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ABSTRACT

The classical Poincaré conjecture that every homotopy 3-sphere is diffeo-
morphic to the 3-sphere is confirmed by Perelman in arXiv papers solving
Thurston’s program on geometrizations of 3-manifolds. A new confirmation
of this conjecture is given by a method of 4D topology. For this proof, the
spun torus-knot of every knot in every homotopy 3-sphere is observed to be a
ribbon torus-knot in the 4-sphere, where Smooth 4D Poincaré Conjecture and
Ribbonness of a sphere-link with (not necessarily meridian-based) free funda-
mental group are used. By examining a disk-chord system of a ribbon solid
torus bounded by the spun torus-knot, it is proved that the knot belongs to a
3-ball in the homotopy 3-sphere. Then by Bing’s result, it is confirmed that
the homotopy 3-sphere is diffeomorphic to the 3-sphere.
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1. Introduction

A homotopy 3-sphere is a smooth 3-manifold M homotopy equivalent to the 3-
sphere S3. The following Poincaré Conjecture [22, 23] is positively shown by Perelman
in arXiv papers [20, 21] solving positively Thurston’s program [24] on geometrizations
of 3-manifolds (see [19] for detailed historical notes).

Poincaré Conjecture. Every homotopy 3-sphere M is diffeomorphic to S3.
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A new confirmation of this result is presented here by combining Smooth 4D
Poincaré Conjecture and Free Ribbon Lemma for an S2-link in the 4-sphere S4 with
R. H. Bing’s result [2, 3] on Poincaré Conjecture. A homotopy 4-sphere is a smooth
4-manifold X homotopy equivalent to the 4-sphere S4. The following conjecture was
a folklore conjecture.

Smooth 4D Poincaré Conjecture. Every smooth homotopy 4-sphere X is diffeo-
morphic to S4.

The positive proof of this conjecture is shown in [15]. A surface-link in S4 is a
surface L smoothly embedded in S4. When L is connected, it is a surface-knot. If all
components of L are 2-spheres, then it is an S2-link. A surface-link L in S4 is trivial if
L bounds disjoint handlebodies in S4, and a ribbon surface-link if L is equivalent to a
surface-link obtained from a trivial S2-link O by surgery along disjointedly embedded
1-handles on O in S4. The following lemma is shown in [16] as Free Ribbon Lemma
and used in Section 3.

Free Ribbon Lemma. Any S2-link L in S4 with free fundamental group π1(S
4\L, b)

is a ribbon S2-link in S4.

The proof of this lemma is moved from this preprint version to the paper [16]
(for completeness of the argument), which is done by using Smooth 4D Poincaré
Conjecture and Smooth Unknotting Conjecture explained as follows:

Smooth Unknotting Conjecture. Every smooth surface-link L in S4 with a
meridian-based free fundamental group π1(S

4 − L, b) is a trivial surface-link.

The proof of this conjecture is shown by [12, 13, 14]. Artin’s spinning construction
of a knot k in S3 in [1] to construct the spun S2-knot K(k) in the 4-sphere S4

allows us to generalize to a connected graph γ in every homotopy 3-sphere M to
construct the spun S2-linkK(γ) in a homotopy 4-sphere X(M) which is diffeomorphic
to S4 by Smooth 4D Poincaré Conjecture, so that X(M) is identified with S4. This
construction is applied to a Heegaard graph γ ofM (associated to a Heegaard splitting
of M). Then the spun S2-link K(γ) is an S2-link in X(M) with free fundamental
group (not always meridian-based free group). By Free Ribbon Lemma, the spun S2-
link K(γ) is a ribbon S2-link in X(M). It is observed that for every knot k in every
homotopy 3-sphere M , there is a Heegaard graph γ of M such that k is contained in
the loop system of ℓ(γ) of γ. This means that the spun S2-knot K(k) of every knot
k in every homotopy 3-sphere M is a ribbon S2-knot in X(M). Then, by definition,
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the spun torus-knot T (k) of every knot k in every homotopy 3-sphere M is a ribbon
torus-knot in X(M). Thus, the spun torus-knot T (k) always bounds a ribbon solid
torus VR in X(M). By an argument of a disk-chord system of VR bounded by the
spun torus-knot T (k) in X(M), the following result is shown.

Theorem 1.1. Every knot k in every homotopy 3-sphere M belongs to a 3-ball D3

in M .

By combining Theorem 1.1 with the following result of Bing in [2, 3], it is proved
that every homotopy 3-sphere M is diffeomorphic to S3. Thus, the proof of Poincaré
conjecture is completed.

Bing’s Theorem. A homotopy 3-sphere M is diffeomorphic to S3 if every knot k in
M belongs to a 3-ball in M .

Outline of the proof of Poincaré Conjecture is as follows:

(1st Step) By using Smooth 4D Poincaré Conjecture, show that Artin’s spinning
construction of every Heegaard graph γ of every homotopy 3-sphere M gives a spun
S2-link K(γ) in S4 with free fundamental group (not always meridian-based free
group).

(2nd Step) By Free Ribbon Lemma, the spun S2-link K(γ) is a ribbon S2-link in
S4.

(3rd Step) Show that every knot k in M is contained in a loop system ℓ(γ) of a
Heegaard graph γ of M , so that the spun S2-knot K(k) of k is a ribbon S2-knot in
S4.

(4th Step) By definition of a ribbon surface-knot, show that the spun torus-knot
T (k) of k in M is a ribbon torus-knot in S4.

(5th Step) By using a ribbon solid torus VR bounded by the spun torus-knot T (k)
in S4 and a disk-chord system of VR, show that K belongs to a 3-ball D3 in M .

(6th Step) By Bing’s theorem, M is diffeomorphic to S3.

In Section 2, Artin’s spinning construction of a connected graph in a homotopy
3-sphere is explained. In Section 3, an argument of a disk-chord system of a ribbon
solid torus bounded by a ribbon torus-knotis explained. In Section 4, the proof of
Theorem 1.1 is done.
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2. Artin’s spinning construction of a connected graph in a homotopy 3-
sphere

Throughout this section, M denotes a homotopy 3-sphere unless otherwise men-
tioned. For a homotopy 3-sphereM , letM (o) be the compact once-punctured manifold
cl(M \B) of M for a 3-ball B in M . Let

S = ∂B = ∂M (o)

be the boundary 2-sphere of M (o). The closed smooth 4-manifold X(M) defined by

X(M) = M (o) × S1 ∪ S ×D2

is called the spun manifold of M with axis 4-submanifold S ×D2. As a convention,
the 3-submanifold M (o) × 1 of the product M (o) × S1 is identified with M (o). In
particular, a point (q, 1) ∈ M (o) × 1 is identified with the point q ∈ M (o). This
4-manifold X(M) is a smooth homotopy 4-sphere by the van Kampen theorem and
a homological argument and hence X(M) is diffeomorphic to the 4-sphere S4 by
Smooth 4D Poincaré Conjecture. From now on, the identification X(M) = S4 is
fixed. A legged loop with base point v is the union k ∪ ω of a loop k and an arc ω
joining the base point v with a point of k. The arc ω is called a leg. A legged loop
system with base point v is the union

γ = ∪n
i=1ℓi ∪ ωi

of n legged loops ℓi ∪ ωi (i = 1, 2, . . . , n) meeting only at the same base point v.
Let ℓ(γ) = ∪n

i=1ℓi = ℓ∗ denote the loop system of the legged loop system γ. Let
ω∗ = ∪n

i=1ωi and v∗ = ℓ∗ ∩ ω∗. A regular neighborhood B of ω∗ in M is taken as
a 3-ball B used for the compact once-punctured manifold M (o) = cl(M \ B) of M .
Deform the subgraph γ ∩ B of γ so that

ω∗ ⊂ B, ω∗ ∩ S = v∗ and ℓ∗ ∩B = ℓ∗ ∩ S = a′∗

for a regular neighborhood arc system a′∗ of v∗ in ℓ∗. Let

a(γ) = ∪n
i=1ai = a∗

for a proper arc ai = cl(ℓi \ a′i) (i = 1, 2, . . . , n) in M (o). Let

ȧ(γ) = ∂a∗ = ∂a′∗

be the set of 2n points in the boundary 2-sphere S of M (o). The spun S2-link of the
graph γ is the S2-link K(γ) in the 4-sphere X(M) defined by

K(γ) = a(γ)× S1 ∪ ȧ(γ)×D2.

4



Lemma 2.1. The inclusion M (o) \ a(γ) ⊂ X(M) \K(γ) induces an isomorphism

σ : π1(M \ γ, v+) → π1(X(M) \K(γ), v+)

sending a meridian system of the proper arc system a(γ) in M (o) to a meridian system
of K(γ), where the base point v+ is taken in S \ a∗

Proof of Lemma 2.1. Note that there is a canonical isomorphism

π1(M
(o) \ a(γ), v+) ∼= π1(M \ γ, v+).

Then the desired isomorphism σ is obtained by applying the van Kampen theorem
between (M (o)\a(γ))×S1 and (S\ȧ(γ))×D2. This completes the proof of Lemma 2.1.
□

Here is a note on Lemma 2.1.

Note 2.2. A general connected graph γ with Euler characteristic χ(γ) = 1 − n in
M is deformed into a legged loop system γ in M by choosing a maximal tree to
shrink to a base point v. Note that there are only finitely many maximal trees of γ
such that the loop systems ℓ(γ) of the resulting legged loop systems γ are distinct as
links. By Lemma 2.1, we can obtain finitely many distinct spun S2-links in S4 with
isomorphic fundamental groups obtained by taking different maximal trees of the
connected graph γ. This is a detailed explanation on the spun S2-link of a connected
graph associated with a maximal tree in [6, p.204] when M = S3.

When a homotopy 3-sphere M is given by a Heegaard spitting V ∪ V ′ pasting
along a Heegaard surface F = ∂V = ∂V ′ of genus n, a legged loop system γ with loop
system ℓ(γ) of 2n loops is constructed as follows. A spine of a handlebody V of genus
n is a legged loop system γV in F = ∂V with base point v such that the inclusion
map γV → V induces an isomorphism π1(γ, v) → π1(V, v). A regular neighborhood V̇
of γV in F is a planar surface in F . By [4, Theorem 10.2], there is a diffeomorphism
(V̇ × [0, 1], V̇ × 0) → (V, V̇ ) sending every point (x, 0) ∈ V̇ × 0 to x ∈ V̇ . The surface
V̇ is called a spine surface of V . Let γV and γV ′ be spines of the handlebodies V and
V ′ in F with the same base point v, respectively. A Heegaard graph of M is a legged
loop system γ = γM in M with base point v which is the union of legged loop systems
γ+
V and γ+

V ′ obtained from γV and γV ′ by pushing γV \ v and γV ′ \ v into the interiors
IntV and IntV ′, respectively. The following lemma is obtained.
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Lemma 2.3. For every Heegaard graph γ of every homotopy 3-sphere M , the funda-
mental group π1(X(M) \K(γ), v+) of the spun S2-link K(γ) in the 4-sphere X(M)
is a free group of rank 2n.

Proof of Lemma 2.3. The closed complement cl(M \ N(γ)) for a regular neigh-
borhood N(γ) of γ in M is diffeomorphic to the handlebody F (o) × [−1, 1] for the
once-punctured surface F (o) of F . Since the fundamental group π1(F

(o) × [0, 1], v+)
with base point v+ taken in (∂F (o)) × [0, 1] is a free group of rank 2n, the desired
result is obtained from Lemma 2.1. □

It is noted that this free group in Lemma 2.3 is not necessarily a meridian-based
free group. Here is an example.

Figure 1: A legged loop system γ in S3 with free fundamental group of rank 2

Example 2.4. Let γ be a legged loop system with base point v in M = S3 illustrated
in Fig. 1 with π1(M \γ, v+) a free group of rank 2. In fact, a trivial legged loop system
is obtained by sliding an edge along another edge, so that π1(M \ ℓ(γ), v+) is a free
group of rank 2. A regular neighborhood V of γ in M and the closed complement
V ′ = cl(M \ V ) constitute a genus 2 Heegaard splitting V ∪ V ′ of M by noting that
the 3-manifold V ′ is a handlebody of genus 2 by the loop system theorem and the
Alexander theorem (cf. e.g., [6]). Thus, the union V ∪ V ′ is a genus 2 Heegaard
splitting of M . Since the legged loop system γ with base point v is a spine of V
by sliding the base point v into ∂V , there is a Heegaard graph γM of M with γ as
γ+
V . By Lemma 2.3, the spun S2-link K(γM) in the 4-sphere X(M) = S4 has the

free fundamental group π1(X(M) \K(γM), v+) of rank 4, which does not admit any
meridian basis because the spun S2-link K(γM) in S4 contains, as a component, the
spun trefoil S2-knot whose fundamental group is known to be not infinite cyclic.
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Given a proper arc system a∗ in M (o), there is a legged loop system γ in M with
the proper arc system a(γ) = a∗ in M (o). The spun S2-link K(γ) in X(M) is uniquely
determined by the arc system a∗ and thus denoted by S(a∗). The following lemma is
used toward the final step of the proof of Poincaé conjecture.

Lemma 2.5. Let a∗ be a proper arc system in a compact once-punctured manifold
M (o) = cl(M \ B) of a homotopy 3-sphere M . If the spun S2-link S(a∗) in the 4-
sphere X(M) is a trivial S2-link, then the proper arc system a∗ is in a boundary-collar
S × [0, 1] of M (o).

Proof of Lemma 2.5. By Lemma 2.1, the fundamental group π1(M
(o) \ a(γ), v+)

is a meridian-based free group. Consider the 2-sphere S as the boundary

∂(d× [0, 1]) = d× 0 ∪ (∂d)× [0, 1] ∪ d× 1

of the product d× [0, 1] for a disk d so that d× 0 contains one end of the proper arc
system a∗ and d×1 contains the other end of the proper arc system a∗. Let (E;E0, E1)
be the triplet obtained from (M (o), d× 0, d× 1) by removing a tubular neighborhood
of a∗ in M (o). For v+ ∈ E0, the inclusion E0 ⊂ E induces an isomorphism

π1(E0, v
+) → π1(E, v+).

By [4, Theorem 10.2], E is diffeomorphic to the connected sum of the product E0 ×
[0, 1] and a homotopy 3-sphere. This means that the proper arc system a∗ is in a
boundary-collar S × [0, 1]. This completes the proof of Lemma 2.5. □

3. A ribbon surface-link and a disk-chord system of a ribbon handlebody
system

By combining Lemmas 2.3 with Free Ribbon Lemma in Section 1, the following
lemma is obtained.

Lemma 3.1. The spun S2-links K(γ) of every Heegaard link γ of every homotopy
3-sphereM is a ribbon S2 link in X(M).

The following lemma makes a connection betwen a knot in M and a Heegaard
graph of M .

Lemma 3.2. For every knot k in every homotopy 3-sphereM , there is a Heegaard
graph γ of M such that the knot k is equivalent to a component of the loop system
ℓ(γ) of γ in M .
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Proof of Lemma 3.2. By considering k as a polygonal loop in M , there is a
triangulation T of M whose 1-skeleton T (1) contains the knot k. The graph T (1) is
deformed into a legged loop system γ′ in M so that k is a component of the loop
system k(γ′). Let V ′ be a regular neighborhood of γ′ in M which is a handlebody.
The legged loop system γ′ is deformed into a spine γV ′ of the handlebody V ′. The
closed complement V = cl(M \ V ) is also a handlebody, so that there is a Heegaard
splitting V ∪ V ′ of M . Hence there is a Heegaard graph γ of M obtained from γV
and γV ′ such that k is equivalent to a component of the loop system ℓ(γ). □

By Lemma 3.2, there is a Heegaard graph γ of M whose loop system contains
the knot k. By Lemma 3.1, the spun S2-link K(γ) is a ribbon S2-link in X(M), so
that the spun S2-knot K(k) is a ribbon S2-knot in X(M) because any component of
a ribbon S2-link in S4 is a ribbon S2-knot in S4 by definition. Thus, the following
result is obtained.

Lemma 3.3. For every knot k in every homotopy 3-sphere M , the spun S2-knot
K(k) is a ribbon S2-knot in X(M).

For a knot k in the interior of M (0) = cl(M \B) for a 3-ball B, the spun torus-knot
of k is a torus-knot T (k) in X(M) given by the inclusions

T (k) = k × S1 ⊂ M (o) × S1 ⊂ M (o) × S1 ∪ S ×D2 = X(M).

The spun torus-knot T (k) in X(M) is uniquely constructed up to choices of a 3-ball
B. The following lemma is important to our purpose.

Lemma 3.4. For every knot k in every homotopy 3-sphere M , the spun torus-knot
T (k) is a ribbon torus-knot in X(M).

Proof of Lemma 3.4. From construction, the spun S2-knot K(k) in X(M) is
obtained from T (k) by the unique 2-handle surgery, so that the spun torus-knot
T (k) is obtained from the spun S2-knot K(k) by the converse 1-handle surgery. By
definition, the spun torus-knot T (k) is a ribbon torus-knot, completing the proof. □

Assume that a ribbon surface-link L is obtained from a trivial oriented S2-link O
by surgery along a 1-handle system h∗ of disjointedly embedded oriented 1-handles
hj (j = 1, 2, . . . , s) (for some s) on O in S4. A ribbon handlebody system bounded
by a ribbon surface-link is discussed here (see[17, II.3.61]). Let B∗ be a system of
disjoint 3-balls Bi (i = 1, 2, . . . ,m) in S4 bounded by O. The intersection hj ∩ O
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Figure 2: Two arcs of k near a disk di drawn as thick lines

consists of two disks, called the attaching disks of hj to O. A meridian disk of the
1-handle hj is a proper disk in hj parallel to any one of the attaching disks. By
an isotopic deformation of the 1-handle system h∗, the intersection h∗ ∩ IntBi can
be assumed to be a meridian disk system (possible empty) in h∗, whose number of
meridian disks is called the ribbon index of h∗ in Bi. A ribbon handlebody system of
a ribbon surface-link L is the union

VR = B∗ ∪ h∗,

which is an immersed handlebody system bounded by L in S4. The ribbon index
of VR is the total number of the ribbon indexes of h∗ in Bi for all i. The disk-chord
system of a ribbon surface-link L is the pair (d∗, α∗) of a disk system d∗, called a based
disk system, and an arc system α∗, called a chord system, in S4 obtained from the
ribbon handlebody system VR = B∗ ∪ h∗ by shrinking the 3-ball Bi into a disk di for
every i and then shrinking the 1-handle hj into a core arc αj of hj spanning the loop
system o∗ = ∂d∗, called a based loop system, for every j. See Fig. 2 (1) for a situation
around a disk in a based disk system. From construction, the ribbon index of h∗ in
Bi is equal to the number of the transverse intersection points α∗ ∩ Intdi, called the
chord index of α∗ in di. The chord index of the disk-chord system (d∗, α∗) is the total
number of the chord indexes of α∗ in di for all i. By the orientations of L and S4, the
based disk system d∗ can be uniquely oriented, and the ribbon handlebody system
VR and the ribbon surface-link L are uniquely recovered from the disk-chord system
(d∗, α∗) by thickening the chord system α∗ and the based disk system d∗, where an
argument in [5] is needed for uniqueness of the embedded 1-handle system. Let

∆2 ⊂ ∆3 ⊂ ∆4

be the inclusions such that ∆4 is a 4-ball in S4, ∆3 is a proper 3-ball of ∆4 and ∆2
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is a proper disk of ∆3. A disk-chord system (d∗, α∗) of L in S4 can be moved into
Int∆3 isotopically by first moving a neighborhood of the based disk system d∗ into
Int∆3 and then moving the remaining part of the arc system α∗ into Int∆3 (see [17,
II.3.61]). So, assume that a disk-chord system (d∗, α∗) of L is in Int∆3. The ribbon
handlebody system VR and the ribbon surface-link L are uniquely realized from a
disk-chord system (d∗, α∗) of L in Int∆4. A chord graph of L is the graph o∗ ∪ α∗ in
Int∆3 obtained from a disk-chord system (d∗, α∗) in Int∆3 by taking o∗ = ∂d∗. A
chord diagram of L is a diagram C(o∗, α∗) in Int∆2 for a chord graph o∗ ∪α∗ of L in
Int∆3. A ribbon surface-link L in S4 is uniquely realized in Int∆4 from a chord graph
o∗ ∪α∗ of L in Int∆3 and also from a chord diagram C(o∗, α∗) of L in Int∆2, because
the based loop system o∗ in Int∆3 constructs uniquely the trivial S2-link O by the
Horibe-Yanagawa lemma in [17]. On the other hand, a ribbon handlebody system VR

of L cannot be uniquely recovered because in general a disjoint disk system d∗ in the
interior of ∆3 with ∂d∗ = o∗ is not unique (see [17, Lemma I.1.4]). So, to fix a ribbon
handlebody system VR of L, every loop of the based loop system o∗ should be fixed
as it is shown in of Fig. 2 (2). The following observation is obtained from the above
argument.

Observation 3.5. A ribbon surface-link L and a ribbon handlebody system VR in
S4 are uniquely realized in Int∆4 from a disk-chord system (d∗, α∗) in Int∆3, and also
from a chord graph o∗ ∪ α∗ in Int∆3 or a chord diagram C(o∗, α∗) in Int∆2 by fixing
every loop of the based loop system o∗ as it is shown in Fig. 2 (2).

A chord diagram has the advantage of being easy to handle. For example, the
moves on chord diagrams for equivalent ribbon surface-links are known in [7, 8, 9, 10].
A ribbon handlebody VR bounded by a ribbon torus-knot T is called a ribbon solid
torus. The following lemma is an easy exercise of the moves on chord diagrams in [7]
and used in Section 4.

Lemma 3.6. Every ribbon solid torus of ribbon index n bounded by a ribbon torus-
knot T in Int∆4 is deformed into a ribbon solid torus VR with ∂VR = T which is
realized by a disk-chord system (d∗, α∗) in Int∆3 of Int∆4 where

d∗ = {di| i = 1, 2, . . . , n}, α∗ = {αi| i = 1, 2, . . . , n} and o∗ = ∂d∗

such that

(1) the chord αi connects oi to oi+1 for every i (i = 1, 2, . . . , n) with on+1 = o1, and

(2) the chord index of α∗ to di is equal to 1 for every i.
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The disk-chord system (d∗, α∗) in Lemma 3.6 is called a circular primitive disk-
chord system or briefly a CP disk-chord system (see Fig. 3 (1), (2) for examples). The
spine of a disk-chord system (d∗, α∗) is a graph Γ obtained from d∗ ∪ α∗ by shrinking
every disk di into a vertex vi for every i. A regular maximal tree of Γ is a tree τ+ in Γ
obtained from a maximal tree τ of Γ by taking a regular neighborhood of τ in Γ. A
regular maximal tree of a disk-chord system (d∗, α∗) is a disk-chord system τ+(d∗, α∗)
obtained from a regular maximal tree τ+ of the spine Γ by making every vertex vi in
τ+ back to the original disk di for every i. Let τ̇+(d∗, α∗) = τ̇+ be the set of all the
degree 1 vertexes of τ+. The arc system

e∗ = cl(Γ \ τ+) = cl((d∗ ∪ α∗) \ τ+(d∗, α∗))

is called the complementary arc system of a regular maximal tree τ+(d∗, α∗) in a
disk-chord system (d∗, α∗).

Figure 3: CP disk-chord systems of ribbon solid tori (1), (2) bounded by the spun
torus-kot of the trefoil knot (3)

4. Main result: Proof of Theorem 1.1

Throughout this section, the proof of Theorem 1.1 is done. Let k be a knot in
a homotopy 3-sphere M . If k is a trivial knot in M , then the knot k belongs to
a 3-ball D3 in M . So, assume that k is a non-trivial oriented knot in M . Since
the spun torus-knot T (k) is a ribbon torus-knot in X(M) by Lemma 3.4, there is a
ribbon solid torus VR of some ribbon index n with ∂VR = T (k) in Int∆4 which is
realized by a CP disk-chord system (d∗, α∗) of chord index n in Int∆3 and a chord
diagram C(d∗, α∗) in Int∆2 by Observation 3.5. Since there is a meridian-preserving
isomorphism π1(M \ k, v+) → π1(X(M) \T (k), v+) by the van Kampen theorem, the
longitude of k in M represents an infinite order element in the fundamental group
π1(X(M)\T (k), v+). This implies that an oriented meridian loop of VR is a uniquely
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determined loop in T (k) up to isotopies of T (k), and the CP disk-chord system (d∗, α∗)
is assumed that k meets di with just one boundary arc and just one interior point
transversely for every i, as in Fig. 2 (1) (see also Fig. 3 (1), (2) for examples). Assume
that k is in IntM (o). The following lemma is obtained.

Sublemma 4.1. The disk system di (i = 1, 2, . . . , n) is deformed into IntM (o) by an
isotopy of X(M) keeping the knot k fixed.

Proof of Sublemma 4.1. For every i, let ci be a simple arc in di connecting the point
k∩ Int(di) to a point in the arc k∩∂di. The arc system ci (i = 1, 2, . . . , n) is deformed
into a bi-collar neighborhood M (o) × [−1, 1] of M (o) with M (o) × 0 = M (o) in X(M)
by an isotopy keeping M (o) fixed. Then the arc system ci (i = 1, 2, . . . , n) is projected
into M (o) by a general position argument. A deformed disk system di (i = 1, 2, . . . , n)
in M (o) is obtained from the arc system ci (i = 1, 2, . . . , n) in M (o) by widening them
as a small disk system, completing the proof of Sublemma 4.1. □

By Sublemma 4.1, consider that the CP disk-chord system (d∗, α∗) of VR is in
M (o). The spine Γ of (d∗, α∗) is a degree 4 graph in M (o). For every regular maximal
tree τ+ of Γ, there is a disk δ2 in M (o) with τ̇+ = τ+∩∂δ2 such that a neighborhood of
every degree 4 vertex of τ+ in δ2 gives Fig. 2 (1) in τ+(d∗, α∗). The disk δ2 is called a
regular support disk for τ+(d∗, α∗). This disk δ2 is moved into the 2-sphere S = ∂M (o).
Let δ3 = δ2× [0, 1] be a collar of δ2 in M (o) which is a 3-ball with δ3∩S = δ2×0 = δ2.
Let e∗ be the complementary arc system of τ+(d∗, α∗) in (d∗, α∗) consisting of arcs
ei (i = 1, 2, . . . , n+1), where n is the chord index of the CP disk-chord system (d∗, α∗)
which is determined by the Euler characteristics χ(Γ) = −n. The knot k in M (o) is
deformed in M (o) so that the intersection t = k∩ δ3 is a tangle in δ3 whose projection
image under the canonical projection

δ3 = δ2 × [0, 1] → δ2

is the regular maximal tree τ+ in the regular support disk δ2 by pushing τ+(d∗, α∗) \
τ̇+(d∗, α∗) into δ2 × (0, 1) and then by creating a crossing point by the move from
(1) to (3) in Fig. 2. Then the regular maximal tree τ+ in δ2 can be regarded as a
tangle diagram of t in δ2. Let [t, τ+] be the disk union between the tangle t and
the graph τ+ in the preimage of τ+ under the canonical projection δ3 → δ2. The
following sublemma is essentially observed in [11, Theorem 2.3 (3)] for an inbound
arc diagram.

Sublemma 4.2. The spun S2-link T (t) of a tangle t in δ3 in the 4-disk

U4 = δ3 × [0, 1]× S1 ∪ δ2 ×D2 ⊂ M (o) × S1 ∪ S ×D2 = X(M)
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bounds a ribbon 3-ball system

V ′
R = [t, τ+]× S1 ∪ τ+ ×D2

which extends to a ribbon solid torus VR of the spun torus-knot T (k) such that the
compact complement cl(VR \ V ′

R) is a disjoint 3-ball system bounded by the spun
S2-link S(e∗) in X(M).

Proof of Sublemma 4.2. If t is a 1-string tangle with τ+ a simple arc, then
V ′
R = [t, τ+] × S1 ∪ τ+ × D2 is a 1-handle thickening t, that is a ribbon 3-ball with

ribbon index 0. If t is a 2-string tangle with τ+ just one degree 4 vertex graph, then
t is the 2-tangle in Fig. 2 (3) and V ′

R is a ribbon 3-ball system with ribbon index
1 giving the disk chord system of Fig. 2 (1). In the general case of t and τ+, as a
combination result of these two observations, V ′

R is a ribbon 3-ball system giving a
disk-chord system τU(d∗, α∗) in the 4-disk U4 such that τU(d∗, α∗)) is diffeomorphic
to the regular maximal tree τ+(d∗, α∗) of (d∗, α∗) in δ3. Let δ4 be a 4-ball in U with
δ3 as a proper 3-ball. The following sublemma is needed.

Sublemma 4.3. There is an orientation-preserving diffeomorphism of X(M) sending
(U4, τU(d∗, α∗)) to (δ4, τ+(d∗, α∗)).

Proof of Sublemma 4.3. For the regular maximal tree τ+ in the regular support
disk δ, find a 2-disk δ20 ⊂ Intδ such that τ ′ = δ20 ∩ τ+ has cl(τ+ \ τ ′) ∼= τ̇+ × [0, 1] and
construct a 4-ball δ40 ⊂ IntU with δ20 as a trivial proper disk. Then construct a proper
3-ball δ30 ⊂ δ40 with δ20 as a proper disk. Note that there is an orientation-preserving
diffeomorphism of S4 sending the triad (δ40, δ

3
0, δ

2
0) to the triad (δ4, δ3, δ2) and the

regular maximal tree τ ′(d∗, α∗) of (d∗, α∗) given by τ ′ in δ30 to τ+(d∗, α∗) in δ3. Since
cl(U4 \ δ40) is diffeomorphic to S3 × [0, 1] (see [15]), there is an orientation-preserving
diffeomorphism

(cl(U4 \ δ40), cl(U4 \ δ40) ∩ τ+) → (S3, τ̇+)× [0, 1].

Then there is a triad (U4, U3, U2) with U3 a proper 3-ball in U4 and U2 a proper 2-
disk in U3 such that there is an orientation-preserving diffeomorphism of S4 sending
the triad (U4, U3, U2) to the triad (δ40, δ

3
0, δ

2
0) and τU(d∗, α∗) in U3 to τ ′(d∗, α∗) in

δ30 . Thus, there is an orientation-preserving diffeomorphism of S4 sending the triad
(U4, U3, U2) to the triad (δ4, δ3, δ2) and τU(d∗, α∗) in U3 to τ+(d∗, α∗) in δ3. This
completes the proof of Sublemma 4.3. □

By Sublemma 4.3, the ribbon 3-ball system V ′
R realizing τU(d∗, α∗) in U4 extends to

a ribbon solid torus VR in S4. This means that the spun S2-link S(e∗) inX(M) bounds
the disjoint 3-ball system cl(VR \ V ′

R). This completes the proof of Sublemma 4.2. □
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By Lemma 2.5 and Sublemma 4.2, the proper arc system e∗ and hence k are in
the 3-ball D3 which is a regular neighborhood of δ2 × [0, 1] in M (o). This completes
the proof of Theorem 1.1. □

5. Conclusion

A general problem arising from this paper is how any given ribbon solid torus
bounded by the spun torus-knot T (k) of a knot k relates to a knot diagram D(k) of
k. For example, the CP disk-chord system (d∗, α∗) in Fig. 3 (1) is seen to represent a
ribbon solid torus bounded by the spun torus-knot T (k) of the trefoil knot k in Fig. 3
(3). In fact, the ribbon torus-knot given by Fig. 3 (1) is equivalent to the ribbon
torus-knot given by Fig. 3 (2) by moves on chord diagrams in [7, 8, 9, 10] and by
Sublemma 4.2 the CP disk-chord system of Fig. 3 (2) is the CP disk-chord system of
the spun ribbon solid torus of the trefoil knot diagram D(k) shown in Fig. 3 (3) . It
would be interesting to point out that the CP disk-chord system (d∗, α∗) in Fig. 3 (1)
is not the CP disk-chord system of the spun ribbon solid torus of any knot diagram
D′(k) of the trfoil knot k. To see this, the cross-index in [18] is used. If (d∗, α∗) is
obtained from the spun ribbon solid torus of a trefoil knot diagram D′(k), then the
complementary arc system e∗ of any regular maximal tree τ+(d∗, α∗) in (d∗, α∗) in a
regular support disk δ must have the cross-index 0 in the annulus A given by any
extended disk δ+ such that Intδ+ ⊃ δ and e is an immersed arc system in the annulus
A = (δ+ \δ). However, the coss-index of e∗ in an annulus A is 1 for the diagram given
in Fig. 3 (1). This means that the CP disk-chord system (d∗, α∗) in Fig. 3 (1) is not
the CP disk-chord system of the spun ribbon solid torus of any trefoil knot diagram
D′(k).
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