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Abstract

In this paper, we investigate variational problems in R2 with the Sobolev
norm constraints and with the Dirichlet norm constraints. We focus on
property of maximizers of the variational problems. Concerning variational
problems with the Sobolev norm constraints, we prove that maximizers are
ground state solutions of corresponding elliptic equations, while we exhibit
an example of a ground state solution which is not a maximizer of corre-
sponding variational problem. On the other hand, we show that maximizers
of maximization problems with the Dirichlet norm constraints and ground
state solutions of corresponding elliptic equations are the same functions, up
to scaling, under suitable setting.
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1. Introduction

We consider the following variational problems

CG,µ,α := sup

{∫
R2

G(u2)dx

∣∣∣∣ u ∈ H1(R2),

∫
R2

(
|∇u|2 + µu2

)
dx = α

}
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and

DG,α := sup

{∫
R2 G(u2)dx∫

R2 u2dx

∣∣∣∣ u ∈ H1(R2),

∫
R2

|∇u|2dx = α

}
,

where µ and α are positive constants and G : [0,∞) → R satisfies

(G1) G(0) = 0, G ∈ C1 ((0,∞);R) and G is convex,

(G2) there exists a nonnegative constant m such that lims→+0 G(s)/s = m
and G(s) ̸≡ ms,

(G3) G(s) ≤ CeCs holds for all s > 0 with some positive constant C.

In the case G(s) = sp with p > 1, problem CG,µ,α is the best constant
for the Sobolev embedding H1(R2) ↪→ L2p(R2) and DG,α is the best constant
of the Gagliardo-Nirenberg-Sobolev inequality. It is known that for any µ
and α there exists a function which attains CG,µ,α by the compactness of the
embedding H1

rad(R2) ↪→ L2p(R2), and DG,α is also attained. On the other
hand, if G(s) = s, then CG,µ,α is the best constant for H1(R2) ↪→ L2(R2) and
the constant is not attained due to the non-compactness of the embedding
H1

rad(R2) ↪→ L2(R2). Obviously, if G(s) = s, then DG,α = 1 and DG,α is
attained.

In the case G(s) = es − 1 and α ≤ 4π, the constant CG,µ,α is the best
constant of the Trudinger-Moser inequality, which boundedness is obtained
by B. Ruf [40]. The existence of a maximizer for CG,µ,4π is also proved in
[40]. In addition to the existence result, it is shown by M. Ishiwata [16] that
there exists a threshold α∗ < 4π such that if α > α∗, then CG,µ,α > α/µ
and CG,µ,α is attained, while if α < α∗, then CG,µ,α = α/µ and CG,µ,α is not
attained. Concerning DG,α, it is shown by T. Ogawa [34] that there exists a
positive constant C0 such that DG,1 ≤ C0 holds. Later, it is shown by Adachi
and Tanaka [3] that DG,α < ∞ holds if and only if α < 4π. In [20] and [7],
the existence of a maximizer of DG,α for any α < 4π is proved. Moreover,
by Cassani, Sani and Tarsi [7], a sharp estimate of DG,α with respect to α is
obtained, and then it is proved that the boundedness of DG,α for any α < 4π
is equivalent to the boundedness of CG,µ,α for µ = 1 and α = 4π. For more
about the existence of extremal functions for Trudinger-Moser inequality and
its generalization, we refer reader to [1, 8, 9, 11, 13, 17, 21, 22, 23, 26, 27,
31, 32, 33, 35, 36] and references therein.
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Maximizers of CG,µ,α and of DG,α are solutions of elliptic equations of the
form

−∆u+ ωu = λug(u2) in R2

with positive constants ω and λ, where g satisfies G(s) =
∫ s

0
g(t)dt, and by

proper scaling of solutions, the equation can be simplified to

−∆u+ u = Λug(u2) in R2 (1)

with a positive constant Λ. Concerning more general equations, equation of
the form {

−∆u = f(u) in RN ,

u ∈ H1(RN)
(2)

has been extensively studied starting from the fundamental papers due to
Berestycki and Lions [5] and to Berestycki, Gallouët and Kavian [6]. Equa-
tion (2) has the variational structure and solutions of (2) can be characterized
as critical points of the functional I : H1(RN) → R defined by

I(u) :=
1

2

∫
RN

|∇u|2dx−
∫
RN

F (u)dx,

where F (s) =
∫ s

0
f(t)dt. In [5] and [6], the authors establish the existence

of ground state solution, namely, solutions of (2) which have least energy
among all nontrivial critical points of I, through the minimization problems:

inf

{∫
RN

|∇u|2dx
∣∣∣∣ ∫

RN

F (u)dx = 1

}
for N ≥ 3,

inf

{∫
R2

|∇u|2dx
∣∣∣∣ ∫

R2

F (u)dx = 0

}
for N = 2.

The uniqueness of ground state solution is studied in [2, 4, 10, 24, 25, 29,
30, 37, 38, 39, 42, 43]. In particular, if f(s) = sp − asq − s with a ≥ 0 and
1 < q < p < (N+2)/(N−2), then the ground state solution of (2) is unique.

In this paper, we investigate property of maximizers of CG,µ,α and of
DG,α. More precisely, we study the relationship between these maximizers
and ground state solutions of (1). As mentioned above, in the case G(s) = s,
CG,µ,α is not attained and DG,α is attained by any functions satisfying the
constraint. Thus, it is natural to assume that G(s) ̸≡ ms in (G2).

Concerning maximizers of CG,µ,α and ground state solutions of (1), we
prove the following result.
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Theorem 1.1. Assume that u0 ∈ H1(R2) is a maximizer of CG,µ,α. Then,
there exists a positive constant Λ0 such that u0 is a ground state solution of
(1) with Λ = Λ0, up to scaling.

The proof of Theorem 1.1 relies on suitable scaling properties which in-
vestigated in [7], and we use the best constant DG,α to specify the Lagrange
multiplier. Moreover, we do not use any variational techniques to prove
Theorem 1.1.

In general, ground state solution of (1) and maximizer of CG,µ,α are dis-
tinct. The next result is an example of a ground state solution which is not
a maximizer of CG,µ,α.

Theorem 1.2. Assume that G(s) = es−1 and wΛ is a ground state solution
of (1) for Λ > 0. Let αµ =

∫
R2 (|∇wΛ|2 + µw2

Λ) dx for µ > 0. Then, there
exists Λ∗ ∈ (0, 1) such that for any Λ ∈ (0,Λ∗) and µ > 0, either αµ > 4π or∫
R2 G(w2

Λ)dx < CG,µ,αµ provided that αµ ≤ 4π.

The existence of a ground state solution of (1) with G(s) = es − 1 and
Λ ∈ (0, 1) is guaranteed by the result of Ruf and Sani [41]. Theorem 1.2
asserts that a ground state solution wΛ of (1) with small Λ is either a crit-
ical point of

∫
R2(e

u2 − 1)dx under the constraint
∫
R2 (|∇u|2 + µu2) dx ≤ 4π

except a maximizer, or a critical point of
∫
R2(e

u2 −1)dx under the constraint∫
R2 (|∇u|2 + µu2) dx > 4π, though CG,µ,α = ∞ for α > 4π. Theorems 1.1
and 1.2 assert that equivalence of maximizers of CG,µ,α and ground state
solutions of (1) does not hold in general.

To state our results regarding relationship between maximizers of varia-
tional problems DG,α and ground state solutions of (1), we consider the next
condition on G.

(G4) DG,α is attained whenever DG,α < ∞.

We prove the following results.

Theorem 1.3. Assume that G satisfies (G1)-(G3) and v0 ∈ H1(R2) is a
maximizer of DG,α. Then, v0 is a ground state solution of (1) for Λ = D−1

G,α,
up to scaling.

Theorem 1.4. Assume that G satisfies (G1)-(G4) and w0 ∈ H1(R2) is a
ground state solution of (1) for Λ > 0. Let α0 =

∫
R2 |∇w0|2dx. Then,

Λ = D−1
G,α0

and w0 is a maximizer of DG,α0.
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As for the condition (G4), using results [3], [18], [19] and arguments to
prove Theorem 1.1 in [7], we describe some sufficient conditions of (G4).
Under the conditions (G1)-(G3), by the result of [18], if G satisfies

lim
s→∞

sG(s)

eKs
= 0 (3)

for some positive constant K, then DG,α < ∞ if and only if α ≤ 4π/K.
Moreover, by the conditions (G1)-(G3) and the arguments of [7], we derive
the existence of a maximizer of DG,α for any α ∈ (0, 4π/K]. If G satisfies

lim
s→∞

sG(s)

eKs
= ∞ and lim

s→∞

G(s)

eKs
< ∞, (4)

then DG,α < ∞ for α < 4π/K and DG,α = ∞ for α ≥ 4π/K by the results
of [3] and [18]. In the former case, there exists a maximizer of DG,α for any
α < 4π/K by the same reason as in the case (3). In the remaining case

0 < lim
s→∞

sG(s)

eKs
< ∞, (5)

the attainability of DG,4π/K depends on lower order perturbations included
in G. Conditions of existence and non-existence of a maximizer of DG,4π/K

are given by Theorem 1.1 in [19]. Thus, G satisfies (G4) if the growth of G
satisfies (3), (4) or (5) with an existence condition of Theorem 1.1 in [19]. In
particular, functions G(s) = es − 1 and G(s) = sp with p > 1 satisfy (G4).
It is shown in Corollary 1.3 in [19] that there exists a function G satisfying
(5) for which there is no mountain pass solution of (1) with small Λ. Such
function G does not satisfy (G4).

In the special case G(s) = sp with p > 1, a stronger result follows from
the uniqueness result on positive solution of (1) by M. K. Kwong [25]. In the
situation G(s) = sp for p > 1, maximizers of CG,µ,α and DG,α are positive
solutions of (1) with Λ = 1, up to dilation and multiplicative constant of
the maximizers. Moreover, the existence of positive ground state solution
of (1) with Λ = 1 is obtained in [6], and the uniqueness result on positive
solution of (1) with Λ = 1 is proved in [25]. Thus, these results yield that
any maximizers of CG,µ,α and DG,α for any positive constants µ and α are
the same as the unique positive ground state solution of (1) with Λ = 1, up
to dilation and multiplicative constant.

Different from Theorem 1.2, any ground state solution of (1) attains a
maximization problem DG,α for some α under the additional condition (G4).
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By Theorems 1.3, 1.4 and a scaling property of (1), existence of a maximizer
of DG,α is equivalent to existence of a ground state solution of (1) with
Λ = D−1

G,α under the condition (G4), and the ground state level is α/2 if a
ground state solution exists.

This paper is organized as follows. In Section 2, we prove Theorems
1.1 and 1.3. We first prove Theorem 1.3, and then, using Theorem 1.3,
we prove Theorem 1.1. The key argument to prove Theorems 1.3 is the
characterization of ground state solutions of (2) given in [6] in the subcritical
case. In order to prove Theorem 1.1, we show that a maximizer of CG,µ,α is
also a maximizer of DG,α1 for some α1 < α. In Section 3, we prove Theorem
1.2. To prove Theorem 1.2, we estimate the Dirichlet norm of the ground
state solution wΛ for small Λ. We show that wΛ concentrates at origin as
Λ → 0, unless αµ > 4π. Then, under the assumption αµ ≤ 4π, we apply
blow-up analysis in [27] to wΛ. In Section 4, we prove Theorem 1.4. In
Section 5, we extend Theorems 1.1-1.4 to higher dimensional case N ≥ 3 and
W 1,N(RN).

2. Proof of Theorems 1.1 and 1.3

In this section, we prove Theorems 1.1 and 1.3. In order to prove these
theorems, we fix some notations. For a positive constant K, we define

D∗
G,α,K := sup

{∫
R2

G(u2)dx

∣∣∣∣ u ∈ H1(R2),

∫
R2

|∇u|2dx = α,

∫
R2

u2dx = K

}
.

For G satisfying (G1)-(G3) we define a function g such that G(s) =
∫ s

0
g(t)dt.

We define the energy functional IΛ : H1(R2) → R corresponding to the
equation (1) by

IΛ(u) :=
1

2

∫
R2

(
|∇u|2 + u2

)
dx− Λ

2

∫
R2

G(u2)dx.

Then, the ground state level is defined as

MΛ := inf
{
IΛ(u)

∣∣ u ∈ H1(R2) \ {0} is a solution of (1)
}
.

We summarize some properties of G. By the conditions (G1) and (G2),
a lower estimate G(s) ≥ ms holds for any s ≥ 0 and there exists s0 > 0 such
that G(s0) > ms0. Set

S0 := inf {s0 ≥ 0 | G(s0) > ms0} .
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Using the convexity of G again, we observe that

G(κs) < κG(s) for any s > S0 and κ ∈ (0, 1). (6)

Moreover, for the same constant S0, we have

G(s) < sg(s) for any s > S0. (7)

Going back to the properties that G(s) ≥ ms holds for any s ≥ 0 and
G(s0) > ms0 holds for some s0, we have

DG,α > m (8)

for any α > 0.
We first prove Theorem 1.3. Assume that a function G satisfies (G1)-

(G3), α > 0 and v0 ∈ H1(R2) is a maximizer of DG,α. By the Lagrange
multiplier theorem, v0 satisfies

−Λ0∆v0 =
1∫

R2 v
2
0dx

(
−DG,αv0 + v0g(v

2
0)
)

in R2, (9)

where Λ0 ∈ R is the Lagrange multiplier. By (8), we see that ∥v0∥L∞(R2) >√
S0, and thus by (7), we have∫

R2

v20g(v
2
0)dx >

∫
R2

G(v20)dx.

Multiplying (9) by v0 and integrating over R2, we have

Λ0

∫
R2

|∇v0|2dx = −DG,α +

∫
R2 v

2
0g(v

2
0)∫

R2 v
2
0dx

> −DG,α +

∫
R2 G(v20)dx∫

R2 v
2
0dx

= 0.

Hence, it holds that Λ0 > 0.
Set

w0(x) = v0 (θx) with θ :=

√
Λ0

∫
R2 v

2
0dx

DG,α

. (10)
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Then, w0 is a solution of

−∆w + w = D−1
G,αwg(w

2) in R2 (11)

and it holds that ∫
R2

|∇w0|2dx = α. (12)

In [6], the Pohozaev identity was shown under the condition that g has a
subcritical growth. We prove the same equality for G such that (G1)-(G3).

Proposition 2.1. Assume that a function G satisfies the conditions (G1)-
(G3). Then, any solution u ∈ H1(R2) of (1) with Λ > 0 satisfies∫

R2

(
ΛG(u2)− u2

)
dx = 0.

Proof. By the convexity of G, we have

g(s1) ≤
G(s2)−G(s1)

s2 − s1

for any positive constants s1 and s2 with s2 > s1. In particular, it holds that

g(s1) ≤
G(2s1)

s1

for any s1, and then by (G2) and (G3), there exists L > 0 such that

g(s) ≤ LeLs

for any s ≥ 0. By the regularity theory, we derive that u ∈ W 2,q
loc (R2) for any

q > 1. Hence, applying the argument to prove Claim 5.3 in [14], we obtain
the equality of the proposition.

By Proposition 2.1, we can write

MΛ = inf

{
1

2

∫
R2

|∇u|2dx
∣∣∣∣ u ∈ H1(R2) \ {0} is a solution of (1)

}
. (13)

Next, we prove the monotonicity of DG,α with respect to α.
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Proposition 2.2. Assume that β > 0. Then, for any v ∈ H1(R2) satisfying∫
R2 |∇v|2dx < β, it holds that∫

R2 G(v2)dx∫
R2 v2dx

< DG,β.

Proof. Let v ∈ H1(R2) be such that
∫
R2 |∇v|2dx < β and put γ :=

∫
R2 |∇v|2dx.

We distinguish two cases:
Case 1.

∥v∥L∞(R2) ≤
√
S0.

In this case, G(v(x)2) coincides with mv(x)2 for a.e. x ∈ R2. Thus, we have∫
R2 G(v2)dx∫

R2 v2dx
= m < DG,β.

Hence, we obtain desired estimate.
Case 2.

∥v∥L∞(R2) >
√
S0.

We consider

vβ(x) =

√
β

γ
v(x).

It is easy to check that
∫
R2 |∇vβ|2dx = β. Moreover, by the hypothesis and

(6), we derive that∫
{v>√

S0}
G
(
v2
)
dx <

γ

β

∫
{v>√

S0}
G(v2β)dx.

Hence, ∫
R2 G(v2)dx∫

R2 v2dx
<

∫
R2 G(v2β)dx∫

R2 v
2
βdx

≤ DG,β.

Consequently, we conclude that Proposition 2.2 holds.

Proof of Theorem 1.3. Propositions 2.1 and 2.2 give that a necessary condi-
tion of solutions of (11) is ∫

R2

|∇w|2dx ≥ α.
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The estimate and (13) yield the following lower bound of the ground state
level:

MD−1
G,α

≥ α

2
.

Moreover, it holds that, by (12) and (13),

MD−1
G,α

≤ 1

2

∫
R2

|∇w0|2dx =
α

2
.

Hence, we derive that MD−1
G,α

=
∫
R2 |∇w0|2/2. Consequently, w0 is a ground

state solution of (11), and by (10), we conclude Theorem 1.3.

We next prove Theorem 1.1. Assume that G satisfies (G1)-(G3), µ > 0,
α > 0 and u0 ∈ H1(R2) is a maximizer of CG,µ,α. The maximizer is a solution
of

−∆u+ µu = Λ1ug(u
2) in R2,

where Λ1 is the Lagrange multiplier characterized by

Λ1 =
α∫

R2 u
2
0g(u

2
0)dx

.

Since α > 0, we see that Λ1 > 0. We define a constant by

α1 :=

∫
R2

|∇u0|2dx.

Then, we prove the following proposition.

Proposition 2.3. The function u0 ∈ H1(R2) is a maximizer of DG,α1 and
we have

Λ1 =
µ

DG,α1

. (14)

Proof. By the constraint of CG,µ,α, we see that∫
R2

u2
0dx =

α− α1

µ
.

Then, it follows from the definitions of CG,µ,α and D∗
G,β,K that

CG,µ,α ≥ D∗
G,α1,(α−α1)/µ

.
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Since u0 is a maximizer of CG,µ,α and satisfies the constraint of D∗
G,α1,(α−α1)/µ

,
u0 also attains the best constant D∗

G,α1,(α−α1)/µ
.

Here, for any function v ∈ H1(R2) and positive constant K, we consider
the following scaling

vK(x) = v (θKx) with θK =

√∫
R2 v2dx

K
.

Then, we observe that
D∗

G,β,K

K
= DG,β (15)

for any G and β > 0, and hence, u0 also attains DG,α1 .
Next, we prove the equality (14). The same argument to prove Proposi-

tion 2.1 yields that ∫
R2

(
Λ1G(u2

0)− µu2
0

)
dx = 0,

and then we derive that

Λ1D
∗
G,α1,(α−α1)/µ

− (α− α1) = 0,

or

Λ1 =
α− α1

D∗
G,α1,(α−α1)/µ

.

The equality with (15) gives the equality (14), and hence, Proposition 2.3 is
proved.

Proof of Theorem 1.1. Set

w1(x) = u0 (x/
√
µ) .

By Proposition 2.3 and Theorem 1.3, w1 is a ground state solution of

−∆w + w = D−1
G,α1

wg(w2) in R2.

Consequently, the proof of Theorem 1.1 is complete.
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3. Proof of Theorem 1.2

Suppose that G(s) = es− 1 for s ≥ 1. Let {Λn} be a sequence of positive
numbers such that Λn → 0 as n → ∞ and let wn ∈ H1(R2) be a ground
state solution of

−∆w + w = Λnwe
w2

in R2. (16)

We note that wn is positive and radially symmetric by the result of [15]. For
µ > 0, a constant αµ,n denotes

∫
R2 (|∇wn|2 + µw2

n) dx and in the following,
we assume that αµ,n ≤ 4π. We first prove that wn does not attain CG,µ,αµ,n

for any µ ̸= 1. Assume on the contrary that
∫
R2

(
ew

2
n − 1

)
dx = CG,µ,αµ,n

holds with µ ̸= 1. We observe that wn is a solution of

−∆w + µw = Λµwe
w2

in R2 (17)

with a Lagrange multiplier Λµ depending on n. Applying the argument in
the proof of Proposition 2.1 to the above equation, we have∫

R2

[
µw2

n − Λµ

(
ew

2
n − 1

)]
dx = 0.

On the other hand, by the characterization of ground state solutions of (16)
given in [41], we have∫

R2

[
w2

n − Λn

(
ew

2
n − 1

)]
dx = 0. (18)

The two equalities yield that Λµ = µΛn. Then, since wn is a solution of both
(16) and (17) again, we have(

1− 1

µ

)
∆wn = 0,

which implies that wn ≡ 0. This is a contradiction, and hence, wn is not a
maximizer of CG,µ,αµ,n for µ ̸= 1.

In the following, we assume that µ = 1. For simplicity, we set Cα := CG,1,α

and αn := α1,n. We will prove that a ground state solution wn does not attain
Cαn for sufficiently large n. Going back to (18), we derive that

lim
n→∞

∫
R2

(
ew

2
n − 1

)
dx∫

R2 w2
ndx

= ∞,
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which implies that

lim
n→∞

∫
R2

|∇wn|2dx ≥ 4π

by the results in [3]. The lower bound and the assumption of αn yield that
limn→∞ αn = 4π, limn→∞

∫
R2 |∇wn|2dx = 4π and

∫
R2 w

2
ndx = 0. Hence,

{wn} concentrates at the origin, that is it holds that limn→∞wn(0) = ∞ and
that limn→∞wn(x) = 0 for all x ∈ R2 \ {0}. Using the same arguments in
[27] to prove the existence of maximizers of C4π, we have, after passing to a
subsequence,

lim
n→∞

∫
R2

(
ew

2
n − 1

)
dx ≤ πe4πA < C4π

with an explicit constant A. Hence, by the continuity of the best constant

Cα with respect to α, we derive that
∫
R2

(
ew

2
n − 1

)
dx < Cαn for large n.

Consequently, for sufficiently large n, it holds that
∫
R2

(
ew

2
n − 1

)
dx <

Cαn unless αn > 4π. The proof of Theorem 1.2 is complete.

4. Proof of Theorem 1.4

Assume that G satisfies (G1)-(G4) and w0 ∈ H1(R2) is a ground state
solution of (1) for Λ > 0. We first estimate Λ. Since G is convex and G
satisfies (G2), by Proposition 2.1, we derive that

0 =

∫
R2

(
ΛG(w2

0)− w2
0

)
dx >

∫
R2

(
Λmw2

0 − w2
0

)
dx,

and thus, we have Λ−1 > m.
Let α0 =

∫
R2 |∇w0|2dx. Then, we observe that

1

Λ
=

∫
R2 G(w2

0)dx∫
R2 w

2
0dx

≤ DG,α0 .

To prove Λ−1 = DG,α0 , assuming that, on the contrary

1

Λ
< DG,α0 ,

we derive a contradiction. Since DG,α is continuous with respect to α,
limα→0DG,α = m and m < Λ−1, there exists β ∈ (0, α0) such that

1

Λ
= DG,β.
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By (G4), there exists vβ ∈ H1(R2) such that
∫
R2 |∇vβ|2dx = β and∫

R2 G(v2β)dx∫
R2 v

2
βdx

= DG,β.

Thus, by Theorem 1.3, vβ is another ground state solution of (1), up to
scaling. Recalling the characterization of the ground state level given by
(13), we have

MΛ =
1

2

∫
R2

|∇vβ|2dx =
β

2
.

However, since w0 is also a ground state solution of (1), we have

MΛ =
1

2

∫
R2

|∇w0|2dx =
α0

2
,

which contradicts that β < α0. Consequently, it holds that Λ
−1 = DG,α0 and

w0 is a maximizer of DG,α0 .

5. Higher dimensional case

In this section, we deal with N ≥ 3 and W 1,N(RN). We consider G :
[0,∞) → R satisfies

(G1) G(0) = 0, G ∈ C1 ((0,∞);R) and G is convex,

(G2) there exists a nonnegative constant m such that lims→+0 G(s)/s = m
and G(s) ̸≡ ms,

(G3) G(s) ≤ CeCs
1

N−1
holds for all s > 0 with some positive constant C.

Set

CG,µ,α := sup

{∫
RN

G(|u|N)dx
∣∣∣∣ u ∈ W 1,N(RN),

∫
RN

(
|∇u|N + µ|u|N

)
dx = α

}
and

DG,α := sup

{∫
RN G(|u|N)dx∫

RN |u|Ndx

∣∣∣∣ u ∈ W 1,N(RN),

∫
RN

|∇u|Ndx = α

}
,

where µ and α are positive constants. Then, consider the condition

14



(G4) DG,α is attained whenever DG,α < ∞.

It is worth noting that the results in [18] are extended to the case N ≥ 3 by
Masmoudi and Sani [28]. By the boundedness result in higher dimensional
case, if G satisfies (G1)-(G3) and

lim
s→∞

s
1

N−1G(s)

eKs
1

N−1

= 0 (19)

for some positive constant K, then DG,α < ∞ if and only if α ≤ (α∗
NK)N−1,

where α∗
N = Nω

1/(N−1)
N−1 and ωN−1 is the surface area of the unit sphere in

RN . Moreover, DG,α is attained for any α ≤ (α∗
NK)N−1 by the compactness

result in [28] and the arguments of [7] (see Remark 2.8 in [7]). If G satisfies
(G1)-(G3),

lim
s→∞

s
1

N−1G(s)

eKs
1

N−1

= ∞ and lim
s→∞

G(s)

eKs
1

N−1

< ∞, (20)

then DG,α < ∞ if and only if α < (α∗
NK)N−1 by [3] and [28]. In the situation

DG,α < ∞, there exists a maximizer of DG,α by the same reason as in the
case (19). In the case

0 < lim
s→∞

s
1

N−1G(s)

eKs
1

N−1

< ∞,

different from the case N = 2, condition of existence of a maximizer for
DG,(α∗

NK)N−1 is still open. Thus, if the growth of G satisfies at least (19) or
(20), then G satisfies (G4) in the higher dimensional case.

Quasilinear elliptic equations related to variational problems CG,µ,α and
DG,α are of the form

−∆Nu+ uN−1 = ΛuN−1g(uN), u > 0 in RN (21)

with positive constant Λ, where ∆N is the usual N -Laplace operator defined
by ∆Nu := div

(
|∇u|N−2∇u

)
. If u ∈ W 1,N(RN) is a solution of (21), then

u ∈ C1,ρ
loc (RN) by the conditions (G1)-(G3) and the regularity result obtained

by E. DiBenedetto [12]. Thus, by the same argument to prove Claim 5.3 in
[14], we obtain that any solution u ∈ W 1,N(RN) of (21) satisfies∫

RN

(
ΛG(uN)− uN

)
dx = 0.

Consequently, we extend Theorems 1.1-1.4 to the following results.
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Theorem 5.1. Assume that u0 ∈ W 1,N(RN) is a maximizer of CG,µ,α. Then,
there exists a positive constant Λ0 such that u0 is a ground state solution of
(21) with Λ = Λ0, up to scaling.

Theorem 5.2. Assume that

G(s) = es
1

N−1 −
N−2∑
j=0

s
j

N−1

j!

and wΛ is a ground state solution of (21) for Λ > 0. Let αµ =
∫
RN

(
|∇wΛ|N + µwN

Λ

)
dx

for µ > 0. Then, there exists Λ∗ ∈ (0, (N −1)!) such that for any Λ ∈ (0,Λ∗)
and µ > 0, either αµ > (α∗

N)
N−1 or

∫
R2 G(wN

Λ ) < CG,µ,αµ provided that
αµ ≤ (α∗

N)
N−1.

Theorem 5.3. Assume that G satisfies (G1)-(G3) and v0 ∈ W 1,N(RN) is a
maximizer of DG,α. Then, v0 is a ground state solution of (21) for Λ = D−1

G,α,
up to scaling.

Theorem 5.4. Assume that G satisfies (G1)-(G4) and w0 ∈ W 1,N(RN) is a
ground state solution of (21) for Λ > 0. Let α0 =

∫
R2 |∇w0|Ndx. Then,

Λ = D−1
G,α0

and w0 is a maximizer of DG,α0.
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