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Abstract. A marked strongly invertible knot is a triple (K,h, δ) of a knot K
in S3, a strong inversion h of K, and a subarc δ ⊂ Fix(h) ∼= S1 bounded by
Fix(h)∩K ∼= S0. An invariant Seifert surface for (K,h, δ) is an h-invariant Seifert
surface for K that intersects Fix(h) in the arc δ. In this paper, we completely
determine the equivariant genus (the minimum of the genera of invariant Seifert
surfaces for (K,h, δ)) of every marked strongly invertible knot (K,h, δ) with K a
2-bridge knot.

1. Introduction

A smooth knot K in S3 is said to be strongly invertible if there is a smooth
involution h of S3 which leaves K invariant and fixes an unknotted loop intersecting
K in two points. The involution h is called a strong inversion of K. As in [12, 22],
we use the term strongly invertible knot to mean a pair (K,h) of a knot K and
a strong inversion h, and regard two strongly invertible knots (K,h) and (K ′, h′)
equivalent if there is an orientation-preserving diffeomorphism φ of S3 mapping K
to K ′ such that h′ = φhφ−1.

Recently, strongly invertible knots attract attention of various researchers (see [12,
Sections 2 and 6] and references therein). In particular, significant progresses on the
equivariant 4-genera of strongly invertible knots have been made by [3, 5, 6, 7, 18].
This paper is a sequel of [12] which is devoted to the study of the (3-dimensional)
genera of strongly invertible knots. The equivariant genera are actually defined for
marked strongly invertible knots.

A marked strongly invertible knot is a triple (K,h, δ), where (K,h) is a strongly
invertible knot and δ is a subarc of Fix(h) bounded by Fix(h) ∩ K. Two marked
strongly invertible knots (K,h, δ) and (K ′, h′, δ′) are regarded to be equivalent if
there is an orientation-preserving diffeomorphism φ of S3 mapping K to K ′ such
that h′ = φhφ−1 and δ′ = φ(δ). By an invariant Seifert surface for a marked strongly
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invertible knot (K,h, δ), we mean a Seifert surface S for K such that h(S) = S and
Fix(h)∩S = δ. Every marked strongly invertible knot (K,h, δ) admits an invariant
Seifert surface (see [5, 12, 13]), and the equivariant genus g(K,h, δ) of (K,h, δ) is
defined to be the minimum of the genera of invariant Seifert surfaces for (K,h, δ).
An invariant Seifert surface for (K,h, δ) is said to be of minimal equivariant genus
if its genus is g(K,h, δ).

As for a periodic knot, namely, a knot K which is preserved by a periodic rotation
of S3 whose axis is disjoint from K, Edmonds [8] has shown that every periodic knot
admits an invariant minimal genus Seifert surface (cf. Edmonds-Livingston [9]). As
observed in the previous paper [12, Proposition 1.5], it is also true for a marked
strongly invertible knot K if K is a fibered knot. However, in general g(K,h, δ) is
not realized by a minimal genus Seifert surface for K. Even so, the following two
variants of Edmonds’ theorem hold:

Theorem 1.1 ([12, Theorem 1.3]). Let (K,h) be a strongly invertible knot. Then
there is a minimal genus Seifert surface F for K such that F and h(F ) have disjoint
interiors.

Theorem 1.2 ([12, Theorem 1.4]). Let (K,h, δ) be a marked strongly invertible
knot, and let F be a minimal genus Seifert surface for K such that F and h(F )
have disjoint interiors. Then there is an invariant Seifert surface S for (K,h, δ) of
minimal equivariant genus such that the interior of S is disjoint from those of F
and h(F ).

In this paper, we use Theorem 1.2 to obtain our main result (Theorem 2.4) which
determines the equivariant genera of all marked strongly invertible 2-bridge knots,
i.e., marked strongly invertible knots (K,h, δ) with K a 2-bridge knot. We actually
visualize invariant Seifert surfaces attaining equivariant genera. Appendix presents
a table of the equivariant genera for 2-bridge knots up to 10 crossings.

In the previous paper [12, Theorem 1.2], we proved that the gap between the
genus g(K) and the equivariant genus g(K,h, δ) can be arbitrarily large. Our main
Theorem 2.4 implies the following refinement of the result, which says that the genus
g(K) and the equivariant genus g(K,h, δ) are totally independent, except for the
obvious relations (i) g(K) ≤ g(K,h, δ) and (ii) g(K,h, δ) = 0 if g(K) = 0 (cf. [12,
Proposition 2.2(1)]).

Corollary 1.3. For any pair of positive integers (g, ĝ) with g ≤ ĝ, there is a marked
strongly invertible knot (K,h, δ) such that (g(K), g(K,h, δ)) = (g, ĝ).

As for the behavior of the equivariant genera of a strongly invertible knot (K,h)
for the two different choices of subarcs δ and δc of Fix(h), we have the following
corollary which says that the gap between the equivariant genera can be arbitrarily
large.



EQUIVARIANT GENERA OF STRONGLY INVERTIBLE KNOTS 3

Corollary 1.4. For any integer d, there is a strongly invertible knot (K,h) such
that g(K,h, δ)− g(K,h, δc) = d.

Both this paper and the preceding paper [12] are also motivated by our interest
in the natural action of the symmetry group Sym(S3,K) = π0Diff(S3,K) on the
Kakimizu complex MS(K) of a knot K. The complex was introduced by Kakimizu
[16] as the flag simplicial complex whose vertices correspond to the (isotopy classes
of) minimal genus Seifert surfaces for K and edges to pairs of such surfaces with
disjoint interiors. In [12] we observed the following corollary of Theorem 1.1, which
may be regarded as a refinement of a special case of a theorem proved by Przytycki-
Schultens [21, Theorem 1.2].

Corollary 1.5 ([12, Corollary 1.6]). Let (K,h) be a strongly invertible knot, and let
h∗ be the automorphism of MS(K) induced from of the strong inversion h. Then
one of the following holds.

(1) There exists a vertex of MS(K) which is fixed by h∗.
(2) There exists an h∗-invariant edge of MS(K) on which h∗ acts as the reflec-

tion in the central point of the edge.

At the end of this paper, we describe the actions of the strong inversions on
MS(K) for every 2-bridge knot (Theorem 5.4), which illustrates Corollary 1.5.

This paper is organized as follows. In Section 2, we recall the classification of
the marked strongly invertible 2-bridge knots (Proposition 2.2), and state the main
theorem (Theorem 2.4) which determines their equivariant genera. In Section 3,
we give a systematic construction of invariant Seifert surfaces for marked strongly
invertible 2-bridge knots which turn out to realize the equivariant genera. In Section
4, we use “invariant sutured manifolds” to give lower bounds for equivariant genera,
which turn out to be sharp. In Section 5, we give a description of the actions of the
strong inversions on the Kakimizu complex of 2-bridge knots. Appendix presents
a table of equivariant genera of marked strongly invertible 2-bridge knots up to 10
crossings.

2. Classification of marked strongly invertible 2-bridge knots and
the statement of the main result

Let K(q/p) be the 2-bridge knot of slope q/p. Then naturally p is odd. Since
K((q ± p)/p) is isotopic to K(q/p), we always assume q is even and 1 < |q| < p.
Then q/p admits a unique continued fraction expansion of the following format, with
non-zero integer entries. Following our previous paper [12], we use this “negative”
format which is different from the “positive” one used in other papers like [22] etc.
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q

p
=

1

2a1 −
1

2b1 −
1

2a2 −
1

. . . −
1

2an −
1

2bn

=: [2a1, 2b1, · · · , 2an, 2bn]

We use the following notation for describing 2-bridge knots throughout this paper,
except for Section 5. For example, K(2/3) = K[2, 2] is the positive trefoil knot and
K(2/5) = K[2,−2] is the figure eight knot.

K(q/p) = K[2a1, 2b1, · · · , 2an, 2bn]
A 2-bridge knot is a torus knot only when ±q = p− 1. Note that K((p− 1)/p) =

K[2, 2, . . . , 2] is a torus knot of type T (2, p) of genus (p−1)/2. Other 2-bridge knots
are hyperbolic knots.

By [12, Corollary 2.3 and Remark 2.4], the following holds.

Proposition 2.1. Up to equivalence, the number of marked strongly invertible knots
associated with K(q/p) is equal to two or four according to whether ±q = p − 1 or
not.

Now we are going to see the four marked strongly invertible knots associated to
2-bridge knots K(q/p). (The case where K(q/p) is a torus knot is included, but the
number 4 (of the marked strongly invertible knots) is reduced to 2.)

For K(q/p), let β be the 4-braid σ2a1
2 σ2b1

1 σ2a2
2 σ2b2

1 · · ·σ2an
2 σ2bn

1 described with
Artin’s standard generators σ1 and σ2. Then as in Figure 2.1(1), K(q/p) is de-
picted as the plat closure β of β. As in Figure 2.1(2), we can also depict K(q/p) as
the plat closures of another 4-braid, β′, defined by

β′ = σ2a1
2 (σ1σ3)

b1 σ2a2
2 (σ1σ3)

b2 · · · σ2an
2 (σ1σ3)

bn ,

together with the axis of hq/p and the short and long arcs τq/p and τ cq/p of Fix(hq/p).

Since K(q/p) has cyclic period 2, it follows from [12, Proposition 2.2(2)] that
(K(q/p), hq/p, δ) with δ ∈ {τq/p, τ cq/p} are distinct marked strongly invertible knots.

By [12, Proposition 2.1(3)], K(q/p) admits one more strong inversion (see Figure
2.2). To describe it, note that K[2a1, 2b1, · · · , 2an, 2bn] is isotopic to K(q′/p) =
K[2bn, 2an, · · · , 2b1, 2a1], where q′/p = [2bn, 2an, · · · , 2b1, 2a1]. (Here q′ is an even
integer with qq′ ≡ 1 (mod p).) By applying the preceding construction to this
setting, we obtain the strong inversion hq′/p of K(q′/p) and the short and long arcs
τq′/p and τ cq′/p of Fix(hq′/p) as in Figure 2.2.
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Figure 2.1. K(q/p) and its short and long involution arcs

Figure 2.2. K(q′/p) and its short and long involution arcs

By pulling them back through an isotopy between K(q/p) and K(q′/p), we obtain
a strong inversion of K(q/p), which we continue to denote by hq′/p. We also continue
to denote the subarcs of the fixed point set of the strong inversion hq′/p of K(q/p),
obtained as the pullback of τq′/p and τ cq′/p, by the same symbols respectively.

If q ̸= q′, i.e., q2 ̸≡ 1 (mod p), then K(q/p) is hyperbolic and Isom+(S3 \K(q/p))
(orientation-preserving isometry group) is isomorphic to Z/2Z ⊕ Z/2Z. Thus, as
described in [22, Proposition 3.6 and its proof], hq/p and hq′/p are the two distinct
strong inversions of K(q/p). See [22, Fig. 3.2(1)] or [2, Fig. 2(1)], where the two
strong inversions are illustrated simultaneously in a single knot diagram.

Finally, if q = q′, i.e., q2 ≡ 1 (mod p), then Isom+(S3 \K(q/p)) is isomorphic to
the dihedral groupD8 of order 8. The strong inversions hq/p and hq′/p are equivalent,
but another exceptional strong inversion h′q/p of K(q/p) can be seen as follows:

When q2 ≡ 1 (mod p), q/p has a palindromic continued fraction expansion, i.e.,
q/p = [2c1, 2c2, · · · , 2cn−1, 2cn, 2cn, 2cn−1, · · · , 2c2, 2c1]. In this case, K(q/p) has a
symmetric diagram in which Fix(h′q/p) is vertical to the projection plane as in Figure

2.3, where K = K[2,−4,−4, 2]. We can see that K has such a diagram from the
fact that K is the boundary of a minimal genus Seifert surface obtained by a linear
plumbing of unknotted annuli with k half-twists where k = 2,−4,−4, 2 (see Figure
3.4(1)). The short vertical arc ρq/p is in the central crossing ball, and the long
complementary arc ρcq/p goes through infinity. Then, by [12, Proposition 2.2(2)],

(K(q/p), h′(q/p), δ) with δ ∈ {ρq/p, ρcq/p} are distinct marked strongly invertible
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knots. See [22, Fig. 3.2(2)] or [2, Fig. 3(1)], where the two strong inversions are
illustrated simultaneously in a single knot diagram.

Figure 2.3. A palindromic diagram for K[2,−4,−4, 2], obtained as
the boundary a linear plumbing on unknotted annuli

In summary, we obtain the following proposition:

Proposition 2.2. The marked strongly invertible knots associated with a nontrivial
2-bridge knot K = K(q/p) are classified as follows.

(1) Suppose ±q = p− 1, i.e., K is a torus knot. Then K has a unique strong in-
version hq/p up to equivalence, and there are precisely two marked strongly invertible
knots (K,hq/p, δ) with δ ∈ {τq/p, τ cq/p} associated with K.

(2) Suppose q is an even integer such that 1 < |q| < p, i.e., K is a hyperbolic knot.

(i) Suppose q2 ̸≡ 1 (mod p), then K has precisely two strong inversions hq/p
and hq′/p up to equivalence, where q′ is the unique even integer such that
qq′ ≡ 1 (mod p) and 0 < |q′| < p. Up to equivalence, there are precisely four
marked strongly invertible knots associated with K, as listed below.

(K,hq/p, δ), δ ∈ {τq/p, τ cq/p},
(K,hq′/p, δ), δ ∈ {τq′/p, τ cq′/p}.

(ii) Suppose q2 ≡ 1 (mod p), then K has precisely two strong inversions hq/p and
h′q/p up to equivalence. Up to equivalence, there are precisely four marked

strongly invertible knots associated with K, as listed below.

(K,hq/p, δ), δ ∈ {τq/p, τ cq/p},
(K,h′q/p, δ), δ ∈ {ρq/p, ρcq/p}.

Remark 2.3. In the case where q2 ≡ 1 (mod p), the number of the strong equiv-
alence classes of strong inversions is bigger than the number 2 of the equivalence
classes of strong inversions. Here two strong inversions are said to be strongly equiv-
alent if they are conjugate by a diffeomorphism φ of (S3,K) which is pairwise iso-
topic to the identity. In fact, in this case, there are 4 strong inversions up to strong
equivalence, which are distinguished by their images in Sym(S3,K(q/p)) ∼= D8.

Theorem 2.4 below is the main theorem of this paper which completely deter-
mines the equivariant genera of marked strongly invertible knots for 2-bridge knots.
Construction of invariant Seifert surfaces and lower bounds for equivariant genera
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are given in Sections 3 and 4, respectively. Corollaries 1.3 and 1.4 obviously follow
from Theorem 2.4(2).

Theorem 2.4. Let K = K(q/p) , 1 ≤ |q| < p be a 2-bridge knot with g(K) = n
denoted by K[2a1, 2b1, . . . , 2an, 2bn], and let q′/p = [2bn, 2an, . . . , 2b1, 2a1].

(1) Suppose ±q = p − 1, i.e., K is a torus knot. Then K has two equivariant
genera, which coincide with g(K).

g(K,h, δ) = g(K,h, δc) = g(K)

(2) Suppose ±q ̸= p− 1, i.e., K is a hyperbolic knot.
(2.1) If q2 ̸≡ 1 (mod p), K has four equivariant genera as follows:

g(K,hq/p, τq/p) =
∑n

i=1 |ai| = g(K) +
∑n

i=1(|ai| − 1)
g(K,hq/p, τ

c
q/p) = g(K) + #{i| |bi| > 1} = 2g(K)−#{i| |bi| = 1}

g(K,hq′/p, τq′/p) =
∑n

i=1 |bi| = g(K) +
∑n

i=1(|bi| − 1)
g(K,hq′/p, τ

c
q′/p) = g(K) + #{i| |ai| > 1} = 2g(K)−#{i| |ai| = 1}

(2.2) If q2 ≡ 1 (mod p) (i.e., [2a1, 2b1, . . . , 2an, 2bn] is palindromic), then K has
four equivariant genera as follows:

g(K,hq/p, τq/p) =
∑n

i=1 |ai| = g(K) +
∑n

i=1(|ai| − 1)
g(K,hq/p, τ

c
q/p) = g(K) + #{i| |bi| > 1} = 2g(K)−#{i| |bi| = 1}

g(K,h′q/p, δ) = g(K)

g(K,h′q/p, δ
c) = g(K)

Remark 2.5. The formulae in (2) hold even when ±q = p−1. In fact, if ±q = p−1,
then |ai| = |bi| = 1 for all i and all quantities in the formulae in (2) become g(K).
From (2.1), we see that there can be an arbitrarily large gap between the genus and
the equivariant genus if we use the short invariant arc, but the gap can be at most
g(K) if we use the long invariant arc.

Proof of Theorem 2.4. (1) In this case, K is a fibered knot, and the conclusion is
given by [12, Proposition 1.5]. Also, our construction of invariant Seifert surfaces
in Section 3 yields the invariant fiber surfaces (whose genera are of course equal to
g(K)), for each choice of an invariant subarc of Fix(h).

(2) In Section 3, we construct an invariant Seifert surface for a given (K(q/p), h, τ).
In Section 4, we give a lower bound for g(K(q/p), h, τ), which is equal to the genus
of the Seifert surface constructed above. □

3. Construction of minimal genus invariant Seifert surfaces

In this section, we construct invariant Seifert surfaces for marked strongly in-
vertible 2-bridge knots (K,h, δ). Some of them realizes g(K), in which case we
immediately see g(K,h, δ) = g(K). The rest of them having greater genera than
g(K) are proved to realize g(K,h, δ) by the lower bounds given in Section 4.
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3.1. An invariant Seifert surface containing the short arc τq/p. Let K =
K(q/p) = K[2a1, 2b1, · · · , 2an, 2bn], h = hq/p, τ = τq/p, and let k be one of the two
subarcs of K bounded by K ∩ τ . Then k ∪ τ spans an embedded disk D (Figure
3.1(1)), and D ∪ h(D) is an immersed disk with ribbon singularities spanned by
K (Figure 3.1(2)). Then by smoothing the singularities, we obtain an invariant
Seifert surface F for (K,h, τ) as in Figure 3.1(3). Since the number of the ribbon
singularities is

∑n
i=1 |ai|, we have the following equalities:

g(F ) =
n∑

i=1

|ai| = g(K) +
n∑

i=1

(|ai| − 1).

Figure 3.1. An invariant Seifert surface for the short arc τ

Remark 3.1. In [12] cf. [13], we gave an algorithm to construct an invariant Seifert
surface from a diagram where the involution axis lies in the projection plane. The
surface in Figure 3.1 can be also obtained by that method.

3.2. An invariant Seifert surface containing the long arc τ cq/p. We have two

cases according to whether all bi’s are even or not.
First, suppose that all bi’s are even. Then we span an invariant Seifert surface of

genus 2g as in Figure 3.2, which is constructed as follows: First take a disk with n
holes. Then for i = 1, 2, . . . , n add a band with ai twists to the ith hole and plumb
a pair of unknotted annuli with bi/2 twists in a symmetric manner. In [12, Section
4] (cf. [13]) we proved that some of these surfaces realize the equivariant genera and
showed that there can be arbitrarily large gap between the genus and the equivariant
genus. The following is the completion of construction of invariant Seifert surfaces
for all marked 2-bridge knots. Next, if some bi is odd (Figure 3.3(1)), we twist the
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diagram (fixing the left end) at each site where bi is odd as in Figure 3.3(2). Then
each band has an even number of twists. Note that there are two ways in each
twisting. In particular, when some bi = ±1, we twist the diagram at that site so
that the resulting band has no twist at all. As a conclusion, we can span an invariant
Seifert surface F as in Figure 3.3(3) according to if bi is even, odd other than ±1,
or ±1. Figure 3.3 depicts the case where (b1, b2, b3, b4, b5) = (2, 5,−2,−1,−2). For
the entries b1 = 2, b3 = −2 and b5 = −2, we build bands as in Figure 3.2(2), and
for the entry b2 = 5 we build bands in a twisted way, and for the entry b4 = −1 we
locally span the surface in a special way. The genus of that surface F is as follows:

g(F ) = 2g(K)−#{i | bi = ±1} = g(K) + #{i | |bi| > 1}.

Figure 3.2. An invariant Seifert surface for the long arc τ c

3.3. The exceptional case. When q2 ≡ 1 (mod p), q/p has a palindromic con-
tinued fraction expansion. As described in Section 2, the exceptional strong in-
version h′q/p comes form the palindromicity, with the short and long vertical arcs

ρq/p and ρcq/p. Note that K(q/p) has a minimal genus Seifert surface which is a

linear plumbing of unknotted twisted annuli. From Figure 3.4, we immediately see
that (K(q/p), h′q/p, ρq/p) and (K(q/p), h′q/p, ρ

c
q/p) have minimal genus Seifert surfaces

which are h′q/p-invariant.
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Figure 3.3. Modification when some bi is odd

Figure 3.4. Invariant Seifert surfaces for the palindromic case

4. Sharp lower bounds for equivariant genera

In this section, we give lower bounds for the equivariant genera of marked strongly
invertible knots (K(q/p), hq/p, τq/p) and (K(q/p), hq/p, τ

c
q/p). We build a sutured

manifold between two minimal genus Seifert surfaces forK(q/p) which are exchanged
by hq/p, and then use Theorem 1.2 to limit the existing range of invariant Seifert
surfaces of minimal equivariant genus for the marked strongly invertible knots.

4.1. Sutured manifolds and product decompositions. In this subsection, we
first recall some of the terminology concerning sutured manifolds such as product
decompositions.
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A sutured manifold (M,γ) defined by Gabai in [10, Definition 2.6] is a compact
oriented 3-manifold M together with a set γ ⊂ ∂M of pairwise disjoint annuli A(γ)
and tori T (γ). In this paper, we only deal with sutured manifolds with γ consisting
of only annuli. Each component of A(γ) contains a suture, i.e., a homologically
nontrivial oriented simple closed curve. The set of sutures is denoted by s(γ). Every
component of cl(∂M \γ) is oriented, so that the following condition is satisfied. Let
R+(γ) and R−(γ) be the subsurfaces of ∂M whose normal vectors point out of or
into M , respectively. Then ∂R+(γ) and ∂R−(γ) are homologous to s(γ) in γ.

Convention 4.1. A sutured manifold (M,γ) is uniquely determined by the pair
(M, s(γ)) and vice versa. Therefore, throughout this paper, we identity ∂R±(γ)
with the closed up component of ∂M \ s(γ), and let γ denote the suture s(γ).

A product disk in a sutured manifold (M,γ) is a disk ∆ properly embedded in
M such that ∂∆ ∩ γ consists of two transversal intersection points, i.e., (∆,∆ ∩
γ) is a bigon in (M,γ). Given a product disk ∆ in (M,γ), we can produce a
new sutured manifold (M ′, γ′) as illustrated in Figure 4.1(1), by cutting M along
∆ and reconnecting the sutures naturally. This operation is called the product
decomposition of (M,γ) along the product disk ∆.

In the rest of this section, we consider a surface F embedded in a sutured man-
ifold (M,γ) such that ∂F = γ and F ∩ ∆ is an arc. Then we apply a product
decomposition to (M,γ) cutting F along F ∩∆ (see Figure 4.1(2)).

Figure 4.1. A product decomposition

4.2. Sutured manifolds between minimal genus Seifert surfaces. As in Fig-
ure 4.2, we construct an h-invariant sutured manifold (M,γ) embedded in S3 such
that γ coincides with K(q/p) = K[2a1, 2b1, · · · , 2an, 2bn] in the form of Figure
2.1(2)). Actually, (M,γ) is obtained as follows: (i) arrange n 3-balls penetrated
by the involution axis, (ii) connect each adjacent pair of balls by a pair of 1-handles,
(iii) attach a 1-handle to the last ball, (iv) drill out the balls along τ cq/p, and finally

(v) set up γ which coincides with the knot K(q/p).
Note that the subsurfaces R+(γ) and R−(γ) of ∂M are minimal genus Seifert

surfaces for K(q/p) which are exchanged by the involution hq/p. (We will see in
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Figure 4.2. The sutured manifold (M,γ) between exchangeable
minimal genus Seifert surfaces

Theorem 5.4(1-ii) that this is the only mutually disjoint pair of minimal genus
Seifert surfaces that are exchanged by hq/p.)

4.3. Lowest genera of invariant Seifert surfaces for (K(q/p), hq/p, τq/p). As in
Figure 4.3, take 2n−1 product disks for (M,γ), among which one is invariant under
hq/p and the other 2n − 2 are paired into those exchanged by hq/p. Apply 2n − 1
product decompositions to cut the 1-handles so that (M,γ) is decomposed into n
sutured manifolds (Mi, γi), each of which is the complementary sutured manifold
of an unknotted annulus with ai full-twists (i = 1, 2, . . . , n). Each piece (Mi, γi)
appears as in Figure 4.4(1).

Figure 4.3. Product disks for (M,γ) containing τq/p

Figure 4.4. The sutured manifold (Mi, γi) and its quotient by hq/p

Since τq/p ⊂ M , we see by Theorem 1.2 that there is an invariant Seifert surface
Fτ of minimal equivariant genus for (K(q/p), hq/p, τq/p) contained in (M,γ) so that
∂Fτ = γ and hq/p(Fτ ) = Fτ . Let ∆ be any of the product disk taken above. Then
Fτ ∩ ∆ contains an arc which is properly embedded both in Fτ and ∆. If Fτ ∩ ∆
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contains a loop, we can remove the innermost of such loops by an hq/p-equivariant
surgery (in fact an hq/p-equivariant isotopy), and therefore, we may assume that Fτ

intersects each product disk in an arc. Hence, through the product decompositions
above, Fτ is cut into Fi’s, where Fi := Fτ ∩Mi is an hq/p-invariant orientable surface
properly embedded in Mi such that ∂Fi = γi (1 ≤ i ≤ n).

Lemma 4.2. We have β1(Fi) ≥ 2|ai| − 1.

Proof. Consider the manifold pair (M̌i, γ̌i) that is obtained as the quotient of (Mi, γi)
by hq/p (see Figure 4.4(2)). We identify (M̌i, γ̌i) with (S1 × D2, κ) where [κ] =

2α[S1] + [∂D2] ∈ H1(S
1 × ∂D2). Here α = ai, and we assume α > 0 without

loss of generality. Denote Fi by F , and let F̌ = F/hq/p be the image of F in the

quotient space M̌i = S1 ×D2. Then F̌ is a compact surface properly embedded in
S1 ×D2 with ∂F̌ = κ. We show by induction on α that β1(F̌ ) ≥ α. If α = 1, then
[κ] = 2[S1] ̸= 0 in H1(S

1 ×D2). Hence F̌ is non-orientable, and so β1(F̌ ) ≥ 1 = α.
Suppose α ≥ 2. We may assume F̌ intersects a meridian disk D2 of S1 × D2

transversely. By cut and paste operation, we may assume without increasing β1(F̌ )
that F̌ ∩ D2 is a non-empty union of disjoint arcs. Pick an outermost component
of F̌ ∩ D2 in D2, and consider the surface F̌ ′ obtained from F̌ by cut and paste
operation along the outermost disk in D2 bounded by the component. Observe
that ∂F̌ ′ is a simple loop whose homology class (with a suitable orientation) in
H1(S

1 × ∂D2) is 2(α − 1)[S1] + [∂D2]. Hence, we have β1(F̌
′) ≥ α − 1 by the

inductive hypothesis, and so β1(F̌ ) = β1(F̌
′)+1 ≥ α. On the other hand, since F is

a double covering of F̌ , we have 1− β1(F ) = χ(F ) = 2χ(F̌ ) = 2(1− β1(F̌ )). Hence
we have β1(F ) = 2β1(F̌ )− 1 ≥ 2α− 1. □

Remark 4.3. We can isotope Figure 4.4(2) so that it appears as in Figure 4.4(3).
Then we can see a (non-orientable) surface in M̌i bounded by γ̌ that is obtained
from the vertical, square-shaped disk by attaching α = |ai| bands. This surface has
the first Betti number α and its inverse image in Mi is an hq/p-invariant orientable
surface bounded by γi with the first Betti number 2|ai| − 1. Thus the inequality in
Lemma 4.2 is promoted to an equality.

Since Fτ is obtained from {Fi}1≤i≤n by glueing along 2n−1 arcs, we have β1(Fτ ) =
n+

∑n
i=1 β1(Fi). Since β1(Fi) ≥ 2|ai| − 1, we have the following conclusion:

β1(Fτ ) = n+

n∑
i=1

β1(Fi) ≥
n∑

i=1

2|ai|, and hence

g(Fτ ) ≥
n∑

i=1

|ai| = g(K(q/p)) +

n∑
i=1

(|ai| − 1)

See Figure 3.1(3) for an invariant Seifert surface realizing the equality above.
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4.4. Lower bound for genera of invariant Seifert surfaces for (K(q/p), hq/p, τ
c
q/p).

Let (N, γ) = (cl(S3−M), γ) be the complementary sutured manifold of (M,γ). Note
that (N, γ) contains τ cq/p, and hence, by Theorem 1.2, there is an invariant Seifert

surface Fτc of minimal equivariant genus for (K,hq/p, τ
c
q/p) contained in (N, γ). As

in Figure 4.5, take 2n− 1 product disks in (N, γ).

Figure 4.5. 2n− 1 product disks for (N, γ) containing τ cq/p

.
First, apply n product decompositions (along the product disks in the drilled

holes) to fill in the drilled holes, and then n − 1 product decompositions (along
the product disks whose central parts are omitted in Figure 4.5) to decompose
the result into n sutured manifolds (Ni, γi), each of which is the complementary
sutured manifold of the sutured manifold (that is shaded in Figure 4.6(1)) obtained
by thickening an unknotted annulus with |bi| full-twists (i = 1, 2, . . . , n). As in
Subsection 4.3, we may assume that Fτc intersects each of the product disks in an
arc. Set Fi := Fτc ∩Ni. Remark that Fi is a surface properly embedded in Ni with
∂Fi = γi, where Ni is the complement of the shaded handlebody in Figure 4.6(1).

Figure 4.6. Each of Ni and Ňi := Ni/hq/p is the complement of
the shaded handlebody

Lemma 4.4. β1(Fi) ≥
{

3 (|bi| > 1)
1 (|bi| = 1)
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Proof. Consider the following quotient quadruple

(Ňi, γ̌i, F̌i, τ̌
c
i ) := (Ni, γi, Fi, τ

c
q/p ∩Ni)/hq/p.

Note that Ňi is a ball, and F̌i is a surface embedded in the ball Ňi in such a way
that ∂F̌i consists of the two arcs γ̌i in ∂Ňi and the two arcs τ̌ ci properly embedded

in ∂Ňi. Thus, ∂F̌i = γ̌i ∪ τ̌ ci (see Figure 4.6(2)). Now, ∂F̌i is a torus knot or link

of type T (2, bi) and hence β1(F̌i) ≥ 1 except for the trivial case of |bi| = 1, in
which case, ∂F̌i is the unknot. By using the fact that Fix(hq/p|Fi) consists of two

arcs, we see 1 − β1(Fi) = χ(Fi) = 2χ(F̌i) − 2 = −2β1(F̌i). Therefore, β1(Fi) ≥
2β1(F̌i) + 1 ≥ 3 except for the primitive case |bi| = 1, in which case, β1(F̌i) ≥ 0 and
so β1(Fi) ≥ 1. □
Remark 4.5. According to whether |bi| = 1 or |bi| > 1, let Gi be a disk or an
unknotted annulus with |bi| half-twists in M̌i bounded by µ̌i ∪ τ̌ ci . Then the inverse
image of Gi is an hq/p-invariant annulus or two-holed torus bounded by µi. Thus,
the inequality in Lemma 4.4 is promoted to an equality.

Since Fτc is obtained from {Fi}1≤i≤n by glueing along 2n − 1 arcs, we have
β1(Fτc) = n +

∑n
i=1 β1(Fi), and we have the following estimate from below (see

Figures 3.2 and 3.3 for surfaces realizing the equality):

β1(Fτc) = n+
n∑

i=1

β1(Fi)

≥ n+ 3n− 2#{i | |bi| = 1}, and hence,

g(Fτc) ≥ 2g(K(q/p))−#{i | |bi| = 1}
= g(K(q/p)) + #{i | |bi| > 1}

Now we have obtained lower bounds for equivariant genera for all cases, which
coincide with the upper bounds obtained in Section 3 by explicit construction. This
concludes Section 4.

5. Actions of strong inversions on Kakimizu complexes

For an oriented link L in S3, the Kakimizu complex MS(L) of L is the flag
simplicial complex whose vertices correspond to the (isotopy classes of) minimal
genus Seifert surfaces for L and edges to pairs of such surfaces with disjoint interiors
(see [16]). Kakimizu also introduced a similar complex IS(L) whose vertex set is
the set of incompressible Seifert surfaces, and proved that both MS(L) and IS(L)
are connected if L is non-splittable, refining the result of Scharlemann-Thompson
[25] for minimal genus Seifert surfaces for knots. Since then, various interesting
results have been obtained [1, 4, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27]. In particular,
Przytycki-Schultens [21] proved the Kakimizu conjecture, which says that MS(L) is
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contractible for every non-splittable link L. (To be precise, they prove the conjecture
in a more general setting with a “rectified” definition of the complex, where the
two definitions coincide for oriented non-splittable links in S3 all of whose minimal
genus Seifert surfaces are connected.) They also proved various interesting results
concerning the fixed point sets of the actions of subgroups of the symmetry groups of
non-splittable oriented links L on (the rectified) MS(L), including a generalization
of Edmonds’ theorem. Our Corollary 1.5 may be regarded as a slight refinement of
a special case of (a variant of) their theorem [21, Theorems 1.2].

In the remainder of this section, we study the case where K is a 2-bridge knot.
For a 2-bridge knot K = K(q/p), the minimal genus Seifert surfaces for K were
classified by Hatcher-Thurston [11, Theorem 1] and the structure of MS(K) was
described by [22, Theorem 3.3]. In this section, we describe the actions of the strong
inversions on MS(K). Throughout this section, we assume q/p has the following
continued fraction expansion (recall the convention introduced in Section 2).

q

p
= [2a1, 2a2, · · · , 2a2n−1, 2a2n]

For the above positive integer n, let K(n) be the simplicial complex characterized
by the following properties (see Figure 5.1).

(1) The underlying space |K(n)| is the (2n− 1)-dimensional cube [−1, 1]2n−1 in
the vector space R2n−1 = R[e⃗1, e⃗2, · · · , e⃗2n−1].

(2) The vertex set of |K(n)| is the set of corners {−1, 1}2n−1 of the cube. Thus

a vertex of K(n) is identified with a vector ϵ⃗ =
∑2n−1

i=1 ϵie⃗i with ϵi ∈ {±1}.
(3) The (2n − 1)-simplices of K(n) are described as follows. Consider the 2n

vectors v⃗i := (−1)i−1 2(e⃗i−1 + e⃗i) ∈ R2n−1 (1 ≤ i ≤ 2n), where e⃗−1 := 0⃗ and

e⃗2n := 0⃗. Note that
∑2n

i=1 v⃗i = 0⃗, which is the unique linear relation among
{v⃗i}1≤i≤2n up to scalar multiplication. Then 2n vertices of K(n) span a
(2n− 1)-simplex if and only if we can arrange them into a cyclically ordered
set (⃗ϵ0, ϵ⃗1, · · · , ϵ⃗2n−1) so that

{ϵ⃗1 − ϵ⃗0, ϵ⃗2 − ϵ⃗1, · · · , ϵ⃗2n−1 − ϵ⃗2n−2, ϵ⃗0 − ϵ⃗2n−1} = {v⃗1, v⃗2, · · · , v⃗2n}.
We first recall the following special consequence of [22, Theorem 3.3], which also

guarantees that K(n) is a simplicial complex.

Proposition 5.1. If |ai| ≥ 2 for every i (1 ≤ i ≤ 2n), then MS(K) is isomorphic
to K(n).

In order to explain Proposition 5.1, let T be a tree, with 2n vertices, whose
underlying space is homeomorphic to a closed interval, and let v1, v2, . . . , v2n be the
vertices of T , lying on the interval in this order. For each vertex vi we associate an
unknotted oriented annulus Ai in S3 with ai right-hand full twists. Then, K(q/p)
is equal to the boundary of a surface obtained by successively plumbing the annuli
A1, A2, . . . , A2n, and this surface is a minimal genus Seifert surface for K. Moreover,
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every minimal genus Seifert surface for K is obtained in this way by [11, Theorem
1].

There are 22n−1 different ways of successive plumbing, according as Ai+1 is
plumbed to Ai from above or from below with respect to a normal vector field
on Aj . Thus, successive plumbing can be represented by an orientation of T , direct-
ing each edge in one of two ways, by the following rule: If ρ is an orientation of T ,
then we plumb Ai+1 to Ai from above or below according as the edge joining vi and
vi+1 has initial point vi or vi+1, respectively, with respect to ρ (cf. [22, Section 2]).
We denote by F (ρ) the Seifert surface for K(q/p) determined by the orientation ρ.
By [11, Theorem 1] (cf. [22, Theorem 2.3]), the condition that |ai| ≥ 2 for every i
implies that the correspondence ρ 7→ F (ρ) determines a bijection from the set O(T )
of all orientations of T to the vertex set of MS(K).

To describe the structure of MS(K), we introduce a few definitions. A vertex vi
of T is said to be a sink for the orientation ρ of T if every edge of T incident on vi
points towards vi. If vi is a sink for ρ, then let vi(ρ) denote the orientation of T
obtained from ρ by reversing the orientations of each edge incident on vi. A cycle
in O(T ) is a sequence

ρ1
vi1−−→ ρ2

vi2−−→ . . .
vi2n−1−−−−→ ρn

vi2n−−→ ρ1,

where (i1, i2, . . . , i2n) is a permutation of {1, 2, . . . , 2n} and ρ1, ρ2, . . . , ρ2n are mu-
tually distinct elements of O(T ) such that vik(ρk) = ρk+1 for every k, where the
indices are considered modulo n. According to [22, Theorem 3.3], MS(K) can be
described as follows:

◦ The vertex set of MS(K) is identified with O(T ).
◦ A set of vertices {ρ0, ρ1, . . . , ρk} spans a k-simplex in MS(K) if and only if
it is contained in a cycle of O(T ).

Moreover, MS(K) gives a triangulation of the cube [−1, 1]2n−1 whose vertices are
the corners of the cube (see [22, Propositions 3.9 and the paragraph after Remark
3.10]).

Note that there are two special elements ρ+ and ρ− of O(T ) that are alternating
in the sense that every vertex is either a sink or a source. We assume that vi is a sink
or a source for ρ+ according to whether i is odd or even: ρ− is obtained from ρ+ by
reversing the orientation of every edge. In [11, Figure 2] (under a suitable orientation
convention), F (ρ+) is constructed by plumbing of the bands A1, A2, · · · , A2n where
every plumbing disk Ai ∩Ai+1 is the horizontal plumbing square. For F (ρ−), every
plumbing disk is the complement of the square in the horizontal plane containing
it, compactified by a point at ∞. We can also observe that F (ρ±) are the surfaces
R±(γ) in the boundary of the sutured manifold (M,γ) with γ = K introduced in
Figure 4.2.

In order to show Proposition 5.1, we introduce a notation which is a variant of that
in [22, the paragraph after Remark 3.10]. For ρ ∈ O(T ), let ϵ⃗ = (ϵ1, · · · , ϵ2n−1) =
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i=1 ϵie⃗i be the vertex of K(n), determined by the rule that ϵi is +1 or −1 accord-

ing to whether ρ+ and ρ determine the same or distinct orientations on the edge
between vi and vi+1. Then the correspondence ρ 7→ ϵ⃗ gives a bijection from O(T ),
the vertex set of MS(K), onto the vertex set of K(n). Moreover, we see that it
induces an isomorphism between the flag simplicial complexes MS(K) and K(n) by
using the following fact. Let ρ and ρ′ be distinct elements of O(T ), and let ϵ⃗ and ϵ⃗ ′

be the corresponding vertices of K(n), respectively. Then, there is a vertex vi of T
that is a sink for ρ and ρ′ = vi(ρ), if and only if ϵ⃗ ′ = ϵ⃗+ v⃗i for some v⃗i. Hence, we
obtain Proposition 5.1.

In the case where |ai| = 1 for some i, MS(K) is the quotient of K(n) as described
below (see Figure 5.1).

Figure 5.1. The complexes K(n) (left) and K(n,H) (right), rep-
resenting the Kakimizu complex MS(K(q/p)). In the left figure,
the symbol (+,+,−), for example, denotes the vertex of K(4) cor-
responding to the vector ϵ⃗ = (+1,+1,−1). An edge with an ar-
row and a number i represents the vector v⃗i, where v⃗1 = (2, 0, 0),
v⃗2 = (−2, 2, 0), v⃗3 = (0,−2, 2) and v⃗4 = (0, 0,−2). In all figures, the
red dot represents the unique fixed point of the involution h induced
by the strong inversion hq/p. If the fixed point is a vertex then it is
represented by a circle with a red dot.
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Set

H = H(q/p) = {i ∈ {1, 2, · · · , 2n} | |ai| = 1},
where the symbol H stands for the Hopf band. Let W = W (q/p) be the subspace
of R2n−1 spanned by the vectors {v⃗i | i ∈ H}. Let π = πq/p be the projection from

R2n−1 to the quotient space R2n−1/W . Then there is a unique simplicial complex,
K(n;H), such that the underlying space |K(n;H)| is the image π(|K(n)|) and that
π induces a simplicial map from K(n) onto K(n;H).

By [22, Theorem 3.3 and Proposition 3.11], we obtain the following.

Proposition 5.2. For a 2-bridge knot K = K(q/p) with

q

p
= [2a1, 2a2, · · · , 2a2n−1, 2a2n],

MS(K) is isomorphic to K(n;H) with H = H(q/p).

Remark 5.3. (1) In the above proposition, the vertex of MS(K) ∼= K(n;H) de-
termined by ϵ⃗ ∈ {−1, 1}2n−1 is represented by the Seifert surface F (ρ), where ρ is
the element of O(T ) corresponding to ϵ⃗ through the bijection between O(T ) and
{−1, 1}2n−1 described at the end of the explanation of Proposition 5.1.

(2) Except whenH is equal to the whole set {1, 2, · · · , 2n}, we have dim |MS(K)| =
2n− 1− (#H). The exceptional case occurs if and only if K is a fibered knot.

We now describe the action of the strong inversions on MS(K) with K = K(q/p).

To this end, let h̃ and h̃′, respectively, be the linear automorphisms of R2n−1

represented by the diagonal matrix (−δi,j)1≤i,j≤2n−1 and the anti-diagonal matrix
(δ′i,j)1≤i,j≤2n−1, where δi,j is Kronecker’s delta, and δ′i,j = 1 or 0 according to whether

i+j = 2n−1 or not. Note that (1) the subspace W = W (q/p) is preserved by h̃ and

that (2) W is preserved by h̃′ if and only it it is symmetric in the following sense:
for any pair of positive integers i and j with i+ j = 2n, we have i ∈ H if and only
if j ∈ H. Now we define automorphisms h and h′ of the simplicial complex K(n;H)
as follows (see Figures 5.1 and 5.2).

(1) The linear automorphism h̃ descends to a linear automorphism of R2n−1/W ,
and its restriction to |K(n;H)| determines the automorphism h of K(n;H).

(2) Suppose H is symmetric. Then the linear automorphism h̃′ descends to a
linear automorphism of R2n−1/W , and its restriction to |K(n;H)| determines
the automorphism h′ of K(n;H).

Then we have the following theorem.

Theorem 5.4. For a 2-bridge knot K = K(q/p) with

q

p
= [2a1, 2a2, · · · , 2a2n−1, 2a2n],

the actions of strong inversions of K on MS(K) are described as follows.
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(1) The automorphisms of MS(K) ∼= K(n;H) induced by the strong inversions
hq/p and hq′/p of K are both equal to the automorphism h. Moreover, the following
hold, where F+ := F (ρ+) = F (+1, · · · ,+1) and F− = F (ρ−) = F (−1, · · · ,−1).

(i) Suppose |ai| = 1 either for all odd i or for all even i, namely, H = H(q/p)
contains either all odd i or all even i. Then F+ and F− represent the same
vertex of MS(K), and it is the unique fixed point of h.

(ii) Suppose the above condition does not hold, i.e., |ai| ≥ 2 for some odd i and
also for some even i. Then F+ and F− represent distinct vertices of MS(K),
and they span an edge e in MS(K). The center of e is the unique fixed point
of h, and e is the unique edge preserved by h.

(2) Suppose q2 ≡ 1 (mod p). Then H = H(q/p) is symmetric, and the automor-
phism of MS(K) ∼= K(n;H) induced by the exceptional strong inversion h′q/p is equal

to h′. In particular, Fix(h′) is a ball properly embedded in |K(n;H)| of dimension
n− 1

2(#H).

Figure 5.2. The action of h′ on K(4; ∅) = K(4) induced by the
exceptional strong inversion h′q/p. The shaded plane represents the

fixed point set of h′. The automorphism h′ of K(4;H) for any non-
empty symmetric subset H of {1, 2, 3, 4} is the identity.

Proof. (1) For each element ρ ∈ O(T ), let−ρ be the element ofO(T ) obtained from ρ
by reversing the orientation of every edge of T . Then we can observe that both of the
the strong inversions hq/p and hq′/p map the Seifert surface F (ρ) to F (−ρ) for every
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ρ ∈ O(T ). This means that both strong inversions map F (⃗ϵ) to F (−ϵ⃗) for every ϵ⃗ ∈
{−1, 1}2n−1. Hence both of them induce the automorphism h of MS(K) ∼= K(n;H).
Since h is determined by the restriction to |K(n;H)| of the linear-automorphism x⃗ 7→
−x⃗ of R2n−1/W , the fixed point set Fix(h) ⊂ K(n,H) consists only of the origin. On
the other hand, the Seifert surfaces F+ = F (+1, · · · ,+1) and F− = F (−1, · · · ,−1)
are disjoint, as observed in the explanation of Proposition 5.1. So, if the vertices
[F+] and [F−] of MS(K) are distinct, then they span an edge e. The center of e
corresponds to the origin, and it is the unique fixed point of h. If [F+] = [F−], then
the vertex corresponds to the origin of K(n : H), and it is the unique fixed point of
h. By using Proposition 5.2 (cf. [22, Section 5]), we can observe that [F+] = [F−]
if and only if |ai| = 1 either for all odd i or for all even i. Hence we obtain the
assertion (1).

(2) We can observe that the exceptional strong inversion h′q/p maps the Seifert sur-

face F (ϵ1, ϵ2, · · · , ϵ2n−1) to F (ϵ2n−1, · · · , ϵ2, ϵ1) up to isotopy for any (ϵ1, ϵ2, · · · , ϵ2n−1)
∈ {−1, 1}2n−1. (To be precise, though the strong equivalence classes of exceptional
strong inversions are not unique as noted in Remark 2.3(2), the above holds for
any exceptional strong inversion.) This implies that it induces the automorphism
h′ of MS(K) ∼= K(n;H). Thus Fix(h′) is equal to the ball properly embedded in
|K(n;H)| ⊂ Rn/W obtained as the intersection of |K(n;H)| with the fixed point set

of the linear automorphism of R2n−1/W induced by the linear automorphism h̃′ of

R2n−1. By the definition of h̃′, the fixed point set (or the eigen space with eigen value

1) of h̃′ is the n-dimensional space with basis {e⃗i + e⃗2n−i}1≤i≤n. We can observe

the set {v⃗i − v⃗2n−i}1≤i≤n is also a basis of Fix(h̃′). On the other hand, since H is
symmetric, there is a subset J ⊂ {1, 2, · · · , n} of cardinality d = 1

2(#H), such that

W = Ker(π) has a basis {v⃗i, v⃗2n+1−i}i∈J . Hence, the subspace W +Fix(h̃′) has basis

{v⃗i, v⃗2n+1−i}i∈J ∪ {v⃗i − v⃗2n−i}i∈Jc . Thus dim(W +Fix(h̃′)) = 2d+ (n− d) = n+ d.
Since the fixed point set of the linear automorphism of R2n−1/W is equal to the

subspace (W + Fix(h̃′))/W , its dimension is equal to (n + d) − 2d = n − d. This
completes the proof of (2). □

6. Appendix: Table of enhanced equivariant genera of 2-bridge knots
up to 10 crossings

By using Theorem 2.4, we give a table of equivariant genera for (K,h, δ) with
K 2-bridge knots up to 10 crossings. Let K be the 2-bridge knot K(q/p) =
K[2a1, 2b1, 2a2, 2b2, · · · , 2an, 2nn]. The data of the rationals of 2-bridge knots are
imported from the KnotInfo [KI], where we have replaced q by p−q if q is odd. The
3rd column of Table shows the negative continued fractions, and n̄ means −n. In
the last column, we list the genus and equivariant genera:

{ g(K), g(K,hq/p, τq/p), g(K,hq/p, τ
c
q/p), g(K,hq′/p, τq′/p), g(K,hq′/p, τ

c
q′/p) }

= { n, n + #{i | |ai| > 1}, n +
∑n

i (|bi| − 1), n + #{i | |bi| > 1}, n +
∑n

i (|ai| − 1) }
= { n, n + #{i | |ai| > 1}, 2n − #{i | |bi| = 1}, n + #{i | |bi| > 1}, 2n − #{i | |ai| = 1} }
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When q = p − 1, K is a torus knot and has two equivariant genera, which both
coincide with g(K). This case is marked as {g(K), “torus”}. If non-tours K is
fibered or has the symmetry of q2 ≡ 1 (mod p), equivariant genera coinciding with
g(K) are abbreviated, hence we mark the genus g(K) and attributes “fib” and/or
“sym” accordingly.

K q/p cont.frac genera
31 2/3 {2, 2} {1, torus}
41 2/5 {2, 2̄} {1, fib}
51 4/5 {2, 2, 2, 2} {2, torus}
52 4/7 {2, 4} {1, 1, 2, 2, 1}
61 2/9 {4, 2̄} {1, 2, 1, 1, 2}
62 4/11 {2, 2̄, 2̄, 2̄} {2, fib}
63 8/13 {2, 2, 2̄, 2̄} {2, fib}
71 6/7 {2, 2, 2, 2, 2, 2} {3, torus}
72 6/11 {2, 6} {1, 1, 2, 3, 1}
73 4/13 {4, 2, 2, 2} {2, 3, 2, 2, 3}
74 4/15 {4, 4} {1, sym, 2, 2}
75 10/17 {2, 4, 2, 2} {2, 2, 3, 3, 2}
76 12/19 {2, 2, 2̄, 2} {2, fib}
77 8/21 {2, 2̄, 2̄, 2} {2, fib, sym}
81 2/13 {6, 2̄} {1, 3, 1, 1, 2}
82 6/17 {2, 2̄, 2̄, 2̄, 2̄, 2̄} {3, fib}
83 4/17 {4, 4̄} {1, 2, 2, 2, 2}
84 14/19 {2, 2, 2, 4̄} {2, 2, 3, 3, 2}
86 10/23 {2, 4̄, 2̄, 2̄} {2, 2, 3, 3, 2}
87 14/23 {2, 2, 2̄, 2̄, 2̄, 2̄} {3, fib}
88 16/25 {2, 2, 4̄, 2̄} {2, 3, 2, 2, 3}
89 18/25 {2, 2, 2, 2̄, 2̄, 2̄} {3, fib}
811 10/27 {2, 2̄, 2̄, 4̄} {2, 2, 3, 3, 2}
812 12/29 {2, 2̄, 2, 2̄} {2, fib}
813 18/29 {2, 2, 2̄, 4̄} {2, 2, 3, 3, 2}
814 12/31 {2, 2̄, 4̄, 2̄} {2, 3, 2, 2, 3}
91 8/9 {2, 2, 2, 2, 2, 2, 2, 2} {4, torus}
92 8/15 {2, 8} {1, 1, 2, 4, 1}
93 6/19 {4, 2, 2, 2, 2, 2} {3, 4, 3, 3, 4}
94 16/21 {2, 2, 2, 6} {2, 2, 3, 4, 2}
95 6/23 {4, 6} {1, 2, 2, 3, 2}
96 22/27 {2, 2, 2, 2, 4, 2} {3, 4, 3, 3, 4}
97 16/29 {2, 6, 2, 2} {2, 2, 3, 4, 2}
98 20/31 {2, 2, 4̄, 2} {2, 3, 2, 2, 3}
99 22/31 {2, 2, 4, 2, 2, 2} {3, 4, 3, 3, 4}
910 10/33 {4, 2, 2, 4} {2, sym, 3, 3}
911 14/33 {2, 2̄, 2, 2, 2, 2} {3, fib}
912 22/35 {2, 2, 2̄, 4} {2, 2, 3, 3, 2}
913 10/37 {4, 4, 2, 2} {2, 3, 3, 3, 3}
914 14/37 {2, 2̄, 2̄, 4} {2, 2, 3, 3, 2}
915 16/39 {2, 2̄, 4, 2} {2, 3, 2, 2, 3}
917 14/39 {2, 2̄, 2̄, 2̄, 2̄, 2} {3, fib, sym}
918 24/41 {2, 4, 2, 4} {2, 2, 4, 4, 2}
919 16/41 {2, 2̄, 4̄, 2} {2, 3, 2, 2, 3}
920 26/41 {2, 2, 2̄, 2, 2, 2} {3, fib}
921 18/43 {2, 2̄, 2, 4} {2, 2, 3, 3, 2}
923 26/45 {2, 4, 4, 2} {2, sym, 3, 3}

926 18/47 {2, 2̄, 2̄, 2, 2, 2} {3, fib}
927 30/49 {2, 2, 2̄, 2̄, 2̄, 2} {3, fib}
931 34/55 {2, 2, 2̄, 2̄, 2, 2} {3, fib, sym}
101 2/17 {8, 2̄} {1, 4, 1, 1, 2}
102 8/23 {2, 2̄, 2̄, 2̄, 2̄, 2̄, 2̄, 2̄} {4, fib}
103 6/25 {4, 6̄} {1, 2, 2, 3, 2}
104 20/27 {2, 2, 2, 6̄} {2, 2, 3, 4, 2}
105 20/33 {2, 2, 2̄, 2̄, 2̄, 2̄, 2̄, 2̄} {4, fib}
106 16/37 {2, 4̄, 2̄, 2̄, 2̄, 2̄} {3, 3, 4, 4, 3}
107 16/43 {2, 2̄, 2̄, 6̄} {2, 2, 3, 4, 2}
108 6/29 {4, 2̄, 2̄, 2̄, 2̄, 2̄} {3, 4, 3, 3, 4}
109 28/39 {2, 2, 2, 2̄, 2̄, 2̄, 2̄, 2̄} {4, fib}
1010 28/45 {2, 2, 2̄, 6̄} {2, 2, 3, 4, 2}
1011 30/43 {2, 2, 4, 4̄} {2, 3, 3, 3, 3}
1012 30/47 {2, 2, 4̄, 2̄, 2̄, 2̄} {3, 4, 3, 3, 4}
1013 22/53 {2, 2̄, 2, 4̄} {2, 2, 3, 3, 2}
1014 22/57 {2, 2̄, 4̄, 2̄, 2̄, 2̄} {3, 4, 3, 3, 4}
1015 24/43 {2, 4, 2̄, 2̄, 2̄, 2̄} {3, 3, 4, 4, 3}
1016 14/47 {4, 2, 2, 4̄} {2, 3, 3, 3, 3}
1017 32/41 {2, 2, 2, 2, 2̄, 2̄, 2̄, 2̄} {4, fib}
1018 32/55 {2, 4, 2, 4̄} {2, 2, 4, 4, 2}
1019 14/51 {4, 2, 2̄, 2̄, 2̄, 2̄} {3, 4, 3, 3, 4}
1020 16/35 {2, 6̄, 2̄, 2̄} {2, 2, 3, 4, 2}
1021 16/45 {2, 2̄, 2̄, 2̄, 2̄, 4̄} {3, 3, 4, 4, 3}
1022 36/49 {2, 2, 2, 4̄, 2̄, 2̄} {3, 3, 4, 4, 3}
1023 36/59 {2, 2, 2̄, 2̄, 2̄, 4̄} {3, 3, 4, 4, 3}
1024 24/55 {2, 4̄, 2̄, 4̄} {2, 2, 4, 4, 2}
1025 24/65 {2, 2̄, 2̄, 4̄, 2̄, 2̄} {3, 3, 4, 4, 3}
1026 44/61 {2, 2, 2, 2̄, 2̄, 4̄} {3, 3, 4, 4, 3}
1027 44/71 {2, 2, 2̄, 4̄, 2̄, 2̄} {3, 3, 4, 4, 3}
1028 34/53 {2, 2, 4̄, 4̄} {2, 3, 3, 3, 3}
1029 26/63 {2, 2̄, 2, 2̄, 2̄, 2̄} {3, fib}
1030 26/67 {2, 2̄, 4̄, 4̄} {2, 3, 3, 3, 3}
1031 32/57 {2, 4, 2̄, 4̄} {2, 2, 4, 4, 2}
1032 40/69 {2, 4, 2, 2̄, 2̄, 2̄} {3, 3, 4, 4, 3}
1033 18/65 {4, 2, 2̄, 4̄} {2, 3, 3, 3, 3}
1034 24/37 {2, 2, 6̄, 2̄} {2, 4, 2, 2, 3}
1035 20/49 {2, 2̄, 4, 2̄} {2, 3, 2, 2, 3}
1036 20/51 {2, 2̄, 6̄, 2̄} {2, 4, 2, 2, 3}
1037 30/53 {2, 4, 4̄, 2̄} {2, 3, 3, 3, 3}
1038 34/59 {2, 4, 4, 2̄} {2, 3, 3, 3, 3}
1039 22/61 {2, 2̄, 2̄, 2̄, 4̄, 2̄} {3, 4, 3, 3, 4}
1040 46/75 {2, 2, 2̄, 2̄, 4̄, 2̄} {3, 4, 3, 3, 4}
1041 26/71 {2, 2̄, 2̄, 2̄, 2, 2̄} {3, fib}
1042 50/81 {2, 2, 2̄, 2̄, 2, 2̄} {3, fib}
1043 46/73 {2, 2, 2̄, 2, 2̄, 2̄} {3, fib}
1044 30/79 {2, 2̄, 2̄, 2, 2̄, 2̄} {3, fib}
1045 34/89 {2, 2̄, 2̄, 2, 2, 2̄} {3, fib}
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