] — k[G,] ® k[G,] the coaction). As wg : S — 5" @y k[G,]
is also G-linear, we have that Trg/4 : S — A is (G, A)-linear. Moreover, é¢ is H-linear,
since H acts trivially on G,. Letting the action of H on S’ be the same as that on S,
we have that wg : S — S’ ®4 k[G,] is also H-linear. Thus Trg,, is (G, A)-linear.

10



Theorem 3.12. Let S be a k-algebra of finite type. Let G be a finite k-group scheme,
H be a k-group scheme of finite type, and G = G x H. Assume that G acts on S. If
E[G]* is symmetric and either

(1) The map Spec S — Spec A is a G-enriched principal G-bundle; or
(2) The action of G on S is small, and S satisfies the (S2)-condition,
then ¢ : S — Homy(S, A) (s (t = Trg/s(st))) is an isomorphism of (G, S)-modules.

Proof. This is [C-R, Corollary 3.13] except that we need to prove that the map ( is
G-linear. This is done in the discussion above. ]

REFERENCES

[Bra] A. Braun, On the Gorenstein property for modular invariants, J. Algebra 345
(2011), 81-99.

[BH] W. Bruns and J. Herzog, Cohen—-Macaulay Rings. 2nd ed., Cambridge Studies
in Advanced Mathematics 39, Cambridge University Press, 1998.

[C-R] J. Carvajal-Rojas, Finite torsors over strongly F-regular singularities, Epz’journal
Géom. Algébrique 6 (2022), Art. 1, 30pp.

[DP]  C. de Concini and C. Procesi, A characteristic free approach to invariant theory,
Adv. Math. 21 (1976), 330-354.

[FW] P. Fleischmann and C. Woodcock, Relative invariants, ideal classes and quasi-
canonical modules of modular rings of invariants, J. Algebra 348 (2011), 110
134.

[GJS] K. Goel, J. Jeffries, and A. Singh, Local cohomology of modular invariants,
arXiv:2306.14279v1

[Has1] M. Hashimoto, Another proof of theorems of De Concini and Procesi, J. Math.
Kyoto Univ. 45 (2005), 701-710.

[Has2] M. Hashimoto, Equivariant twisted inverses, Foundations of Grothendieck Du-
ality for Diagrams of Schemes (J. Lipman, M. Hashimoto), Lecture Notes in
Math. 1960, Springer (2009), pp. 261-478.

[Has3] M. Hashimoto, Classification of the linearly reductive finite subgroup schemes
of SLy, Acta Math. Vietnam. 40 (2015), 527-534.

[Has4] M. Hashimoto, Equivariant class group. III. Almost principal fiber bundles,
arXiv:1503.02133

11



[HK]

[Hum]

[Jac]
[Kno]

[LS]

[Las]

[LY]

[Mon]

[Rad]

[SY]

[Suz]

[Sva]

[Swel]
[Swe2]

M. Hashimoto and F. Kobayashi, Generalized F-signatures of the rings of in-
variants of finite group schemes, arXiv:2304.12138v3

J. E. Humphreys, Symmetry for finite dimensional Hopf algebras, Proc. Amer.
Math. Soc. 68 (1978), 143-146.

N. Jacobson, Lie Algebras, Dover, 1979.

F. Knop, Der kanonische Modul eines Invariantenrings, J. Algebra 127 (1989),
40-54.

R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for
Hopf algebras, Amer. J. Math. 91 (1969), 75-94.

A. Lascoux, Syzygies des variétés déterminantales, Adv. Math. 30 (1978), 202—
237.

C. Liedtke and T. Yasuda, Non-commutative resolutions of linearly reductive
quotient singularities, arXiv:2304.14711v2

S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional
Conf. Ser. in Math. 82, AMS, 1993.

D. E. Radford, The trace function and Hopf algebras, J. Algebra 163 (1994),
583-622.

A. Skowronski and K. Yamagata, Frobenius Algebras. I. Basic Representation
Theory, European Mathematical Society, 2012.

S. Suzuki, Unimodularity of finite dimensional Hopf algebras, Tsukuba J. Math.
20 (1996), 231-238.

T. Svanes, Coherent cohomology on Schubert subschemes of flag schemes and
applications, Adv. Math. 14 (1974), 369-453.

M. E. Sweedler, Hopf Algebras, Benjamin, 1969.

M. E. Sweedler, Connected fully reducible affine group schemes in positive char-
acteristic are Abelian, J. Math. Kyoto Univ. 11-1 (1971), 51-70.

[Watl] K. Watanabe, Certain invariant subrings are Gorenstein. I. Osaka Math. J. 11

(1974), 1-8.

[Wat2] K. Watanabe, Certain invariant subrings are Gorenstein. II. Osaka Math. J. 11

(1974), 379-388.

12



Mitsuyasu Hashimoto

Department of Mathematics

Osaka Metropolitan University
Sumiyoshi-ku, Osaka 558-8585, JAPAN
e-mail: mh7@omu.ac. jp

13



