FROBENIUS REPRESENTATION TYPE FOR INVARIANT RINGS
OF FINITE GROUPS

MITSUYASU HASHIMOTO AND ANURAG K. SINGH

ABSTRACT. LetV be a finite rank vector space over a perfect field of characteristic p > 0,
and let G be a finite subgroup of GL(V). If V is a permutation representation of G, or
more generally a monomial representation, we prove that the ring of invariants (SymV)¢
has finite Frobenius representation type. We also construct an example with V a finite rank
vector space over the algebraic closure of the function field F3(r), and G an elementary
abelian subgroup of GL(V), such that the invariant ring (SymV )¢ does not have finite
Frobenius representation type.

1. INTRODUCTION

The study of rings of finite Frobenius representation type was initiated by Smith and Van
den Bergh [SV], as part of an attack on the conjectured simplicity of rings of differential
operators on invariant rings; indeed, using this notion, they proved that if R is a graded
direct summand of a polynomial ring over a perfect field k of positive characteristic, e.g.,
if R is the ring of invariants for a linearly reductive group acting linearly on the polynomial
ring, then the ring of k-linear differential operators on R is a simple ring [SV, Theorem 1.3].

A reduced ring R of prime characteristic p > 0, satisfying the Krull-Schmidt theorem,
has finite Frobenius representation type (FFRT) if there exists a finite set .% of R-modules
such that for each integer e > 0, each indecomposable R-module summand of RV/P is
isomorphic to an element of .#’; the FFRT property and its variations are reviewed in §2.
Examples of rings with FFRT include Cohen-Macaulay rings of finite representation type,
graded direct summands of polynomial rings [SV, Proposition 3.1.6], and Stanley-Reisner
rings [Ka, Example 2.3.6]. More recently, Raedschelders, §penko, and Van den Bergh
proved that over an algebraically closed field of characteristic p > max{n — 2,3}, the
Pliicker homogeneous coordinate ring of the Grassmannian G(2,n) has FFRT [RSV]. In
another direction, work of Hara and Ohkawa [HO] investigates the FFRT property for two-
dimensional normal graded rings in terms of Q-divisors.

In addition to the original motivation, the FFRT property has found several applications.
Suppose a ring R has FFRT. Then Hilbert-Kunz multiplicities over R are rational numbers
by [Se]; tight closure and localization commute in R, [Ya]; local cohomology modules
of the form H’g (R) have finitely many associated primes, [TT, HoN, DQ]. For more on
the FFRT property, we point the reader towards [AK, Ka, Ma, Sh1, Sh2, SW].

Our goal here is to investigate the FFRT property for rings of invariants of finite groups.
Let V be a finite rank vector space over a perfect field k of characteristic p > 0, and let G
be a finite subgroup of GL(V). In the nonmodular case, that is, when the order of G is not
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divisible by p, the invariant ring S is a direct summand of the polynomial ring S := SymV
via the Reynolds operator; it follows by [SV, Proposition 3.1.4] that S¢ has FFRT. The
question becomes more interesting in the modular case, i.e., when p divides |G|. We prove
that if V is a monomial representation of G, then the ring of invariants S has FFRT,
Theorem 4.1; this includes the case of a subgroup G of the symmetric group &,,, acting on
a polynomial ring S := k[xj,...,x,] by permuting the indeterminates. On the other hand,
while it had been expected that rings of invariants of reductive groups have FFRT (see for
example the abstract of [RSV]), we prove that this is not the case:

Theorem 1.1. Set k to be the algebraic closure of the function field F3(t). Then there is an
order 9 subgroup G of GL3(k), such that k|x),x2,x3]¢ does not have FFRT.

This is proved as Theorem 3.1; the reader will find that a similar construction may be
performed over any algebraically closed field k that is not algebraic over F,. However, we
do not know if (SymV )¢ always has FFRT when V is a finite rank vector space over [,
the algebraic closure of F,.

Returning to the nonmodular case, let k be an algebraically closed field of characteris-
tic p > 0, and V a finite rank k-vector space. Set S := SymV and R := S, for G a finite
subgroup of GL(V) of order coprime to p. The rings $'/4 and R/ admit Q-gradings ex-
tending the standard N-grading on the polynomial ring S. Let M be a Q-graded finitely
generated indecomposable R-module. By [SV, Proposition 3.2.1], the module M(d) is a
direct summand of R/ for some d € Q if and only if

M = (S&L)°

for some irreducible representation L of G. Let Vy,...,V, be a complete set of representa-
tives of the isomorphism classes of irreducible representations of G, and set

M; = (S® V)

fori=1,...,¢. Then, for each integer e > 0, the decomposition of R'/" into indecompos-
able R-modules takes the form
L Cie
RV = DEPMi(dy),
i=1 j=1
where d;; € Q and c;, € N. Suppose additionally that G does not contain any pseudo-
reflections; by [HaN, Theorem 3.4], the generalized F -signature
S(R,M) = lim ﬁ
then agrees with
(rank, V;)/|G|.

By [Ha$S, Theorem 5.1], this description of the asymptotic behavior of R'/?* remains valid
in the modular case. It follows that for the invariant ring R := k[x| ,X2,X3]G in Theorem 1.1,
while there exist infinitely many nonisomorphic indecomposable R-modules that are direct
summands of some R'/?* up to a degree shift, almost all are “asymptotically negligible.”

In §2, we review some basics on the FFRT property and on equivariant modules; these
are used in §3 in the proof of Theorem 1.1. In §4, we prove that if V is a monomial
representation then (SymV )€ has FFRT, and also that (SymV )€ is F-pure in this case; the
latter extends a result of Hochster and Huneke [HH2, page 77] that (SymV)Y is F-pure
when V is a permutation representation. Lastly, in §5, we construct a family of examples
that are not F-regular or F-pure, but nonetheless have the FFRT property.
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2. PRELIMINARIES

We collect some definitions and results that are used in the sequel.

Krull-Schmidt category. Let k be a perfect field of characteristic p > 0, and R a finitely
generated positively graded commutative k-algebra, i.e., R is N-graded with [R], = k.
Let RQgrmod denote the category of finitely generated Q-graded R-modules. For mod-
ules M, N in RQ grmod, the module Homg (M, N) again lies in RQ grmod; in particular,

Homgqgrmod(M,N) = [Homg(M,N)],

is a finite rank k-vector space. Since Homgq grmod (M, M) = [Homg (M, M)], has finite rank
for each M in RQ grmod, the category RQ grmod is Krull-Schmidt; see [HaY, §3].

Frobenius twist. Let e be a nonnegative integer. For a k-vector space V, we use ¢V to
denote the k-vector space that coincides with V as an abelian group, but has the left k-
action a-v= o v for o € k and v € V, with the right action unchanged. An element v €V,
when viewed as an element of ¢V, will be denoted “v, so

vV ={%|veV}

The map v —— “v is an isomorphism of abelian groups, but not an isomorphism of k-vector
spaces in general. Note that o - ‘v = ¢ (ocpev). When V is Q-graded, we define a Q-grading
on °V as follows: for a homogeneous element v € V, set

deg®v := (degv)/p°.

Let V and W be k-vector spaces. For f € Homy(V,W), we define °f: ¢V — ‘W
by °f(°v) = ¢(fv). It is easy to see that °f € Homg(°V,*W). This makes ¢(—) an auto-
equivalence of the category of k-vector spaces. Note that the map

VW — (Ve W)

with ©v®°w — ¢(v®@w) is well-defined, and an isomorphism. It is easy to check that ¢(—)
is a monoidal functor; the composition ¢(—) o (—) is canonically isomorphic to ¢™¢ (—),
and °(—) is the identity.
For a k-vector space V, the map ¢(—): GL(V) — GL(°V) given by f —— °f is an
isomorphism of abstract groups. If V is a G-module, then the composition
G — GL(V) — GL(°V)

gives ¢V a G-module structure. Thus, g(°v) = e(gv) forge Gandv e V. Suppose xy,...,x,
is a k-basis of V. Then for each integer e > 0, the elements “xy,...,°x, form a k-basis
for ¢V. If f € GL(V) has matrix (m;;) with respect to the basis xi,...,x,, then the matrix

for °f with respect to “x,...,x, is (m; / "), Indeed,
“f(ex ) ij — Zml]xl — Z ml]xl Zml/ﬂ °x;.
When R is a k-algebra, the k-algebra ¢R has multiplication defined by (¢r)(%s) := ¢(rs).
For R a commutative k-algebra, the iterated Frobenius map F¢: R — °R with
r—s ¢(r7)

is a homomorphism of k-algebras. When R is a positively graded finitely generated com-
mutative k-algebra, the ring R admits a Q-grading where for homogeneous r € R,

deg®r:= (degr)/p°.
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The ring “R is then positively graded in the sense that [R] ; =0 for j <0, and [°R], = k. The
iterated Frobenius map F¢: R — °R is degree-preserving and module-finite. Moreover,

*(—): RQgrmod — RQgrmod

is an exact functor. If M € RQ grmod, then the graded k-vector space M is equipped with
the R-action r-¢m = ¢(r’*m), so M is the graded °R-module with the action r-°m = ¢(rm),
and the action of R on °M is induced via F*: R — °R.

When R is reduced, it is sometimes more transparent to use the notation r/7 in place
of ¢r, and R'/?* in place of °R.

Graded FFRT. When the equivalent conditions in the following lemma are satisfied, the
ring R is said to have finite Frobenius representation type (FFRT) in the graded sense:

Lemma 2.1. Let R be a positively graded finitely generated commutative k-algebra. Then
the following are equivalent:

(1) There exist My, ...,M; € RQ grmod such that for any e > 1, one has
R o M?CIB .- @M?C/e

as (non-graded) R-modules.

(2) There exist My,...,My € RQgrmod such that for any e > 1, the R-module °R is
isomorphic, as a Q-graded R-module, to a finite direct sum of copies of modules of
the form M;(d) with 1 < i< {andd € Q.

Proof. The direction (2) = (1) is obvious; we prove the converse. Fix e > 1. For a
positive integer ¢, set M‘“) to be M with the grading [M ()], ;= [M];. Then M) is a Q-
graded module over the graded ring R\). Taking ¢ sufficiently divisible, we may assume
that R\ is p¢Z-graded and each Mi<c> is Z-graded. By [HaY, Corollary 3.9], R is

isomorphic to a finite direct sum of modules of the form (M;C> )(d)with1 <i</landd € Z.
It follows that “R is a finite direct sum of modules of the form M;(d/c). O

It follows from [HaY, Corollary 3.9] that R has FFRT in the graded sense if and only if
the m-adic completion R has FFRT, for m the homogeneous maximal ideal of R.

Pseudoreflections. Let V be a finite rank k-vector space. An element g € GL(V) is a
pseudoreflection if rank(ly —g) = 1. Let G be a finite group and V a G-module. The
action of G on V is small if p: G — GL(V) is injective, and p(G) does not contain a
pseudoreflection. If in addition G C GL(V), then G is a small subgroup of GL(V).

The twisted group algebra. Let V be a finite rank k-vector space. Let G be a subgroup
of GL(V), and set S := SymV. If xy,...,x, is a basis for V, then SymV = k[xy,...,x,]
is a polynomial ring in n variables. The action of G on V induces an action of G on the
polynomial ring S by degree preserving k-algebra automorphisms.

We say that M is a Q-graded (G, S)-module if M is a G-module as well as a Q-graded
S-module such that the underlying k-vector space structures agree, each graded compo-
nent [M]; is a G-submodule of M, and g(sm) = (gs)(gm) forallg € G, s € S,and m € M.

We recall the rwisted group algebra construction S* G from [Au]. Set SxG to be S® kG
as a k-vector space, with kG the group algebra, and define

(s@g)(s'®@¢) =s(gs") ®gg'.
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For s € § homogeneous, set the degree of s ® g to be that of s; this gives S * G a graded
k-algebra structure. A Q-graded S+ G-module M is a Q-graded (G, S)-module where

sm:=(s®1)m and gm:=(lxg)m.

Conversely, if M is a Q-graded (G, S)-module, then (s ® g)m := sgm, gives M the structure

of a Q-graded S * G-module. Thus, a Q-graded S * G-module and a Q-graded (G,S)-

module are one and the same thing. Similarly, a homogeneous (i.e., degree-preserving)

map of Q-graded (G, S)-modules is precisely a homomorphism of graded S * G-modules.
With this setup, one has the following equivalence of categories:

Lemma 2.2. Let V be a finite rank k-vector space, and G a small subgroup of GL(V).
Set S :=SymV and T := S*G. Let TQgrmod denote the category of finitely generated
Q-graded left T-modules, and *Ref(G,S) denote the full subcategory of TQgrmod con-
sisting of those that are reflexive as S-modules; let *RefSC denote the full subcategory
of S°Q grmod consisting of modules that are reflexive as S¢-modules.

Then one has an equivalence of categories

*Ref(G,S) — *RefSY, where M +— M©,
with quasi-inverse N — (N ®¢c §)**, where (—)* := Homg(—, S).

For the proof, see [HaK, Lemma 2.6]; an extension to group schemes may be found
in [Hal]. Note that under the functor displayed above, one has ¢S +— (¢S)¢ = ¢(59).

3. AN INVARIANT RING WITHOUT FFRT

We construct the counterexample promised in Theorem 1.1; more precisely, we prove:

Theorem 3.1. Let k be the algebraic closure of F3(t), the rational function field in one
indeterminate over F3. Let G be the subgroup of GL(k) generated by the matrices

1 10 1 ¢+ 0

01 1 and 0 1 ¢

0 0 1 0 0 1
Then G is isomorphic to Z /37 x Z/3Z. The invariant ring for the natural action of G on
the polynomial ring Sym(k®) does not have FFRT.

Lemma 3.2. Let k:=TF3(t) as above. Let G=17,/37 x 7./37 = (0, ), where 6> =id = ©°,
and 6T = 16. Then the group algebra kG equals the commutative ring kla,b]/(a’,b?),
where a:= 06— 1 andb:=1— 1. For & €k, set V() to be k> with the G-action determined
by the homomorphism G — GL3 (k) with

1 1 0 1 0
c— (0 1 1 and T— [0 o
0 0 1 0 1

S = R

Then:

(1) If o ¢ 3, then the action of G on V() is small.

(2) For o # B ink, the G-modules V(at) and V() are nonisomorphic.

(3) The Frobenius twist ¢(V () is isomorphic to V(a'/>*) as a G-module.
(4) Foreach a € k, the G-module V(o) is indecomposable.
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Proof. Setting
01 0
N:=1|0 0 1
0 0 0

and taking I to be the identity matrix, one has

[\

o't/ = (I+N)(I+aN)/ = {1+iN+ (i)N2] {IJrjaNJr <é> azNz]

= I+ (i+ja)N+ [(;) Fijot G) a2] N2,
s0 6/7/ — I has rank 2 unless a € 5 or (i, j) = (0,0) in F3. This proves (1).
For (2), note that the annihilators of V(&) and V() are the ideals (b — ata) and (b — Ba)

respectively in kG = k[a,b]/(a’,b*). These ideals are distinct when o # 3.
The representation matrices for o and 7 in GL(¢(V(«))) are

‘I+N)=I+N and  (I+aN)=I+a'/>*N

respectively, so ¢V (a) 2V (a'/3°) as G-modules, proving (3).

For (4), note that kG is an artinian local ring, so each nonzero kG-module has a nonzero
socle. The socle of V(a) is spanned by the vector (1,0,0), and hence has rank one. It
follows that V(@) is an indecomposable kG-module. ]

Proof of Theorem 3.1. Set S to be the polynomial ring Sym(k®), and 7 := S* G. For M a
nonzero module in 7Q grmod, set

LD(M) := min{i € Q| [M], # 0} and LRep(M) := [M] p ).

i.e., LRep(M) is the nonzero Q-graded component of M of least degree. Note that for d
a rational number, LRep(M(d)) and LRep(M) are isomorphic as G-modules. Suppose
next that LRep(M) is an indecomposable G-module; then there exists an indecomposable
TQgrmod-summand N of M such that

LD(N) =LD(M) and LRep(N) = LRep(M).

Note that N is uniquely determined up to isomorphism; set LInd(M) := N.
For M as above, and d € Q, define

My = D M);
i=dmodZ
which is also an element of 7Q grmod.
Since the degree 1/3¢-component of ¢S is ¢V (1) = V (¢'/3), one has
LRep (€S<1/3e>) = V(ll/3e),

which is indecomposable by Lemma 3.2 (4). The G-modules V (¢), V (t'/3), V(t1/32),
are nonisomorphic by Lemma 3.2 (2), so the isomorphism classes of the indecomposable
T-modules

Lind (S1)), Lind ('S;i/3)), LInd (S /32),
are distinct; specifically, any two of these indecomposable objects of Q grmod T are non-

isomorphic even after a degree shift. By Lemma 2.2, it follows that the indecomposable
Q-graded S¢-modules

(Llnd(s<1>))c, (Llnd(lS<1/3>))G, (LInd(2S<1/3z>))G,
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are nonisomorphic. These occur as indecomposable summands of ¢(S¢) for e > 1, so the
ring S does not have FFRT. O

Remark 3.3. For the interested reader, we give a presentation of the invariant ring S¢ in
Theorem 3.1. This was obtained using Magma [BCP], though one may verify all claims
by hand, after the fact. Take S := SymV to be the polynomial ring k[x;,x,x3], where
the indeterminates x;,x»,x3 are viewed as the standard basis vectors in V := k3. Then the
invariant ring S is generated by the polynomials
fl = X1,
f3i=t1x3xy — (t4 Dxixs — (1 + Dxpx3 4+ x3,
fs =1t = 1) +1(% + Do — 1t + Dajaoxs — (144 1) %025 — (14 1) (1 = 1)°x1%5
+ (1 + 1203303 + 2323 — (1 — 1)%x1x3 — (1 + Dxpodxs — (1 -+ 1)x3,
fg = )C3()C2 +X3)(X1 — X2 -|—)C3)(IX2 —|—x3)(tx1 +x2+1txo +X3)()C1 —1xX]1 — X2 +1tx2 —|—)C3)
X (t2x1 —1x7 +x3)(t2x1 —tx1 +x2 — txp +x3) (X1 +1x3 +12x —x2 —1x2 +x3),

where fo is the product over the orbit of x3. These four polynomials satisfy the relation

tt— DX+ DA -2 - D+ B+ DE+E+ DAL — fifo+ f3

that defines a normal hypersurface. Using this defining equation, one may see that S is
not F-pure. The defining equation also confirms that the a-invariant is a(S) = —3, as
follows from [Ha2, Theorem 3.6] or [GJS, Theorem 4.4] since G is a subgroup of SL(V)
without pseudoreflections.

4. RING OF INVARIANTS OF MONOMIAL ACTIONS

Let k be a field of positive characteristic, and let G be a finite group. Consider a finite
rank k-vector space V that is a G-module. A k-basis I of V is a monomial basis for the
action of G if for each g € G and y € T, one has gy € ky for some Y € I'. We say that V is
a monomial representation of G if V admits a monomial basis.

A monomial representation V as above is a permutation representation of G if V admits
a k-basis I" such that each g € G permutes the elements of I".

Theorem 4.1. Let k be a perfect field of positive characteristic, G a finite group, and V a
monomial representation of G over k. Then the ring of invariants (SymV )% has FFRT.

Proof. Set g := p°, where k has characteristic p and e € N. The action of G on S := SymV
extends uniquely to an action of G on S =S 1/4; note that

(81/9) = (%)
Let {xi,...,x,} be a monomial basis for V. The ring $'/4 then has an S-basis
4.1.1) B, :— {x’}l/"mxﬁ”/" | M €Z, 0<7Li<q—l}.

For u € B,, set y, to be the k-vector space spanned by the elements gu for all g € G.
Then S/9 is a direct sum of modules of the form SV, and the action of G on § 1/4 restricts
to an action on each SY;;. To prove that SY has FFRT, it suffices to show that there are only
finitely many isomorphism classes of S-modules of the form

(Syu)© ( Y Sgu)

g€eG
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as e varies. Fix i € B,, and consider the rank one k-vector space kui. Set

H:={geG | gueku}.
Let gi,...,8m be a set of left coset representatives for G/H, where g; is the group identity.
We claim that the map

(4.1.2) Yoo (SwW — (Sm)°¢
i=1

is an isomorphism of Q-graded S®-modules. Assuming the claim, (Su)? = (S ®; ku)?
is isomorphic, up to a degree shift, with a module of the form (S ®y x)¥, where x is a
rank one representation of H. Since there are only finitely many subgroups H of G, only
finitely many rank one representations y of H, and only finitely many isomorphism classes
of indecomposable Q-graded S¢-summands of (S ®; )" by the Krull-Schmidt theorem,
the claim indeed completes the proof.

It remains to verify the isomorphism (4.1.2). Given g € G, there exists a permuta-
tion 6 € &,, such that gg; = g¢;h; for each i, with h; € H. Given sy € (Su)f, one has

g(Lailsm) = Lsoihilsn) = Lgailsn) = Lailsu),

so ¥, gi(su) indeed lies in (Sy,)¢. Since each g; is S-linear and preserves degrees, the
same holds for their sum. As to the injectivity, if

Y gi(su) = Y (&is)(gik) = 0,

then g;s = 0 for each i, since g1, ..., g, are linearly independent over S. But then s = 0.
For the surjectivity, first note that an element of Sy, may be written as ), s;g;1t. Consider
fr=s1gI+ 5282+ +Smgmlt € (Syu)C.

Apply g; to the above; since g;f = f, and g1, ..., g, are linearly independent over S, it

follows that g;s1 = s;. But then
/= Zgi(slu),
l

so it remains to show that s;u € (Su)”. Fix h € H. Since hf = f, one has
Y hgi(sip) = Y gi(sip).
i i

As hg| € H and hg; ¢ H for i > 2, the linear independence of g| i, ..., gn Mt over S implies
that /’l(Sl,LL) =SIM. [l

Remark 4.2. For k a field of positive characteristic, and V' a finite rank permutation rep-
resentation of G, Hochster and Huneke showed that the invariant ring (SymV)¢ is F-
pure [HH2, page 77]; the same holds more generally when V is a monomial representation:

It suffices to prove the F-purity in the case where the field k is perfect. With the notation
as in the proof of Theorem 4.1, (S9)!/¢ is a direct sum of S¢-modules of the form (S7,)%,
where v, is the k-vector space spanned by gu for g € G. When u := 1 one has ¥, =k,
50 S indeed splits from (S°)'/4.

Remark 4.3. In Theorem 4.1 suppose, moreover, that V is a permutation representation
of G. Then one may choose a basis {x,...,x,} for V whose elements are permuted by G.
In this case, each g € G permutes the elements of B, for e € N, and each rank one repre-
sentation y: H — k* is trivial; it follows that (SG)I/ 4 is a direct sum of S%-modules of
the form S, for subgroups H of G.
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Example 4.4. Let p be a prime integer. Set S :=F,[xy,...,x,], and let G := (o) be the
cyclic group of order p acting on S by cyclically permuting the variables. The ring S
has FFRT by Theorem 4.1. Let g = p° be a varying power of p.

If p =2, then SC is a polynomial ring, and each (S%)'/4 is a free S°-module; thus, up
to isomorphism and degree shift, the only indecomposable summand of (S¢) 14 is 56,

Suppose p = 3. For y € B,, consider the kG-submodule y, = kgu of S'4. 1f the
stabilizer of i is G, then ¥, = ku is an indecomposable kG module, and (S )¢ = S%u = §¢
is an indecomposable S°-summand of (S)!/9. Since the only subgroups of G are {id}
and G, the only other possibility for the stabilizer of an element u of B, is {id}, in which
case the orbit is a free orbit, and ¥, = kG. We claim that

(S kG)C =8

is an indecomposable S®-module. Since the group G contains no pseudoreflections in the
case p > 3, Lemma 2.2 is applicable, and it suffices to verify that S ®; kG is an inde-
composable graded (G, S)-module. Note that k<G = k[c]/(1 — 6)” is an indecomposable
kG-module. Suppose one has a decomposition as graded (G, S)-modules

SRukG = P& P,
apply (—) ®gS/m where m is the homogeneous maximal ideal of S. Then
kG = P /mP ®P/mP;.

The indecomposability of kG implies that P,/mP; = 0O for some i. But then Nakayama’s
lemma, in its graded form, gives P, = 0, which proves the claim. Lastly, it is easy to see
that both of these types of G-orbits appear in B, if e >> 1 so, up to isomorphism and degree
shift, the indecomposable S¢-summands of (S%)!/4 are indeed S© and S.

Example 4.5. As a specific example of the above, consider the alternating group A3 with its
natural permutation action on the polynomial ring S := F3[x;,x2,x3]. For g = 3¢, consider
the S-basis (4.1.1) for S Va 1tis readily seen that the monomials

(x1x2x3)l/" where A €Z, 0<A<qg—1

are fixed by Az, whereas every other monomial in B, has a free orbit. It follows that,

ignoring the grading, the decomposition of (SA3)1/ ? into indecomposable $43-modules is
()1 = (§13)1 g s(@-a)/3,

Example 4.6. Let k be a perfect field of characteristic 2 that contains a primitive third
root @ of unity. Let G be the group generated by

o [a) O}
0 o
acting on § := k[x;,x;]. The invariant ring S¢ is the Veronese subring
k[x],xz](3> = k[x}, x¥3x2, x103, x3].
The action of G on S extends to an action on §'/9 where cr()ci1 / = a)qx} /4. For B, as

in (4.1.1), consider
sV4 = P sp.

ueB,
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Suppose i = x?l / qx;w 1 where A; are integers with 0 < A; < g — 1. Then
SGu if A+, =0 mod3,
Su)¢ = { S%x;u+S%x, if A1+ A =2¢g mod3,
( [t u q

SGx%,u JrSGx]xz/.LJrSGx%[J if A+ =g mod3.

The S®-modules that occur in the three cases above are, respectively, isomorphic to the
ideals SO, (x3,x3x2)SY, and (x},x2x2,x1x3)SC, that constitute the indecomposable sum-
mands of §'/4. The number of copies of each of these is asymptotically ¢* /3.

This extends readily to Veronese subrings of the form k[xj,x;] ) fork a perfect field of
characteristic p that contains a primitive nth root of unity; see [HL, Example 17].

Example 4.7. Let G := (o) be a cyclic group of order 4, acting on S := F[x],x2, X3, x4]
by cyclically permuting the variables. In view of [Be], the invariant ring S¢ is a UFD that
is not Cohen-Macaulay; S® has FFRT by Theorem 4.1.

We describe the indecomposable summands that occur in an S-module decomposition
of (SG)l/ 4 for g = 2°. The group G contains no pseudoreflections, so Lemma 2.2 applies.
Consider the S-basis B, for § 1/q ,asin (4.1.1). The monomials

(x1x2x3X4)Mq where 0 <A <g—1

are fixed by G; each such monomial u gives an indecomposable kG module y, = ku, and
an indecomposable S¢-summand (Su )¢ =2 S of (S¢)!/9. The monomials i of the form

()C1X3))Ll/q(xp€4)k2/q withO< A <g—1, A #A

have stabilizer H := (06?). In this case, ¥, = k[0]/(1 — 0)? is an indecomposable kG
module, corresponding to an indecomposable S¢-summand (S ®; }/,J)G =~ $H. Any other
monomial in B, has a free orbit that corresponds to a copy of (S ®; kG)? =< S.

Ignoring the grading, the decomposition of (SG)I/ % into indecomposable S®-modules is

2_
(5911 = (59)7 @ ()T g slat-a),

5. EXAMPLES THAT ARE FFRT BUT NOT F-REGULAR

The notion of F-regular rings is central to Hochster and Huneke’s theory of tight clo-
sure, introduced in [HH1]; while there are different notions of F-regularity, they coincide
in the graded case under consideration here by [LS, Corollary 4.3], so we downplay the
distinction. The FFRT property and F-regularity are intimately related, though neither
implies the other: The hypersurface

Fylx,y,2)/ (2 +y* +2°)

has FFRT for each prime integer p, though it is not F-regular if p € {2,3,5}; Stanley-
Reisner rings have FFRT by [Ka, Example 2.3.6], though they are F-regular only if they
are polynomial rings. For the other direction, the hypersurface

R:=Ty[s,t,u,v,w,x,y, 2]/ (st x® + sv?y? + tuvxy + tw?z?)

is F-regular for each prime integer p, but admits a local cohomology module H&y_z) (R)
with infinitely many associated prime ideals, [SS, Theorem 5.1], and hence does not
have FFRT by [TT, Corollary 3.3] or [HoN, Theorem 1.2]. Nonetheless, for the invari-
ant rings of finite groups that are our focus here, F-regularity implies FFRT; this follows
readily from well-known results, but is recorded here for the convenience of the reader:
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Proposition 5.1. Let k be a perfect field, G a finite group, and V a finite rank k-vector
space that is a G-module. If the invariant ring (SymV)G is F-regular, then it has FFRT.

Proof. An F-regular ring is splinter by [HH3, Theorem 5.25], i.e., it is a direct summand
of each module-finite extension ring. Hence, if (Sym V)G is F-regular, then it is a direct
summand of SymV. But then it has FFRT by [SV, Proposition 3.1.4]. U

We next present a family of examples where (Sym V)Y is not F-regular or even F-pure,
but has FFRT:

Example 5.2. Let p be a prime integer, V := IE‘;,‘, and G the subgroup of GL(V) generated
by the matrices

o= O O
- o O O

0
1
1
0

—_—0 O =
SO O =
[N el el

0
1
0 b
1

oo O =
(=R -l
S = O =
[ el
(=Nl e}

It is readily seen that the matrices commute, and that the group G has order p>. Consider
the action of G on the polynomial ring S := SymV = F, [x1,x2,x3,x4], where x1,x2,x3,x4
are viewed as the standard basis vectors in V. While x; and x, are fixed under the action,
the orbits of x3 and x4 respectively consist of all linear forms

x3+ ax) + yx and X4+ Bx + oxa,

where a, 3,7 are in IF,,. The respective orbit products are

X1 X2 X3 X1 X2 X4
p p p p p p
det [ X7 X X3 det [ X} X X4
2 2 2 2 2 2
LA N
U= - and Vi=
X1 X2 X1 X2
det[ » p} det [ » p]
X X XX

In addition to these, it is readily seen that the polynomial ¢ := xle‘7 — x’f X4 +x2x§ — x§x3 is
invariant. These provide us with a candidate for the invariant ring, namely

C:=TFyxi,x0,1,u,v].
Note that S is integral over C as x3 and x4 are, respectively, roots of the monic polynomials

[T T+oxi+vx)—u and [T (T+Bxi+ox)—v

o,y€l, B,ack,
that have coefficients in C. Using the first of these polynomials, one also sees that
[frac(C)(x3) : frac(C)] < p°.
Bearing in mind that z € C, one then has [frac(C)(x3,x4) : frac(C)(x3)] < p, and hence
[frac(S) : frac(C)] < p°.

Since C C S¢ C S and |G| = p?, it follows that frac(C) = frac(S¢). To prove that C = S,
it suffices to verify that C is normal. Note that C must be a hypersurface; we arrive at its
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defining equation as follows: One readily verifies the identity

p
X X X1 X Xy X
det ,1, ,2, det ;, ?, + det ?, f,
X, Xy x| Xy X, X3

X1 X2 X4 X1 X2 X3

p p p p p

- Xllj det | X xg Xy | — xg det | X] X X3
2 2 2 2 2 2

p p p p p p

)Cl x2 X4 Xl )CZ .X'3

p
X1 X2 X1 X4 X3 X
= |det| , , det| , | +det| , 13, ,
X; X xX; X X, X5
which may be rewritten as

p
X1 X2 X1 X2 X1 X2 X1 X2
p _ P _ p _
tP det { » xp} vx; det LCP xp} ux, det [x” p] =t <det [ P ,,]) .

X5 1 M 1 " A Y]
Dividing by the determinant that occurs on the left, one then has
~1
(5.2.1) P — vl —uxh) = t(x1xh —xfxp)P 7

The Jacobian criterion shows that a hypersurface with (5.2.1) as its defining equation must
be normal; it follows that C is indeed a normal hypersurface, with defining equation (5.2.1),
and hence that C is precisely the invariant ring S¢. Equation (5.2.1) shows that S is not
F-pure: 7 is in the Frobenius closure of (x; ,xz)SG, though it does not belong to this ideal.

It remains to prove that the ring C = S¢ has FFRT. For this, note that after a change of
variables, one has

SC = T, [xy,x,8,1, 9] /(17 — v} — ixh).
But then S¢ has FFRT by [Sh1, Observation 3.7, Theorem 3.10]: Set A := Fplx1,x2,u, V],
and note that
A C 89 C AP,

where A is a polynomial ring.
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