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Abstract. Throughout this paper G is a fixed group, and k is a fixed field. All
categories are assumed to be k-linear. First we give a systematic way to induce
G-precoverings by adjoint functors using a 2-categorical machinery, which unifies
many similar constructions of G-precoverings.

Now let C be a skeletally small category with a G-action, C /G the orbit cate-
gory of C , (P, ϕ) : C → C /G the canonical G-covering, and mod-C , mod-(C /G)
the categories of finitely generated modules over C ,C /G, respectively. Then it
is well known that there exists a canonical G-precovering (P., ϕ.) : mod-C →
mod-(C /G). By applying the machinery above to this (P., ϕ.), new G-precoverings
(mod-C )/S → (mod-C /G)/S′ are induced between the factor categories or local-
izations of mod-C and mod-C /G, respectively.

This is further applied to the morphism category H(mod-C ) of mod-C to have a
G-precovering fp(K ) → fp(K ′) between the categories of finitely presented mod-
ules over suitable subcategories K and K ′ of mod-C and mod-C /G, respectively.
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1. Introduction

Throughout this paper G is a group, and k is a field. All categories are assumed
to be k-linear. A G-category is a k-category with a G-action. We denote by k-CAT
(resp. G-CAT) the 2-category of light k-categories (resp. G-categories), where a cate-
gory C is said to be light if the objects form a subset of a fixed universe U and C (x, y)
is an element of U for all x, y ∈ C (see the beginning of Sect. 2, and Definition 2.5 for
details).

1.1. Examples of constructions of G-precoverings. The notion of a Galois cov-
ering functor with group G is introduced by Gabriel [Ga80], which makes problems
of the module category mod-A of a finite-dimensional algebra A defined by a bound
quiver (Q, I) easier as follows. There is a way to compute a locally finite-dimensional
category C with an action of a group G such that the path-category k[Q, I] of (Q, I) is
equivalent to the orbit category C /G (note that mod-A is equivalent to mod-k[Q, I],
and hence to mod-(C /G)), and in many cases mod-C is easier to study than mod-A,
and it is possible to control mod-(C /G) ' mod-A by mod-C . Hence problems of
mod-A can be reduced to those of mod-C (see [BG82, Ri80] for example). Now,
each Galois covering functor with group G is isomorphic to the canonical functor
P : C → C /G from a locally finite-dimensional category C with a G-action to the
orbit category C /G of C by G. In special cases, he induced from P a Galois cov-
ering P� : ind-C → ind-(C /G) with group G from a full subcategory ind-C of the
category mod-C of finitely generated C -modules whose object set forms a G-stable
complete set of representatives of isomorphism classes of indecomposable C -modules
to a full subcategory ind-(C /G) of the category mod-(C /G) of finitely generated
C /G-modules consisting of complete representatives of isomorphism classes of inde-
composable modules.

In [As11], one of the authors extended the setting of covering functors from lo-
cally finite-dimensional categories to any linear categories by using a family ϕ of
natural isomorphisms, and introduced the notion of G-coverings and G-precoverings
(P, ϕ) : C → C /G with a generalized version of the orbit category C /G of a G-
category C . By the same idea as in [Ga80], from a G-precovering (P, ϕ), he also in-
duced the G-precoverings (P�, ϕ�) : mod-C → mod-(C /G) and (P�, ϕ�) : K b(prj-C ) →
K b(prj-(C /G)). There are other constructions of G-precoverings such as

• in [As97] (1997) for bounded homotopy categories of finitely generated pro-
jective modules,

• in [BL14] (2014) for bounded derived categories,
• in [AHV18] (2018) for bounded derived categories, singularity categories,
Gorenstein defect categories, and stable Gorenstein projectives,

• in [Pa19] (2019) for finitely presented functors,
• in unpublised paper [HM20] (2020) for stable modules categories, and
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• in [HZha] and [HZho] (2023) for factor categories of modules categories.

See section 1.4 for more details.

1.2. Unification. In this paper we will unify these constructions of G-precoverings
by using a 2-categorical approach, and give some further useful tools to inducing G-
precoverings as stated in Theorems 4.16 and 4.18. To state the main theorems, we
need the following notion that generalizes Gabriel’s idea to induce G-precoverings,
where cpt(A ) is the full subcategory of a category A consisting of the compact
objects:

Definition 1.1 (see Definition 4.7). Let A = (A , A) be a G-category having small
coproducts, B a k-category and (L, ϕ) : A → B a G-invariant functor, where L has
a right adjoint R : B → A with an adjunction isomorphism ω : L a R. Then (L, ϕ) is
said to induce a G-precovering (L, ϕ) : cpt(A ) → cpt(B) by the adjunction ω if the
following conditions are satisfied:

(PA1) There exists a natural isomorphism t :
⊕

a∈GAa ⇒ RL.
(PA2) For any x, y ∈ A , the following diagram commutes:⊕

a∈G A (x, ay) A (x,
⊕

a∈G ay)

B(Lx,Ly) A (x,RLy)

ν

A (x,ty)∼(L,ϕ)
(2)
x,y

∼
ωx,Ly

, (1.1)

where ν is the canonical morphism. Note that ν becomes an isomorphism if
x ∈ cpt(A ).

(PA3) R preserves small coproducts.

If in the above, the condition (PA3) is not assumed, then (L, ϕ) is said to induce a
G-precovering (L, ϕ) : cpt(A ) → B by the adjunction ω.

Using this definition, for example, the first theorem is stated as follows.

Theorem 1.2 (see Theorem 4.16). Consider the following diagram of 2-categories,
2-functors, and a strict 2-natural transformation on the left, and its extension by
Lemma 3.10 on the right:

C k-CAT,

σ

U

π Ĉ G-CAT,

σ̂

Û

π̂

where C is a 2-subcategory of k-CAT and σ is the inclusion 2-functor. Assume the
following conditions for all C ∈ C:

(0) C has small coproducts, and πC : C → U(C ) preserves small coproducts.
(i) πC is the identity on the objects.
(ii) πC is epic among representable right U(C )-modules (see Definition 4.11).

Now let (A , A) be a G-category in Ĉ, B a k-category in C, and (L, ϕ) : (A , A) → B

a G-invariant functor in Ĉ (cf. Remark 1.6), where L has a right adjoint R : B → A
in C with an adjunction isomorphism ω : L a R in C. Then the following hold.

(1) Assume that (L, ϕ) : A → B induces a G-precovering cpt(A ) → B by the
adjunction ω. Then
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(a) the G-invariant functor U(L, ϕ) : U(A ) → U(B) induces a G-precovering

U(L, ϕ) : cpt(U(A )) → U(B)

by the adjunction U(ω) : U(L) a U(R), and
(b) if further cpt(A ) = πA (cpt(A )) ⊆ cpt(U(A )) (this is the case, for

example, if πA is full by Lemma 4.15), then U(L, ϕ) restricts to a G-
precovering

U(L, ϕ) : U(cpt(A )) → U(B).

(2) Assume that (L, ϕ) : A → B induces a G-precovering cpt(A ) → cpt(B) by
the adjunction ω. Then
(a) the G-invariant functor U(L, ϕ) : U(A ) → U(B) induces a G-precovering

U(L, ϕ) : cpt(U(A )) → cpt(U(B))

by the adjunction U(ω) : U(L) a U(R), and
(b) if further cpt(A ) ⊆ cpt(U(A )), then U(L, ϕ) restricts to a G-precovering

U(L, ϕ) : U(cpt(A )) → U(cpt(B)).

These theorems are applied to constructions of stable module categories, or more
generally, factor categories (Proposition 4.23), and localizations (Proposition 4.25) as
in the following statements.

Theorem 1.3 (see Proposition 4.23). Let C be a skeletally small G-category, and D
a G-stable class of objects in Mod-C closed under small coproducts with the property
that each object in D is a small coproduct of finitely generated objects. Denote by
S/G the ideal 〈P�(cpt(D))〉 of mod-(C /G). Then the following hold.

(1) The functor

U(P�, ϕ�) : (mod-C )/S → (mod-C /G)/(S/G)

induced by the quotient 2-functor U = Ui in Lemma 4.22 is a G-precovering.
(2) If C is a locally support-finite locally bounded category, then

U(P�, ϕ�) : (mod-C )/S → (mod-C /G)/(S/G)

is a G-covering.

Theorem 1.4 (see Proposition 4.25). Let C be a skeletally small G-category such
that Mod-C is locally noetherian, both mod-C and mod-(C /G) are abelian, and S ′ a
G-stable localizing subcategory of Mod-C . Denote by S , S /G the dense subcategories
of mod-C , mod-(C /G) induced from S ′ as in Lemma 4.24, respectively. Then the
following hold.

(1) The functor

U(P�, ϕ�) : (mod-C )/S → (mod-C /G)/(S /G)

induced by the quotient 2-functor U = Um in Example 3.14 is a G-precovering.
(2) If C is a locally support-finite locally bounded category, then

U(P�, ϕ�) : (mod-C )/S → (mod-C /G)/(S /G)

is a G-covering.
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1.3. Applications. We apply these tools to the morphism category H(Mod-C ) of
the module category Mod-C over a skeletally small category C to have the following
theorem:

Theorem 1.5 (see Proposition 5.12). The G-invariant functor H(P�, ϕ�) : H(Mod-C )
→ H(Mod-(C /G)) induces a G-precovering

H(P�, ϕ�) : H(mod-C ) → H(mod-(C /G))

by the adjunction H(θ), where θ : P� a P � is the adjunction between the pushdown P�
and the pullup P � (see Subsection 2.3 for details).

For a full subcategory K of an additive category C , we denote by add-K (resp.
Add-K ), the full subcategory of C consisting of the direct summands of finite (resp.
small) coproducts of objects in K . The theorem above is generalized to Proposition
5.19 on subcategories K and K ′ of mod-C and mod-(C /G), respectively satisfying
that P� sends K into K ′ and P � sends K ′ into Add-K .

Now since the category fp(M ) of finitely presented functors from a linear category

M to Mod-k is shown to be equivalent to a factor category H(M )
⟨UM ⟩ of the morphism

category H(M ) of M by a suitable ideal 〈UM 〉, the functor H(P�, ϕ�) above yields
G-precoverings Fp(P�) : fp(Mod-C ) → fp(Mod-(C /G)) and fp(P�) : fp(mod-C ) →
fp(mod-(C /G)) as in the following theorem, where in the statement (2) the vertical
line as in P�| denotes the restriction of P� to a suitable subcategory.

Theorem 1.6 (see Theorem 5.29). The following statements hold.

(1) The functor Fp(P�) is a G-precovering, and has a right adjoint Fp(P �) with
an adjucntion Θ: Fp(P�) a Fp(P �).

Moreover, there is the following commutative diagram

fp(mod-C ) fp(Mod-C )

fp(mod-(C /G)) fp(Mod-(C /G))

Fp(P�)fp(P�) , (1.2)

where the horizontal functors are embeddings.
(2) The functor Fp(P�|) is a G-precovering, and has a right adjoint Fp(P �|) with

an adjucntion Θ: Fp(P�|) a Fp(P �|). Moreover, there is the following commu-
tative diagram

fp(K ) fp(Add-K )

fp(K ′) fp(Add-K ′)

Fp(P�|)fp(P�|) , (1.3)

where the horizontal functors are embeddings.

1.4. Relations with other works. It is possible to recover some results from
[HM20] using our general setting. For example, Proposition 4.20 corresponds to
[HM20, Proposition 2.6]. In addition, there have been recent papers that discuss
the construction of G-precoverings by taking quotients. In [HZha], the authors in-
vestigate G-coverings between relative stable categories in Theorem 5.5. Then, in
[HZha, Corollary 5.6], they recover [HM20, Proposition 2.6]. This result is a direct
application of Theorem 4.18 using Example 4.9 and the stable 2-functor Up defined in
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Example 3.6. Another paper, [HZho], introduces the concept of G-liftable ideals and
proceeds to construct Galois G-coverings of quotient categories in [HZho, Theorem
3.9] associated with these G-liftable ideals. Again, their results can be obtained by
applying Theorem 4.18 using the 2-functor Ui defined in Example 3.12.

A functor Φ : fp(mod-C ) → fp(mod-(C /G)) is defined in [Pa19, Section 5] and
proved in [Pa19, Theorem 5.5] to be G-precovering and satisfies properties similar to
the pushdown P�. This functor plays an essential role in [Pa19] in proving the stability
of the Krull-Gabriel dimension under Galois coverings. Using [Pa19, Proposition 5.3],
we can deduce the existence of a natural isomorphism fp(P�) ∼= Φ. Therefore, using
our morphism method, we can recover the functor Φ and its fundamental properties
established in [Pa19, Theorem 5.5]. Moreover, it will be proven that the functor Φ
satisfies similar conditions as those given in Definition 4.7, see Theorem 5.29 for more
details.

We should remark that Z. Leszczyński and A. Skowroński in [LS00, Theorem 5]
showed when the (upper) triangular matrix algebra T2(Λ) of a finite-dimensional al-

gebra Λ is of polynomial growth, then there is a Galois functor F
(2)
λ : mod-T2(Λ̃) →

mod-T2(Λ) which is induced by a Galois covering F : Λ̃ → Λ with Λ̃ a simply con-

nected locally bounded k-category. Next, they applied the Galois functor F
(2)
λ to

classify algebras Λ for which the triangular matrix algebra T2(Λ) is of tame represen-
tation type. Note also that [LS00, Theorem 5] together with [Le94, Theorem 2.5] is
used to show that a commutative 2-dimensional grid1 Gm,n with m ≥ n ≥ 2 is wild
iff mn ≥ 12, and is representation-finite iff n = 2 and 2 ≤ m ≤ 4, which is used in
TDA (topological data analysis). What we have done in our work is to reformulate
a covering theory for triangular matrix algebras in terms of functor categories and
morphism categories using the fact that the module category mod-T2(Λ) is equivalent
to the morphism category H(mod-Λ) of mod-Λ.

2. Preliminary

In this section, for the convenience of the reader, we present some definitions and
results that will be used throughout the paper.

Throughout this paper G denotes a group, k is a field, and the category of k-vector
spaces are denoted by Mod-k. A category C is called a k-linear category, or a k-
category for short, if the morphism sets are k-vector spaces and the compositions of
morphisms are k-bilinear. A functor F : C → C ′ between k-categories are said to be
k-linear if the induced map F(x,y) : C (x, y) → C ′(Fx, Fy) is k-linear for all objects
x, y of C . We always assume that functors between k-categories are k-linear.

We fix a (Grothendieck) universe U containing the set N of natural numbers once
for all. A set is called a small set (resp. a 1-class) if it is an element (resp. a subset) of
U. A small (resp. light) category is a category C whose objects form a small set (resp.
a 1-class), and C (x, y) is a small set for all objects x, y of C . We denote by k-CAT
the 2-category whose objects are the light k-categories, whose 1-morphisms are the
k-functors between objects, and whose 2-morphisms are the natural transformations
between 1-morphisms, also by k-Cat the full 2-subcategory of k-CAT whose objects
are the small k-categories. Note that if C is an object of k-Cat, then Mod-C (see
the subsection 2.2 for the definition) is an object of k-CAT (see, for instance, [As22,

1This is a bound quiver defined as the product quiver of the equi-oriented Dynkin quiver of types
Am and An for m,n ≥ 1 with full commutativity relations.
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Chapter 4, Appendix A] for details on 2-categories and a set theoretical foundation,
respectively).

A skeleton of a k-category C is a full subcategory of C whose objects form a com-
plete set of representatives of the isomorphism classes of objects in C , which is clearly
equivalent to C . Therefore a skeleton of C is uniquely determined up to equivalences,
and is denoted by sk(C ). A category is said to be skeletally small, if its skeleton is
a small category. Now let C be a skeletally small category. Then since sk(C ) is
equivalent to C , their module categories are equivalent: Mod- sk(C ) ' Mod-C , the
former is again skeletally small and a light category. Hence Mod-C is also skeletally
small, and is equivalent to a light category, although Mod-C itself is not a light cat-
egory (it is 2-moderate in a terminology defined in [As22, Appendix A]). Therefore,
we may consider Mod-(Mod-C ) without any set theoretical problems, and is again
skeletally small and equivalent to a light category Mod-(sk(Mod-C )) (Mod-(Mod-C )
itself is 3-moderate). Hence also there are no problems to consider subcategories of
Mod-(Mod-C ) such as the subcategory fp(Mod-C ) consisting of finitely presented ob-
jects in Mod-(Mod-C ), which we are interested in. By this reason, we usually assume
that a k-category C is skeletally small when we consider its module category Mod-C .

2.1. Orbit categories.

Definition 2.1 (G-Categories). A category with a G-action (or a G-category for
short) is a pair (C , A) of a k-category C and a group homomorphism A : G → Aut(C ),
where Aut(C ) is the group of automorphisms of C . We set Aa := A(a) for all a ∈ G.

If there seems to be no confusion, we simply write C = (C , A) by omitting A, and
we denote G-actions by the same letter A, also we usually write ax := Aa(x) and
af := Aa(f) for all a ∈ G, x ∈ C , and all morphisms f in C .

Recall that the action of G is said to be free if ax 6= x for all x ∈ C and a ∈ G\{1G},
or equivalently if the map ρx : G → Gx (:= {ax | a ∈ G}), a 7→ ax is a bijection for
all x ∈ C .

Definition 2.2 (G-Invariant Functors). Let C be a G-category, and C ′ a k-category.
Then a G-invariant functor from C to C ′ is a pair (F, ϕ) of a functor F : C → C ′ and
a family ϕ := (ϕa)a∈G of natural isomorphisms ϕa : F ⇒ FAa such that the following
diagram of natural isomorphisms commutes for all a, b ∈ G:

F FAa

FAba FAbAa.

ϕa

ϕba ϕbAa

This family ϕ was called an invariant adjuster of F in [As11, Definition 1.1], but here
we call it a structure of the G-invariant functor.

In the above, we denote the value of ϕa at an object x ∈ C by ϕa,x : Fx →
FAax. Then the diagram above is commutative if and only if the following diagram
of morphisms in C ′ is commutative for all x ∈ C :

Fx FAax

FAbax FAbAax.

ϕa,x

ϕba,x ϕb,ax
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Note that for any a ∈ G and x ∈ C , the commutativity of the diagram shows that
ϕ1,x = 1Fx and ϕ−1

a,x = ϕa−1,ax ([As11, Remark 1.2]). The definition above is also
given in [BL14, Defintion 2.3] under the name of a G-stable functor.

Definition 2.3 (G-equivariant functors). Let C = (C , A) and C ′ = (C ′, A′) be G-
categories. Then a G-equivariant functor from C to C ′ is a pair (F, ϕ) of a functor
F : C → C ′ and a family ϕ = (ϕa)a∈G of natural isomorphisms ϕa : A

′
aF ⇒ FAa

(a ∈ G) such that the following diagram of natural isomorphisms commutes for all
a, b ∈ G:

A′
bA

′
aF A′

bFAa FAbAa

A′
baF FAba.

A′
bϕa ϕbAa

ϕba

This ϕ was called an equivariance adjuster of F in [As11, Definition 4.8], but here we
call it a structure of the G-equivariant functor.

Definition 2.4 (Morphisms between G-equivariant functors). Let C = (C , A) and
C ′ = (C ′, A′) be G-categories, and (F, ϕ), (F ′, ϕ′) : C → C ′ G-equivariant functors.
Then a morphism from (F, ϕ) to (F ′, ϕ′) is a natural transformation α : F ⇒ F ′ such
that the following diagram of natural transformations commutes:

A′
aF FAa

A′
aF

′ F ′Aa

ϕa

ϕ′
a

A′
aα αAa .

Definition 2.5. By G-Cat we denote the 2-category whose objects are the small G-
categories, whose 1-morphisms are the G-equivariant functors between objects, whose
2-morphisms are the morphisms between 1-morphisms. G-CAT is similarly defined,
where the objects are the light G-categories (see Definition 3.1 for details).

Remark 2.6. We regard every k-category C as a G-category (C , 1), where 1 is the
trivial action 1: G → Aut(C ). This defines an embedding k-CAT → G-CAT. Then
a G-invariant functor in Definition 2.2 is nothing but a G-equivarinat functor.

We freely apply the remark above throughout the paper.

Definition 2.7 (G-coverings). Let (F, ϕ) : C → C ′ be a G-invariant functor from a
G-category C = (C , A) to a k-category C ′. Then (F, ϕ) is called a G-precovering if
for any x, y ∈ C the following two k-homomorphisms are isomorphisms.

(F, ϕ)(1)x,y :
⊕
a∈G

C (ax, y) → C ′(Fx, Fy), (fa)a∈G 7→
∑
a∈G

F (fa)ϕa,x;

(F, ϕ)(2)x,y :
⊕
b∈G

C (x, by) → C ′(Fx, Fy), (fb)b∈G 7→
∑
b∈G

ϕb−1,byF (fb).

In addition, if F is dense, then (F, ϕ) is called a G-covering [As11, Definition 1.7].

As proved in [As11, Proposition 1.6], in the above definition it is enough to check

that all F
(1)
x,y are isomorphisms, or all F

(2)
x,y are isomorphisms.
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Definition 2.8 (Orbit Categories). Let C be a G-category. Then the orbit category
C /G of C by G is defined as follows:

(1) The class of objects is the same as that of C .
(2) For any x, y ∈ C /G, the morphism set C /G(x, y) is given byf = (fb,a)(a,b) ∈

∏
(a,b)∈G×G

C (ax, by)
f is row-finite, column-finite
and fcb,ca = c(fb,a), ∀c ∈ G

}
,

where f is said to be row-finite (resp. column-finite) if for any a ∈ G the set
{b ∈ G | fa,b 6= 0} (resp. {b ∈ G | fb,a 6= 0}) is finite.

(3) For two composable morphisms x
f→ y

g→ z in C /G, we set

gf := (
∑
c∈G

gb,cfc,a)(a,b)∈G×G.

There is a canonical functor P : C → C /G given by P (x) = x and P (f) =
(δa,baf)(a,b) for all x, y ∈ C and f ∈ C (x, y), which is extended to a G-invariant
functor P = (P, ϕ) : C → C /G by defining ϕ as follows: Set ϕc,x := (δa,bc1ax)(a,b) ∈
C /G(Px, Pcx) for all c ∈ G and x ∈ C , ϕc := (ϕc,x)x∈C : P → PAc and ϕ := (ϕc)c∈G
[As11, Definitions 2.4 and 2.5]. Then (P, ϕ) turns out to be a G-covering, and is called
the canonicalG-covering associated to the orbit category C /G [As11, Proposition 2.6].

2.2. Functor categories. Let C be a skeletally small category. A contravariant
functor from C to the category Mod-k is called a (right) C -module. Any object x
of C serves us a contravariant functor C (-, x) : C → Mod-k represented by x called
a representable functor, which is a typical example of a right C -module. All the
C -modules and the natural transformations between them form an abelian category
as the functor category from C op to Mod-k, which is denoted by Mod-C . The hom
sets in Mod-C is sometimes denoted by HomC (-, -). It is well known that Mod-C has
small coproducts, i.e., has arbitrary direct sums with small index sets.

An object F of Mod-C is said to be finitely generated if there exists an epimor-
phism from a finite direct sum of representable functors to F , that is, if we have an
epimorphism

n⊕
i=1

C (-, xi) → F (2.1)

for some finitely many objects x1, . . . , xn of C . The full subcategory of Mod-C
consisting of all finitely generated C -modules is denoted by mod-C .

A finitely generated C -module F is projective if and only if it is isomorphic to
a direct summand of a finite direct sum of representable functors. We denote by
prj-C the full subcategory of mod-C consisting of all finitely generated projective
C -modules.

Assume further that C is additive. Then note that a C -module F is finitely
generated if and only if there exists an exact sequence

C (-, x) → F → 0

for some object x of C because
⊕n

i=1 C (-, xi) ∼= C (-,
⊕n

i=1 xi) in (2.1). A C -module
F is called finitely presented if there exists an exact sequence

C (-, x′) → C (-, x) → F → 0
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for some x, x′ ∈ C . In this paper, the full subcategory of Mod-C consisting of all
finitely presented C -modules is denoted by fp(C )2

It is proved that fp(C ) is an abelian category if and only if C admits weak kernels
[Au66, Proposition 2.1]. This is the case, for instance, when C is a contravariantly
finite subcategory of an abelian category. Let A be an abelian category. For C ⊆ A ,
we denote by C the stable category of C . The canonical functor π : C → C induces
a fully faithful functor from fp(C ) to fp(C ), where the image is the subcategory
consisting of those functors that vanish on projective objects. Therefore, fp(C ) can
be considered as a subcategory of fp(C ).

For a full subcategory K of an additive category C , we denote by add-K (resp.
Add-K ), the full subcategory of C consisting of the direct summands of finite (resp.
small) coproducts of objects in K .

Let D be a class of objects of a category X . Then the ideal of X formed by all
morphisms factoring through a finite direct sum of objects in D is denoted by 〈D〉.
The factor category X

⟨D⟩ has the same objects as X and for any X,Y ∈ X

X

〈D〉
(X,Y ) :=

X (X,Y )

〈D〉(X,Y )
.

2.3. Pushdown functor. Let C = (C , A) be a G-category. Then the k-category
Mod-C turns out to be a G-category Mod-C = (Mod-C ,Mod-A) by defining a G-
action Mod-A on Mod-C as follows: For each a ∈ G, (Mod-A)a := Aa : Mod-C →
Mod-C is an isomorphism sending each morphisms f : X → Y in Mod-C to af : aX →
aY , where

au := u ◦A−1
a

for each u = X, f, Y . Note that aC (-, x) = C (a−1(-), x) ∼= C (-, ax) for all x ∈ C .
Then we see that the G-action Mod-A on Mod-C restricts to the G-action (denoted
by prj-A) on the category prj-C , and hence to the G-action (denoted by mod-A)
on the category mod-C because the epimorphism in (2.1) induces an epimorphism⊕n

i=1 C (-, axi) → aF . In this way we regard mod-C = (mod-C ,mod-A) and prj-C =
(prj-C , prj-A) as G-categories.

Definition 2.9. In the following, we denote by ind-C a full subcategory of mod-C
whose objects form a complete set of representatives of isoclasses of indecomposable
modules in mod-C that is closed under the G-action Mod-A. This makes it possible
to restrict the G-action Mod-A to the G-action (denoted by ind-A) on ind-C , and we
regard ind-C = (ind-C , ind-A) as a G-category.

If there seems to be no confusion, we write the G-action on Mod-A,mod-A, prj-A,
and ind-A simply by A.

Let C be a skeletally small G-category. The canonical functor P : C → C /G
induces a functor P � : Mod-(C /G) → Mod-C , given by P �X = X ◦ P op for all
X ∈ Mod-(C /G), where P op : C op → (C /G)op is a functor defined by P in an
obvious way. This functor is called the pullup of P . It is well known that P � has a left
adjoint P� called the pushdown of P , the precise form of which was given in the proof

2This was denoted by F (C ) in [Pa19], but we did not use this notation in this paper because
F is sometimes used to denote the subcategory of modules having a filtration with factors in a set
of prescribed modules. In the literature, the notation mod-C is usually used, but we have already
adapted it for the subcategory of finitely generated modules. The notation fp is also used in some
papers.
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of [As11, Theorem 4.3]. In fact, P� : Mod-C → Mod-(C /G) is defined as follows. Let
X ∈ Mod-C . Then for an object x ∈ obj(C /G) = obj(C ), (P�X)(x) :=

⊕
a∈GX(ax).

For a morphism f : x → y in C /G, where f = (fb,a)(a,b)∈G×G ∈ C /G(x, y), (P�X)(f)
is given by the following commutative diagram

(P�X)(y) (P�X)(x)

⊕
b∈GX(by)

⊕
a∈GX(ax)

(P�X)(f)

(X(fb,a))(a,b)∈G×G

.

Also, if u : X → X ′ is a morphism in Mod-C , then for every x ∈ Obj(C /G), (P�u)x
is defined by the following commutative diagram

(P�X)(x) (P�X ′)(x)

⊕
a∈GX(ax)

⊕
a∈GX ′(ax)

(P�u)x

⊕
a∈G uax

.

For each X ∈ Mod-C and Y ∈ Mod-C /G the adjunction

θX,Y : HomC /G(P�X,Y ) → HomC (X,P �Y )

is given by (θX,Y α)x := αx,1 : X(x) → Y (x) = Y (Px) = (P �Y )(x) for all x ∈ C and
α = (αx)x∈C /G ∈ HomC /G(P�X,Y ), where

αx = (αx,a)a∈G : (P�X)(x) =
⊕
a∈G

X(ax) → Y (x)

for all x ∈ C /G; and its inverse

θ−1
X,Y : HomC (X,P �Y ) → HomC /G(P�X,Y )

is given by (θ−1
X,Y f)x := (Y (ϕa,x)fax)a∈G : (P�X)(x) =

⊕
a∈GX(ax) → Y (x) for all

f ∈ HomC (X,P �Y ) and x ∈ C /G, where Y (ϕa,x)fax : X(ax) → Y (x) is the composite

X(ax)
fax−−→ Y (ax)

Y (ϕa,x)−−−−−→ Y (x),

see [As11, proof of Theorem 4.3]. Moreover, P� is extended to a G-invariant functor as
follows. For each c ∈ G, define a morphism ϕ�c : P� → P�◦Ac by ϕ�c := (ϕ�c,X)X∈Mod-C ,
where ϕ�c,X is defined by the commutative diagram

(P�X)(x) (P� cX)(x)

⊕
a∈GX(ax)

⊕
b∈GX(c−1bx)

ϕ�c,X,x

(δa,c−1b1lX(ax))(a,b)∈G×G

for all x ∈ C . Then ϕ�c turns out to be a natural isomorphism for all c ∈ G, and then
by setting ϕ� := (ϕ�c)c∈G, we obtain a G-invariant functor (P�, ϕ�).

Finally, as mentioned in the proof, we have the equalities

(P �P�X)(x) =
⊕
a∈G

X(ax) = (
⊕
a∈G

a−1
X)(x)
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for all X ∈ Mod-C and x ∈ C . Let σb = (δa,b1l bX)a∈G : bX →
⊕

a∈G
aX and σ′

b =

(δa,b−11l bX)a∈G : bX →
⊕

a∈G
a−1

X be the canonical injections for all b ∈ G. Then the

universality of the coproduct gives us an isomorphism tX :
⊕

a∈G
aX →

⊕
a∈G

a−1
X

such that the diagram

bX
⊕

a∈G
a−1

X

⊕
a∈G

aX

σ′
b

σb
tX

commutes. Thus the family t = (tX)X∈Mod-C turns out to be a natural isomorphism

t :
⊕
a∈G

a(-) ⇒ P �P�,

where
⊕

a∈G
a(-) : Mod-C → Mod-C is a functor defined by sending f : X → Y to⊕

a∈G
af :

⊕
a∈G

aX →
⊕

a∈G
aY . By using (P�, ϕ�) and the natural isomorphism t

above, we have the following vital commutative diagram.

Proposition 2.10 ([As11, Proof of Theorem 4.3]). For any X,Y ∈ mod-C , we have
a commutative diagram⊕

a∈Gmod-C (X, aY ) Mod-C (X,
⊕

a∈G
aY )

mod-C /G(P�X,P�Y ) Mod-C (X,P �P�Y )

ν
∼

Mod-C (X,tY )∼(P�,ϕ�)
(2)
X,Y

∼
θX,P�Y

,

where ν is the canonical isomorphism, and θ is an adjunction of the adjoint P� a P �.

2.4. Locally bounded categories. A locally bounded category is a k-category C
satisfying the following conditions:

• The endomorphism C (x, x) is local for every x ∈ C .
• C is basic, i.e., if x 6= y, then x ≇ y.
• For each x ∈ C ,

∑
y∈C [C (x, y) : k] < ∞ and

∑
y∈C [C (y, x) : k] < ∞.

Observe that if C is a locally bounded k-category with a free G-action, then the orbit
category C /G is equivalent to the classical orbit category in Gabriel’s sense.

Remark 2.11. Let C be a locally bounded k-category. Then a C -module F is
finitely generated and projective if and only if F is isomorphic to the direct sum
of a finite number of modules of the form C (−, x) for some x ∈ C , which satisfies∑

y∈C [C (y, x) : k] < ∞ by definition. Therefore, in particular, F is finitely generated

if and only if it is finite-dimensional, i.e.,
∑

x∈C [F (x) : k] < ∞, see [BG82, 2.2].

We need the following result throughout the paper.

Lemma 2.12. [Ga80, Lemma 3.5] Let C be a locally bounded G-category and G acts
freely on ind-C . Then the pushdown functor P� : mod-C → mod-(C /G) maps any
indecomposable C -module to an indecomposable C /G-module.

Let C be a G-category and M a C -module. We denote by suppM the support of
M , i.e., the full subcategory of C consisting of all objects x of C such that M(x) 6= 0.
Let x be an object of C . We denote by Cx the full subcategory of C formed by
the vertices of all suppM , where M ∈ ind-C and M(x) 6= 0. A locally bounded
k-category C is called locally support-finite if for every x ∈ C , Cx is finite.
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Proposition 2.13 ([DLS86, Theorem]). Let C be a locally support-finite G-category
and G acts freely on ind-C . Then the pushdown functor induces a G-covering

P� : mod-C → mod-(C /G).

3. Extension of a 2-endofunctor of k-CAT to G-CAT

To unify the theorems on the existence of a G-precovering, we use 2-categorical
approach. In this section, we prepare necessary facts for the later use. Let us start
with the following definitions.

Definition 3.1 ([As22, Definition 4.1.1]). A 2-category is a sequence of the following
data that satisfies the axioms below.

Data:

• A non-empty set C0,
• A family of categories (C(x, y))x,y∈C0 ,
• A family of functors ◦ := (◦x,y,z : C(y, z)× C(x, y) −→ C(x, z))x,y,z∈C0 ,
• A family of functors (ux : 1 −→ C(x, x))x∈C0 , where 1 denotes the category
having only a single object ∗ and only a single morphism id∗.

Axioms:

• (associativity) The following diagram is commutative for all x, y, z, w ∈ C0;

C(z, w)× C(y, z)× C(x, y) C(y, w)× C(x, y)

C(z, w)× C(x, z) C(x,w)

1×◦

◦×1

◦

◦

(3.1)

• (unitality) The following diagram is commutative for all x, y ∈ C0:

1× C(x, y) C(x, y)× 1

C(x, y)

C(y, y)× C(x, y) C(x, y)× C(x, x)

uy×C(x,y) C(x,y)×ux

pr2 pr1

◦ ◦

, (3.2)

where pri denotes the i-th projections for all i = 1, 2. Elements of C0 are called
objects of C, objects (resp. morphisms, compositions) of C(x, y) (with x, y ∈ C0) are
called 1-morphisms (2-morphisms, vertical compositions) of C. Furthermore, ◦x,y,z
(with x, y, z ∈ C) is called horizantal compositions of C, and we set 1lx := ux(∗) and
1l1lx := ux(1l∗) for all x ∈ C0. We denote the vertical compositions (i.e., compositions of
the categories C(x, y)) by a symbol • to distinguish it from the horizontal compositions
◦. Sometimes we omit the symbol of the horizontal composition to write gf for g ◦ f .
In a 2-category C we display objects x, y ∈ C0, 1-morphisms f, g ∈ C(x, y), and
2-morphisms α ∈ C(x, y)(f, g) as follows:
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x y

f

g

α .

Definition 3.2 ([As22, Definition 4.1.11]). Let C and D be 2-categories. A pair of
the following data that satisfies the axioms below is called a 2-functor from C to D,
and is denoted by C → D;

Data:

• A map X : C0 → D0,
• A family of functors (X(x,y) : C(x, y) → D(X(x), X(y)))(x,y)∈C0×C0

, where we
shortly write X(f) for X(x,y)(f) for all f ∈ C(x, y)0 ∪ C(x, y)1.

Axioms:

• For each x, y, z ∈ C0 the following is commutative:

C(y, z)× C(x, y) C(x, z)

D(X(y), X(z))× D(X(x), X(y)) D(X(x), X(z))

◦

◦

X(y,z)×X(x,y) X(x,z)

• For each x ∈ C0 the following is commutative:

1 C(x, x)

D(X(x), X(x))

ux

X(x,x)uX(x)

Lemma 3.3. Let U : k-CAT → k-CAT be a 2-functor. Then the following hold.

(1) Let C = (C , A) be a G-category. Define a pair Û(C ) = (Û(C ), Û(A)) by

setting Û(C ) := U(C ), and Û(A)a := U(Aa) for all a ∈ G. Then it turns out
to be a G-category.

(2) Let (F, ϕ) : C → D be a G-equivariant functor of G-categories. Define a pair

Û(F, ϕ) := (Û(F ), Û(ϕ)) by setting Û(F ) := U(F ), and Û(ϕ)a := U(ϕa) for

all a ∈ G. Then it turns out to be a G-equivariant functor Û(F, ϕ) : Û(C ) →
Û(D).

(3) Let (F, ϕ), (F ′, ϕ′) : C → D be G-equivariant functors of G-categories, and

α : (F, ϕ) ⇒ (F ′, ϕ′) a morphism between them. Set Û(α) := U(α). Then

it turns out to be a morphism Û(α) : Û(F, ϕ) ⇒ Û(F ′, ϕ′) of G-equivariant
functors.

(4) By the above, U is extended to a 2-functor Û : G-CAT → G-CAT.

Proof. Since the proofs of (1), (2) and (3) are similar, we only show the statement
(2) among them.
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Set C = (C , A) and D = (D , A′). Then in the diagrams below, (F, ϕ) is given by
the left one, and it makes the right one commutative for all a, b ∈ G:

C D

C D

F

F

Aa A′
a

ϕa ,

A′
bA

′
aF A′

bFAa FAbAa

A′
baF FAba

A′
bϕa ϕbAa

ϕba

.

Apply U to these diagrams to have the following:

U(C ) U(D)

U(C ) U(D)

U(F )

U(F )

U(Aa) U(A′
a)

U(ϕa) ,
U(A′

b)U(A′
a)U(F ) U(A′

b)U(F )U(Aa) U(F )U(Ab)U(Aa)

U(A′
ba)U(F ) U(F )U(Aba)

U(A′
b)U(ϕa) U(ϕb)U(Aa)

U(ϕba)

.

The left diagram gives the pair (Û(F ), Û(ϕ)), and the commutativity of the right one

shows that it is a G-equivariant functor Û(C ) → Û(D).
(4) Let (C , A) be a G-category. Then by definition we have

Û(1l(C ,A)) = Û(1lC , (1lAa)a∈G) = (1lU(C ), (1lU(Aa))a∈G) = 1lÛ(C ,A).

Let (C , A)
(F,ϕ)−−−→ (C ′, A′)

(F ′,ϕ′)−−−−→ (C ′′, A′′) be G-equivariant functors of G-categories.
Recall that (F ′, ϕ′)(F, ϕ) = (F ′F, ((F ′ϕa) • (ϕ′

aF ))a∈G), where • denotes the vertical
composition. Then we have

Û((F ′, ϕ′)(F, ϕ)) = (U(F ′)U(F ), ((U(F ′)U(ϕa)) • (U(ϕ′
a)U(F )))a∈G)

= (U(F ′), (U(ϕ′
a))a∈G)(U(F ), (U(ϕa))a∈G) = Û(F ′, ϕ′)Û(F, ϕ)).

Finally, by the definition of Û on 2-morphisms, it is obvious that Û preserves both ver-
tical and horizontal compositions of 2-morphisms, and the identities of 2-morphisms.

�

To deal with stable module categories, we need a slight modification as follows.

Definition 3.4. Let C be a 2-subcategory of k-CAT. Then we define a 2-subcategory
Ĉ of G-CAT as follows.

First, objects are the G-categories (C , A) with C ∈ C. Next, for any objects
(C , A) and (C ′, A′), 1-morphisms from (C , A) to (C ′, A′) are the G-equivariant func-
tors (F, ϕ) : (C , A) → (C ′, A′) with F ∈ C(C ,C ′). Finally, for any 1-morphisms

(F, ϕ), (F ′, ϕ′) : (C , A) → (C ′, A′) in Ĉ, 2-morphisms from (F, ϕ) to (F ′, ϕ′) are the
2-morphisms (F, ϕ) ⇒ (F ′, ϕ′) in G-CAT.

Using this, Lemma 3.3 is slightly generalized as follows.

Lemma 3.5. Let C be a 2-subcategory of k-CAT, and U : C → k-CAT a 2-functor.
For each object (resp. 1-morphism, 2-morphism) x in C, set the value of Û(x) as in

Lemma 3.3. Then this defines a 2-functor Û : Ĉ → G-CAT.

Proof. The same proof of Lemma 3.3 works. �

Example 3.6. We give an example of a 2-functor from a 2-subcategory of k-CAT to
k-CAT. We denote by k-CATp the 2-subcategory of k-CAT whose objects are the
light k-categories, whose 1-morphisms are the k-functors A → B sending projective
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objects of A to projective objects of B, and whose 2-morphisms are the natural
transformations between 1-morphisms. Now we define a 2-functor

U := Up : k-CATp → k-CAT

called the stable 2-functor as follows.
On objecs: Let A ∈ k-CATp. Then U(A ) := A := A /PA , where PA is the

ideal of A consisting of all morphisms in A factoring through some projective object
of A .

On 1-morphisms: Let F : A → B be in k-CATp. Then since F (PA ) ⊆ PB, it
induces a k-functor U(F ) := F : A → B. We denote by πA the canonical functor
A → A , and set f := πA (f) for all morphisms f in A .

On 2-morphisms: Let F, F ′ : A → B be in k-CATp, and α : F ⇒ F ′ a 2-
morphism in k-CATp. Thus α = (αx)x∈A is a natural transformation from F to F ′

with αx ∈ B(Fx, F ′x). Set U(α) := α := (αx)x∈A . Then U(α) turns out to be a
natural transformation F ⇒ F ′.

Then as easily seen, U : k-CATp → k-CAT is a 2-functor.

For C = k-CATp, we set G-CATp := Ĉ. Namely, objects of G-CATp are the
objects of G-CAT, 1-morphisms are the G-equivariant functor (C , A) → (C ′, A′)
sending projective objects of C to projective objectis of C ′, and 2-morphisms are the
2-morphisms in G-CAT between 1-morphisms in G-CATp. Then by Lemma 3.5, U
is extended to a 2-functor

Û := Ûp : G-CATp → G-CAT.

To deal with also factor categories and localizations of categories, we need a further
extension as follows.

Definition 3.7. We define the following two 2-categories.

(1) A 2-category k-CATs is defined as follows:
Objects are the pairs (C ,P) of a k-category C and a subclass P of the
morphisms class of C , which are called structured k-categories.
For any objects (C ,P) and (C ′,P ′), 1-morphisms from the former to the
latter are the functors F : C → C ′ such that F (P) ⊆ P ′. In particular, an
automorphism of (C ,P) is an automorphism A of C satisfying A(P) ⊆ P.
For any 1-morphisms F, F ′ : (C ,P) → (C ′,P ′), 2-morphisms from F to F ′

are the natural transformations F ⇒ F ′.
(2) A 2-category G-CATs is defined as follows:

Objects are the pairs ((C , A),P) (or triples (C , A,P)), where (C ,P) is a
structured k-category and A : G → Aut(C ,P) is a group homomorphism,
or equivalently, (C , A) is a G-category and P is a G-stable subclass of the
morphism class of C in the sense that Aa(P) ⊆ P for all a ∈ G. (C , A,P)
are called structured G-categories.
For any objects (C , A,P) and (C ′, A′,P ′), 1-morphisms from the former to
the latter are the 1-morphisms (F, ϕ) : (C , A) → (C ′, A′) in G-CAT such that
F (P) ⊆ P ′.
For any 1-morphisms (F, ϕ), (F ′, ϕ′) : (C , A,P) → (C ′, A′,P ′), 2-morphisms
from the former to the latter are the 2-morphisms (F, ϕ) ⇒ (F ′, ϕ′) inG-CAT.

Definition 3.8. Let C be a 2-subcategory of k-CATs. We define a 2-subcategory Ĉ
of G-CATs as follows.
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First, objects are the objects (C , A,P) in G-CATs with (C ,P) ∈ C. Next, for
any objects (C , A,P) and (C ′, A′,P ′), 1-morphisms from the former to the latter are
the G-equivariant functors (F, ϕ) : (C , A) → (C ′, A′) with F ∈ C((C ,P), (C ′,P ′)).

Finally, for any 1-morphisms (F, ϕ), (F ′, ϕ′) : (C ,P, A) → (C ′,P ′, A′) in Ĉ, 2-
morphisms from (F, ϕ) to (F ′, ϕ′) are the 2-morphisms (F, ϕ) ⇒ (F ′, ϕ′) in G-CAT.

Lemma 3.9. Let C be a 2-subcategory of k-CATs, and U : C → k-CAT a 2-functor.
For each object (resp. 1-morphism, 2-morphism) x in C, set the value of Û(x) as in

Lemma 3.3. Then this defines a 2-functor Û : Ĉ → G-CAT.

Proof. The same proof of Lemma 3.3 works. �

If there seems to be no confusion, we denote Û just by U . Then we have U(A)a =
U(Aa) and U(ϕ)a = U(ϕa) for all G-categories (C , A) and G-equivariant functors
(F, ϕ).

We extend the construction in Lemma 3.5 to strict 2-natural transformations (see
[As22, Definition 4.1.14]).

Lemma 3.10. Consider the following diagram of 2-categories, 2-functors, and a strict
2-natural transformation:

C k-CAT

V

U

ρ ,

where C is a 2-subcategory of k-CAT (resp. k-CATs). Then it is extended to the
following diagram of 2-categories, 2-functors, and a strict 2-natural transformation:

Ĉ G-CAT

V̂

Û

ρ̂ ,

where Ĉ, Û , V̂ are defined as in Lemma 3.5.

Proof. We show the assertion in the case that C is a 2-subcategory of k-CAT. The
assertion in the remaining case is shown similarly. Since ρ is a strict 2-natural trans-
formation, any diagram in C on the left yields a commutative diagram on the right:

C C ′

F

F ′

α ,

V (C ) V (C ′)

U(C ) U(C ′)

V (F )

V (F ′)

V (α)

U(F )

U(F ′)

U(α)

ρC ρC ′ .

Thus we have

ρC ′V (F ) = U(F )ρC , and (3.3)

ρC ′V (α) = U(α)ρC . (3.4)
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First, we define a candidate of a strict 2-natural transformation ρ̂ : V̂ ⇒ Û , which
should be a family ρ̂ := (ρ̂(C ,A))(C ,A)∈Ĉ with

ρ̂(C ,A) : (V (C ), (V (Aa))a∈G) → (U(C ), (U(Aa))a∈G)

a G-equivariant functor. Thus we are looking for a 2-morphism in the diagram

V (C ) U(C )

V (C ) U(C )

ρC

ρC

V (Aa) U(Aa) .

Apply (3.3) to Aa : C → C to have ρCV (Aa) = U(Aa)ρC for all a ∈ G, which makes
it possible to define ρ̂ by

ρ̂(C ,A) := (ρC , (1lU(Aa)ρC
)a∈G). (3.5)

We now show that ρ̂ is a strict 2-natural transformation, namely that any diagram
in Ĉ on the left yields a commutative diagram on the right:

(C , A) (C ′, A′)

(F,ϕ)

(F ′,ϕ′)

α ,

V̂ (C , A) V̂ (C ′, A′)

Û(C , A) Û(C ′, A′)

V̂ (F,ϕ)

V̂ (F ′,ϕ′)

V̂ (α)

Û(F,ϕ)

Û(F ′,ϕ′)

Û(α)

ρ̂(C ,A) ρ̂(C ′,A′) .

Thus we have to show that

ρ̂(C ′,A′)V̂ (F, ϕ) = Û(F, ϕ)ρ̂(C ,A), and (3.6)

ρ̂(C ′,A′)V̂ (α) = Û(α)ρ̂(C ,A). (3.7)

By definition, (3.7) coincides with (3.4). The left hand side of (3.6) is equal to the
following:

(ρC ′ , (1lU(Aa)ρC ′ )a)(V (F ), (V (ϕa))a) = (ρC ′V (F ), ((ρC ′V (ϕa)) • (1lU(Aa)ρC ′ ))a)

= (ρC ′V (F ), (ρC ′V (ϕa))a).

The right hand side of (3.6) is equal to the following:

(U(F ), (U(ϕa))a)(ρC , (1lU(Aa)ρC
)a) = (U(F )ρC , ((U(F )1lU(Aa)ρC

) • (U(ϕa)ρC ))a)

= (U(F )ρC , (U(ϕa)ρC )a).

We now compare these last values. By (3.3), the first components coincide. By
applying (3.4) to α := ϕa for all a ∈ G, we see that the second components coincide
as well. Hence (3.6) holds. �
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Example 3.11. In Example 3.6, we note that the family π := (πC )C∈k-CATp defines
a strict 2-natural transformation

k-CATp k-CAT

σ

U

π ,

where σ is the inclusion 2-functor. Then by Example 3.6 and Lemma 3.10, the family

π̂ := (πC , (1lπCAa)a∈G)(C ,A)∈G-CATp

defines a strict 2-natural transformation

G-CATp G-CAT

σ̂

Û

π̂ . (3.8)

Note that σ̂ is nothing but the inclusion 2-functor.

For applications, we now add the following two examples of 2-functors.

Example 3.12. We define a 2-category k-CATi as a 2-subcategory of k-CATs as
follows.

Objects: Objects are the pairs (C , S), where C ∈ k-CAT, and S is an ideal of C .
1-morphims: Let (A , S), (B, T ) be objects. Then 1-morphisms from (A , S) to

(B, T ) are the k-functors F : A → B such that F (S) ⊆ T .
2-morphims: Let (A , S), (B, T ) be objects, and E,F : (A , S) → (B, T ) 1-

morphisms. Then 2-morphisms from E to F are the natural transformations from E
to F .

Now we define a 2-functor

U := Ui : k-CATi → k-CAT

called the factor 2-functor as follows.
On objecs: Let (A , S) ∈ k-CATi. Then U(A , S) := A /S.
On 1-morphisms: Let F : (A , S) → (B, T ) be in k-CATi. Then since F (S) ⊆ T ,

it induces a k-functor U(F ) : A /S → B/T . We denote by π(A ,S) the canonical

functor A → A /S, and set f := π(A ,S)(f) for all morphisms f in A . Note here that
π(A ,S) : A → A /S is a full functor for all (A , S) ∈ k-CATi.

On 2-morphisms: Let E,F : (A , S) → (B, T ) be in k-CATi, and α : E ⇒ F a
2-morphism in k-CATi. Thus α = (αx)x∈A is a natural transformation from E to F
with αx ∈ B(Ex, Fx). Set U(α) := (αx)x∈A . Then U(α) turns out to be a natural
transformation U(E) ⇒ U(F ).

Then as easily seen, U : k-CATi → k-CAT is a 2-functor.
For C = k-CATi, we set G-CATi := Ĉ. Namely, objects of G-CATi are the

pairs (C , S), where C is an object of G-CAT, and S is an ideal of C , 1-morphisms
((A , A), S) → ((B, B), T ) are the G-equivariant functors (F, ϕ) : (A , A) → (B, B)
with F (S) ⊆ T , and 2-morphisms are the 2-morphisms in G-CAT between the 1-
morphisms in G-CATi. Then by Lemma 3.9, U is extended to a 2-functor

Û := Ûi : G-CATi → G-CAT.
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As in Example 3.11, the family πi := π := (π(A ,S) : A → A /S)(A ,S)∈k-CATi
defines

a strict 2-natural transformation

k-CATi k-CAT

σi

Ui

πi ,

where σi is the forgetful 2-functor ((A , S)
F−→ (B, T )) 7→ (A

F−→ B). Then by Lemma
3.10, the family

π̂i := π̂ := (π(A ,S), (1l(π(A ,S)Aa))a∈G)(A ,A,S)∈G-CATi

defines a strict 2-natural transformation

G-CATi G-CAT

σ̂i

Ûi

π̂i , (3.9)

where σ̂i is the forgetful 2-functor

((A , A, S)
(F,ϕ)−−−→ (B, B, T )) 7→ ((A , A)

(F,ϕ)−−−→ (B, B)).

Remark 3.13. We remark that k-CATp is related to a 2-subcategory of k-CATi.
Let k-CATP be a 2-subcategory of k-CATi whose objects are the pairs (A , PA )
of an object A of k-CAT and the ideal PA of A consisting of all morphisms
in A factoring through some projective object of A , and whose morphisms are
given by k-CATP ((A , PA ), (B, PB)) := k-CATi((A , PA ), (B, PB)) for all objects
(A , PA ), (B, PB) of k-CATP . Then we have

k-CATp(A ,B) ⊆ k-CATP ((A , PA ), (B, PB)),

more precisely,

k-CATp(A ,B) = {F ∈ k-CATP ((A , PA ), (B, PB)) | Fpreserves projectives}
and Up(A ) = A /PA = Ui(A , PA ) for all objects A ,B of k-CAT.

Example 3.14 (Quotient case). We define a 2-category k-CATm as a 2-subcategory
of k-CATs as follows.

Objects: Objects are the pairs (C , S), where C ∈ k-CAT, and S is a bicalculable
multiplicative system of C .

1-morphims: Let (A , S), (B, T ) be objects. Then 1-morphisms from (A , S) to
(B, T ) are the k-functors F : A → B such that F (S) ⊆ T .

2-morphims: Let (A , S), (B, T ) be objects, and E,F : (A , S) → (B, T ) 1-
morphisms. Then 2-morphisms from E to F are the natural transformations from E
to F .

Now we define a 2-functor

U := Um : k-CATm → k-CAT

called the quotient 2-functor (or localization 2-functor) as follows.
On objecs: Let (A , S) ∈ k-CATm. Then U(A , S) := A [S−1].
On 1-morphisms: Let F : (A , S) → (B, T ) be in k-CATm. Then since F (S) ⊆

T , it induces a k-functor U(F ) : A [S−1] → B[T−1]. We denote by π(A ,S) the quotient

functor A → A [S−1], and set f := π(A ,S)(f) for all morphisms f in A .
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On 2-morphisms: Let E,F : (A , S) → (B, T ) be in k-CATm, and α : E ⇒ F a
2-morphism in k-CATm. Thus α = (αx)x∈A is a natural transformation from E to
F with αx ∈ B(Ex, Fx). Set U(α) := (αx)x∈A . Then U(α) turns out to be a natural
transformation U(E) ⇒ U(F ).

Then as easily seen, U : k-CATm → k-CAT is a 2-functor.
For C = k-CATm, we set G-CATm := Ĉ. Namely, objects of G-CATm are the

pairs (C , S), where C is an object of G-CAT, and S is a bicalculable multiplicative
system of C , 1-morphisms (A , A, S) → (B, B, T ) are the G-equivariant functors
(F, ϕ) : (A , A) → (B, B) with F (S) ⊆ T , and 2-morphisms are the 2-morphisms in
G-CAT between 1-morphisms in G-CATm. Then by Lemma 3.9, U is extended to
a 2-functor

Û := Ûm : G-CATm → G-CAT.

As in Example 3.12, the family πm := π := (π(A ,S) : A → A [S−1])(A ,S)∈k-CATm

defines a strict 2-natural transformation

k-CATm k-CAT

σm

Um

πm ,

where σm is the forgetful 2-functor ((A , S)
F−→ (B, T )) 7→ (A

F−→ B). Then by
Lemma 3.10, the family

π̂m := π̂ := (π(A ,S), (1l(π(A ,S)Aa))a∈G)(A ,S,A)∈G-CATm

defines a strict 2-natural transformation

G-CATm G-CAT

σ̂m

Ûm

π̂m , (3.10)

where σ̂m is the forgetful 2-functor ((A , A, S)
(F,ϕ)−−−→ (B, B, T )) 7→ ((A , A)

(F,ϕ)−−−→
(B, B)).

Remark 3.15 (Dense/localizing subcategories). For instance, bicalculable multi-
plicative systems can be obtained as follows. Let C be an abelian category. Recall
that a full subcategory S of C is said to be dense (or a Serre subcategory) if it
is closed under subobjects, factor objects, and extensions. If this is the case, then
S := SC (S ) := {f : a morphism in C | Kerf,Cokerf ∈ S } becomes a bicalculable
multiplicative system of C . In this case, we set C /S := C [S−1] (see e.g. [Po73,
Ch. 4, Sect. 4.1]). Recall also that S is called localyzing if the canonical functor
Q : C → C /S has a right adjoint. This is equivalent to say that S is closed under
small coproducts if C has small coproducts and injective envelopes (see e.g. [Po73,
Ch. 4, Proposition 6.3]).

4. G-precoverings induced by adjoint

In this section, we prove a theorem that produces new G-precoverings from old.
First, we review the notion of the adjoint pair in 2-categories.
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Definition 4.1. Let C be a 2-category, and consider the diagram

C D

C D

L

R

L

1lC 1lD

η

ε

in C. Then the quadruple (L,R, η, ε) is called an adjoint system from C to D if the
following diagrams are commutative:

L L ◦R ◦ L

L

1lL◦η

ε◦1lL and

R R ◦ L ◦R

R

η◦1lR

1lR◦ε .

(Here, Lη = 1lL ◦ η and εL = ε ◦ 1lL are the horizontal composites.) When this is the
case, L is called a left adjoint to R, R is called a right adjoint to L, and (L,R) is
called an adjoint pair. The 2-morphism η (resp. ε) is called a unit (resp. a counit) of
this adjoint system.

In the case that C = G-CAT, the family

ω = (ωx,y : D(Lx, y) → C (x,Ry))x∈C ,y∈D

defined by f 7→ Rf ◦ ηx is well-known to be a natural isomorphism (see e.g., [As22,
Theorem 4.4.7]), which is called the adjunction of this adjoint system, and we denote
this by ω : L a R.

Since a 2-functor preserves identity 2-morphisms and both vertical and horizontal
compositions of 2-morphisms, the following is obvious.

Lemma 4.2. Let U : C → D be a 2-functor between 2-categories, and (L,R, η, ε) an
adjoint system from C to D in C. Then (U(L), U(R), U(η), U(ε)) turns out to be an
adjoint system from U(C ) to U(D) in D.

In particular, when C = G-CAT, if ω = (ωx,y : D(Lx, y) → C (x,Ry))x∈C ,y∈D is
the adjunction of (L,R, η, ε), then the adjunction

U(ω) = (U(ω)x,y : U(D)(U(L)x, y) → U(C )(x, U(R)y))x∈U(C ),y∈U(D)

of (U(L), U(R), U(η), U(ε)) is given by f 7→ U(R)f ◦ U(η)x. �

4.1. Preservation of compactness. Let A be a k-category and x ∈ A . Consider
a cocone (y, (si : yi → y)i∈I) in A . Then we have a cocone

(A (x, y), (A (x, si) : A (x, yi) → A (x, y))i∈I)

in Mod-k. Since Mod-k has small coproducts, we have the following commutative
diagram:

A (x, yi) A (x, y)

⊕
i∈I A (x, yi)

A (x,si)

ui ν
,
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where ui is the canonical injection defined by f 7→ (δj,if)j∈I for all i ∈ I, and ν is the
canonical morphism defined by

ν((fi)i∈I) :=
∑
i∈I

si ◦ fi for all (fi)i∈I ∈
⊕
i∈I

A (x, yi). (4.1)

We set [A (x, si)]i∈I := ν.
With this notation, let us recall the following definition.

Definition 4.3. An object x in a k-category A is said to be compact if for any
small set I and any family (yi)i∈I of objects of A , the functor A (x, -) preserves
the coproduct of (yi)i∈I , in the sense that for any coproduct (y, (si : yi → y)i∈I) of
(yi)i∈I , the canonical map [A (x, si)]i∈I :

⊕
i∈I A (x, yi) → A (x, y) is an isomorphism

of k-vector spaces.
We denote by cpt(A ) the full subcategory of A consisting of the compact objects.

For example, if A = Mod-C for some k-category C , then cpt(A ) = mod-C .

The following remark is useful when we show the compactness of an object.

Remark 4.4. In the above definition, it is well-known that [A (x, si)]i∈I is an in-
jection in general (see e.g [As22, Lemma 1.5.17 (3)]). Note also that a coproduct is
uniquely determined up to natural isomorphism. Hence to prove that x is compact,
it is enough to show that there exists a coproduct (y, (si : yi → y)i∈I) of (yi)i∈I such
that the canonical map [A (x, si)]i∈I is a surjection.

Lemma 4.5. Let (L,R, η, ε) be an adjoint system from A to B in a 2-category C,
which is a 2-subcategory of k-CAT. If R preserves small coproducts (for instance, if
R has a right adjoint), then

L(cpt(A )) ⊆ cpt(B).

Proof. Set ω to be the adjunction isomorphism of the adjoint system, and let x ∈
cpt(A ). To show that L(x) is compact in B, let I be a small set, and (y, (σi : yi →
y)i∈I) a coproduct of a family (yi)i∈I of objects of B. Then by the universality
of coproducts, there exists a unique map θ :

⊕
i∈I B(F (x), yi) → B(L(x), y) and

a unique map η :
⊕

i∈I A (x,R(yi)) → A (x,R(y)) such that the upper and lower
triangles in the diagram

B(L(x), yi) B(L(x), y)

⊕
i∈I B(L(x), yi)

A (x,R(yi)) A (x,R(y))

⊕
i∈I A (x,R(yi))

B(F (x),σi)

vi θ

A (x,R(σi))

ui η

ωx,yi ∼ ωx,y∼

⊕
i∈I ωx,yi∼

commutes, where ui and vi are the canonical injections. To show that L(x) ∈ cpt(B),
it is enough to show that θ is bijective. Here, the back square commutes by the
naturality of ω, and so does the left square by definitions of ui, vi. Set α (resp.
β) to be the clockwise (resp. counter-clockwise) composite of the right square. The
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commutativities of these squares and two triangles show that αvi = βvi for all i ∈ I.
Therefore by the universality of coproduct, we have α = β, that is, the right square
commutes. Now since R preserves coproducts, (R(y), R(σi)i∈I) is a coproduct of
(R(yi))i∈I . Therefore, since x ∈ cpt(A ), η is bijective, and hence so is θ. �
Remark 4.6. Let A and B be in a 2-category C, which is a 2-subcategory of k-CAT.
If L : A → B is an equivalence with a quasi-inverse R, then it is well known that
there exists an adjoint system (L,R, η, ε) from A to B (see e.g., [As22, Corollary
4.4.5]). Hence by Lemma 4.5, L(cpt(A )) ⊆ cpt(B) because R has a right (and a left)
adjoint L. In particular, if L is an auto-equivalence of A , then L(cpt(A )) ⊆ cpt(A ).

4.2. G-precoverings induced by adjoint. By referring to Proposition 2.10, a prop-
erty of (P�, ϕ�), we define the following.

Definition 4.7. Let A = (A , A) be a G-category having small coproducts3 , B a
k-category and (L, ϕ) : A → B a G-invariant functor, where L has a right adjoint
R : B → A with an adjunction isomorphism ω : L a R. Then (L, ϕ) is said to
induce a G-precovering (L, ϕ) : cpt(A ) → cpt(B) by the adjunction ω if the following
conditions are satisfied:

(PA1) There exists a natural isomorphism t :
⊕

a∈GAa ⇒ RL.
(PA2) For any x, y ∈ A , the following diagram commutes:⊕

a∈G A (x, ay) A (x,
⊕

a∈G ay)

B(Lx,Ly) A (x,RLy)

ν

A (x,ty)∼(L,ϕ)
(2)
x,y

∼
ωx,Ly

, (4.2)

where ν is the canonical morphism. Note that ν becomes an isomorphism if
x ∈ cpt(A ).

(PA3) R preserves small coproducts.

If in the above, the condition (PA3) is not assumed, then (L, ϕ) is said to induce a
G-precovering (L, ϕ) : cpt(A ) → B by the adjunction ω. Note that by the condition
(PA2), the induced functor (L, ϕ) : cpt(A ) → B is actually a G-precovering, and the
condition (PA3) guarantees that the functor (L, ϕ) : cpt(A ) → cpt(B) is induced by
Lemma 4.5, and is a G-precovering. Note the difference of two types. For the former,
its codomain is cpt(B) and (PA3) is assumed, while for the latter, its codomain is B
and (PA3) is not assumed.

By noting that cpt(Mod-C ) = mod-C and cpt(Mod-C /G) = mod-C /G for a small
G-category C , Definition 4.7 rephrases Proposition 2.10 as follows.

Proposition 4.8. Let C be a skeletally small G-category, (P, ϕ) : C → C /G the
canonical functor. Then the pushdown functor (P�, ϕ�) : Mod-C → Mod-C /G induces
a G-precovering (P�, ϕ�) : mod-C → mod-C /G by the adjunction θ : P� a P �. �

Let C be a G-category, and let K be a full subcategory of C that is G-stable, i.e.,
Aa(K ) ⊆ K for every a ∈ G. Assume that C is idempotent complete.

Under these conditions, we can make the following observations:

(1) The subcategories Add-K and add-K are also G-stable;

3This means that A has small coproducts. Note that we use the direct sum
⊕

a∈G ay in the

diagram (4.2), which requires this assumption.
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(2) If K ⊆ cpt(C ), then cpt(Add-K ) = add-K .

In particular, for a skeletally small category C , we have

cpt(Mod-C ) = cpt(Add-(mod-C )) = mod-C .

Example 4.9. Keep the notations used in subsection 2.3. Let K be G-stable sub-
category of mod-C , and K ′ a subcategory of mod-(C /G). Assume P� sends K
to K ′ and P � sends K ′ to Add-K . Then, we have P�(Add-K ) ⊆ Add-K ′ and
P �(Add-K ′) ⊆ Add-K because both P� and P � preserve small coproducts. Hence,
according to the observation made earlier (before the example), we can restrict the
G-invariant functor (P�, ϕ�) : Mod-C → Mod-(C /G) to obtain the G-invariant functor
(P�|, ϕ�|) : Add-K → Add-K ′, which induces a G-precovering (P�|, ϕ�|) : add-K →
add-K ′ by the adjuction θ| : (P�|) a (P �|).

Remark 4.10. The definition above is extended to the case that A ,B ∈ k-Cats
in a canonical way, which is used in Theorem 4.18. To see the difference, note the
required conditions on L, R and ω in this theorem.

To deal with localization cases, we introduce the following terminology.

Definition 4.11. Let π : A → B be a k-functor of k-categories that is the identity
on the objects, that is, obj(A ) = obj(B), and π(x) = x for all x ∈ A .

π is said to be epic among representable right B-modules if for any y ∈ cpt(A ),
z ∈ A , and any morphims u, v : B(-, y) → B(-, z) of right B-modules, the equality
uπ = vπ on cpt(A )(-, y), (namely, u◦π(-,y) = v◦π(-,y), see the diagram below) implies
u = v:

cpt(A )(-, y) B(-, y) B(-, z)
π(-,y) u

v
.

By Yoneda’s lemma, this condition is equivalent to the following: For any y ∈ cpt(A ),
z ∈ A , and any morphims u, v ∈ B(y, z), the equality u ◦ π(g) = v ◦ π(g) for all
x ∈ cpt(A ) and g ∈ A (x, y) implies u = v.

Example 4.12. Let π : A → B be a k-functor of k-categories. In the following cases
π is epic among representable right modules:

(1) The case where π is a full functor.
(2) The case where S is a bicalculable multiplicative system of A , B := A [S−1],

and π is the localization functor.

In the case (1), the assertion is obvious. In the case (2), note that π is the identity
on the objects. To show the assertion, let x ∈ A , y ∈ B. and u, v : B(-, x) → B(-, y)
morphisms of right B-modules, and assume that the equality uπ = vπ holds on
A (-, x). Take any z ∈ A and g ∈ B(z, x). Then g has the form g = π(f)π(s)−1

for some f ∈ A (w, x), s ∈ S(w, z) and w ∈ A . By assumption, we have u(π(f)) =
v(π(f)). Since both u and v are morphisms of right B-modules, we have u(g) =
u(π(f)π(s)−1) = u(π(f))π(s)−1 = v(π(f))π(s)−1 = v(π(f)π(s)−1) = v(g). Thus
u = v.

Lemma 4.13. Let π : A → B be a k-functor of k-categories. Let I be a small
set, and (yi)i∈I any family of objects in A , and assume that (yi)i∈I has a coproduct
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(y, (si : yi → y)i∈I) in A . Then the following diagram is commutative for all x ∈ A :⊕
i∈I A (x, yi) A (x, y)

⊕
i∈I B(π(x), π(yi)) B(π(x), π(y))

νx

ν′x

⊕
i∈I π(x,yi)

π(x,y) , (4.3)

where νx and ν ′x are the canonical maps defined as in (4.1). Note here that ν ′x is de-
fined even if the family (π(y), (π(si) : π(yi) → π(y))i∈I) is not a coproduct of (π(yi))i∈I
because this family is a cocone.

Proof. Take any (fi)i∈I ∈
⊕

i∈I A (z, yi). Then the clockwise composite of morphisms
send it to π(

∑
i∈I si ◦ fi), and the counter-clockwise composite of morphisms send it

to
∑

i∈I π(si) ◦ π(fi), and hence they coincide. �
Lemma 4.14. Let π : A → B be a k-functor of k-categories, and assume that

(1) A has small coproducts,
(2) π preserves small coproducts,
(3) π is surjective on objects, and
(4) π is full.

Then π(cpt(A )) ⊆ cpt(B).

Proof. Let x ∈ cpt(A ). To show that π(x) is in cpt(B), take any small set I and
any family (y′i)i∈I of objects of B. By (3), there exist objects yi of A such that
y′i = π(yi). By (1), there exists a coproduct (y, (si : yi → y)i∈I) of (yi)i∈I in A . By
(2), (π(y), (π(si) : y

′
i → π(y))i∈I) turns out to be a coproduct of (y′i)i∈I in B. Then

we have the commutative diagram (4.3). It is enough to show that ν ′x is surjective by
Remark 4.4. But this follows from the facts that π(x,y) is surjective by (4) and that
νx is an isomorphism because x ∈ cpt(A ). As a consequence, π(x) ∈ cpt(B). �
Lemma 4.15. Let π : A → B be a full k-functor of k-categories, which is identity
on objects. If A = Mod-C for some skeletally small k-category C , then π preserves
small coproducts. Hence by Lemma 4.14, we have π(cpt(A )) ⊆ cpt(B).

Proof. Assume that A = Mod-C for some skeletally small k-category C . Then it is
well know that A has small coproducts that is given as direct sums. To show that
π preserves small coproducts, let I be a small set, and let Mi ∈ A for all i ∈ I. Set
M :=

⊕
i∈I Mi, and let qi : Mi → M be the canonical injection, and pi : M → Mi

the composite of the inclusion σ : M →
∏

j∈I Mj followed by the canonical projection∏
j∈I Mj → Mi for all i ∈ I. Then we have

piqj = δi,j1lMi for all i, j ∈ I; and (4.4)∑
i∈I

qipi = 1lM , (4.5)

where the left hand side of the second equality is summable in the sense that for
each x ∈ C , the set {i ∈ I | qi,xpi,x 6= 0: M(x) → M(x)} is finite. To complete the
proof, it is enough to show that (M, (q′i)i∈I) is a coproduct of (Mi)i∈I in B because
(M, (qi)i∈I) is a coproduct of (Mi)i∈I in A , where we set q′i := π(qi) for all i ∈ I for
short. To show this, take any N ∈ B and let f ′

i be in B(Mi, N) for all i ∈ I. Then
since π is full, for each i ∈ I, there exists fi ∈ A (Mi,M) such that π(fi) = f ′

i . By
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the universality of the coproduct (M, (qi)i∈I), there exists a unique f ∈ A (M,N)
such that fi = fqi for all i ∈ I. By setting f ′ := π(f) ∈ B(M,N), we have f ′

i = f ′q′i
for all i ∈ I. It remains to show the uniqueness of this f ′. To show this, assume
that g′ ∈ B(M,N) satisfies f ′

i = g′q′i for all i ∈ I. We have only to show that
f ′ = g′. By assumption, there exists some g ∈ A (M,N) such that g′ = π(g). Set
u := f − g ∈ A (M,N). Then π(uqi) = π(fqi − gqi) = f ′q′i − g′q′i = f ′

i − f ′
i = 0 for all

i ∈ I. Hence by (4.5), we have

π(u) = π(
∑
i∈I

uqipi) =
∑
i∈I

π(uqi)π(pi) = 0.

Therefore, 0 = π(f − g) = f ′ − g′, and thus we have f ′ = g′. �

4.3. Main theorems. In the following theorems, we give a general tool to induce
G-precoverings in terms of 2-categories.

Theorem 4.16. Consider the following diagram of 2-categories, 2-functors, and a
strict 2-natural transformation on the left, and its extension

by Lemma 3.10 on the right:

C k-CAT,

σ

U

π Ĉ G-CAT,

σ̂

Û

π̂

where C is a 2-subcategory of k-CAT and σ is the inclusion 2-functor. Assume the
following conditions for all C ∈ C:

(0) C has small coproducts, and πC : C → U(C ) preserves small coproducts.
(i) πC is the identity on the objects.
(ii) πC is epic among representable right U(C )-modules.

Now let (A , A) be a G-category in Ĉ, where A has small coproducts, B a k-category

in C, and (L, ϕ) : (A , A) → B a G-invariant functor in Ĉ (cf. Remark 1.6), where L
has a right adjoint R : B → A in C with an adjunction isomorphism ω : L a R in C.
Then the following hold.

(1) Assume that (L, ϕ) : A → B induces a G-precovering cpt(A ) → B by the
adjunction ω. Then
(a) the G-invariant functor U(L, ϕ) : U(A ) → U(B) induces a G-precovering

U(L, ϕ) : cpt(U(A )) → U(B)

by the adjunction U(ω) : U(L) a U(R), and
(b) if further cpt(A ) = πA (cpt(A )) ⊆ cpt(U(A )) (this is the case, for

example, if πA is full by Lemma 4.15), then U(L, ϕ) restricts to a G-
precovering

U(L, ϕ) : U(cpt(A )) → U(B).

(2) Assume that (L, ϕ) : A → B induces a G-precovering cpt(A ) → cpt(B) by
the adjunction ω. Then
(a) the G-invariant functor U(L, ϕ) : U(A ) → U(B) induces a G-precovering

U(L, ϕ) : cpt(U(A )) → cpt(U(B))

by the adjunction U(ω) : U(L) a U(R), and
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(b) if further cpt(A ) ⊆ cpt(U(A )), then U(L, ϕ) restricts to a G-precovering

U(L, ϕ) : U(cpt(A )) → U(cpt(B)).

Proof. First of all, we remark that for each A ∈ Ĉ, π̂A satisfies the conditions cor-
responding to both (i) and (ii) by (3.5) as well. By abuse of notation, we denote Û
and π̂ just by U and π, respectively.

(1)(a) Assume that (L, ϕ) : A → B in C induces a G-precovering cpt(A ) → B by
the adjunction ω : L a R. Then (L, ϕ) satisfies the conditions (PA1) and (PA2) in
Definition 4.7. Since U is a 2-functor, we have an adjunction U(ω) : U(L) a U(R) by
Lemma 4.2. By (PA1) for (L, ϕ), we have a natural isomorpism

U(t) :
⊕
a∈G

U(Aa) ⇒ U(R)U(L).

Thus U(L, ϕ) satisfies (PA1).
To show the statement (a), it remains to show the condition (PA2) for U(L, ϕ),

namely the commutativity of the diagram⊕
a∈G U(A )(x, ay) U(A )(x,

⊕
a∈G ay)

U(B)(U(L)X,U(L)y) U(A )(x, U(R)U(L)y)

ν′

U(A )(x,U(ty))(U(L,ϕ))
(2)
x,y

U(ω)x,U(L)y

(4.6)

for all x, y ∈ U(A ), where ν ′ is the canonical morphism. Construct the following
diagram by combining the diagrams (4.2) and (4.6) with π:⊕

a∈G A (x, ay) A (x,
⊕

a∈G ay)

B(Lx,Ly) A (x,RLy)

⊕
a∈G U(A )(x, ay) U(A )(x,

⊕
a∈G ay)

U(B)(U(L)x, U(L)y) U(A )(x, U(R)U(L)y)

(L,ϕ)
(2)
x,y A (x,ty)

ν

ωx,Ly

(U(L),U(ϕ))
(2)
x,y U(A )(x,U(t)y)

U(ω)x,U(L)y

⊕
a∈G πA ,(x,ay)

πB,(Lx,Ly)

πA ,(x,
⊕

a∈G ay)

πA ,(x,RLy)

ν′

. (4.7)

Then the back square commutes by the condition (PA2), the commutativity of (4.2).
We now verify the commutativity of the left, right, upper, and lower squares.

Claim 1. The left square of (4.7) is commutative.

Indeed, we first show the commutativity of the following diagaram:

A (x, ay) U(A )(x, ay)

B(Lx,Lay) U(B)(U(L)x, U(L)ay)

B(Lx,Ly) U(B)(U(L)x, U(L)y)

πA ,(x,ay)

πB,(Lx,Lay)

πB,(Lx,Ly)

L(x,ay) U(L)(x,ay)

B(Lx,ϕ−1
a,y) U(B)(U(L)x,U(ϕ)−1

a,y)

. (4.8)
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Consider the diagram

A B

U(A ) U(B)

LAa

L

ϕ−1
a

U(L)U(Aa)

U(L)

U(ϕ−1
a )

πA πB .

Then by the strict 1-naturality of π, we have πBL = U(L)πA , which shows the
commutativity of the upper square of (4.8), and by the strict 2-naturality of π, we
have πBϕ−1

a = U(ϕ−1
a )πA , which shows the commutativity of the lower square of

(4.8) because any g ∈ B(Lx,Lay) is sent by the counter-clockwise composite to
πB(ϕ−1

a,y ◦ g), by the clockwise composite to U(ϕ)−1
a,y ◦ πB(g), and they coincide by

πB(ϕ−1
a,y ◦ g) = πB(ϕ−1

a,y) ◦ πB(g) = U(ϕ−1
a )πA (y) ◦ πB(g) = U(ϕ)−1

a,y ◦ πB(g).

Now to show the claim, take any (fa)a∈G ∈
⊕

a∈G A (x, ay). Then the counter-

clockwise composite sends it to πB(
∑

a∈G ϕ−1
a,yL(fa)) =

∑
a∈G πB(ϕ−1

a,yL(fa)), and the

clockwise composite sends it to
∑

a∈G U(ϕ−1
a )yU(L)(πA (fa)), and they coincide by

the commutativity of (4.8).

Claim 2. The right square of (4.7) is commutative.

indeed, by applying the strict 2-naturality of π to the diagram

A A

U(A ) U(A )

⊕
a∈G Aa

RL

t

U(
⊕

a∈G Aa)

U(R)U(L)

U(t)

πA πA ,

we have πA ◦ t = U(t) ◦ πA . By evaluating it at y, we have

πA (ty) = U(t)πA (y) = U(t)y. (4.9)

To show the claim, take any f ∈ A (x,
⊕

a∈G ay). Then the counter-clockwise com-
posite sends it to πA (ty ◦ f) = πA (ty) ◦ πA (f), while the clockwise composite sends
it to U(t)y ◦ πA (f), and they coincide by (4.9).

Claim 3. The upper square of (4.7) is commutative.

This follows by Lemma 4.13.

Claim 4. The lower square of (4.7) is commutative.
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Indeed, let f ∈ B(Lx,Ly). Then by the definition of U(ω) in Lemma 4.2, the
counter-clockwise composite sends f to U(R)(πB(f)) ◦ U(η)x, while the clockwise
composite sends f to πA (Rf ◦ ηx) = πA (Rf) ◦ πA (ηx). Thus, it is enough to show
that

U(R)(πB(f)) ◦ U(η)x = πA (Rf) ◦ πA (ηx). (4.10)

By the commutative diagram

B A

U(B) U(A )

R

U(R)

πB πA , (4.11)

we have

U(R)(πB(f)) = πA (Rf). (4.12)

By the strict 2-naturality of π, we also have πA ◦ η = U(η) ◦ πA . By evaluating it at
x ∈ A , we have

πA (ηx) = U(η)πA (x) = U(η)x. (4.13)

(4.12) and (4.13) show the equality (4.10).
We now show the commutativity of (4.6). By fixing y ∈ A , we set ux and vx to be

the clockwise composite and counter-clockwise composite of (4.6), respectively, and
show that ux = vx for all x ∈ A . By the claims above, we have

ux ◦
⊕
a∈G

πA ,(x,ay) = vx ◦
⊕
a∈G

πA ,(x,ay).

For each a ∈ G, let σa : U(A )(x, ay) →
⊕

a∈G U(A )(x, ay) be the canonical injection,
and set ux,a := uxσa, vx.a := vxσa so that ux = (ux,a)a∈G and vx = (vx,a)a∈G. Then
the equality above gives us the following for all a ∈ G:

ux,a ◦ πA ,(x,ay) = vx,a ◦ πA ,(x,ay). (4.14)

Let a ∈ G. Here, regard x as a variable, and consider the correspondences

ua, va : U(A )(-, ay) → U(A )(-, U(R)U(L)y)

given by ux,a and vx,a, respectively. Then it is enough to show that these are mor-
phisms of right U(A )-modules because if this is the case, then since πA is epic among
representable right U(A )-modules by assumption (ii),

we have ua = va for all a ∈ G, and hence ux = vx for all x ∈ A , as desired.
By definition, we see that

ua(f) = U(t)y ◦ sa ◦ f (4.15)

va(f) = U(R)(ϕ−1
a,y) ◦ (U(R)U(L))(f) ◦ U(η)x (4.16)

for all f ∈ U(A )(x, ay) and x ∈ U(A ), where sa : ay →
⊕

a∈G ay is the injection
of coproduct. By the form of (4.15), it is obvious that ua is a morphism of right
U(A )-modules. To show that va is a morphism of right U(A )-modules, take any
g ∈ U(A )(z, x) with z ∈ U(A ). We have only to show that va(fg) = va(f)g. By the
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naturality of U(η), we have

va(f)g = U(R)(ϕ−1
a,y) ◦ (U(R)U(L))(f) ◦ U(η)x ◦ g

= U(R)(ϕ−1
a,y) ◦ (U(R)U(L))(f) ◦ (U(R)U(L))(g) ◦ U(η)z

= U(R)(ϕ−1
a,y) ◦ (U(R)U(L))(fg) ◦ U(η)z

= va(fg).

This finishes the proof of (1)(a).
(1)(b) Assume that cpt(A ) ⊆ cpt(U(A )). More precisely stated, obj(cpt(A )) ⊆

obj(cpt(U(A ))). Then since π is the identity on objects, we have

obj(U(cpt(A ))) = obj(cpt(A )) ⊆ obj(cpt(U(A ))).

Thus roughly stated, U(cpt(A )) ⊆ cpt(U(A )). Hence the assertion follows.
(2)(a) This follows from (1) by the following claim.

Claim 5. If R preserves small coproduts, then so does U(R).

To show this, look at the commutative diagram (4.11), and let I be a small set and
(xi)i∈I a family of objects of U(B). Then since B has small coproducts, there exists
a coproduct (y, (si : xi → y)i∈I) of (xi)i∈I in B, and then (y, (πB(si) : xi → y)i∈I)
turns out to be a coproduct of (xi)i∈I in U(B) because πB preserves coproducts. By
the universality of coproducts, any other coproduct of (xi)i∈I in U(B) is isomorphic
to this coproduct. Then since both R and πA preserve coproducts, we see that
U(R)(y, (πB(si))i∈I) = (U(R) ◦ πB)(y, (si)i∈I) = (πA ◦ R)(y, (si)i∈I) is a coproduct
of (U(R)(xi))i∈I in U(A ), which proves the claim.

(2)(b) By (PA3) and Lemma 4.5, (L, ϕ) restricts to (L′, ϕ′) : cpt(A ) → cpt(B).
Then in the diagram below, the 2-functor U sends the commutative outer square
to the commutative inner square, and other four trapezoids are commutative by the
naturality of π:

cpt(A ) cpt(B)

U(cpt(A )) U(cpt(B))

U(A ) U(B)

A B

(L′,ϕ′)

(L,ϕ)

s s′

U(L′,ϕ′)

U(L,ϕ)

U(s) U(s′)

πcpt(A ) πcpt(B)

πA πB

,

where s, s′ are the inclusion functors. Here, by assumption (i), both U(s) and U(s′)
are the inclusions on the objects. Thus U(L, ϕ) ristricts to U(L′, ϕ′) that sends objects
of U(cpt(A )) into those of U(cpt(B)). Then the assertion follows from (1)(b). �

To generalize the theorem above, we introduce the following notation.

Notation 4.17. Let (A , S) (resp. (A , A, S)) be an object of k-CATs (resp. G-CATs).
Then we set

cpt(A , S) := (cpt(A ), cpt(S)) and cpt(A , A, S) := (cpt(A ), A|cpt(A ), cpt(S)),
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where cpt(S) := S|cpt(A )×cpt(A ) =
⊔

x,y∈cpt(A ) S(x, y). Note here that Aa(cpt(A )) ⊆
cpt(A ) for all a ∈ G by Remark 4.6, which enables us to define the restriction
A|cpt(A ) : G → Aut(cpt(A )), a 7→ Aa|cpt(A ).

Theorem 4.16 is generalized to a 2-subcategory of k-CATs as follows.

Theorem 4.18. Consider the following diagram of 2-categories, 2-functors, and a
strict 2-natural transformation on the left, and its extension by Lemma 3.10 on the
right:

C k-CAT,

σ

U

π Ĉ G-CAT,

σ̂

Û

π̂

where C is a 2-subcategory of k-CATs and σ is the forgetful 2-functor. Assume the
following conditions for all A ∈ C:

(0) A has small coproducts, and πA : A → U(A ) preserves small coproducts.
(i) πA is the identity on the objects, that is, obj(A ) = obj(U(A )), and πA (x) =

x for all x ∈ A .
(ii) πA is epic among representable right U(A )-modules.

Let (A , A, S) ∈ Ĉ and (B, T ) ∈ C, and assume that there exists a G-invariant functor

(L, ϕ) : (A , A, S) → (B, T ) in4 Ĉ such that L has a right adjoint R : (B, T ) → (A , S)
in C with an adjunction isomorphism ω : L a R in C. Then the following hold.

(1) Assume that (L, ϕ) : (A , A, S) → (B, T ) induces a G-precovering cpt(A , A, S)
→ (B, T ) by the adjunction ω. Then
(a) the G-invariant functor U(L, ϕ) : U(A , A, S) → U(B, T ) induces a G-

precovering

U(L, ϕ) : cpt(U(A , A, S)) → U(B, T )

by the adjunction U(ω) : U(L) a U(R), and
(b) if cpt(A ) ⊆ cpt(U(A , S)), then U(L, ϕ) restricts to a G-precovering

U(L, ϕ) : U(cpt(A , A, S)) → U(B, T ).

(2) Assume that (L, ϕ) : (A , A, S) → (B, T ) induces a G-precovering cpt(A , A, S)
→ cpt(B, T ) by the adjunction ω. Then
(a) the G-invariant functor U(L, ϕ) : U(A , A, S) → U(B, T ) induces a G-

precovering

U(L, ϕ) : cpt(U(A , A, S)) → cpt(U(B, T ))

by the adjunction U(ω) : U(L) a U(R), and
(b) if cpt(A ) ⊆ cpt(U(A , S)), then U(L, ϕ) restricts to a G-precovering

U(L, ϕ) : U(cpt(A , A, S)) → U(cpt(B, T )).

Proof. Just by taking care of well-definedness of morphisms, the same proof as The-
orem 4.16 works. �

4Here we regard (B, T ) ∈ Ĉ by the trivial G-action on B.
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4.4. Applications.

Example 4.19. We can apply Theorem 4.16 to the diagram (3.8) given in Example
3.11, especially in the case that A = Mod-C for a skeletally small G-category C .
Indeed, the assumptions (i) and (ii) are obviously satisfied. By Lemma 4.15, the
assumption (0) is satisfied, and we also have cpt(A ) ⊆ cpt(U(A )). Here, note that
cpt(A ) = mod-C , U(A ) = Mod-C , U(cpt(A )) = mod-C .

We obtain the following by Theorem 4.16 (2)(b).

Proposition 4.20. Let C be a skeletally small G-category. Then the following hold.

(1) The functor (P�, ϕ�) : mod-C → mod-C /G induced by (P�, ϕ�) is a G-precovering.

(2) If C is a locally support-finite locally bounded category, then (P�, ϕ�) : mod-C →
mod-C /G is a G-covering.

Proof. (1) As stated in Proposition 4.8, (P�, ϕ�) : Mod-C → Mod-C /G induces a G-
precovering (P�, ϕ�) : mod-C → mod-C /G by the adjunction θ : P� a P �. As in Exam-
ple 4.19, we can apply Theorem 4.16(2)(b) to (P�, ϕ�) above to have the assertion (1).
(Recall that the right adjoint P � to P� has a right adjoint, and hence Lemma 4.5 also
applies.)

(2) By Proposition 2.13, (P�, ϕ�) : mod-C → mod-C /G is dense. Hence so is
(P�, ϕ�) : mod-C → mod-C /G. �

In the factor 2-functor case and the quotient 2-functor case, we obtain the following
two propositions by Theorem 4.18 (2)(b). Before each proposition, we prepare a
lemma to apply the theorem in each setting.

Remark 4.21. Let A be a k-category, and S a class of morphisms of A having the
form S = 〈D〉 for some class of objects of A . Then

(1) S is G-stable if D is G-stable.
Indeed, if f : X → Y is in S, then f factors through some D ∈ D . Let a ∈ G.

Then af factors through aD that is in D because D is G-stable. Hence af is in S,
as required.

Now, let D′ be the isomorphism closure of D, i.e., D′ := {X ∈ A | X ∼=
D for some D ∈ D}. Then clearly we have

(2) 〈D〉 = 〈D′〉.

Lemma 4.22. Consider the factor 2-functor setting:

G-CATi G-CAT

σi

Ui

πi .

Let (A , S′) ∈ G-CATi, and assume that A is given in the form A = Mod-C for
some skeletally small G-category C with the canonical G-covering (P, ϕ) : C → C /G,
and that S′ is an ideal of the form S′ = 〈D〉 for some G-stable class D of objects of A
closed under small coproducts. Then by the remark above S′ is G-stable (see Definition
3.7(2)). Set S := 〈cpt(D)〉 be the ideal of mod-C . Then S is G-stable because so is
cptD by Remark 4.6. Finally, assume that each object in D is decomposed into a
small coproduct of compact objects. In this case, the following statements hold.

(1) We have cpt(S′) = S. Hence

Ui(cpt(A , S′)) = Ui(mod-C , S) = (mod-C )/S.
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(2) Set S′/G := 〈P�(D)〉 and S/G := 〈P�(cpt(D))〉 to be the ideal of Mod-(C /G)
and mod-(C /G)), respectively. Then we have

cpt(S′/G) = S/G.

Hence

Ui(cpt(Mod-(C /G), S′/G)) = Ui(mod-(C /G), S/G) = (mod-(C /G))/(S/G).

(3) We have P�(S′) ⊆ S′/G and P �(S′/G) ⊆ S′. Hence we see that (P�, ϕ�) induces
a G-invariant functors (Mod-C , S′) → (Mod-C /G, S′/G) and (mod-C , S) →
(mod-C /G, S/G) and that P � induces a right adjoint (Mod-C /G, S′/G) →
(Mod-C , S′) to the former.

Proof. (1) Since cpt(D) ⊆ D , we have S ⊆ S′. Let f : X → Y in S′, and assume
that both X and Y are in mod-C . Then f factors through an object D ∈ D , which
is isomorphic to the dirct sum

⊕
i∈I Di for some Di ∈ cpt(D) and some small set I.

Since X is compact, there exists some finite subset J of I such that f factors through⊕
i∈J Di, which is in cpt(D). Hence f ∈ S.
(2) Since P� sends finitely generated C -modules to finitely generated C /G-modules,

each object in P�(D) is decomposed into a small coproduct of compact objects. Then
the same argument as in (1) works in this case to show the assertion.

(3) By construction, it is obvious that P�(S′) ⊆ S′/G. Let D ∈ D . Then P �P�(D) ∼=⊕
a∈G

aD. Since D is G-stable, aD are in D for all a ∈ G. Moreover, since D is
closed under small coproducts, we have

⊕
a∈G

aD ∈ D . Thus P �P�(D) ∈ D . Now
let f ∈ S′/G. Then f factors through an object of the form P�(D) for some D ∈ D .
Hence P �(f) factors through P �P�(D), which is in D by the above. Thus, P �(f) ∈ S′,
and we have P �(S′/G) ⊆ S′. �

Proposition 4.23. Let C be a skeletally small G-category, and D a G-stable class
of objects in Mod-C closed under small coproducts with the property that each object
in D is a small coproduct of finitely generated objects. Denote by S/G the ideal
〈P�(cpt(D))〉 of mod-(C /G). Then the following hold.

(1) The functor

U(P�, ϕ�) : (mod-C )/S → (mod-C /G)/(S/G)

induced by the quotient 2-functor U = Ui in Lemma 4.22 is a G-precovering.
(2) If C is a locally support-finite locally bounded category, then

U(P�, ϕ�) : (mod-C )/S → (mod-C /G)/(S/G)

is a G-covering.

Proof. By Lemma 4.22, we can apply Theorem 4.16 (2)(a), and by Lemma 4.15, we
have cpt(A ) ⊆ cpt(Ui(A )). Hence we can apply Theorem 4.16 (2)(b) to have the
statement (1) above. The statement (2) follows from (1). �

We next consider the quotient case.

Lemma 4.24. Consider the quotient 2-functor setting:

G-CATm G-CAT

σ

Um

π .
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Let (A , S′) = (A , A, S′) ∈ k-CATm. Then π(A ,S′) : A → Um(A , S′) preserves
small coproducts because it has right adjoint. Hence by Lemma 4.14 , we have
cpt(A ) ⊆ cpt(Um(A , S′)) if A has small coproducts.

Assume now that A is given in the form A = Mod-C for some skeletally small
G-category C such that both mod-C and mod-(C /G) are abelian, with the canonical
G-covering (P, ϕ) : C → C /G. Then A has small coproducts as required above. Let
S ′ be a G-stable localizing subcategory of Mod-C , and set S ′/G := Loc({P�(X) | X ∈
S }) to be the smallest localizing subcategory of Mod-C /G containing P�(X) for all
X ∈ S (see Remark 3.15 for remarks on localizing subcategories). Then the canonical
functors Q : Mod-C → (Mod-C )/S and Q/G : Mod-(C /G) → (Mod-(C /G))/(S /G)
turn out to be localizations, i.e., they are exact and have fully faithful right adjoints
J and J/G, respectively. Thus we have the following diagram with four adjoint pairs:

Mod-C (Mod-C )/S ′

Mod-(C /G) (Mod-(C /G))/(S ′/G)

Q

J
a

P� P �a
Q/G

J/G

a

Um(P�) Um(P �)a , (4.17)

where by definitions of Um(P�) and Um(P �), the following are commutative:

Mod-C (Mod-C )/S ′

Mod-(C /G) (Mod-(C /G))/(S ′/G)

Q

P�

Q/G

Um(P�) ,

Mod-C (Mod-C )/S ′

Mod-(C /G) (Mod-(C /G))/(S ′/G)

Q

P �

Q/G

Um(P �) .

Then the following statements hold.

(1) Set S := S ′∩mod-C and S /G := S ′/G∩mod-(C /G). Then they turn out
to be dense subcategories of mod-C and mod-(C /G), respectively.

(2) Set S′ := SMod-C (S
′) and S := Smod-C (S ) to be the corresponding bicalcu-

lable multiplicative systems of Mod-C and mod-C . Then we have

cpt(S′) = S.

Hence

Um(Mod-C , S′) = (Mod-C )/S ′, and

Um(cpt(Mod-C , S′)) = Um(mod-C , S) = (mod-C )/S .

(3) Set S′/G := SMod-(C /G)(S
′/G) and S/G := Smod-(C /G)(S /G) to be the cor-

responding bicalculable multiplicative systems of Mod-(C /G) and mod-(C /G),
respectively. Then we have

cpt(S′/G) = S/G.

Hence

Um(Mod-(C /G), S′/G)) = Mod-(C /G)/(S ′/G), and

Um(cpt(Mod-(C /G), S′/G)) = Um(mod-C /G, S/G) = (mod-C /G)/(S /G).
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(4) We have P�(S′) ⊆ S′/G, P�(S) ⊆ S/G and P �(S′/G) ⊆ S′. Hence we see that
(P�, ϕ�) induces a G-invariant functors (Mod-C , S′) → (Mod-C /G, S′/G) and
(mod-C , S) → (mod-C /G, S/G) and that P � induces the right adjoint

P � : (Mod-C /G, S′/G) → (Mod-C , S′)

to the former.
(5) The functors Um(P�) and Um(P �) are naturally isomorphic to the functors

Q/G ◦ P� ◦ J and Q ◦ P � ◦ J/G, respectively.

Proof. (1) Since mod-C is abelian by assumption, it is a dense subcategory of Mod-C .
Hence the intersection S := S ′ ∩ mod-C turns out to be a dense subcategory of
Mod-C and hence of mod-C . Similarly, S /G is shown to be a dense subcategory of
mod-(C /G).

(2) Since mod-C is abelian, for any f ∈ mod-C (M,N) with M,N ∈ mod-C , we
have Kerf,Cokerf ∈ mod-C . Hence

cpt(S′) = {f ∈ Mod-C (M,N) | M,N ∈ mod-C ,Kerf,Cokerf ∈ S ′}
= {f ∈ mod-C (M,N) | M,N ∈ mod-C ,Kerf,Cokerf ∈ S }
= S.

(3) Similarly since mod-(C /G) is abelian, for any f ∈ mod-(C /G)(M,N) with
M,N ∈ mod-(C /G), we have Kerf,Cokerf ∈ mod-(C /G). Hence

cpt(S′/G) = {f ∈ Mod-(C /G)(M,N) | M,N ∈ mod-(C /G),Kerf,Cokerf ∈ S ′/G}
= {f ∈ mod-(C /G)(M,N) | M,N ∈ mod-(C /G),Kerf,Cokerf ∈ S /G}
= S/G.

(4) Take any f ∈ S′. Then f ∈ Mod-C (M,N) for some M,N ∈ Mod-C such that
Kerf,Cokerf ∈ S . Consider the exact sequence

0 → Kerf
σ−→ M

f−→ N
π−→ Cokerf → 0.

Since P� is exact, we have an exact sequence

0 → P�(Kerf)
P�(σ)−−−→ P�(M)

P�(f)−−−→ P�(N)
P�(π)−−−→ P�(Cokerf) → 0.

Thus we have KerP�(f) ∼= P�(Kerf) and CokerP�(f) ∼= P�(Cokerf). Since Kerf,Cokerf
∈ S , we have P�(Kerf), P�(Cokerf) ∈ S /G. Therefore, P�(f) ∈ S′/G. Hence we have
P�(S′) ⊆ S′/G. In the above, by changing Mod-C to mod-C , the same argument
shows that P�(S) ⊆ S/G.

Next let f ∈ S′/G. Then f ∈ Mod-(C /G)(M,N) for some M,N ∈ Mod-(C /G)
such that Kerf,Cokerf ∈ S ′/G. Consider the exact sequence

0 → Kerf
σ−→ M

f−→ N
π−→ Cokerf → 0.

Since P � has both a left adjoint and a right adjoint, P � preserves small limits and
small colimits, in particular, is exact. Therefore, P � sends the exact sequence above
to the exact sequence

0 → P �(Kerf)
P �(σ)−−−→ P �(M)

P �(f)−−−→ P �(N)
P �(π)−−−→ P �(Cokerf) → 0.

Thus we have KerP �(f) ∼= P �(Kerf) and CokerP �(f) ∼= P �(Cokerf).
We now show that P �(S ′/G) ⊆ S ′. To show this let X ∈ S ′. Then P �(P�(X)) ∼=⊕
a∈G

aX. Since S ′ is G-stable, aX ∈ S ′ for all a ∈ G. Further since S ′ is localizing,
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it is closed under small coproducts, and hence,
⊕

a∈G
aX ∈ S ′. As a consequence,

we have
P �({P�(X) | X ∈ S ′}) ⊆ S ′.

Since P � is exact and preserves small coproducts, P � commutes with Loc, and we have

P �(S ′/G) = P �(Loc({P�(X) | X ∈ S ′}))
= Loc(P �({P�(X) | X ∈ S ′}))
⊆ Loc(S ′) = S ′,

as desired. Therefore, since Kerf,Cokerf ∈ S ′/G, we have P �(Kerf), P �(Cokerf) ∈
S ′. Thus P �(f) ∈ S′. Hence we have P �(S′/G) ⊆ S′.

(5) Let η : 1lMod-C ⇒ J ◦Q be the unit of the adjoint Q a J , and let X ∈ Mod-C .
Then since S ′ is localizing, ηX : X → J(Q(X)) is in S′ (see [Po73, Ch. 4, Proposition
4.3(2)]). Since P�(S′) ⊆ S′/G by (4) above,

(Q/G ◦ P�)(ηX) : (Q/G ◦ P�)(X) → (Q/G ◦ P� ◦ J)(Q(X))

turns out to be an isomorphism in Mod-(C /G)/(S ′/G). This yields a natural iso-
morphism ((Q/G ◦P�)(ηX))X∈(Mod-C )/S ′ : Um(P�) ⇒ Q/G ◦P� ◦J . The rest is proved
similarly. �
Proposition 4.25. Let C be a skeletally small G-category such that Mod-C is lo-
cally noetherian, both mod-C and mod-(C /G) are abelian, and S ′ a G-stable local-
izing subcategory of Mod-C . Denote by S , S /G the dense subcategories of mod-C ,
mod-(C /G) induced from S ′ as in Lemma 4.24, respectively. Then the following
hold.

(1) The functor

U(P�, ϕ�) : (mod-C )/S → (mod-C /G)/(S /G)

induced by the quotient 2-functor U = Um in Example 3.14 is a G-precovering.
(2) If C is a locally support-finite locally bounded category, then

U(P�, ϕ�) : (mod-C )/S → (mod-C /G)/(S /G)

is a G-covering.

Proof. Let C be the full 2-subcategory of k-CATm consisting of the objects having the
form (Mod-D , T ′) for some skeletally small k-category D such that mod-D is abelian,
and T ′ = SC (T

′) for some localizing subcategory T ′ of Mod-C , and consider the

2-category Ĉ defined in Definition 3.8. Then (Mod-C , S′) ∈ Ĉ, and here C is a
skeletally small G-category S′ = SC (S

′) for some G-stable localizing subcategory
S ′ of Mod-C . By Lemma 4.24 (4), (P�, ϕ�) : (Mod-C , S′) → (Mod-(C /G), S′/G) has
an adjunction ω : P� a P �, it induces a G-precovering functor (P�, ϕ�) : (mod-C , S) →
(mod-(C /G), S/G) by the adjunction ω. Then we can apply Theorem 4.18(2)(a) to
have a G-precovering

U(P�, ϕ�) : cpt(Mod-C /S ) → cpt(Mod-(C /G)/(S ′/G))

by the adjunction U(ω) : U(P�) a U(P �). It remains to show that cpt(Mod-C ) ⊆
cpt(Mod-C /S ′), or equivalently,

Q(mod-C ) ⊆ cpt((Mod-C )/S ′). (4.18)

Since by assumption Mod-C is locally noetherian, J preserves small coproducts by
[Ga62, §19, Corollary 13], and hence by Lemma 4.5, the inclusion (4.18) holds. �
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5. G-precoverings for functor categories

In this section, we show that the canonical covering (P, ϕ) : C → C /G induces a G-
precoveringH(P�, ϕ�) : H(mod-C ) → H(mod-(C /G)) between morphism categories of
mod-C and mod-(C /G), respectively (Proposition 5.12). We apply Theorem 4.16 to
H(P�, ϕ�) to obtain a G-precovering between factor categories

H((P�, ϕ�)) :
H(Mod-C )

〈UC 〉
→ H(Mod-(C /G))

〈UC /G〉
(see Proposition 5.22). Moreover, we show that this yields a G-precovering between
finitely presented functors

fp(P�) : fp(mod-C ) → fp(mod-(C /G))

(see Theorem 5.29).

5.1. G-precoverings for morphism category.

Definition 5.1. Let A be a category. Then the morphism category H(A ) of A is
defined as follows:

The objects of H(A ) are the morphisms f : x → y in A . We sometimes present it

as
x

y

f to visualize the situation, and we set dom(f) := x, cod(f) := y.

For objects f : x → y and g : u → v of H(A ), the set of morphisms H(A )(f, g)
from f to g is defined by

H(A )(f, g) := {(p, q) ∈ A (x, u)× A (y, v) | qf = gp}.
The defining condition is expressed by the commutativity of the diagram

x u

y v

p

q

f g .

This morphism (p, q) : f → g is sometimes denoted by
x

y

f
p−−−→
q

u

v

g to visualize the

situation.
For morphisms (p, q) : f → g and (r, s) : g → h in H(A ), the composite (r, s)(p, q)

is defined by component-wise: (r, s)(p, q) := (rp, sq).

Example 5.2. Consider the case that A = mod-Λ for a finite-dimnsional algebra Λ.

Set T2(Λ) :=
[
Λ Λ
0 Λ

]
, the upper triangular matrix algebra over Λ. Then H(mod-Λ) is

equivalent to the category mod-T2(Λ) of finitely generated right modules over T2(Λ).
Indeed, the equivalence is given by regarding each object f : X → Y of H(mod-Λ) as a

right Λ-module X⊕Y with the right Λ-action defined by (x, y)

[
a b
0 c

]
:= (xa, f(x)b+

yc) for all (x, y) ∈ X ⊕ Y and

[
a b
0 c

]
∈ T2(Λ).

Lemma 5.3. Let C be either k-Cat or k-CAT. Then the correspondence H: obj(C) →
obj(C), C 7→ H(C ) defined in Definition 5.1 is extended to a 2-functor H: C → C.
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Proof. We extend the map H to maps between 1-morphism and 2-morphisms as fol-
lows.

On 1-morphisms Let F : C → D be a 1-morphism in C. Then we define

H(F ) : H(C ) → H(D) to be a k-functor sending a morphism
x

y

f
p−−−→
q

u

v

g in H(C ) to

a morphism

F (x)

F (y)

F (f)

F (p)−−−−−→
F (q)

F (u)

F (v)

F (g) in H(D). Then it is obvious that H(F ) in fact

becomes a k-functor, i.e., a 1-isomorphism in C.
On 2-morphisms Let E,F : C → D be 1-morphisms in C, and α : E ⇒ F a

2-morphism in C. Then we define H(α) by H(α) := (H(α)f )f∈H(C ), where we set
H(α)f := (αx, αy), which is visualized as

E(x)

E(y)

E(f)

αx−−−−→
αy

F (x)

F (y)

F (f)

for all objects
x

y

f of H(C ). Then H(α) : H(E) ⇒ H(F ) is a natural transformation,

i.e., a 2-morphism in C. Indeed, let
x

y

f
p−−−→
q

u

v

g be a morphism in H(C ). We have

to show the commutativity of the diagram

E(f) E(g)

F (f) F (g)

(E(p),E(q))

(F (p),F (q))

(αx,αy) (αu,αv) .

But this immediately follows from the naturality of α. It is easy to verify that H
preserves 2-identities, vertical compositions, and horizontal compositions. �

Lemma 5.4. Let C = (C , A) be a G-category. Then H(C ) = (H(C ),H(A)) turns out
to be a G-category by setting H(A)a to be the automorphism H(Aa) : H(C ) → H(C )
for all a ∈ G. Apply this construction to the G-category Mod-C = (Mod-C ,Mod-A).
Then H(Mod-C ) = (H(Mod-C ),H(Mod-A)) becomes again a G-category.

Proof. Straightforward. �

Lemma 5.5. Let C = (C , A) and C ′ = (C ′, A′) be G-categories, and (F, ϕ) : C → C ′

a G-equivariant functor. Then we can define a G-equivariant functor H(F, ϕ) : H(C ) →
H(C ′) by setting H(F, ϕ) := (H(F ),H(ϕ)). Here, H(ϕ)a : H(A

′
a)H(F ) ⇒ H(F )H(Aa)

is defined by H(ϕ)a := (H(ϕ)a,f )f∈H(C ), where

H(ϕ)a,f := (ϕa,x, ϕa,y) :

(A′
aF )(x)

(A′
aF )(y)

F (f)

ϕa,x−−−−−→
ϕa,y

(FAa)(x)

(FAa)(y)

(FAa)(f)
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for all objects f : x → y of H(C ).
In particular, by considering the case that C ′ above has the trivial G-action, H maps

a G-invariant functor (F, ϕ) : C → C ′ to the G-invariant functor H(F, ϕ) : H(C ) →
H(C ′).

Proof. Straightforward. �

By Lemmas 5.4 and 5.5, we can prove the following.

Proposition 5.6. The 2-functors H: k-Cat → k-Cat and H: k-CAT → k-CAT
induce 2-functors H: G-Cat → G-Cat and H: G-CAT → G-CAT. �

Let C = (C , A) be a skeletely small G-category. Apply Lemma 5.5 to the canonical
G-invariant functor (P�, ϕ�) : Mod-C → Mod-(C /G) to obtain a G-invariant functor

H((P�, ϕ�)) = (H(P�),H(ϕ�)) : H(Mod-C ) → H(Mod-(C /G)).

We also have a functor

H(P �) : H(Mod-(C /G)) → H(Mod-C )

induced from the pull-up functor P � : Mod-(C /G) → Mod-C .
The following is immediate from Lemma 4.2.

Lemma 5.7. Let C and D be k-categories, and L : C → D a left adjoint to R : D →
C . Then H(L) : H(C ) → H(D) turns out to be a left adjoint to H(R) : H(D) → H(C ).

Remark 5.8. In the setting of the lemma above, let ω := (ωx,y : D(Lx, y) →
C (x,Ry))x∈C ,y∈D be the adjunction. Then the adjunction

H(ω) := (H(ω)f,g : H(D)(H(L)f, g) → H(C )(f,H(R)g))f∈H(C ),g∈H(D)

is given by

H(ω)(p, q) := (ω(p), ω(q)),

which is visualized as L(x)

L(y)

L(f)

p−−−→
q

u

v

g

 7→

 x

y

f

ω(p)−−−−−→
ω(q)

R(u)

R(v)

R(g)

 .

The following is an immediate consequence of the lemma above.

Lemma 5.9. The functor H(P�) is a left adjoint to H(P �).

The following is immediate from the definition of H, and is used without reference.

Lemma 5.10. For each k-category A , we have H(cpt(A )) = cpt(H(A )).

Theorem 5.11. Let (L, ϕ) : A → B be a G-invariant functor that has a right adjoint
R : B → A , with an adjunction isomorphism ω : L a R. If (L, ϕ) : A → B induces
a G-precovering cpt(A ) → cpt(B) by an adjoint ω : L a R, then H(L, ϕ) : H(A ) →
H(B) induces a G-precovering

H(L, ϕ) : H(cpt(A )) → H(cpt(B))

by the adjoint H(ω) : H(L) a H(R).
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Proof. Let f, g be objects of H(cpt(A )). Then we have the canonical isomorphism⊕
a∈G

H(cpt(A ))(f, ag)
∼−→ H(A )(f,

⊕
a∈G

ag)

because both dom(f) and cod(f) belong to cpt(A ).
(PA1) Since H: k-CAT → k-CAT is a 2-functor, the natural isomorphism

t :
⊕
a∈G

Aa ⇒ RL

yields a natural isomorpism H(t) :
⊕

a∈GH(Aa) ⇒ H(R)H(L).
(PA2) The commutativity of the diagram⊕

a∈GH(cpt(A ))(f, ag) H(A )(f,
⊕

a∈G
ag)

H(cpt(B))(H(P�)(f),H(P�)(g)) H(B)(f,H(P �)H(P�)(g))

∼

∼
H(ω)f,H(P�)(g)

∼H(L,ϕ)
(2)
f,g

is shown by using the same commutative diagrams for domains and codomains of f
and ag (a ∈ G).

(PA3) H(R) preserves small coproducts because so does R. �
By applying Theorem 5.11 to the pushdown functor (P�, ϕ�) : Mod-C → Mod-(C /G)

for some small G-category C , we obtain the following.

Proposition 5.12. The G-invariant functor H(P�, ϕ�) : H(Mod-C ) → H(Mod-(C /G))
induces a G-precovering

H(P�, ϕ�) : H(mod-C ) → H(mod-(C /G))

by the adjunction H(θ) (see Subsection 2.3 for the definition of θ).

We have the following remarks, which are frequently used later. The first one is
mentioned in the proof of Theorem 5.11, and the second one is immediate from the
corresponding property of P�.

Remark 5.13. Let f be an object of H(Mod-C ). Then the following hold.

(1) H(P �)H(P�)(f) ∼=
⊕

a∈G
af ; and

(2) H(P�)(f) ∼= H(P�)(af) for all a ∈ G.

Lemma 5.14. Let C be a locally bounded k-category and G a torsion-free group
acting freely on C . Let f : X → Y be a nonzero object in H(mod-C ). If af ' f for
some a ∈ G, then a = 1.

Proof. First note that both X and Y are finite-dimensional by Remark 2.11 because
C is locally bounded and X and Y are finitely presented. Since f 6= 0, either X 6= 0
or Y 6= 0. Consider the case that X 6= 0. Then we have X(x) 6= 0 for some x ∈ C .

Assume that af ' f . Then a−n
X ' X, in particular, X(anx) 6= 0 for all positive

integers n. Then anx = amx for some positive integers m,n with m < n because X is
finite-dimensional. Since the G-action on C is free, an−mx = x shows that an−m = 1
with n−m > 0. Hence a = 1 because G is torsion-free. The proof for the case that
Y 6= 0 is similar. �

The lemma above says that G acts freely on H(mod-C ) up to isomorphisms.
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Lemma 5.15. If f : X → Y is an object of H(Mod-(C /G)), then H(P �)(f) ∼=
aH(P �)(f) for all a ∈ G.

Proof. Take a ∈ G. The natural isomorphism ϕ�a : P� → P� ◦Aa follows the following
isomorphism in H(Mod-C /G)

P�X

P�Y

P�f
ϕ�a,X−−−−−−→
ϕ�a,Y

P�aX

P�aY

P�af

This implies the desired isomorphism. �

If C is a locally bounded category, then it is well-known that the categories
mod-(C /G) and mod-C are Krull-Schmidt categories, and by ?? so are the mor-
phism categories H(mod-C ) and H(mod-(C /G)).

Proposition 5.16. Let C be a locally bounded k-category, G a torsion-free group
acting freely on C , and f, f1, f2 objects of H(mod-C ). Then the following hold.

(1) If f is indecomposable, then so is H(P�)(f).
(2) If objects f1 and f2 are indecomposable, then H(P�)(f1) ∼= H(P�)(f2) implies

f1 ∼= af2, for some a ∈ G.

Proof. (1) Assume that H(P�)(f) = C ⊕ C ′ with C 6= 0. By Remark 5.13, we have⊕
a∈G

af ∼= H(P �)(H(P�)(f)) ∼= H(P �)(C)⊕H(P �)(C ′).

Since af are pairwise non-isomorphic indecomposable objects by Lemma 5.14, we have
H(P �)(C) =

⊕
b∈V

bf for some V ⊆ G by [Pr09, Theorem E.1.26]. We know that

H(P �)(C) ∼= aH(P �)(C) for any a ∈ G by Lemma 5.15. Hence
⊕

c∈V
cf ∼=

⊕
b∈V

abf
for all a ∈ G. By the Krull-Remak-Schmidt-Azumaya Theorem [Pr09, Theorem
E.1.24], for each a ∈ G and b ∈ V , there is c ∈ V such that abf ' cf . Thanks to
Lemma 5.14, c = ab. Therefore a = cb−1 ∈ V for all a ∈ G, and hence V = G, which
shows that H(P �)(C ′) = 0. Therefore C ′ = 0.

(2) Assume H(P�)(f1) ∼= H(P�)(f2). Applying the functor H(P �), we obtain⊕
a∈G

af1 ∼=
⊕
a∈G

af2

by Remark 5.13. Hence f1 is a direct summand of
⊕

a∈G
af2. Since af2 are inde-

composable module with local endomorphism algebras, the Krull-Schmidt property
of H(mod-C ) shows the existence of a ∈ G such that f1 ' af2, as desired. �

5.2. A relative version. Throughout the rest of this paper, we assume that C is a
skeletally small G-category.

Definition 5.17. Let M be a full subcategory of mod-C , and N a full subcategory
of mod-(C /G).

(1) M is called G-stable if aM = M for all a ∈ G. If this is the case, then we can
define a G-action on M . This G-action is said to be free up to isomorphisms
(or G acts freely on M up to isomorphisms) in case aM ∼= M for some
0 6= M ∈ M and a ∈ G implies that a = 1.
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(2) We denote by P�(M ) the full subcategory of mod-(C /G) consisting of all
objects V such that V is isomorphic to P�(U) for some U ∈ M . Note that
P�(M ) is closed under isomorphisms.

(3) We denote by P−1
� (N ) the full subcategory of mod-C consisting of all objects

U such that P�(U) is isomorphic to an object in N . Note that P−1
� (N ) is

closed under isomorphisms.

Based on Example 4.9, our results above concerning the morphism category of
Mod-C can be generalized to the morphism category H(K ) of G-stable subcategories
K of Mod-C . Since their proofs are similar to those already written above, (just
restrict the arguments to the subcategories), we state them here without proofs. The
following lemma is useful:

Lemma 5.18. The following hold.

(1) Let N be a full subcategory of mod-(C /G). Then P−1
� (N ) is a G-stable

subcategory of mod-C .
(2) Assume that C is a locally bounded k-category and G acts freely on ind-C

(Definition 2.9). If M is a full subcategory of mod-C closed under direct
summands, then so is P�(M ).

Proof. (1) Take X ∈ P−1
� (N ) and a ∈ G. Then, by definition, P�(X) ∼= N for some

N ∈ N . On the other hand, we have an isomorphism ϕ�a,X : P�(X) → P�(aX) (see

Sect. 2.3). Therefore, P�(aX) ∼= N , and aX ∈ P−1
� (N ), as desired.

(2) Let N ∈ P�(M ) with a decomposition N = U ⊕ V in mod-(C /G). By assump-
tion there exists an M ∈ M such that P�(M) ∼= N . Since mod-C is a Krull-Schmidt
category, we can write M =

⊕
i∈I Mi, where Mi are indecomposable objects and I is

a finite set. Hence U ⊕ V = N ∼= P�(M) =
⊕

i∈I P�(Mi). By Lemma 2.12, all P�(Mi)
are indecomposable. Here, since mod-(C /G) is also a Krull-Schmidt category, there
exists a subset J ⊆ I such that U =

⊕
i∈J P�(Mi) ∼= P�(

⊕
i∈J Mi). Since

⊕
i∈J Mi is

a direct summand of M and M is closed under direct summand,
⊕

i∈J Mi is in M .
Hence U ∈ P�(M ), as desired. �
Proposition 5.19. Let K be G-stable subcategories of mod-C , and K ′ a subcategory
of mod-C /G. Assume P� sends K to K ′ and P � sends K ′ to Add-K , e.g., K ′ =
P�(K ). Then the following hold.

(1) The G-invariant functor H(P�|, ϕ�|) : H(Add-K ) → H(Add-K ′) induces a G-
precovering

H(P�|, ϕ�|) : H(K ) → H(K ′)

with the adjuction H(θ|).
(2) Assume that C is a locally bounded category and G is a torsion-free group

acting freely on C . Then
(a) If f is an indecomposable object in H(K ), then so is H(P�)(f) in H(K ′).
(b) If objects f1 and f2 are indecomposable objects in H(K ), then H(P�)(f1) ∼=

H(P�)(f2) implies f1 ∼= af2 for some a ∈ G. �
Actually, Propositions 5.12 and 5.16 are special cases of the above proposition when

we take K = mod-C and K ′ = mod-C /G. Here are some additional examples of
K ⊆ mod-C that satisfy the assumptions of Proposition 5.19.

Example 5.20. (1) Let K = add-{aM | a ∈ G} for some M ∈ mod-C , and
K ′ := P�(K ).
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(2) Assume that C is a locally support-finite G-category with G-action free on
ind-C . Let K = Gp-C and K ′ = Gp-(C /G) be the full subcategory Mod-C
and Mod-(C /G), respectively, consisting of all finitely generated Gorenstein
projective functors. Note that Gp-C is G-stable since the equivalence Aa

for every a ∈ G preserves Gorenstein projective functors. Moreover, due
to [AHV18, Theorem 4.5], we get P�(Gp-C ) ⊆ Gp-(C /G), and by [AHV18,
Lemma 4.2 and Theorem 4.9], we can deduce that P �(Gp-(C /G)) ⊆ Add-Gp-C .
Therefore, the pushdown and pullup functors have the required conditions re-
spect to the finitely generated Gorenstein projective functors.

(3) Let A be an abelian category. A full subcategory U of A is d-cluster-tilting
if it is functorially finite in A and

U = {X ∈ A | ExtiA (U,X) = 0 for all 1 ≤ i ≤ d− 1},
= {X ∈ A | ExtiA (X,U) = 0 for all 1 ≤ i ≤ d− 1}.

Moreover, a finitely generated module M ∈ A is called a d-cluster-tilting
module if its additive closure add-M forms a d-cluster-tilting subcategory of
A . Assume that C is as in (2). Let K ′ := M be a d-cluster-tilting subcat-
egory of mod-C /G. By Lemma 5.18 (1), P−1

� (M ) is a G-stable subcategory
in mod-C . Take K := P−1

� (M ). Then, K and K ′ have the required con-
ditions in the proposition. In addition, by [DI20, Theorem 2.14], K and K ′

are d-cluster-tilting subcategories in mod-C and mod-C /G, respectively.

5.3. G-precoverings for factor categories of morphism categories. The most
important purpose of this section is to explain how the functor H(P�, ϕ�) : H(mod-C ) →
H(mod-(C /G)) defined in Proposition 5.12 is applied to obtain G-precovering func-
tors from certain factor categories of H(mod-C ) to those of H(mod-(C /G)).

First, we need the following definition to construct an additive factor category of
the given morphism category.

Definition 5.21. For a category M , we denote by UM the class of objects of H(M )

having the form (X → 0) or (X
1−→ X) for some object X of M .

We intend to apply Theorem 4.18 (2)(b) to obtain our main result in this subsection.
For this purpose, we consider Ch as a full 2-subcategory of k-CATs, where the objects
are of the form (H(M ),UM ), where M is an additive category having small coprod-
ucts. We define 2-functor Uh : Ch → k-CAT by sending an object (H(M ),UM )

to the factor category H(M )
⟨UM ⟩ . Furthermore, we denote by πM the canonical functor

H(M ) → H(M )
⟨UM ⟩ , and the family πh := (πM )(H(M ),UM )∈Ch

defines a strict 2-natural

transformation

Ch k-CAT

σ

Uh

πh ,

where σ as usual is the inclusion 2-functor. The above diagram is extended to the
following diagram

Ĉh G-CAT

σ̂

Ûh

π̂h ,

where Ĉh, Ûh, σ̂ are defined as in Lemma 3.5.
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To provide a better understanding, let us explain the construction of Ûh in the case
where M = Mod-C , and C = (C , A) is a skeletally small G-category. For simplicity,
we use UC and UC /G instead of UMod-C and UMod-(C /G), respectively. By applying
Lemma 5.5 to the G-invariant functor (P�, ϕ�) : Mod-C → Mod-(C /G), we obtain a
G-invariant funcor

H((P�, ϕ�)) = (H(P�),H(ϕ�)) : H(Mod-C ) → H(Mod-(C /G)),

where

H(ϕ�a) : H(P�) ⇒ H(P�) ◦H(Aa)

is a natural isomorphism for all a ∈ G. Let a ∈ G. Then the automorphism Aa of C
defines an automorphism a(-) of Mod-C , which induces an automorphism H(a(-)) of
H(Mod-C ). Furthermore, the latter induces an automorphism H(a(-)) of the factor

category H(Mod-C )
⟨UC ⟩ as it preserves the ideal 〈UC 〉. Then by sending a to H(a(-))

we can define a G-action on H(Mod-C )
⟨UC ⟩ , namely we have af = af for all a ∈ G and

f ∈ H(Mod-C ). Since every additive functor preserves isomorphisms and zero objects,
the pushdown functor H(P�) sends the ideal 〈UC 〉 into 〈UC /G〉. Hence, we obtain the
induced functor

H((P�, ϕ�)) :
H(Mod-C )

〈UC 〉
→ H(Mod-(C /G))

〈UC /G〉
.

The induced functor H((P�, ϕ�)) is precisely Ûh(H((P�, ϕ�)). We can continue the same

observation for the pullup functor P � : Mod-C /G → Mod-C . Similarly, we obtain
the induced functor

H(P �) :
H(Mod-C /G)

〈UC /G〉
→ H(Mod-(C ))

〈UC 〉
,

which is indeed Ûh(H(P
�)).

By Lemma 5.7 in conjunction with Remark 5.8, we can infer that G-invariant func-
tor H(P�) : H(Mod-C ) → H(Mod-C /G) has the right adjoint H(P �) : H(Mod-C /G) →
H(Mod-C ) with the adjucntion H(θ) : H(P�) a H(P �) in k-CAT. As explained earlier,
since

H(P�)(UC ) ⊆ UC /G and H(P �)(UC /G) ⊆ UC ,

the G-invariant functor H(P�, ϕ�) : (H(Mod-C ),H(A),UC ) → (H(Mod-(C /G)),UC /G)
has the right adjoint H(P �) : (H(Mod-(C /G))),UC /G) → (H(Mod-C ),UC ) with the
adjucntion H(θ) : H(P�) a H(P �) in Ch.

Now, we are ready to apply Theorem 4.18 to the 2-functor Uh defined above in
order to prove our main result in this subsection. For the sake of simplicity, we denote

Ûh(F ) by F for a 1-morphism or a 2-morphism F in Ĉh.

Proposition 5.22. The G-invariant functor

H((P�, ϕ�)) :
H(Mod-C )

〈UC 〉
→ H(Mod-(C /G))

〈UC /G〉
,

restricts to a G-precovering

H(P�, ϕ�) :
H(mod-C )

〈Umod-C 〉
→ H(mod-(C /G))

〈Umod-C /G〉
.
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Proof. Consider 2-subcategory Ch, 2-functor Uh and strict 2-natural transformation
πh. It is plain that the conditions (0), (i) of Theorem 4.18 are satisfied. Since πM

is full (as stated in Example 4.12), the condition (ii) of the theorem is also satisfied.
Therefore the primary conditions required to apply Theorem 4.18 are fulfilled. Take
the G-invariant functor

H(P�, ϕ�) : (H(Mod-C ),H(A),UC ) → (H(Mod-(C /G)),UC /G),

in Ch. Based on the previous observation before the proposition, it satisfies the re-
quired condition to use the theorem. Moreover, applying Proposition 5.12, we can
conclude that it induces a G-precovering

H(P�, ϕ�) : (H(mod-C ),H(A), cpt(UC )) → (H(mod-(C /G)), cpt(UC /G)), (5.1)

by the adjunction H(θ). Note that by Lemma 5.10:

cpt(H(Mod-C ),UC ) = (H(mod-C ),Umod-C )

cpt(H(Mod-(C /G)),UC /G) = (H(mod-(C /G)),Umod-(C /G)).

Finally, we apply the 2-functor Uh to H(P�, ϕ�) in (5.1) to give the desiredG-precovering.
�

Based on the observation mentioned before, we can replace the G-invariant func-
tor (P�, ϕ�) : Mod-C → Mod-(C /G) by the G-invariant functor (P�|, ϕ�|) : Add-K →
Add-K ′ (as given in Example 4.9), which proves the first item of the following propo-
sition.

Proposition 5.23. Let K and K ′ be G-stable subcategories of mod-C and mod-(C /G).
Assume P� sends K to K ′ and P � sends K ′ to Add-K , e.g., K ′ = P�(K ). Then
the following hold.

(1) The G-invariant functor

H((P�|, ϕ�|)) :
H(Add-K )

〈UK 〉
→ H(Add-K ′)

〈UK ′〉
.

restricts to a G-precovering

H(P�|, ϕ�|) :
H(K )

〈UK 〉
→ H(K ′)

〈UK ′〉
(2) Assume that C is a locally bounded category, G is a torsion-free group acting

freely on C , and both K and K ′ are closed under direct sums and direct
summands. Then
(a) If f is an indecomposable object of H(K )

⟨UK ⟩ , then so is H(P�)(f).

(b) Let f1 and f2 be indecomposable objects of H(K )
⟨UK ⟩ . If H(P�)(f1) ∼= H(P�)(f2),

then f1 ∼= af2 for some a ∈ G.

Proof. The proof of (1) has been previously explained before the proposition.

(2)(a) Let f be an indecomposable object in H(K )
⟨UK ⟩ . Then because H(K ) is a Krull–

Schmidt category, we can write f =
⊕n

i=1 fi for some indecomposable objects fi in
H(K ), (i = 1, . . . , n), and we have f =

⊕n
i=1 fi. Since f is indecomposble, there is

a unique i such that fi 6= 0. Take f ′ := fi and g :=
⊕

j ̸=i fj . Then f = f ′ ⊕ g in

H(K ), where f ′ is indecomposable in H(K ) with f ′ 6= 0, and g = 0. Hence, we have

H(P�)(f) = H(P�)(f
′)⊕H(P�)(g). (5.2)
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According to Proposition 5.19, H(P�)(f ′) is indecomposable in H(K ′), and by (5.2)

we have an isomorphism H(P�)(f) ∼= H(P�)(f ′) in the factor category H(K ′)
⟨UK ′ ⟩ . Hence it

is enough to show that H(P�)(f ′) is indecomposable. We have a canonical surjective
algebra homomorphsim

H(K ′)(H(P�)(f
′),H(P�)(f

′)) → H(K ′)

〈UK ′〉
(H(P�)(f

′),H(P�)(f
′)),

where H(K ′)(H(P�)(f ′),H(P�)(f ′)) is a local algbebra because H(P�)(f ′) is indecom-
poable. If we show that H(P�)(f ′) 6= 0, then it has a local endomorphism algebra, and

hence it turns out to be indecomposable, and the proof of (a) is completed. Assume
that H(P�)(f ′) = 0. Then idH(P�)(f ′) ∈ 〈UK ′〉. Thus we have a factorization

H(P�)(f ′) H(P�)(f ′)

(
⊕m

i=1(Xi → 0))⊕ (
⊕n

j=1(Xj
1−→ Xj))

1lH(P�)(f ′)

u
v

We apply H(P �) to this diagram to have

f ′ f ′

⊕
a∈G

af ′ ⊕
a∈G

af ′

(
⊕m

i=1 P
�(Xi) → 0)⊕ (

⊕n
j=1 P

�(Xj)
1−→ P �(Xj)))

1l⊕
a∈G

af ′

H(P �)(u)

H(P �)(v)

1lf ′

σ1G
π1G

Therefore, 1lf ′ factors through 〈UK 〉, hence f ′ = 0, a contradiction.

(2)(b) Assume f1 and f2 are indecomposable objects in H(M )
⟨UM ⟩ such that we have

an isomorphism H(P�)(f1) ∼= H(P�)(f2) in H(K ′)
⟨UK ′ ⟩ . Hence, we have H(P�)(f1) ⊕ h ∼=

H(P�)(f2) ⊕ g for some objects h and g in add-UK ′ . We can have decompositions
f1 = f ′

1 ⊕ m and f2 = f ′
2 ⊕ n in H(M ), where f ′

1 and f ′
2 are indecomposable, and

m,n ∈ add-UK . Then by applying the functor H(P�) on the decompositions, we
obtain the following isomorphisms:

H(P�)(f
′
1)⊕H(P�)(m)⊕ h = H(P�)(f1)⊕ h

∼= H(P�)(f2)⊕ g

= H(P�)(f
′
2)⊕H(P�)(n)⊕ g

Since H(P�)(f ′
1) and H(P�)(f ′

2) are only direct summands do not belong to add-K ′, by
the Krull-Schmidt property, we have H(P�)(f ′

1)
∼= H(P�)(f ′

2). It follows from Proposi-
tion 5.19 that f ′

1
∼= g(f ′

2) for some g ∈ G. Therefore,

f1 ⊕ gn = f ′
1 ⊕m⊕ gn ∼= g(f ′

2)⊕ gn⊕m = gf2 ⊕m.

Hence, we obtain the isomorphism f1 ∼= gf2 =
gf2 in H(K )

⟨UK ⟩ . �
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5.4. G-precoverings for the categories of finitely presented functors. In this
subsection, we will keep the notations introduced in Proposition 5.23 unless otherwise
stated.

It is worth noticing that if both K and K ′ have weak kernels, and that C is
a locally bounded k-category, then we have mod-C = fp(C ), mod-K = fp(K ),
and mod-C /G = fp(C /G), mod-K ′ = fp(K ′). For instance, if we assume that
K ′ := P�(K ) is contravariantly finite in mod-C /G (and hence has weak kernels),
then according to Lemma [DI20, Lemma 3.7] the subcategory K is also contravarintly
finite in mod-C . As a result, K inherits the property of having weak kernels.

The category of finitely presented functors from a category M to Mod-k can be
expressed as a factor category of the morphism category of M as follows.

Construction 5.24. Let M be a linear category. We define a functor ΘM : H(M ) →
fp(M ) as follows.

On objects. By Applying the Yoneda functor, we can define the correspondence
between objects as follows:

ΘM : H(M ) → fp(M ),
X1

X2

f 7→ ΘM (f) := Coker(M (-, X1)
M (-,f)−−−−→ M (-, X2)).

On morphisms. Let
X1

X2

f

h1−−−−→
h2

X ′
1

X ′
2

f ′ be a morphism in H(M ). Define ΘM (h1, h2)

as the unique morphism σ that makes the following diagram commutative:

M (-, X1)
M (-,f)//

M (-,h1)
��

M (-, X2) //

M (-,h2)
��

ΘM (f) //

σ

��

0

M (-, X ′
1)

M (-,f ′)// M (-, X ′
2)

// ΘM (f ′) // 0.

Since ΘM (UM ) = 0, we have the induced functor ΘM : H(M )
⟨UM ⟩ → fp(M ) satisfying

the following strictly commutative diagram

H(M )

ΘM

��

πC // H(M )
⟨UM ⟩

ΘM{{
fp(M )

.

Lemma 5.25. Assume that C is a locally bounded category, and that both K and
K ′ have weak kernels. Then the following statements hold.

(1) The functors ΘK ′ and ΘK are equivalences.
(2) The functor ΘK is a G-equivariant equivalence.

Proof. (1) We refer to [HE23, Theorem 4.2] for a proof.

(2) We first show that ΘK is G-equivariant. Let (X
f→ Y ) be an object in H(K )

and g ∈ G. By definitions, we have the following exact sequence:

K (-, gX)
K (-,gf)−−−−−→ K (-, gY ) → ΘK (gf) → 0.
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For any Z ∈ K , in view of the above sequence, we have the following commutative
diagram:

K (Z, gX1)
K (Z,gf) //

≃
��

K (Z, gX2) //

≃
��

ΘK (gf)(Z) //

η
��

0

K (g
-1
Z,X1)

K (g
−1

Z,f) // K (g
−1
Z,X2) // ΘK (f)(g

−1
Z) // 0.

Since K is a G-stable subcategory of the G-category mod-C , K has the induced

G-action, which induces the G-action on fp(K ) by (gM)(Z) := M(g
−1
Z) for all M ∈

fp(K ), g ∈ G and Z ∈ K . Hence we have gΘK (f)(Z) = ΘK (f)(g
−1
Z). The above

diagram yields a natural isomorphism η : ΘK (gf) ∼= gΘK (f), as we wanted to show.
Now since gUM = U(gM ), we obtain the desired isomorphism ΘK (gf) ∼= gΘK (f). �

Define fp(P�|) : fp(K ) → fp(K ′) to be the composite of the following functors:

fp(P�|) : fp(K )
(ΘK )−−−−−→ H(K )

〈UK 〉
H(P�|)
−−−−→ H(K ′)

〈UK ′〉
ΘK ′−−−→ fp(K ′),

where we have chosen a quasi-inverse (ΘK )− of ΘK . Here is the commutative dia-
gram that illustrates the relationship between these functors (up to a natural isomor-
phism in the middle square):

H(K )
⟨UK ⟩

H(K ) fp(K )

H(K ′) fp(K ′)

H(K ′)
⟨UK ′ ⟩

πK ΘK

ΘK

H(P�|)

πK ′

ΘK ′

fp(P�|)

ΘK ′

.

The following is a direct consequence of Lemma 5.25 and Proposition 5.23:

Proposition 5.26. Under the above notations, we have the following.

(1) The functor fp(P�|) : fp(K ) → fp(K ′) is a G-precovering.
(2) Assume that C is a locally bounded category, G is a torsion-free group acting

freely on C , and both K and K ′ are closed under direct sums and direct
summands. Then
(a) If T is indecomposable in fp(K ), then so is fp(P�|)(T ).
(b) If objects T1 and T2 are indecomposable in fp(K ), then fp(P�|)(T1) ∼=

fp(P�|)(T2) implies T1
∼= gT2, for some g ∈ G.

As is mentioned in the introduction, a functor Φ : fp(mod-C ) → fp(mod-(C /G))
is defined in [Pa19, Section 5] and is proved to be G-precovering in [Pa19, Theorem
5.5]. In fact, we have a natural isomorphism fp(P�) ∼= Φ by [Pa19, Proposition 5.3].

Lemma 5.27. Let A be a category that has small coproducts. Then the following
statement hold.
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(1) cpt(H(A )
⟨UA ⟩ ) =

H(A )
⟨UA ⟩ , and

(2) cpt(fp(A )) = fp(A ).

Moreover, in this case, fp(A ) has small coproducts.

Proof. From Construction 5.24, we obtain the equivalence H(A )
⟨UA ⟩ ' fp(A ). Therefore,

the statements (1) and (2) are equivalent, and it is enough to show only the statement
(2). The latter is clear as every finitely presented functor is compact.

To show that fp(A ) has small coproducts, let (Fi)i∈I be a small family of objects

in fp(A ). For each i ∈ I, take a projective presentation A (−, Xi)
A (−,fi)→ A (−, Yi) →

Fi → 0. Consider the morphism (⊕i∈IXi
⊕fi→ ⊕i∈IYi) in A . Let F = ΘA (⊕i∈Ifi). It

is not difficult to prove that (F,ΘA (δi) : Fi → F ) is a coproduct of the family (Fi)i∈I ,

where δi : (Xi
fi→ Yi) → (⊕i∈IXi

⊕fi→ ⊕i∈IYi) is the canonical injection. �

Remark 5.28. Later we will use the lemma above for the cases that A = Mod-C ,
Add-K ,Add-K ′.

By using the same argument as in Lemma 5.25, we observe that the functors
ΘMod-C ,ΘMod-(C /G),ΘAdd-K and ΘAdd-K ′ induce the equivalences in the following
diagrams:

H(Mod-C )
⟨UMod-C ⟩ fp(Mod-C )

H(Mod-(C /G))
⟨UMod-(C/G⟩ fp(Mod-(C /G)

ΘMod-C

ΘMod-(C/G)

H(P�) Fp(P�) ,

H(Add-K )
⟨UAdd-K ⟩ fp(Add-K )

H(Add-K ′)
⟨UAdd-K ′ ⟩ fp(Add-K ′)

ΘAdd-K

ΘAdd-K ′

H(P�|) Fp(P�|) .

By choosing quasi-inverses (ΘMod-C )
− and (ΘAdd-K )− of ΘMod-C and ΘAdd-K , we

can define Fp(P�) and Fp(P�|) (dashed arrows) in the diagrams above. Similarly, by
choosing quasi-inverses (ΘMod-(C /G)

− and (ΘAdd-K ′)− of ΘMod-(C /G) and ΘAdd-K ′ ,
we define Fp(P �) and Fp(P �|) by the following strictly commutative diagrams:

H(Mod-C )
⟨UMod-C ⟩ fp(Mod-C )

H(Mod-(C /G))
⟨UMod-(C/G⟩ fp(Mod-(C /G)

ΘMod-C

(ΘMod-(C/G))
−

H(P �) Fp(P �) ,

H(Add-K )
⟨UAdd-K ⟩ fp(Add-K )

H(Add-K ′)
⟨UAdd-K ′ ⟩ fp(Add-K ′)

ΘAdd-K

(ΘAdd-K ′ )−

H(P �|) Fp(P �|) .

Theorem 5.29. The following statements hold.

(1) The G-invariant functor Fp(P�) is a G-precovering, and has the right adjoint
Fp(P �) with the adjucntion Θ: Fp(P�) a Fp(P �).

Moreover, there is the following commutative diagram

fp(mod-C ) fp(Mod-C )

fp(mod-(C /G)) fp(Mod-(C /G))

Fp(P�)fp(P�) (5.3)

where the horizontal functors are embeddings.
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(2) The G-invariant functor Fp(P�|) is a G-precovering, and has the right adjoint
Fp(P �|) with the adjucntion Θ: Fp(P�|) a Fp(P �|).

Moreover, there is the following commutative diagram

fp(K ) fp(Add-K )

fp(K ′) fp(Add-K ′)

Fp(P�|)fp(P�|) (5.4)

where the horizontal functors are embeddings.

Proof. We only prove (1) since proof of (2) is similar. The statement (1) is immediate
from Theorem 4.18(b) and Lemma 5.27 because it is easy to verify that the adjoint
pair (Fp(P�),Fp(P �))) satisfies the conditions (PA1), (PA2) and (PA3) in Definition
4.7, i.e.,

(PA1) There exists a natural isomorphism t :
⊕

a∈GAa ⇒ Fp(P �)Fp(P�).
(PA2) For any x, y ∈ fp(Mod-C ), the following diagram commutes:⊕

a∈G A (x, ay) A (x,
⊕

a∈G ay)

B(Fp(P�)(x),Fp(P�)(y)) A (x,Fp(P �)Fp(P�)y)

ν

A (x,ty)∼(Fp(P�))
(2)
x,y

∼
Θx,Fp(P�)y

(5.5)

where ν is the canonical morphism, A := fp(Mod-C ) and B := fp(Mod-C /G).
(PA3) Fp(P �) preserves small coproducts.

�
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[Ga62] P. Gabriel, Des Catégories Abéliennes, Bull. Soc. Math. France 90 (1962), 323–448. DOI
10.24033/bsmf.1583. MR 0232821.



52 R. HAFEZI, H. ASASHIBA AND M.H. KESHAVARZ

[Ga80] P. Gabriel, The universal cover of a representation-finite algebra, Representations of Algebras
(Puebla, 1980), Lecture Notes in Math., 903, Springer, 1981, 68–105. MR 0654725.

[HE23] R. Hafezi and H. Eshraghi, From Morphism Categories to Functor Categories, avaialabe on
arXiv:2301.00534.

[HM20] R. Hafezi and E. Mahdavi, Covering theory, (mono)morphism categories and stable Auslan-
der algebras, available at arXiv:2011.08646.

[HZha] Y. Hu and T. Zhao, Morphisms determined by objects under Galois G-covering theory, J.
Algebra 620 (2023), 225–256. DOI 10.1016/j.jalgebra.2022.11.034. MR 4531546.

[HZho] Y. Hu and P. Zhou, Galois G-covering of quotients of linear categories, J. Pure Appl. Algebra
227 (2023), 107244. DOI 10.1016/j.jpaa.2022.107244. MR 4510795.

[Le94] Z. Leszczyński, On the representation type of tensor product algebras, Fund. Math. 144
(1994), 143–161. DOI 10.4064/fm-144-2-143-161. MR 1273693.
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