The symmetry of finite group schemes, Watanabe type theorem, and the a-invariant of the ring of invariants

Mitsuyasu Hashimoto*
Dedicated to Professor Mel Hochster and Professor Craig Huneke

Abstract

Let k be a field, and G be a k-group scheme of finite type. Let $G_{\text {ad }}$ be the k-scheme G with the adjoint action of G. We call $\lambda_{G, G}=H^{0}\left(\operatorname{Spec} k, e^{*}\left(\omega_{G_{\text {ad }}}\right)\right)$ the Knop character of G, where $e: \operatorname{Spec} k \rightarrow G_{\text {ad }}$ is the unit element, and $\omega_{G_{\text {ad }}}$ is the G-canonical module. We prove that $\lambda_{G, G}$ is trivial in the following cases: (1) G is finite, and $k[G]^{*}$ is a symmetric algebra; (2) G is finite and étale; (3) G is finite and constant; (4) G is smooth and connected reductive; (5) G is abelian; (6) G is finite, and the identity component G° of G is linearly reductive; (7) G is finite and linearly reductive. Let V be a small G-module of dimension $n<\infty$. We assume that $\lambda_{G, G}$ is trivial. Let $H=\mathbb{G}_{m}$ be the one-dimensional torus, and let V be of degree one as an H-module so that $S=\operatorname{Sym} V^{*}$ is a \tilde{G}-algebra generated by degree one elements, where $\tilde{G}=G \times H$. We set $A=S^{G}$. Then we have (i) $\omega_{A} \cong \omega_{S}^{G}$ as (H, A)-modules; (ii) $a(A) \leq-n$ in general, where $a(A)$ denotes the a-invariant. Moreover, the following are equivalent: (1) The action $G \rightarrow G L(V)$ factors through $S L(V) ;(2) \omega_{S} \cong S(-n)$ as (\tilde{G}, S)-modules; (3) $\omega_{S} \cong S$ as (G, S)-modules; (4) $\omega_{A} \cong A(-n)$ as (H, A)-modules; (5) A is quasi-Gorenstein; (6) A is quasi-Gorenstein and $a(A)=-n$; (7) $a(A)=-n$. This partly generalizes recent results of LiedtkeYasuda arXiv:2304.14711v2 and Goel-Jeffries-Singh arXiv:2306.14279v1.

1. Introduction

Let k be a field, V a finite-dimensional k-vector space, and G a finite subgroup of $G L(V)$. Let $S=\operatorname{Sym} V^{*}=k[V]$, and $A=S^{G}$. Hochster and Eagon proved that in non-modular case (that is, the case that the order $|G|$ of G is not divisible by the characteristic of k), A is Cohen-Macaulay. K.-i. Watanabe proved that in non-modular case, $G \subset S L(V)$ if and only if G does not have a pseudo-reflection and A is Gorenstein [Wat1, Wat2]. Since

[^0]then, his result has been generalized by several authors. Fleischmann and Woodcock [FW] and Braun [Bra] proved that if $G \subset G L(V)$ is a finite subgroup without pseudoreflection, then A is quasi-Gorenstein (or equivalently, $\omega_{A} \cong A$) if and only if $G \subset S L(V)$.

It has been known that the condition that the finite group G does not have a pseudoreflection sometimes can be generalized to more general G. The condition is replaced by the condition that $\pi: V=\operatorname{Spec} S \rightarrow \operatorname{Spec} A=V / / G$ is a principal G-bundle off codimension two or more, and called an almost principal bundle or quasi-torsor [Has4, C-R], and we call this condition ' V is small.' Namely, we say that V is small if there exist some open subset W of Spec A and G-stable open subset U of $\pi^{-1}(W)$ such that $\operatorname{codim}(V \backslash U, V) \geq 2, \operatorname{codim}(V / / G \backslash W, V / / G) \geq 2$, and $\pi: U \rightarrow W$ is a principal G-bundle (or a G-torsor) in the sense that π is faithfully flat, and $\Phi: G \times U \rightarrow U \times{ }_{W} U$ given by $\Phi(g, u)=(g u, u)$ is an isomorphism. Note that if G is a finite constant group, then V is small if and only if $G \subset G L(V)$, and G does not have a pseudo-reflection.

Knop [Kno] pointed out that the equivalence $\omega_{A} \cong A \Longleftrightarrow G \subset S L(V)$ is not true any more even if G is a (disconnected) reductive group over an algebraically closed field of characteristic zero, and the action is small. Letting λ_{ad} be the top exterior power of $\operatorname{Lie}(G)^{*}$, the dual of the adjoint representation, the triviality of $\operatorname{det}_{V} \otimes \lambda_{\text {ad }}^{*}$ was important [Kno, Satz 2]. Note that $\lambda_{\text {ad }}$ is trivial if G is finite, and we can recover Watanabe's original result.

We define $\lambda_{G, G}=H^{0}\left(\operatorname{Spec} k, e^{*}\left(\omega_{G_{\text {ad }}}\right)\right)$, and call it the Knop character of G, where $e: \operatorname{Spec} k \rightarrow G_{\text {ad }}$ is the unit element, and $\omega_{G_{\text {ad }}}$ is the G-equivariant canonical module of $G_{\text {ad }}$. If, moreover, G is a normal closed subgroup scheme of another affine k-group scheme \tilde{G} of finite type, then $\lambda_{G, G}$ is a character of \tilde{G}, and we denote it by $\lambda_{\tilde{G}, G}$. Note that $\lambda_{G, G} \cong \lambda_{\text {ad }}^{*}$, if G is k-smooth. By [Has4, (11.22)], it is easy to see that if V is small, then $\omega_{A} \cong A(a)$ if and only if $\omega_{S}=S \otimes \operatorname{det}_{V^{*}} \cong S(a) \otimes_{k} \lambda_{\tilde{G}, G}$ if and only if $\operatorname{det}_{V} \cong \lambda_{G, G}$ as G-modules, and $a=-n$. If, moreover, $\lambda_{G, G} \cong k$, then A is quasi-Gorenstein if and only if $G \subset S L(V)$, and if these conditions are satisfied, then $a(A)=-n$. So it is natural to ask, when $\lambda_{G, G}$ is trivial. In [Has4, (11.21)], it is pointed out that if G is finite and linearly reductive, étale, or connected reductive, then $\lambda_{G, G}$ is trivial, but $\lambda_{G, G}$ is nontrivial if k is a field of characteristic not two and $G=O(2)$.

In this paper, we discuss when $\lambda_{G, G}$ is trivial, assuming that G is finite (but not étale). It is well-known that the group algebra $k G$ is symmetric [SY, Example IV.2.6]. A finite dimensional k-Hopf algebra is Frobenius in general [SY, Theorem VI.3.6]. In general, a finite dimensional k-Hopf algebra H is not symmetric even if H is cocommutative, or equivalently, $H=k[G]^{*}$ for some finite k-group scheme G, see [LS, p. 85]. We prove that $\lambda_{G, G}$ is trivial if and only if the notions of the left integral and the right integral agree in $H=k[G]^{*}$. The latter condition is called the unimodular property of H. As the square s_{H}^{2} of the antipode s_{H} of H is the identity, H is unimodular if and only if H is a symmetric algebra, see [Hum, Rad].

As an application of the G-triviality of $\lambda_{G, G}$, we prove the following.
Theorem 3.6. Let k be a field, G be an affine k-group scheme of finite type, and V be a small G-module of dimension $n<\infty$. We assume that $\lambda_{G, G}$ is trivial. Let $H=\mathbb{G}_{m}$ be the one-dimensional torus, and let V be of degree one as an H-module so
that $S=\operatorname{Sym} V^{*}$ is a \tilde{G}-algebra generated by degree one elements, where $\tilde{G}=G \times H$. We set $A=S^{G}$. Then we have
(i) $\omega_{A} \cong \omega_{S}^{G}$ as (H, A)-modules;
(ii) $a(A) \leq-n$ in general, where $a(A)$ denotes the a-invariant.

Moreover, the following are equivalent:
(1) The action $G \rightarrow G L(V)$ factors through $S L(V)$;
(2) $\omega_{S} \cong S(-n)$ as (\tilde{G}, S)-modules;
(3) $\omega_{S} \cong S$ as (G, S)-modules;
(4) $\omega_{A} \cong A(-n)$ as (H, A)-modules;
(5) A is quasi-Gorenstein;
(6) A is quasi-Gorenstein and $a(A)=-n$;
(7) $a(A)=-n$.

For the case that G is finite and constant, the theorem was proved (in a stronger form) by Goel, Jeffries, and Singh [GJS]. Note that they do not require that the action of G on V is small. They proved that $a(A) \leq a(S)=-n$ in general. They also proved that the equality $a(A)=-n$ holds if and only if the image of $G \rightarrow G L(V)$ is a subgroup of $S L(V)$ without pseudo-reflections for the case that G is finite and constant [GJS, Proposition 4.1, Theorem 4.4]. It is interesting to ask if these are true for any finite group scheme G. Note also that the equivalence $(1) \Leftrightarrow(5)$ for the case that G is finite linearly reductive (but not necessarily constant) was proved recently by Liedtke and Yasuda [LY]. It also follows from [Has4, (7.61),(11.22)2].

Acknowledgment. The author thanks K. Goel, A. Singh, K.-i. Watanabe, and T. Yasuda for valuable communications. He is also grateful to A. Masuoka for valuable advice.

2. Preliminaries

(2.1) Let k be a field, $f: \tilde{G} \rightarrow H$ be a homomorphism between affine k-group schemes of finite type with $G=\operatorname{Ker} f$. Let $\mathcal{F}(\tilde{G})$ be the category of \tilde{G}-schemes separated of finite type over k. For $\left(h_{Z}: Z \rightarrow \operatorname{Spec} k\right) \in \mathcal{F}(\tilde{G})$, the \tilde{G}-dualizing complex of Z (or better, of $\left.h_{Z}\right)$ is $h_{Z}^{!}(k)$ by definition, and we denote it by $\mathbb{I}_{Z}=\mathbb{I}_{Z}(G)$, where $(-)$! denotes the twisted inverse [Has2]. The \tilde{G}-canonical module ω_{Z} is the lowest nonzero cohomology group of \mathbb{I}_{Z}. It is a coherent \tilde{G}-module. If $Z=\operatorname{Spec} B$ is affine, $H^{0}\left(Z, \omega_{Z}\right)$ is denoted by ω_{B}, and is called the \tilde{G}-equivariant canonical module of B. When we forget the \tilde{G}-structure, \mathbb{I}_{Z} is the dualizing complex of the scheme Z without the \tilde{G}-action [Has2, (31.17)].
(2.2) A morphism $\varphi: X \rightarrow Y$ of \tilde{G}-schemes of finite type over k is called a \tilde{G} enriched principal G-bundle if G acts trivially on Y, φ is faithfully flat, and the morphism $\Phi: G \times X \rightarrow X \times_{Y} X$ given by $\Phi(g, x)=(g x, x)$ is an isomorphism. As G is affine, flat, and Gorenstein over $\operatorname{Spec} k, \varphi$ is affine, flat, and Gorenstein.
(2.3) Let X be a scheme and U its open subset. We say that U is n-large if $\operatorname{codim}(X \backslash$ $U, X) \geq n+1$, where we regard that the codimension of the empty set in X is $\infty \geq n+1$.
Definition 2.4 (cf. [Has4, (10.2)]). A diagram of \tilde{G}-schemes of finite type

$$
\begin{equation*}
X \stackrel{i}{\leftarrow} U \xrightarrow{\rho} V \stackrel{j}{\longrightarrow} Y \tag{1}
\end{equation*}
$$

is called a \tilde{G}-enriched n-almost rational principal G-bundle if (1) G acts trivially on Y; (2) j is an open immersion, and $j(V)$ is n-large in Y; (3) i is an open immersion, and $i(U)$ is n-large in X; (4) $\rho: U \rightarrow V$ is a principal G-bundle. That is, ρ is faithfully flat, and $\Phi: G \times U \rightarrow U \times_{V} U$ given by $\Phi(n, u)=(n u, u)$ is an isomorphism.
(2.5) In what follows, 1-large and 1-almost will simply be called large and almost, respectively. A \tilde{G}-morphism $\varphi: X \rightarrow Y$ is said to be a \tilde{G}-enriched n-almost principal G-bundle with respect to U and V, if U is a \tilde{G}-stable open subset of X, V is an H-stable open subset of Y, and the diagram (1) is a \tilde{G}-enriched n-almost rational principal G bundle, where $\rho: U \rightarrow V$ is the restriction of φ. We say that a \tilde{G}-morphism $\varphi: X \rightarrow Y$ is a \tilde{G}-enriched n-almost principal G-bundle if it is so with respect to U and V for some U and V.

Lemma 2.6. Let $\varphi: X \rightarrow Y$ be a \tilde{G}-enriched almost principal G-bundle between \tilde{G} schemes of finite over k. Assume that X is normal, and that $\mathcal{O}_{Y} \rightarrow\left(\varphi_{*} \mathcal{O}_{X}\right)^{G}$ is an isomorphism. Let $\operatorname{Ref}(\tilde{G}, X)$ be the category of coherent $\left(\tilde{G}, \mathcal{O}_{X}\right)$-modules which are reflexive as \mathcal{O}_{X}-modules, and Let $\operatorname{Ref}(H, Y)$ be the category of coherent $\left(H, \mathcal{O}_{Y}\right)$-modules which are reflexive as \mathcal{O}_{Y}-modules. Then we have: The functor $\mathcal{G}: \operatorname{Ref}(\tilde{G}, X) \rightarrow$ $\operatorname{Ref}(H, Y)$ given by $\mathcal{G}(\mathcal{M})=\left(\varphi_{*} \mathcal{M}\right)^{G}$ is an equivalence, and $\mathcal{F}: \operatorname{Ref}(H, Y) \rightarrow \operatorname{Ref}(\tilde{G}, X)$ given by $\mathcal{F}(\mathcal{N})=\left(\varphi^{*} \mathcal{N}\right)^{* *}$ is its quasi-inverse, where $(-)^{* *}$ is the double dual.

Proof. Follows immediately from [Has4, (10.13),(11.3)]. A short and self-contained proof for the case that everything is affine can be found in [HK, (2.4)].
(2.7) Let X be a \tilde{G}-scheme, and L be a \tilde{G}-module. Let $h_{X}: X \rightarrow \operatorname{Spec} k$ be the structure map. Then for a quasi-coherent $\left(\tilde{G}, \mathcal{O}_{X}\right)$-module \mathcal{M}, we denote $\mathcal{M} \otimes_{\mathcal{O}_{X}} h_{X}^{*} L$ by $\mathcal{M} \otimes_{k} L$. Note that G is a normal closed subgroup scheme of \tilde{G}. So \tilde{G} acts on G by the adjoint action. We denote this scheme by $G_{\text {ad }}$. Let $e: \operatorname{Spec} k \rightarrow G_{\text {ad }}$ be the unit element. It is a \tilde{G}-stable closed immersion. We denote the \tilde{G}-module $H^{0}\left(\operatorname{Spec} k, e^{*}\left(\omega_{G_{\mathrm{ad}}}\right)\right)$ by $\lambda_{\tilde{G}, G}$, and we call it the Knop character of G (enriched by $\left.\tilde{G}\right)$. If G is k-smooth, then $\lambda_{G, G} \cong \operatorname{det}_{\mathfrak{g}}^{*}$ by [Has2, (28.11)], where $\mathfrak{g}=\operatorname{Lie} G$ is the adjoint representation of G, and det denotes the top exterior power. Its dual $\operatorname{det}_{\mathfrak{g}}=\lambda_{G, G}^{*}$ is denoted by $\lambda_{\text {ad }}$ in [Kno], and played an important role in studying Gorenstein property of invariant subrings [Kno, Satz 2].

Lemma 2.8. Let $\varphi: X=\operatorname{Spec} T \rightarrow Y=\operatorname{Spec} B$ be a \tilde{G}-enriched almost principal G-bundle which is also a morphism in $\mathcal{F}(\tilde{G})$ with X and Y affine normal. Then $\omega_{T}=$ $\left(T \otimes_{B} \omega_{B}\right)^{* *} \otimes_{k} \lambda_{\tilde{G}, G}$, where $(-)^{* *}=\operatorname{Hom}_{T}\left(\operatorname{Hom}_{T}(-, T), T\right)$ is the double dual. We also have that $\omega_{B}=\left(\omega_{T} \otimes_{k} \lambda_{\tilde{G}, G}^{*}\right)^{G}$. In particular, if moreover, $\lambda_{\tilde{G}, G} \cong k$, then $\omega_{T} \cong$ $\left(T \otimes_{B} \omega_{B}\right)^{* *}$ and $\omega_{B} \cong \omega_{T}^{G}$.

Proof. This is a special case of [Has4, (11.22)].
(2.9) Let Λ be a finite-dimensional k-algebra. We say that Λ is Frobenius if ${ }_{\Lambda} \Lambda \cong$ $D\left(\Lambda_{\Lambda}\right)$ as left Λ-modules, where $D=\operatorname{Hom}_{k}(-, k)$. This is equivalent to say that there is a nondegenerate bilinear form $\beta: \Lambda \times \Lambda \rightarrow k$ such that $\beta(a c, b)=\beta(a, c b)$. If, moreover, we can take such a β to be symmetric, we say that Λ is symmetric. This is equivalent to say that the bimodule ${ }_{\Lambda} \Lambda_{\Lambda}$ is isomorphic to $D\left({ }_{\Lambda} \Lambda_{\Lambda}\right)$.
(2.10) Let Γ be a finite dimensional k-Hopf algebra. We define

$$
\int_{\Gamma}^{l}:=\left\{x \in \Gamma^{*} \mid \forall y \in \Gamma^{*} y x=\epsilon(y) x\right\},
$$

where $\epsilon: \Gamma^{*} \rightarrow k$ is given by $\epsilon(y)=y\left(1_{\Gamma}\right)$. An element of \int_{Γ}^{l} is called a left integral on Γ (or in Γ^{*}, according to the terminology in [Mon]).
(2.11) Note that

$$
\int_{\Gamma}^{l}=\left(\Gamma^{*}\right)^{\Gamma}=\left\{\psi \in \Gamma^{*} \mid \omega_{\gamma^{*}}(\psi)=\psi \otimes 1\right\}=\operatorname{Hom}_{\Gamma}(\Gamma, k) .
$$

Indeed, if $\gamma_{1}, \ldots, \gamma_{n}$ is a k-basis of Γ and $\gamma_{1}^{*}, \ldots, \gamma_{n}^{*}$ is its dual basis, then the comodule structure $\omega_{\Gamma^{*}}$ of Γ^{*} is given by $\omega_{\Gamma^{*}}(\alpha)=\sum_{i=1}^{n} \gamma_{i}^{*} \alpha \otimes \gamma_{i}$ for $\alpha \in \Gamma^{*}$. In other words, $\omega(\alpha)=\sum_{(\alpha)} \alpha_{(0)} \otimes \alpha_{(1)}$ is given by $\sum_{(\alpha)}\left\langle\beta, \alpha_{(1)}\right\rangle \alpha_{(0)}=\beta \alpha$ for $\beta \in \Gamma^{*}$. So $\omega(\psi)=\psi \otimes 1$ is equivalent to say that $\rho \psi=\epsilon(\rho) \psi$ for $\rho \in \Gamma^{*}$, as desired.
(2.12) We also define $\int_{\Gamma}^{r}=\left\{x \in \Gamma^{*} \mid \forall y \in \Gamma^{*} x y=\varepsilon(y) x\right\}$, and an element of \int_{Γ}^{r} is called a right integral on Γ. It is known that $\operatorname{dim}_{k} \int_{\Gamma}^{l}=\operatorname{dim}_{k} \int_{\Gamma}^{r}=1$ [Swe1, Corollary 5.1.6]. If $\int_{\Gamma}^{l}=\int_{\Gamma}^{r}$, then we say that Γ^{*} is unimodular. Radford proved [Rad] that Γ^{*} is a symmetric algebra if and only if Γ^{*} is unimodular and \mathcal{S}^{2} is an inner automorphism of Γ^{*}, where \mathcal{S} is the antipode of Γ. Suzuki [Suz] constructed an example of a finite dimensional unimodular k-Hopf algebra which is not symmetric.

Lemma 2.13. Let G be a finite k-group scheme, H an affine k-group scheme of finite type, and $\tilde{G}=G \times H$ is the direct product. Let $\Gamma=k[G]$ be the coordinate ring of G. Then the following are equivalent.
(1) Γ^{*} is symmetric.
(2) Γ^{*} is unimodular.
(3) $\lambda_{\tilde{G}, G} \cong k$ as \tilde{G}-modules.
(4) $\lambda_{G, G} \cong k$ as G-modules.

Proof. As Γ^{*} is cocommutative, $s^{2}=\operatorname{id}_{\Gamma^{*}}$, where s is the antipode of Γ^{*}. By [Hum, Theorem 1,2] (see also [Rad]), (1) $\Leftrightarrow(2)$ holds.

We prove $(2) \Rightarrow(3)$. Note that Γ^{*} is a $(G, k[G])$-module. In other words, Γ^{*} is a Γ Hopf module. Let $\zeta: \Gamma^{*} \rightarrow \Gamma^{*} \otimes_{k} \Gamma$ be the map given by $\zeta(\gamma)=\sum_{(\gamma)} \gamma_{(0)}\left(\mathcal{S} \gamma_{(1)}\right) \otimes \gamma_{(2)}$, where \mathcal{S} is the antipode of Γ. By the proof of [Swe1, Theorem 4.1.1], ζ is injective and $\operatorname{Im} \zeta=\int_{\Gamma}^{l} \otimes k[G]$. Now let us consider the same map $\zeta: k\left[G_{\mathrm{ad}}\right]^{*} \rightarrow k\left[G_{\mathrm{ad}}\right]^{*} \otimes k\left[G_{\mathrm{ad}}\right]$. It is easy to see that this is a $\left(G, k\left[G_{\text {ad }}\right]\right)$-homomorphism. Note also that \int_{Γ}^{l} is a G-submodule of both $k\left[G_{\text {ad }}\right]$ and $k\left[G_{r}\right]$, where G_{r} is the right regular action. As $\int_{\Gamma}^{l}=\int_{\Gamma}^{r}$, we have that \int_{Γ}^{l} as the submodule of $k\left[G_{\text {ad }}\right]$ is also G-trivial (isomorphic to k). Hence ζ induces an isomorphism $k\left[G_{\text {ad }}\right]^{*} \cong k\left[G_{\text {ad }}\right]$ of $\left(G, k\left[G_{\text {ad }}\right]\right)$-modules. As H acts trivially on $G_{\text {ad }}$, the isomorphism is that of $\left(\tilde{G}, k\left[G_{\text {ad }}\right]\right)$-modules. Pulling back this isomorphism by the unit element $e: \operatorname{Spec} k \rightarrow G_{\text {ad }}$, we get $\lambda_{\tilde{G}, G} \cong k$, as we have $k\left[G_{\mathrm{ad}}\right]^{*} \cong \omega_{k\left[G_{\mathrm{ad}}\right]}$ by the duality of finite morphisms, see [Has2, (27.8)].
$(3) \Rightarrow(4)$ is trivial.
$(4) \Rightarrow(2)$. The argument above shows that $k\left[G_{\mathrm{ad}}\right]^{*} \cong \lambda^{\prime} \otimes k\left[G_{\mathrm{ad}}\right]$, where λ^{\prime} is \int_{Γ}^{l} as a G-submodule of $k\left[G_{\text {ad }}\right]^{*}$. As \int_{Γ}^{l} is trivial as a G-submodule of $k\left[G_{l}\right]$, where G_{l} is G with the left regular action, we have that λ^{\prime} agrees with \int_{Γ}^{l} as a G-submodule of $k\left[G_{r}\right]$. The assumption (4) means $k \cong \lambda \cong \lambda^{\prime}$. So $\int_{\Gamma}^{l} \subset \int_{\Gamma}^{r}$. As we know that both \int_{Γ}^{l} and \int_{Γ}^{r} are one-dimensional, we have that Γ^{*} is unimodular.

3. Main theorem

(3.1) Let S be a k-algebra of finite type on which G acts. Let $A=S^{G}$ be the ring of invariants. If the canonical map $\operatorname{Spec} S \rightarrow \operatorname{Spec} A$ is an almost principal G-bundle, then we say that the G-action on S is small. If V is a G-module and $S=k[V]=\operatorname{Sym} V^{*}$ is small, then we say that the representation V of G is small. If G is a finite (constant) group, then V is small if and only if the action is faithful, and $G \subset G L(V)$ does not have a pseudo-reflection. Letting each element of V^{*} of degree one, $S=\operatorname{Sym} V^{*}$ is a graded G-algebra. So letting $H=\mathbb{G}_{m}$ and $\tilde{G}=G \times H$, we have that S is a \tilde{G}-algebra.

Lemma 3.2 (cf. [Has4, Remark 11.21]). In the following cases, we have that the Knop character $\lambda_{\tilde{G}, G}$ is trivial as \tilde{G}-modules.
(1) G is finite, and $k[G]^{*}$ is a symmetric algebra;
(2) G is finite and étale;
(3) G is finite and constant;
(4) G is smooth and connected reductive;
(5) G is abelian;
(6) G is finite, and the identity component G° of G is linearly reductive;
(7) G is finite and linearly reductive.

Proof. By Lemma 2.13, (1) is already proved, and it suffices to show that $\lambda_{G, G} \cong k$ for (2)-(7).

For the case that (2), (3), or (4) is assumed, G is k-smooth, and hence $\lambda_{G, G}=$ $\operatorname{det}_{\mathfrak{g}^{*}}=\Lambda^{\text {top }} \mathfrak{g}^{*}$. As the $0^{\text {th }}$ exterior power is always trivial, (4) has been proved. The assertion (3) is a special case of (2) (also, direct proofs are well-known, see for example, [SY, Example IV.2.6]).

We prove (4). We may assume that k is algebraically closed. Let T be a maximal torus of G. As $\lambda_{G, G}=\operatorname{det}_{\mathfrak{g}}^{*}$ is one-dimensional, it suffices to show that $\operatorname{det}_{\mathfrak{g}}$ is trivial as a T-module. We have $\mathfrak{g}=\mathfrak{g}_{0} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}$, where Φ is the set of roots (that is, nonzero weights of \mathfrak{g}). It is known that $\operatorname{dim} \mathfrak{g}_{\alpha}=1$ for each $\alpha \in \Phi$, and $\Phi=-\Phi$. Thus $\operatorname{det}_{\mathfrak{g}}$ has weight $0+\sum_{\alpha \in \Phi} \alpha=0$.

We prove (5). If G is abelian, then the action of G on G_{ad} is trivial. So $\omega_{G_{\mathrm{ad}}}$ and $\lambda_{G, G}$ are G-trivial.

We prove (6). We may assume that k is algebraically closed of characteristic $p>0$. By [Swe2, (3.11)], $G^{\circ}=\operatorname{Spec} k M$ for some abelian p-group M. Note that $\pi^{0}(G)=G_{\text {red }}$ is a closed subgroup scheme, and is a constant finite group. Note that $G=G^{\circ} \rtimes G_{\mathrm{red}}$ is a semidirect product. As $G_{\text {red }}$ acts on G° by the adjoint action, it acts on the character group $\chi\left(G^{\circ}\right)=M$. As the action is that of groups, it fixes the unit element 1_{M} of M. As a G°-module, $k\left[G_{r}^{\circ}\right]=k\left[G_{l}^{\circ}\right]$ is decomposed into the sum of one-dimensional G°-modules as $\bigoplus_{m \in M} k \cdot m$. Note that $k \cdot m$ is isomorphic to k if and only if $m=1_{M}$, and that $\int_{k\left[G^{\circ}\right]}^{r}=\int_{k\left[G^{\circ}\right]}^{l}$ is generated by the projection $\pi: k[G] \rightarrow k$ given by $\pi\left(1_{M}\right)=1$ and $\pi(m)=0$ for $m \in M \backslash\left\{1_{M}\right\}$. As $g m \neq 1_{M}$ if $m \neq 1_{M}$ and $g 1_{M}=1_{M}$ for any $g \in G_{\text {red }}$, we have that $g \pi=\pi$ for any $g \in G_{\text {red }}$, where $(g \pi)(m)=\pi\left(g^{-1}(m)\right)$. This shows that $\lambda_{G, G^{\circ}} \cong k$. As G° is a G-stable (closed and) open neighborhood of the unit element e in $G_{\text {ad }}$, we have that $\lambda_{G, G}=\lambda_{G, G^{\circ}} \cong k$, as desired.

We prove (7). By [Has3, Lemma 2.2], G° is linearly reductive. By (6), the assertion is clear now.

Example 3.3 (cf. [Kno, p. 51]). $\lambda_{G, G}$ is not G-trivial in general, even if k is an algebraically closed field of characteristic zero, and G is k-smooth. Let $k=\mathbb{C}$, and consider

$$
G=O_{2}=\left\{\left.A \in G L_{2}(\mathbb{C})\right|^{t} A A=E_{2}\right\},
$$

where E_{2} is the identity matrix. Then the Lie algebra \mathfrak{g} of G is

$$
\left\{B \in \mathfrak{g l}_{2}(\mathbb{C})=\left.\operatorname{Mat}_{2}(\mathbb{C})\right|^{t} B+B=O\right\}
$$

on which G acts by the action $(A, B) \mapsto A B^{t} A$. It is easy to see that the action is nontrivial, and hence $\lambda_{G, G}=\mathfrak{g}^{*}$ is also nontrivial.

Example 3.4. $\lambda_{G, G}$ is not G-trivial in general, even if G is finite. Consider the restricted Lie algebra (see [Jac, (V.7)] for definition) L over a field k of characteristic $p>0$ with the basis e, f with the relations $[f, e]=e, f^{p}=f$, and $e^{p}=0$. Take the restricted universal enveloping algebra V of L. Letting each element of $x \in L$ primitive (i.e., $\Delta(x)=x \otimes 1+1 \otimes x), V$ is a p^{2}-dimensional cocommutative Hopf algebra which is not unimodular, see [LS, p. 85]. Letting $G=\operatorname{Spec} V^{*}$, we have that $\lambda_{G, G}$ is not trivial by Lemma 2.13.

Lemma 3.5. Let k be a field, G and H be affine k-group schemes of finite type, and $\tilde{G}=G \times H$. Let S be a \tilde{G}-algebra, and assume that the action of G on S is small. We assume that S is normal, and $\lambda_{G, G}$ is trivial. Let L be an (H, A)-module which is projective as an A-module. Then the following are equivalent:
(1) $\omega_{S} \cong S \otimes_{A} L$ as (\tilde{G}, S)-modules;
(2) $\omega_{A} \cong L$ as (H, A)-modules,
where the action of G on L is trivial.
Proof. (1) \Rightarrow (2). By Lemma 2.8, $\omega_{A} \cong \omega_{S}^{G} \cong\left(S \otimes_{A} L\right)^{G} \cong A \otimes_{A} L \cong L$, since L is G-trivial and A-flat.
$(2) \Rightarrow(1)$. We have $\omega_{S}^{G} \cong \omega_{A} \cong L$. Applying the functor $\left(S \otimes_{A}-\right)^{* *}$, which is the quasi-inverse of $(-)^{G}: \operatorname{Ref}(\tilde{G}, S) \rightarrow \operatorname{Ref}(H, A)$, we get isomorphisms

$$
\omega_{S} \cong\left(S \otimes_{A} \omega_{S}^{G}\right)^{* *} \cong\left(S \otimes_{A} L\right)^{* *} \cong S \otimes_{A} L
$$

of (\tilde{G}, S)-modules.
Theorem 3.6. Let k be a field, G be an affine k-group scheme of finite type, and V be a small G-module of dimension $n<\infty$. We assume that $\lambda_{G, G}$ is trivial. Let $H=\mathbb{G}_{m}$ be the one-dimensional torus, and let V be of degree one as an H-module so that $S=\operatorname{Sym} V^{*}$ is a \tilde{G}-algebra generated by degree one elements, where $\tilde{G}=G \times H$. We set $A=S^{G}$. Then we have
(i) $\omega_{A} \cong \omega_{S}^{G}$ as (H, A)-modules;
(ii) $a(A) \leq-n$ in general, where $a(A)$ denotes the a-invariant.

Moreover, the following are equivalent:
(1) The action $G \rightarrow G L(V)$ factors through $S L(V)$;
(2) $\omega_{S} \cong S(-n)$ as (\tilde{G}, S)-modules;
(3) $\omega_{S} \cong S$ as (G, S)-modules;
(4) $\omega_{A} \cong A(-n)$ as (H, A)-modules;
(5) A is quasi-Gorenstein;
(6) A is quasi-Gorenstein and $a(A)=-n$;
(7) $a(A)=-n$.

Proof. The assertion (i) is clear by Corollary 2.8. We prove (ii). We have an (H, A)-linear isomorphism $\omega_{A} \rightarrow \omega_{S}^{G}$ by assumption, and $\omega_{S}^{G} \subset \omega_{S}=S \otimes_{k} \operatorname{det}_{V}$. So $a(A) \leq a(S)=-n$ in general. The equality holds only if det_{V} is trivial. Namely, we have $(7) \Rightarrow(1)$.
(1) is equivalent to say that $\operatorname{det}_{V} \cong k(-n)$. Combining this with the fact $\omega_{S} \cong$ $S \otimes_{k} \operatorname{det}_{V}$, we get (1) $\Rightarrow(2)$.
$(2) \Rightarrow(3)$ is trivial.
(3) $\Rightarrow(1)$. $S \otimes_{k} \operatorname{det}_{V} \cong \omega_{S} \cong S$ as (G, S)-modules. So

$$
\operatorname{det}_{V} \cong S / S_{+} \otimes_{S}\left(S \otimes_{k} \operatorname{det}_{V}\right) \cong S / S_{+} \otimes_{S} \omega_{S} \cong S / S_{+} \otimes_{S} S \cong S / S_{+} \cong k
$$

as G-modules. This shows (1).
$(2) \Rightarrow(4) . \omega_{A} \cong \omega_{S}^{G} \cong S(-n)^{G} \cong A(-n)$ as (H, A)-modules.
$(4) \Rightarrow(6) \Rightarrow(5)$ is trivial.
$(5) \Rightarrow(3)$. By assumption, ω_{A} is projective. As A is positively graded and ω_{A} is a graded finitely generated module of rank one, we have that $\omega_{A} \cong A(a)$ for some $a \in \mathbb{Z}$. By Lemma 3.5, we have that $\omega_{S} \cong S \otimes_{A} A(a) \cong S(a)$ as (\tilde{G}, S)-modules. Forgetting the grading, we have that $\omega_{S} \cong S$ as (G, S)-modules, as desired.
$(6) \Rightarrow(7)$ is trivial.
Remark 3.7. Goel-Jeffries-Singh [GJS] proved better theorems than Theorem 3.6 for the case that G is finite and constant. They proved the inequality $a(A) \leq-n$ without assuming that the action is small. They also prove there that $a(A)=-n$ implies that the action is small (and hence $G \subset S L(V)$), see [GJS, Proposition 4.1, Theorem 4.4]. The author does not know if these are true for a general finite group scheme G.

The equivalence $(1) \Leftrightarrow(5)$ for the case that G is finite and constant was first proved by Fleischmann and Woodcock [FW] and Braun [Bra]. The author proved that $\omega_{S}^{G} \cong \omega_{A}$ if G is finite linearly reductive, without assuming that the action is small [Has2, (32.4)]. The equivalence $(1) \Leftrightarrow(5)$ for the case that G is finite linearly reductive was proved by Liedtke-Yasuda [LY, Proposition 4.7] (A is strongly F-regular this case, and hence quasi-Gorenstein is equivalent to Gorenstein there).

Example 3.8. We give an example of higher-dimensional G. Let m, n and t be positive integers such that $2 \leq t \leq m \leq n$. Let $W_{1}=k^{n}, W_{2}=k^{m}, E=k^{t-1}$, and $G=G L(E)$. We consider that G acts on E as a vector representation, while the actions of G on W_{1} and W_{2} are trivial. We set $V=\operatorname{Hom}_{k}\left(E, W_{2}\right) \oplus \operatorname{Hom}_{k}\left(W_{1}, E\right), S=\operatorname{Sym} V^{*}$, and $A=S^{G}$. We define $X=V=\operatorname{Hom}\left(E, W_{2}\right) \times \operatorname{Hom}\left(W_{1}, E\right)=\operatorname{Spec} S=E^{n} \times\left(E^{*}\right)^{m}$, and $Y=\operatorname{Spec} A=X / / G$. The quotient map $\pi: X \rightarrow Y$ is identified with the map $\Pi: X \rightarrow Y_{t}$ given by $(\varphi, \psi) \mapsto \varphi \circ \psi$, where $Y_{t}=\left\{\rho \in \operatorname{Hom}\left(W_{1}, W_{2}\right) \mid \operatorname{rank} \rho<t\right\}$ is the determinantal variety, see [DP]. Note that Π is a $G L\left(W_{1}\right) \times G \times G L\left(W_{2}\right)$-enriched almost principal G-bundle, see [Has1]. So by the theorem, we have that $a(A) \leq a(S)=-(m+$ $n)(t-1)$, and the equality holds if and only if A is Gorenstein. Note also that the usual
grading of $A=k\left[\operatorname{Hom}\left(W_{1}, W_{2}\right)^{*}\right] / I_{t}$, where I_{t} is the determinantal ideal, is the one such that each element of $\operatorname{Hom}\left(W_{1}, W_{2}\right)^{*}$ is of degree one. However, the grading used here is the one which is inherited from the grading of S, and each element of $\operatorname{Hom}\left(W_{1}, W_{2}\right)^{*}$ is of degree two. For the case that k is of characteristic zero, Lascoux's resolution [Las] tells us that $a(A)=2(-m n+n(m-t+1))=-2 n(t-1) \leq-(m+n)(t-1)=a(S)$, doubling the degree to adopt our grading inherited from S. Being a graded ASL over a distributive lattice, A is Cohen-Macaulay, and the Hilbert series of A is independent of k, see $[\mathrm{BH}]$. So $a(A)$ is also independent of k, and we always have $a(A)=-2 n(t-1)$. So $a(A)=a(S)$ if and only if $m=n$. This shows that A is Gorenstein if and only if $m=n$, and this is the well-known theorem by Svanes [Sva].

Example 3.9. Let k be an algebraically closed field of characteristic $p>0$, and ℓ be a prime number which does not divide $p(p-1)$. In particular, ℓ is odd. Let

$$
G=\left\{\left.\left[\begin{array}{cc}
t & \alpha \\
0 & 1
\end{array}\right] \right\rvert\, t \in \boldsymbol{\mu}_{\ell}, \alpha \in \boldsymbol{\alpha}_{p}\right\},
$$

where $\boldsymbol{\alpha}_{p}=\operatorname{Spec} k[a] /\left(a^{p}\right)$ is the first Frobenius kernel of the additive group $\mathbb{G}_{a}=$ $\operatorname{Spec} k[a]=\mathbb{A}^{1}$, and $\boldsymbol{\mu}_{\ell}=\operatorname{Spec} k[T] /\left(T^{\ell}-1\right) \subset G L_{1}$. Note that G acts on the vector representation $W=k^{2}$ in a natural way. Let $V=W \oplus W^{*}$. It is easy to see that V is small and $G \subset S L(V)$. It is also easy to see that $\lambda_{G, G}=\operatorname{soc} k\left[\left(\boldsymbol{\alpha}_{p}\right)_{\mathrm{ad}}\right]^{*}=$ $\left(\operatorname{soc} k[a] /\left(a^{p}\right)\right)^{*}=\left(k a^{p-1}\right)^{*}$. With the adjoint action, we have $\sigma_{t} \cdot a=t^{-2} a$, where $\sigma=\left[\begin{array}{ll}t & 0 \\ 0 & 1\end{array}\right]$. By assumption, $\lambda_{G, G}$ is nontrivial. By [Has4, Corollary 11.22], $A=S^{G}$ is not quasi-Gorenstein, where $A=k[V]=\operatorname{Sym} V^{*}$.
(3.10) Let G be a finite k-group scheme, H a k-group scheme of finite type, and set $\tilde{G}=G \times H$. Let S be a \tilde{G}-algebra, and $A=S^{G}$. In [C-R], the trace map $\operatorname{Tr}_{S / A}: S \rightarrow A$ is defined. Let $\delta_{G}: k[G] \rightarrow k$ be a non-zero left integral (that is, $\delta_{G} \in \int_{k[G]}^{l} \backslash\{0\}$). This is equivalent to say that $\delta_{G} \in \operatorname{Hom}_{G}\left(k\left[G_{l}\right], k\right) \backslash\{0\}$. For any G-algebra S, let $\operatorname{Tr}_{S / A}: S \rightarrow S^{\prime}$ be the composite

$$
S \xrightarrow{\omega_{S}} S^{\prime} \otimes_{k} k[G] \xrightarrow{1_{s^{\prime}} \otimes \delta_{G}} S^{\prime} \otimes_{k} k=S^{\prime},
$$

where S^{\prime} is the A-module S with the trivial G-action. By [C-R, Definition-Proposition 3.6], the image of $\operatorname{Tr}_{S / A}$ is contained in $A=S^{G}$, and hence the map $\operatorname{Tr}_{S / A}: S \rightarrow A$ is induced. It is easy to see that $\operatorname{Tr}_{S / A}$ is A-linear.
(3.11) Assume that the Hopf algebra $k[G]^{*}$ is unimodular. Then δ_{G} is also a right integral. That is, $\delta_{G}: k\left[G_{r}\right] \rightarrow k$ is G-linear (note that $k\left[G_{r}\right]$ is a $k[G]$-comodule algebra letting the coproduct $\Delta: k\left[G_{r}\right] \rightarrow k\left[G_{r}\right] \otimes k\left[G_{r}\right]$ the coaction). As $\omega_{S}: S \rightarrow S^{\prime} \otimes_{k} k\left[G_{r}\right]$ is also G-linear, we have that $\operatorname{Tr}_{S / A}: S \rightarrow A$ is (G, A)-linear. Moreover, δ_{G} is H-linear, since H acts trivially on G_{r}. Letting the action of H on S^{\prime} be the same as that on S, we have that $\omega_{S}: S \rightarrow S^{\prime} \otimes_{k} k\left[G_{r}\right]$ is also H-linear. Thus $\operatorname{Tr}_{S / A}$ is (\tilde{G}, A)-linear.

Theorem 3.12. Let S be a k-algebra of finite type. Let G be a finite k-group scheme, H be a k-group scheme of finite type, and $\tilde{G}=G \times H$. Assume that \tilde{G} acts on S. If $k[G]^{*}$ is symmetric and either
(1) The map $\operatorname{Spec} S \rightarrow \operatorname{Spec} A$ is a \tilde{G}-enriched principal G-bundle; or
(2) The action of G on S is small, and S satisfies the $\left(S_{2}\right)$-condition,
then $\zeta: S \rightarrow \operatorname{Hom}_{A}(S, A)\left(s \mapsto\left(t \mapsto \operatorname{Tr}_{S / A}(s t)\right)\right)$ is an isomorphism of (\tilde{G}, S)-modules.
Proof. This is [C-R, Corollary 3.13] except that we need to prove that the map ζ is \tilde{G}-linear. This is done in the discussion above.

References

[Bra] A. Braun, On the Gorenstein property for modular invariants, J. Algebra 345 (2011), 81-99.
[BH] W. Bruns and J. Herzog, Cohen-Macaulay Rings. 2nd ed., Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1998.
[C-R] J. Carvajal-Rojas, Finite torsors over strongly F-regular singularities, Épijournal Géom. Algébrique 6 (2022), Art. 1, 30pp.
[DP] C. de Concini and C. Procesi, A characteristic free approach to invariant theory, Adv. Math. 21 (1976), 330-354.
[FW] P. Fleischmann and C. Woodcock, Relative invariants, ideal classes and quasicanonical modules of modular rings of invariants, J. Algebra 348 (2011), 110134.
[GJS] K. Goel, J. Jeffries, and A. Singh, Local cohomology of modular invariants, arXiv:2306.14279v1
[Has1] M. Hashimoto, Another proof of theorems of De Concini and Procesi, J. Math. Kyoto Univ. 45 (2005), 701-710.
[Has2] M. Hashimoto, Equivariant twisted inverses, Foundations of Grothendieck Duality for Diagrams of Schemes (J. Lipman, M. Hashimoto), Lecture Notes in Math. 1960, Springer (2009), pp. 261-478.
[Has3] M. Hashimoto, Classification of the linearly reductive finite subgroup schemes of $S L_{2}$, Acta Math. Vietnam. 40 (2015), 527-534.
[Has4] M. Hashimoto, Equivariant class group. III. Almost principal fiber bundles, arXiv:1503.02133
[HK] M. Hashimoto and F. Kobayashi, Generalized F-signatures of the rings of invariants of finite group schemes, arXiv:2304.12138v3
[Hum] J. E. Humphreys, Symmetry for finite dimensional Hopf algebras, Proc. Amer. Math. Soc. 68 (1978), 143-146.
[Jac] N. Jacobson, Lie Algebras, Dover, 1979.
[Kno] F. Knop, Der kanonische Modul eines Invariantenrings, J. Algebra 127 (1989), 40-54.
[LS] R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf algebras, Amer. J. Math. 91 (1969), 75-94.
[Las] A. Lascoux, Syzygies des variétés déterminantales, Adv. Math. 30 (1978), 202237.
[LY] C. Liedtke and T. Yasuda, Non-commutative resolutions of linearly reductive quotient singularities, arXiv:2304.14711v2
[Mon] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math. 82, AMS, 1993.
[Rad] D. E. Radford, The trace function and Hopf algebras, J. Algebra 163 (1994), 583-622.
[SY] A. Skowroński and K. Yamagata, Frobenius Algebras. I. Basic Representation Theory, European Mathematical Society, 2012.
[Suz] S. Suzuki, Unimodularity of finite dimensional Hopf algebras, Tsukuba J. Math. 20 (1996), 231-238.
[Sva] T. Svanes, Coherent cohomology on Schubert subschemes of flag schemes and applications, Adv. Math. 14 (1974), 369-453.
[Swe1] M. E. Sweedler, Hopf Algebras, Benjamin, 1969.
[Swe2] M. E. Sweedler, Connected fully reducible affine group schemes in positive characteristic are Abelian, J. Math. Kyoto Univ. 11-1 (1971), 51-70.
[Wat1] K. Watanabe, Certain invariant subrings are Gorenstein. I. Osaka Math. J. 11 (1974), 1-8.
[Wat2] K. Watanabe, Certain invariant subrings are Gorenstein. II. Osaka Math. J. 11 (1974), 379-388.

Mitsuyasu Hashimoto
Department of Mathematics
Osaka Metropolitan University
Sumiyoshi-ku, Osaka 558-8585, JAPAN
e-mail: mh7@omu.ac.jp

[^0]: *Partially supported by JSPS KAKENHI Grant number 20K03538 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165.

 2020 Mathematics Subject Classification. Primary 13A50; Secondary 14L15, 16T05. Key Words and Phrases. unimodular Hopf algebra, a-invariant, canonical module, invariant subring, finite group scheme, small action.

