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Abstract. We define (1) a notion of a compression system ξ for a fi-
nite poset P, which assigns each interval subposet I to a poset morphism
ξI : QI → P and (2) an I-rank of a persistence module M with respect to
ξ, the family of which is called the interval rank invariant. A compression
system ξ makes it possible to define the interval replacement (also called the
interval-decomposable approximation) not only for 2D persistence modules
but also for any persistence modules over any finite poset. We will show that
the forming of the interval replacement preserves the interval rank invariant
that is a stronger property than the preservation of the usual rank invariant.
Moreover, we will give an explicit formula of the I-rank of M with respect to
ξ in terms of the structure linear maps of M under a mild existence condition
of joins and meets in I in the case where ξI is the inclusion of I into P, or
more generally, ξI “essentially covers” I.
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1. Introduction

Persistent homology is one of the main tools used in topological data anal-
ysis. In this context, the data are usually given in the form of a point cloud
(a finite subset of a finite-dimensional Euclidean space). Persistent homology
plays an important role in examining the topological property of the data [14].
Given one-parameter filtrations arising from the data, it yields representations
of a Dynkin quiver Q of type A, thus modules over the path category of Q,
that are sometimes called 1-dimensional persistence modules [20, 6, 8]. The
product quiver of d Dynkin quiver of type A with full commutativity relations
for some d ≥ 1 is called dD-grid. By considering multi-parameter filtrations,
representations of dD-grid naturally arise in practical settings, which are called
d-dimensional persistence modules [8, 12]. Since the linear category defined by
this quiver with relations can be regarded as the incidence category (Defini-
tion 2.2 (1)) of a poset, persistence modules are understood as modules over
the incidence category of a poset in general, or equivalently, functors from the
poset (regarded as a category) to the category mod k of finite-dimensional vector
spaces over a field k. Except for only a few cases, the category of d-dimensional
persistence modules has infinitely many indecomposables up to isomorphisms if
d > 1 [5]. In these cases, dealing with all indecomposable persistence modules
is very difficult and is usually inefficient. Therefore, to avoid it, we restrict our-
selves to a finite subset of indecomposables, and try to approximate the original
persistence module by those selected ones. As in our previous papers [1, 3], we
choose as this subset the set of all interval modules because they are easy to
handle, have nice properties, and comprise a large portion of direct summands
in the indecomposable decomposition of each persistence module in practical
data analysis.

Let P be a finite poset, and I an interval subposet (namely, a connected
and convex subposet). The set of all interval subposets is denoted by I. As
mentioned above, we sometimes regard P as a category (Definition 2.2). The
category of finite-dimensional modules over a category C is denoted by modC .
Hence mod k[P] denotes the category of persistence modules over P. We denote
by VI the interval module defined by I (Definition 2.7). In this paper, we assume
that the Dynkin quivers of type A used to define a dD-grid are equioriented.
Then it is isomorphic to the incidence category of the product poset of d totally
ordered finite sets.
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In [3], the notion of interval replacement δ∗(M) of a persistence module M
over a 2D-grid was introduced, which is an element of the split Grothendieck
group, and is given as a pair of interval decomposable modules. The important
points are that M and δ∗(M) share the same rank invariants (and hence also
dimension vectors) for all ∗ = tot, ss, cc, three kinds of compression to define
it, and that the interval replacement gives a way to examine the persistence
module M by using interval modules.

1.1. Purposes. In this paper, we generalize the notion of interval replacement
in three ways. The first generalization is to broaden the setting from 2D-grids
to any finite posets, the second is to generalize the three kinds of compression
to a compression system ξ (Definition 3.1). Roughly speaking, a compression
system ξ assigns each interval I to a poset morphism ξI : QI → P factoring
through the inclusion of I into P having some properties with min I, max I.
Then ξI gives the restriction functor RI := Rξ

I : modP→ mod I. For example,
the family tot of the inclusions totI : I ↪→ P for all intervals I turns out to be
a compression system, called the total compression system.

Finally, the third is to extend the rank invariants that are regarded as the
invariants with respect to rectangles to the invariants with respect to any
intervals, called the interval rank invariant. This is done as follows. Let
M ∈ modP. Then the multiplicity of RI(VI) in the indecomposable decompo-
sition of RI(M) is denoted by cξM(I) = rankξIM , and is called the compression
multiplicity of M at I or I-rank of M with respect to ξ (Definitions 3.8 and
4.10). In particular, ranktotI M is simply called the total I-rank of M . The
family rankξM := (rankξIM)I∈I is called the interval rank invariant of M with
respect to ξ.

The Möbius inversion δξM of cξM : I→ R is called the signed interval multiplic-
ity of M at I (Definition 3.18), which defines the interval replacement δξ(M)

with respect to ξ (Definition 4.1). The I-rank rankξI δ
ξ(M) of the interval re-

placement δξ(M) of M can also be naturally defined (Definition 4.1). Then we
will prove that the forming of δξ preserves the I-ranks as stated in the following.

Theorem 1.1 (Therorem 4.11). Let M ∈ modP, and I an interval of P. Then

rankξI δ
ξ(M) = rankξIM.

Moreover, we will give an explicit formula of the interval rank invariant of
M under some existence conditions of joins and meets in the intervals. More
precisely, we have the following two theorems. The first one is for the total
compression, and the second is for a compression system with essential cover
property defined below.

Theorem 1.2 (Theorem 5.20). Let M ∈ modP, and I an interval of P with
min I := {a1, . . . , an}, max I := {b1, . . . , bm} (elements are pairwise distinct)
for some m,n ≥ 1. Assume that for any pair a, a′ ∈ min I (resp. b, b′ ∈ max I)
there exists the join (resp. meet) of them in I. Obviously, for each a ∈ min I,
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there exists some b ∈ max I such that a ≤ b. Hence we may assume that a1 ≤ b1
without loss of generality. Then we have

ranktotI M = rank

 M 0[
Mb1,a1 0
0 0

]
N

− rankM− rankN, (1.1)

where M,N are the matrices defined in Theorems 5.7 and 5.16, whose nonzero
entries are given by structure linear maps Mb,a : M(a) → M(b) of M corre-
sponding to the unique morphism from a to b in P for all a, b ∈ P. If m = 1
(resp. n = 1), then N (resp. M) is an empty matrix, and hence the formula has
one of the special forms given in Theorems 5.7, 5.16, and Proposition 4.7.

Let M and I be as above, and ξ a compression system. Then we say that
ξI essentially covers I if there exists a formula of ranktotI M in terms of linear
maps M(p) (p ∈ S) for some subset S of morphisms in I such that for each
p ∈ S there exists a morphism q ∈ QI with p = ξI(q). Then we will prove the
following.

Theorem 1.3 (Theorem 5.25). Let M , I and ξ be as above. If ξI essentially
covers I, then we have

rankξIM = ranktotI M.

Hence Theorem 1.2 gives the formula also for rankξIM .

1.2. Related works. In [17], Kim and Mémoli introduced the generalized rank
invariant for persistence modules over posets. In fact, the generalized rank
invariant coincides with our proposed interval rank invariant using a specified
compression system, namely the total compression system (see Example 3.3
and Lemma 5.29). However, we provide a more general theory of defining the
interval rank invariant and interval replacement of persistence modules with
any compression system ξ involving not only the maximum compression system
(i.e., the total compression system) but also some other compression systems
(for instance, the minimum and simplest source-sink compression system, see
Example 3.4), allowing one to use different compression systems simultaneously
or independently in practice. For example, one can combine both the source-
sink and total compression systems to retrieve the original algebraic information
if necessary. Also, it is sufficient to utilize the simplest source-sink compression
in some situations.

In [9], Botnan, Oppermann, and Oudot introduced a general framework
mainly focusing on decomposing any persistence modules using the signed bar-
codes in the (generalized) rank level. In detail, given any collection I of inter-
vals of a poset and arbitrary map r : I → Z, there uniquely exist two disjoint
multi-sets R and S of elements of I such that r equals to the generalized
rank invariant of interval-decomposable module

⊕
I∈R VI subtracts the general-

ized rank invariant of interval-decomposable module
⊕

I∈S VI (see [9, Corollary
2.5]). From this result, one can obtain a specified part of our Theorem 1.1,
that is, the persistence module and its signed barcodes decomposition share the
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same generalized rank invariant once we let I = I and take r to be our interval
rank invariant ranktotM (viewed as the map ranktotM : I→ Z, I 7→ ranktotI M).
However, our Theorem 1.1 shows that the interval replacement preserves the in-
terval rank invariant, not only using the total compression system (i.e., general-
ized rank invariant) but also using other different compression systems. Another
remarkable note is that they do not only focus on the locally finite collection
but also on the larger collection I of intervals of arbitrary poset. Compared
with their results, we shed light on the concept of the compression system and
propose a new rank invariant of persistence modules based on the compression
system. In our framework, the proposed interval rank invariant of persistence
module M can be naturally regarded as the multiplicity of the interval modules
in the decomposition of the “compressed” module of M . From this viewpoint,
we could compute theoretically and give explicit formulas for this new interval
rank invariant by utilizing the powerful Auslander–Reiten theory.

Concerning the computation aspect. The generalized rank invariant is rea-
sonably simple because [11, Theorem 3.12] reduces its computation to the zigzag
path (boundary cap in their terminology) that concatenates the lower and upper
zigzags of each interval. This way of computing has the benefit of utilizing many
mature algorithms to compute the rank invariant in the 1D persistence context.
Nevertheless, our work provides explicit formulas for directly computing the in-
terval rank invariant with the total compression system and other compression
systems having the essential cover property as explained just before Theorem
1.3 (see Definition 5.21). Moreover, since the zigzag compression system zz (Ex-
ample 5.23) corresponding to their zigzag path above has this essential cover
property, Theorem 1.3 above gives an alternative proof of [11, Theorem 3.12]
because as mentioned above, ranktotI (M) coincides with their generalized rank
invariant of M . The latter statement follows by [10, Lemma 3.1], but the de-
scription of the proof was imprecise, and in the process of making it accurate
we found a small gap in the proof. Therefore, we give a precise proof of it by
filling the gap. Combining the explicit formulas of the source-sink compression
system given in [3, Proposition 6.4] for the (n× 2)-grid, we have the capability
to completely compute these two different families more straightforwardly and
easily when the ambient poset is induced by the (n×2)-grid (see Example 4.9).
In addition, these explicit formulas give an intuition for choosing which types
of compression systems would induce the same interval rank invariant.

In [16], Hiraoka, Nakashima, Obayashi, and Xu also established the general
theory for approximating any persistence modules over a finite fully commuta-
tive acyclic quiver G = (Q,R) by interval decomposable modules, which shares
the same spirit with ours. They defined the so-called interval approximation
(which, essentially, coincides with our interval replacement δξM(·)). For the sake
of fast computation, they consider defining interval approximation on the re-
striction of the collection I of all intervals, called the partial interval approxima-
tion (which shares the similar idea of considering those intervals having “good”
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shapes in [9]). For instance, they define the partial interval approximation re-
stricted to the collection of k-essential intervals and estimate the computational
complexity of (partial) interval approximation. Their remarkable distinction is
treating the collection of interval approximations as a rank invariant of persis-
tence modules (see [16, Definition 3.36, Example 3.37]). On the contrary, the
collection of compression multiplicities is treated as a rank invariant in our work.
Moreover, our Theorem 1.1 extends their [16, Theorem 3.29], in the sense that
forming the interval replacements preserves I-ranks not only for all segments
I but also for all intervals I. Another main contribution in [16] is providing a
new way of visualizing interval approximation in the commutative ladder set-
ting, called the connected persistence diagram (see [16, Definition 4.7]).

Due to the flexibility of selecting compression systems, one advantage is that
for representation-finite commutative ladders, the paper [16] designed a way of
efficiently computing the complete invariant dM(·) : L → Z by choosing finitely
many compression systems (explicitly, the cardinality of L ) and solving a linear
equations system. Another advantage of the compression system is developing
the so-called interval resolution of given persistence modules based on the well-
selected compression system [2]. Thanks to this technique, the relationship
between interval replacement and interval resolution can be well-established in
the context of commutative ladders.

1.3. Our contributions. (1) We introduce the compression system and the
interval rank invariant with respect to the compression system. These allow us
to extend the concept of interval replacement defined on the commutative grid
in [3] to the finite poset (Theorem 1.1). We follow the convention in [3] to view
the interval replacement of the persistence module as an element in the split
Grothendieck group.

(2) Based on Proposition 4.7, we see an interesting phenomenon (Corol-
lary 4.8) and exhibit such an example (Example 4.9).

(3) We provide explicit formulas in Theorem 1.2 to directly compute the
interval rank invariant, utilizing the Auslander–Reiten theory. To this end,
we first gave a formula to compute the dimension of Hom(X,Y ) in terms of
a projective presentation of X, and then for each interval I, we computed the
almost split sequence starting from VI over the incidence category k[I], and also
gave the projective presentations of all the terms in the sequence to compute
the Hom dimensions of them. These computations can also be used for later
research. In addition, the explicit formulas for the interval rank invariant give
an intuition for choosing which types of compression systems would induce the
same interval rank invariant.

(4) We give a sufficient condition for the I-rank of a persistence module
M with respect to a compression system ξ to coincide with the total I-rank
(Theorem 1.3). As stated above, this gives an alternative proof of [11, Theorem
3.12].
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1.4. Organization. The paper is organized as follows. Section 2 is devoted
to collecting necessary terminologies and fundamental properties for the later
use, in particular, incidence categories and incidence algebras defined by a finite
poset, and the Möbius inversion.

In Sect. 3, we introduce the notion of compression systems ξ, the compression
multiplicity, and the signed interval multiplicities with respect to ξ.

The latter makes it possible to define the interval replacement and the in-
terval rank invariant of a persistence module in Sect. 4, where we prove the
preservation of interval rank invariant under forming the interval replacement
(Theorem 1.1).

In Sect. 5, we give an explicit formula for the total interval rank invariant
(Theorem 1.2) by computing the almost split sequences starting from VI for
any interval I ∈ I and projective presentations of all the terms in the sequence.
In addition, we give a sufficient condition for a compression system to have the
same interval rank invariant as tot (Theorem 1.3) to give it also an explicit
formula.

Finally, in Sect. 6, we give some examples showing the incompleteness of the
interval rank invariant.

2. Preliminaries

Throughout this paper, k is a field, P = (P,≤) is a finite poset. The category
of finite-dimensional k-vector spaces is denoted by mod k. For a quiver Q, a
path p from x to y in Q is expressed by p : x ⇝ y, and the ideal of the path
category k[Q] generated by all the commutativity relations is denoted by comQ.

2.1. Incidence categories.

Definition 2.1. A k-linear category C is said to be finite if it has only finitely
many objects and for each pair (x, y) of objects, the Hom-space C (x, y) is finite-
dimensional.

Covariant functors from C to mod k are called left C -modules. They together
with natural transformations between them as morphisms form a k-linear cat-
egory, which is denoted by modC .

Definition 2.2. The poset P is regarded as a category as follows. The set
P0 of objects is defined by P0 := P. For each pair (x, y) ∈ P × P, the set
P(x, y) of morphisms from x to y is defined by P(x, y) := {py,x} if x ≤ y, and
P(x, y) := ∅ otherwise, where we set py,x := (y, x). The composition is defined
by pz,ypy,x = pz,x for all x, y, z ∈ P with x ≤ y ≤ z. The identity 1lx at an
object x ∈ P is given by 1lx = px,x.

(1) The incidence category k[P] of P is defined as the k-linearization of the
category P. Namely, it is a k-linear category defined as follows. The
set of objects k[P]0 is equal to P, for each pair (x, y) ∈ P × P, the set
of morphisms k[P](x, y) is the vector space with basis P(x, y); thus it
is a one-dimensional vector space kpy,x if x ≤ y, or zero otherwise. The
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composition is defined as the k-bilinear extension of that of P. Note
that k[P] is a finite k-linear category.

(2) Covariant (k-linear) functors k[P]→ mod k are called persistence mod-
ules.

In the sequel, we set [≤]P := {(x, y) ∈ P × P | x ≤ y}, and A := k[P] (there-
fore, A0 = P), and so the category of finite-dimensional persistence modules is
denoted by modA.

Definition 2.3. Let I be a nonempty full subposet of P.

(1) For any (x, y) ∈ [≤]P, we set [x, y] := {z ∈ P | x ≤ z ≤ y}, and call it
the segment from x to y in P. The set of all segments in P is denoted
by Seg(P).

(2) The Hasse quiver H(P) of P is a quiver defined as follows. The set
H(P)0 of vertices is equal to P, the set H(P)1 of arrows is given by
the set {ay,x | (x, y) ∈ [≤]P, [x, y] = {x, y}}, and the source and the
target of ay,x are x and y, respectively, where we set ay,x := py,x. In the
sequel, we set Q := H(P). Thus we have Q0 = P, and we can regard
k[P] = k[Q]/comQ by identifying the coset of each path p : x ⇝ y with
the morphism py,x.

(3) A source (resp. sink) of I is nothing but a minimal (resp. maximal)
element in I, which is characterized as an element x ∈ I such that in
the Hasse quiver H(I), there is no arrow with target (resp. source) x.
The set of all sources (sinks) in I is denoted by sc(I) (resp. sk(I)).

(4) I is said to be connected if the full subquiver of H(P) whose vertex set
is equal to I is connected.

(5) I is said to be convex if for any x, y ∈ I with x ≤ y, we have [x, y] ⊆ I.
(6) The convex hull conv(I) of I is defined as the smallest (with respect to

the inclusion) convex subset of P that contains I. Equivalently, conv(I)
is the union of all segments between elements of I.

(7) I is called an interval if I is connected and convex.
(8) The set of all intervals of P is denoted by I(P), or simply by I. We regard

I as a poset I = (I,≤) with the inclusion relation: I ≤ J ⇔ I ⊆ J for
all I, J ∈ I. Since P is finite, I is also finite.

(9) Let I ∈ I. The cover of I is defined as

Cov(I) := {L ∈ I | I < L and [I, L] = {I, L}}.

(10) Let U be a subset of I. The least upper bound of U is called the join of
U , and is denoted by

∨
U . As the least element, it is unique if it exists.

Remark 2.4. Note that for a subposet I of P to be connected is not equivalent
to saying that the Hasse quiver H(I) of I is connected. Namely, the former
implies the latter, but the converse does not hold in general. For example,
P = {1 < 2 < 3} and I := {1, 3}. However, if I is convex, then the two notions
coincide.
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Note also that any segment [x, y] in Seg(P) is an interval with source x and
sink y. Hence Seg(P) ⊆ I(P) (see the statements just after Lemma 3.10 for
more precise relation).
Remark 2.5. Since the factor category A = k[Q]/comQ, the category modA of
persistence modules is isomorphic to the category repk(Q, ρ) of k-representations
of the bound quiver (Q, ρ). We usually identify these categories. Thus persis-
tence modules are given as representations of the bound quiver (Q, ρ).

Note that in general, the join of a poset might not exist. In our setting, we
have the following:
Proposition 2.6. Let U be a subset of I. If U has a lower bound, then the join
of U exists.
Proof. Let I be a lower bound of U . Let us write U := {I1, ..., In} with n ≥ 1.
Then the subset of P defined by

⋃n
k=1 Ik is connected since I ≤ Ik for all

k = 1, ..., n. It follows that conv (
⋃n
k=1 Ik) is connected, convex, and containing

U , and hence it is an upper bound of U . Now, let W be an upper bound of
U . Since

⋃n
k=1 Ik ⊆ W and W is convex, we have conv (

⋃n
k=1 Ik) ⊆ W . Thus

conv (
⋃n
k=1 Ik) =

∨
U . □

Definition 2.7 (Interval modules). Let I be an interval of P.
(1) A persistence module VI is defined as a representation of Q as follows:

For each x ∈ Q0, VI(x) = k if x ∈ I, and VI(x) = 0 otherwise; For each
ay,x ∈ Q1, VI(ay,x) = 1lk if {x, y} ⊆ I, and VI(ay,x) = 0 otherwise. It
is obvious that VI satisfies the full commutativity relations, and hence
VI is, in fact, a persistence module. It is also easy to see that VI is
indecomposable.

(2) A persistence module isomorphic to VI for some I ∈ I is called an interval
module.

(3) A persistence module is said to be interval decomposable if it is isomor-
phic to a finite direct sum of interval modules. Thus 0 is trivially interval
decomposable.

We will use the notation dM(L) to denote the multiplicity of an indecompos-
able direct summand L of a module M in its indecomposable decomposition as
explained in the following well-known theorem.
Theorem 2.8 (Krull–Schmidt). Let C be a finite k-linear category, and fix a
complete set L = LC of representatives of isoclasses of indecomposable objects
in modC . Then every finite-dimensional left C -module M is isomorphic to the
direct sum

⊕
L∈L LdM (L) for some unique function dM : L → Z≥0. Therefore

another finite-dimensional left C -module N is isomorphic to M if and only if
dM = dN . In this sense, the function dM is a complete invariant of M under
isomorphisms.

In one-parameter persistent homology, this function dM corresponds to the
persistence diagram of M , which is a graph plotting each dM(L) as a colored
point on L .
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Let us recall some basic facts about Möbius functions. For more details we
refer the reader to [19]. Following Definition 2.3 (1), we denote by Seg(I) the
set of all segments of I. Here, we want to emphasize that we are considering
segments of the poset (I,≤) and not (P,≤).

2.2. Incidence algebra and Möbius inversion.

Definition 2.9 (Incidence algebra of I). We define the incidence algebra RI of
I over the field R of real numbers by using the incidence category R[I] as the
matrix algebra

RI :=
⊕
J,I∈I

R[I](I, J), where R[I](I, J) =

{
RpJ,I (I ≤ J),

0 (otherwise)

with the usual matrix multiplication:

(mJ,I)J,I∈I(m
′
J,I)J,I∈I := (

∑
K∈I

mJ,Km
′
K,I)J,I∈I

for all (mJ,I)J,I∈I, (m
′
J,I)J,I∈I ∈ RI. Note that RI is also obtained as

RI =
⊕
I≤J

RpJ,I

with the multiplication defined by pL,KpJ,I = δK,JpL,I for all I, J,K, L ∈ I with
I ≤ J and K ≤ L, where δK,J is Kronecker’s delta symbol.

Remark 2.10. For the definition above, we have the following remarks.
(1) (As a matrix algebra with blocks R or 0) To express each element of

RI as a matrix, we fix a total order on I extending the original partial
order. By regarding the isomorphism R→ RpJ,I sending 1 to pJ,I as the
identity map, we can regard RI as a matrix algebra over R with the set
of (J, I)-entries R if I ≤ J , and 0 otherwise.

(2) (As a set of functions from Seg(I) to R) Note that we have a bijection
Seg(I) → {pJ,I | I, J ∈ I, I ≤ J} sending [I, J ] to pJ,I , and that each
element m of RI can be regarded as a function {pJ,I | I, J ∈ I, I ≤ J} →
R sending each pJ,I to the (J, I)-entry mJ,I of m. By combining these we
can also regard RI as the set RSeg(I) of functions Seg(I)→ R, namely, by
identifying an element m ∈ RI with the function sending each segment
[I, J ] to the (J, I)-entry mJ,I of m.

(3) (Right action on RI) Consider the opposite poset Iop of I, and the inci-
dence algebra R(Iop), which can be regarded as the opposite algebra of
RI: R(Iop) = (RI)op. Since Iop itself is an interval of Iop, we can define
the interval module V := VIop , which is isomorphic to the set RI of func-
tions as a vector space over R. The isomorphism is given by sending
(vI ∈ V (I) = R)I∈I to the map I 7→ vI (I ∈ I). By identifying RI with
V under this isomorphism, RI has a left R(Iop)-module structure, that
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is, a right RI-module structure, the explicit definition of which is given
as follows: Let f ∈ RI and (I, J) ∈ I2 with I ≤ J in I. Then

(f · pJ,I)(K) = δI,Kf(J) (2.2)

for all K ∈ I.

Definition 2.11 (Zeta and Möbius functions). We set

ζ :=
∑
I≤J

pJ,I ∈
⊕
I≤J

RpJ,I = RI ∼= RSeg(I)

(see Remark 2.10 (2)), and call it the zeta function. Then note that ζ is ex-
pressed as a lower triangular matrix with all diagonal entries 1 in RI as a matrix
algebra (see Remark 2.10 (1)). Thus it is invertible in RI, the inverse is given by
the adjoint matrix of ζ, which is denoted by µ, and called the Möbius function.

Note that for any f ∈ RI, we have

(f · ζ)(K) =
∑
I≤J

δI,Kf(J) =
∑
K≤J

f(J) (2.3)

for all K ∈ I by (2.2).

Theorem 2.12 (Möbius Inversion Formula). For any f, g ∈ RI and I ∈ I, the
following are equivalent:

(1) f(I) =
∑

I≤J∈I g(J); and
(2) g(I) =

∑
I≤J∈I f(J)µ([I, J ]).

Proof. Since µ =
∑

I≤J µ([I, J ])pJ,I , we have

(f · µ)(K) =
∑
I≤J

δI,Kf(J)µ([I, J ]) =
∑
K≤J

f(J)µ([K, J ]).

By this together with (2.3), the equivalence follows from the fact that f = gζ
if and only if fµ = g. □

3. Compressions and multiplicities

For a functor F : C → D between categories, we denote by U(F ) : U(C ) →
U(D) the underlying quiver morphism between the underlying quivers of C , D .

3.1. Compression systems.

Definition 3.1. A compression system for A is a family ξ := (ξI)I∈I of quiver
morphisms ξI : QI → U(A) from an acyclic connected finite quiver QI without
multiple arrows satisfying the following three conditions for each I ∈ I:

(1) ξI factors through the inclusion morphism U(k[I]) ↪→ U(A) of quivers;
(2) The image ξI((QI)0) of vertices contains all the sources and sinks of I;

and
(3) If I = [x, y] ∈ Seg(P), then there exists a path q in QI such that

ξI(q) = py,x, where ξI : k[QI ]→ A is the linear functor that is a unique
extension of ξI .
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Let I ∈ I. Then we set BI := k[QI ]/Ker ξI (note that comQI
⊆ Ker ξI).

For each morphism p in k[QI ], we often write the morphism p + Ker ξI in BI

simply by p if there seems to be no confusion. Then ξI induces a functor
F ξ
I := ξ̃I : BI → A. The restriction functor Rξ

I : modA→ modBI is defined by
sending M to M ◦ F ξ

I for all M ∈ modA. The functors F ξ
I and Rξ

I are simply
denoted by FI and RI , respectively, if there seems to be no confusion. Then
RI(VI) is isomorphic to the interval BI-module V(QI)0 of the poset ((QI)0,≤)
defined by QI , where x ≤ y if and only if there exists a path from x to y in QI ,
and hence RI(VI) is indecomposable.

Remark 3.2. We have another simplified version of the definition above that
was used in the abstract. If we restrict ourselves to the case where ξI factors
through the inclusion U(I) ↪→ U(A) instead of (1) above, then a simplified
version can be obtained. Note here that QI turns out to be a finite poset as
described in Definition 3.1, and that Ker ξI is generated by full commutativity
relations in QI . Hence in this case BI = k[QI ]/comQI

can be seen as just the
incidence category of the poset QI . Therefore, the simplified version is obtained
as follows:

A compression system for A is a family ξ = (ξI)I∈I of poset morphisms
ξI : QI → P from a connected finite poset QI satisfying the following conditions
for each I ∈ I.

(1) ξI factors through the poset inclusion I ↪→ P;
(2) The image ξI(QI) contains min I ∪max I.
(3) If I = [x, y] ∈ Seg(P), then there exists a pair (x′, y′) ∈ [≤]QI

such that
(ξI(x

′), ξI(y
′)) = (x, y).

In this simplified version, BI := k[I] is the incidence category of I, and the
functor F ξ

I : k[I]→ k[P] is given as the linearization of ξI .
We have kept the present version of the definition for the future use.

Example 3.3 (tot). Let I ∈ I, and QI := H(I), the Hasse quiver of I. Then we
may identify k[I] = k[QI ]/comQI

. Now define a quiver morphism totI : H(I)→
U(A) as the composite

H(I) ↪→ U(I) ↪→ U(k[I]) ↪→ U(A).

Then FI = t̃otI is the inclusion k[I] ↪→ A, and BI = k[I] in this case. (In
the simplified version, totI is just the inclusion QI := I ↪→ P.) This defines a
compression system tot := (totI)I∈I for A, which is called the total compression
system for A.

Example 3.4 (ss). Let I ∈ I, and Qss
I := H(sk(I)∪ sc(I)), the Hasse quiver of

the full subposet sk(I)∪ sc(I) of I. Define a quiver morphism ssI : Q
ss
I → U(A)

as the composite
Qss
I ↪→ U(I) ↪→ U(k[I]) ↪→ U(A),

where each arrow x→ y in Qss
I is sent to the unique morphism py,x from x to y in

I. Then FI = s̃sI is the inclusion k[Qss
I ] ↪→ A, and BI = k[Qss

I ] in this case. (In
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the simplified version, ssI is given as the inclusion Qss
I := sk(I) ∪ sc(I) ↪→ P.)

This defines a compression system ss := (ssI)I∈I for A, which is called the
source-sink compression system for A.

Example 3.5. Let P := G5,2 as in Example 4.9, and I be the interval with
sc(I) := {(1, 2), (2, 1)} and sk(I) := {(3, 2)}. Take QI := H({(1, 2), (2, 2), (3, 2),
(2, 1)}), the Hasse quiver of the full subposet {(1, 2), (2, 2), (3, 2), (2, 1)} of I,
and take ξI : QI → U(A) to be the inclusion, then this ξI can be taken as a
component of a compression system for A, which satisfies ssI 6= ξI 6= totI .

Remark 3.6. The compression system ξ in all the examples above satisfies
the following condition for all I ∈ I that is stronger than the condition (1) in
Definition 3.1:

(1′) ξI factors through the inclusion morphism U(I) ↪→ U(A).
In such cases, we have BI = k[QI ]/comAI

. The condition (1) allows for BI to
have relations other than commutativity relations such as zero relations. In this
paper, however, we only consider compression systems satisfying (1′) instead of
(1).

In the sequel, we let ξ := (ξI : QI → U(A))I∈I be a compression system for
A. For later use, we fix the following notations.

Notation 3.7. Let I ∈ I. Set F = F tot
I : k[I] → A to be the inclusion functor

defined by the inclusion map I → P of posets, and R = Rtot
I : modA →

mod k[I] the restriction functor defined by F . Then the quiver morphism
ξI : QI → U(A) factors through U(F ) by the condition (1) in Definition 3.1,
and the functor FI : BI → A factors through F as in the following diagrams:

QI U(A)

U(k[I])

ξI

ξ′ U(F )
,

BI A

k[I]

FI

F ′ F
.

Hence we have the corresponding factorization of RI by R as in the diagram

modBI modA

mod k[I]

RI

R′ R
.

3.2. Compression multiplicities. Let LI := LBI
be a complete set of repre-

sentatives of isoclasses of indecomposable left BI-modules (see the notations in
Theorem 2.8). Since RI(VI) is indecomposable, we may assume that RI(VI) ∈
LI .

Definition 3.8. Let M ∈ modA, and I ∈ I. Then the number

cξM(I) := dRI(M)(RI(VI))

is called the compression multiplicity of I in M with respect to ξ.
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Following [7], we introduce the subsequent definition.

Definition 3.9. A subset K of P is called an antichain in P if any distinct
elements of K are incomparable. We denote by Ac(P) the set of all antichains
in P. For any K,L ∈ Ac(P), we define K ≤ L if for all x ∈ K, there exists
zx ∈ L such that x ≤ zx, and for all z ∈ L, there exists xz ∈ K such that
xz ≤ z. In this case, we define [K,L] := {y ∈ P | x ≤ y ≤ z for some x ∈
K and for some z ∈ L}.

Lemma 3.10. {[K,L] | K,L ∈ Ac(P), K ≤ L} forms the set of all convex
subsets in P.

Proof. Let K,L ∈ Ac(P) such that K ≤ L. First, let us show that [K,L] =
conv(K ∪ L). Let y ∈ conv(K ∪ L). By definition, there exist x0, z0 ∈ K ∪ L
such that x0 ≤ y ≤ z0. Now assume both x0 ∈ K and z0 ∈ K. In this
case, since K ∈ Ac(P) and x0 and z0 are comparable, then necessarily x0 = z0
and so y = x0 = z0 ∈ K ⊆ [K,L]. Similarly, if both x0 ∈ L and z0 ∈ L,
we have y ∈ L ⊆ [K,L]. So either x0 ∈ K, z0 ∈ L or x0 ∈ L, z0 ∈ K. If
x0 ∈ K, z0 ∈ L, then by definition we have y ∈ [K,L]. Now assume we have
x0 ∈ L, z0 ∈ K. Since K ≤ L, there exists k ∈ K such that k ≤ x0. So we have
k ≤ x0 ≤ y ≤ z0 with both k, z0 ∈ K. Therefore k = z0 because K ∈ Ac(P),
and so y = k = z0 ∈ K ⊆ [K,L]. This proves that [K,L] ⊇ conv(K∪L), and so
[K,L] = conv(K∪L). In particular, [K,L] is a convex set. Now let S be a convex
subset in P. Because P is finite, we can define K := minS, L := maxS, and
we have K ≤ L. Then it is clear that S = conv(K ∪L), and so S = [K,L]. □

Hence we have I = {[K,L] | K,L ∈ Ac(P), K ≤ L, [K,L] is connected}. In
particular, we have I = [min I,max I] for all I ∈ I and Seg(P) = {I ∈ I(P ) |
|min I| = 1 = |max I|}. The following is immediate from Lemma 3.10.

Corollary 3.11. Let I ∈ I. Then I = conv(sc(I) ∪ sk(I)). In particular, if
sc(I) ∪ sk(I) ⊆ J ∈ I, then I ≤ J . □

Proposition 3.12. Let I, J ∈ I. Then

cξVJ (I) =

{
1 if I ≤ J,

0 otherwise.

Proof. If I ≤ J , then cξVJ (I) = dRI(VJ )(RI(VI)) = dRI(VI)(RI(VI)) = 1. Other-
wise, Corollary 3.11 ensures the existence of a vertex x ∈ sc(I) ∪ sk(I) that is
not in J . By assumption on ξI , there exists x′ ∈ (QI)0 such that ξI(x′) = x. By
definition, x′ satisfies RI(VI)(x

′) = k and RI(VJ)(x
′) = 0. Hence in particular,

RI(VI) is not a direct summand of RI(VJ), so cξVJ (I) = 0.
□

Proposition 3.13. Let M,N ∈ modA, and I ∈ I. Then

cξM⊕N(I) = cξM(I) + cξN(I).
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Proof. This is a direct consequence of the additivity of RI and the uniqueness
of dM⊕N in Theorem 2.8. □

When M ∈ modA is interval decomposable, it is possible to express the com-
pression multiplicities of interval modules by multiplicities of interval modules
and vice-versa.

Proposition 3.14. Let M ∈ modA and I ∈ I. If M is interval decomposable,
then

cξM(I) =
∑
I≤J∈I

dM(VJ).

This can be rewritten as

cξM = dMζ,

where dM(I) := dM(VI).

Proof. By assumption, M can be decomposed as a direct sum of interval mod-
ules: M =

⊕
J∈I V

dM (VJ )
J . Now, Proposition 3.13 yields

cξM(I) =
∑
J∈I

dM(VJ) c
ξ
VJ
(I).

Proposition 3.12 leads to the desired formula. □

Corollary 3.15. Let M ∈ modA. If M is interval decomposable, then

dM = cξMµ.

Proof. This follows directly from Theorem 2.12. □

By adopting the argument used in [3, Theorem 4.23], it is possible to write
µ explicitly.

Theorem 3.16. Let us define µ′ ∈ RI by

µ′([I, J ]) :=
∑
S∈E

(−1)|S|,

for I, J ∈ I with I ≤ J , and where E is the set of all sets S such that S ⊆
Cov(I) and

∨
S = J . Note that if S is nonempty, then

∨
S is well defined by

Proposition 2.6. We artificially define
∨
∅ := I to simplify notations. Then

µ = µ′.

Proof. Let us prove that ζµ′ = 1RI. Let I, J ∈ I with I ≤ J . We have
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(ζµ′)([I, J ]) =
∑

I≤L≤J

µ′([I, L])

=
∑

I≤L≤J

∑
S∈E

(−1)|S|

=
∑

S⊆Cov(I)∨
S≤J

(−1)|S|

= 1−
∑

∅̸=S⊆Cov(I)∨
S≤J

(−1)|S|−1

Now, write ↑II := {L ∈ I | I ≤ L} for I ∈ I, and define the function f as
follows:

f : 2↑II → R

Z 7→
∑
L∈Z

dVJ (VL),

where 2↑II is the power set of ↑II. Note that by definition⋂
L∈S

↑IL = ↑I
∨

S.

Therefore, we have

f

(⋂
L∈S

↑IL

)
= f

(
↑I
∨

S
)

=
∑

∨
S≤L

dVJ (VL)

= cξVJ

(∨
S
)

=

{
1 if

∨
S ≤ J,

0 otherwise

where the last two equalities come from Propositions 3.14 and 3.12, respectively.
Thus we can write:

(ζµ′)([I, J ]) = 1−
∑

∅̸=S⊆Cov(I)

(−1)|S|−1 f

(⋂
L∈S

↑IL

)
.
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It is easily seen that (↑II, 2↑II , f) is a finite measure space. So, by the inclusion-
exclusion principle

(ζµ′)([I, J ]) = 1− f

 ⋃
L∈Cov(I)

↑IL


= 1−

∑
I<L

dVJ (VL)

= 1−

(∑
I≤L

dVJ (VL)− dVJ (VI)

)
= 1− (cξVJ (VI)− dVJ (VI))
= dVJ (VI)

where the last two equalities also come from Propositions 3.14 and 3.12 respec-
tively. Finally, since dVJ (VI) = 1 if and only if I = J , we have (ζµ′)([I, J ]) =
1RI([I, J ]), so ζµ′ = 1RI and we deduce that µ = µ′. □

3.3. Signed interval multiplicities. It is now possible to rewrite Corollary
3.15 in the following way:

Corollary 3.17. Let M ∈ modA and I ∈ I. If M is interval decomposable,
then

dM(VI) =
∑

S⊆Cov(I)

(−1)|S| cξM
(∨

S
)
.

Definition 3.18. Let M ∈ modA and I ∈ I. We define the signed interval
multiplicity δξM of M with respect to ξ as the function δξM : I→ Z by setting

δξM(I) :=
∑

S⊆Cov(I)

(−1)|S| cξM
(∨

S
)

for all I ∈ I. By Theorem 3.16, this can be rewritten as

δξM := cξMµ.

Remark 3.19. Note that in Definition 3.18, M is not necessarily interval de-
composable anymore. If M is interval decomposable, it is clear that δξM =
dM(V(·)) as functions on I by Corollary 3.17.

Proposition 3.20. Let M ∈ modA. For all I ∈ I, we have

cξM(I) =
∑
I≤J∈I

δξM(J),

that is to say
cξM = δξMζ.

Proof. This is a direct consequence of Theorem 2.12. □
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Remark 3.21. Proposition 3.20 gives an alternative definition of the signed
interval multiplicity δξM without using Möbius Inversion Formula. Indeed, it is
possible to define δξM by induction in the following way: first, define δξM(I) :=

cξM(I) for every maximal interval I. Then define inductively δξM(I) := cξM(I)−∑
I<J δ

ξ
M(J).

4. Interval replacement and interval rank invariant

Noting that for each I ∈ I, δξM(I) can be defined even for modules M that
are not necessarily interval decomposable, we introduce the following.

4.1. Interval replacement.

Definition 4.1. Let M ∈ modA. We set

δξ(M)+ :=
⊕
I∈I

δξM (I)>0

VI
δξM (I), δξ(M)− :=

⊕
I∈I

δξM (I)<0

VI
(−δξM (I)), and

δξ(M) :=
[[
δξ(M)+

]]
−
[[
δξ(M)−

]]
,

where [[X]] is the element of the split Grothendieck group K⊕(A) of A cor-
responding to a module X. We call δξ(M) the interval replacement of M ,
δξ(M)+, δ

ξ(M)− the positive part and the negative part of δξ(M), respectively.
Note that δξ(M) is not a module, just an element of the split Grothendieck
group, while both δξ(M)+ and δξ(M)− are interval decomposable modules, and
that δξ(M) can be presented by the pair of these interval decomposable modules.

Definition 4.2. Let M ∈ modA and [x, y] ∈ Seg(P). Then we have a unique
morphism py,x : x→ y in P (see Definition 2.2), and M yields a linear map

My,x :=M(py,x) : M(x)→M(y).

Using this we set rank[x,y]M := rankMy,x. This is call the [x, y]-rank of M .
Then the family rankSeg(P)M := (rank[x,y]M)[x,y]∈Seg(P) is just the so-called rank
invariant of M .

Definition 4.3. For each [x, y] ∈ Seg(P), we define the [x, y]-rank of δξ(M) to
be

rank[x,y] δ
ξ(M) := rank[x,y] δ

ξ(M)+ − rank[x,y] δ
ξ(M)−

and the dimension vector of δξ(M) to be

dim δξ(M) := dim δξ(M)+ − dim δξ(M)−

Then by Definition 4.1, we have

rank[x,y] δ
ξ(M) =

∑
I∈I

δξM(I) · rank[x,y] VI , and

dim δξ(M) =
∑
I∈I

δξM(I) · dim(VI).

Notation 4.4. Let I ∈ I, M ∈ mod k[I], and x, y ∈ I.
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(1) We set Px := k[I](x, -) (resp. P ′
x := k[Iop](x, -)) to be the projective

indecomposable k[I]-module (resp. k[Iop]-module) corresponding to the
vertex x, and Ix := D(k[I](-, x)) (resp. I ′x := D(k[Iop](-, x))) to be the
injective indecomposable k[I]-module (resp. k[Iop]-module) correspond-
ing to the vertex x, where D denotes the usual k-duality Homk(-, k).

(2) By the Yoneda lemma, we have an isomorphism

M(x)→ Homk[I](Px,M), m 7→ ρm (m ∈M(x)),

where ρm : Px →M is defined by ρm(p) :=M(p)(m) (= p ·m), the right
multiplication by m.

(3) Since py,x ∈ k[I](x, y) = Px(y), we can set Py,x := ρpy,x : Py → Px.
Similarly, we set popx,y := py,x ∈ Pop(y, x) = P(x, y) for all (x, y) ∈ [≤]P.
It induces a morphism P ′

x,y := ρpopx,y : P
′
x → P ′

y in mod k[Iop].

Notation 4.5. For each positive integer n, we set [n] := {1, 2, . . . , n}.

For each I ∈ I and any C,M ∈ mod k[I], the following lemma makes it
possible to compute the dimension of Homk[I](C,M) by using a projective pre-
sentation of C and the module structure of M . Later we apply this to the case
where M is given in the form M = R(L) for some L ∈ modA. Note in that
case that M(p) = L(p) for all paths p inside I and all p ∈ I0.

Lemma 4.6. Let I ∈ I and C,M ∈ mod k[I]. Assume that C has a projective
presentation

n⊕
j=1

Pyj
µ−→

m⊕
i=1

Pxi
ε−→ C → 0

for some x1, x2 . . . , xm, y1, y2, . . . , yn ∈ I, and µ := [ajiPyj ,xi ](i,j)∈[m]×[n] with
aij ∈ k, ((i, j) ∈ [m]× [n]). Then we have

dimHomk[I](C,M) =
m∑
i=1

dimM(xi)− rank t
(
[ajiMyj ,xi ](i,j)∈[m]×[n]

)
.

Proof. Set Y :=
⊕n

j=1 Pyj , X :=
⊕m

i=1 Pxi for short. Then we have an exact
sequnce Y µ−→ X

ε−→ C → 0, which yields an exact sequence

0→ Homk[I](C,M)→ Homk[I](X,M)
Homk[I](µ,M)
−−−−−−−−→ Homk[I](Y,M).
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Hence Homk[I](C,M) ∼= KerHomk[I](µ,M). Now we have

KerHomk[I](µ,M) = {f ∈ Homk[I](X,M) | fµ = 0}

∼=

{
(f1, . . . , fm) ∈

m⊕
i=1

Homk[I](Pxi ,M)

∣∣∣∣∣ (f1, . . . , fm)[ajiPyj ,xi ](i,j) = 0

}

=

{
(f1, . . . , fm) ∈

m⊕
i=1

Homk[I](Pxi ,M)

∣∣∣∣∣
(

m∑
i=1

ajifiPyj ,xi

)
j∈[n]

= 0


∼=

{[ b1
...
bm

]
∈

m⊕
i=1

M(xi)

∣∣∣∣∣
(

m∑
i=1

ajiMyj ,xi(bi)

)
j∈[n]

= 0


=

{[ b1
...
bm

]
∈

m⊕
i=1

M(xi)

∣∣∣∣∣ t ([ajiMyj ,xi ](i,j)
) [ b1

...
bm

]
= 0

}

= Ker( t
(
[ajiMyj ,xi ](i,j)

)
:

m⊕
i=1

M(xi)→
n⊕
j=1

M(yj)).

Hence dimHomk[I](C,M) =
∑m

i=1 dimM(xi)− rank t
(
[ajiMyj ,xi ](i,j)

)
. □

Proposition 4.7. Let M ∈ modA and [x, y] ∈ Seg(P). Then we have

cξM([x, y]) = rank[x,y]M.

In particular, cξM([x, y]) does not depend on ξ.

Proof. For simplicity, we put I := [x, y]. We use Notation 3.7. Then we have

cξM(I) = dRI(M)(RI(VI)) = dR′(R(M))(R
′(R(VI))) = dR′(R(M))(R

′(VI))

because R(VI) = VI . Note that as a k[I]-module, we have

VI ∼= Px ∼= Iy.

We first compute dR(M)(VI). By applying the formula given in [4] to VI = Iy,
we have

dR(M)(VI) = dimHomk[I](Iy, R(M))− dimHomk[I](Iy/ soc Iy, R(M)). (4.4)

Here, the first term is given by

dimHomk[I](Iy, R(M)) = dimHomk[I](Px, R(M)) = dimR(M)(x) = dimM(x).

For the second term, consider the canonical short exact sequence

0→ soc Iy
µ−→ Iy

ε−→ Iy/ soc Iy → 0

in mod k[I]. Since Iy ∼= Px and soc Iy = kpy,x ∼= Py, we see that this turns out
to be a projective presentation of Iy/ soc Iy, where µ is given by Py,x:

0→ Py
Py,x−−→ Px

ε−→ Iy/ soc Iy → 0.
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Hence by Lemma 4.6, we see that the second term of (4.4) is given by

dimHomA(Iy/ soc Iy, R(M)) = dimM(x)− rankMy,x = dimM(x)− rankIM.

Therefore, we have

dR(M)(VI) = dimM(x)− (dimM(x)− rankIM)

= rankIM.

This means that R(M) has a decomposition of the form R(M) ∼= V
(rankI M)
I ⊕N

for some N ∈ mod k[I]. Then R′(R(M)) ∼= R′(VI)
(rankI M)⊕R′(N), which shows

that cξM(I) = dR′(R(M))(R
′(VI)) ≥ rankIM .

Next, we show the converse inequality. Set c := cξM(I) = dRI(M)(RI(VI)).
Then we have an isomorphism

RI(M) ∼= RI(VI)
c ⊕N ′ in modBI . (4.5)

By assumption on ξI , we have x, y ∈ ξI((QI)0), and there exists a path q in QI

with FI(q) = py,x. Then from (4.5), we have RI(M)(q) ∼= RI(VI)(q)
c ⊕ N ′(q)

and hence
rankIM = rankM(py,x) = rankM(FI(q))

= rankRI(M)(q) ≥ c · rankRI(VI)(q) = c

because rankRI(VI)(q) = rank VI(py,x) = 1. Thus, rankIM ≥ cξM(I). □

The following is an immediate consequence of the proposition above.

Corollary 4.8. Let M ∈ modA and I = [x, y] ∈ Seg(P). If R(M) ∈ mod k[I]
is indecomposable and not isomorphic to VI , then M(py,x) = 0.

Proof. Here we take the total compression system tot in Example 3.3. Then by
assumption, we have ctotM (I) = 0. Hence by the proposition above, we obtain
rankM(py,x) = rankIM = 0, which shows the assertion. □

Example 4.9. For each positive integer n, we denote by An the set {1, 2, . . . , n}
with the usual linear order i < i+1 (i = 1, 2, . . . , n−1), and for each poset P1, P2,
we regard the direct product P1×P2 as the poset with the partial order defined
by (x, y) ≤ (x′, y′) if and only if x ≤ x′ and y ≤ y′ for all (x, y), (x′, y′) ∈ P1×P2.
We set Gm,n := Am×An, and call it a 2D-grid. For example, P := G5,2 has the
following Hasse quiver:

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

.

For I := P, it is known that there exists an indecomposable k[I]-moduleM with
dimension vector [ 2 3 3 2 1

1 2 3 3 2 ]. Then since M 6∼= VI , we have to have M(p) = 0 for
any path p from (1, 1) to (5, 2) by the corollary above.
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Indeed, it is not hard to check that the following module M is indecomposable
with this dimension vector (thus this dimension vector is realized as this M):

k2 k3 k3 k2 k

k k2 k3 k3 k2

[ 01 ]
[
1 0
0 1
0 −1

]
1l [ 1 0 0

0 0 1 ]

[
1 1
−1 0
0 −1

]
1l [ 1 0 0

0 1 0 ] [ 1 0 ]

[−1
1 ]

[
1 0
0 1
0 −1

]
1l [ 1 0 0

0 1 0 ] [ 1 0 ] .

It is certain that M satisfies the condition M(p) = 0 stated above. We note
that this M is obtained as the Auslander–Reiten translation τMλ of the inde-
composable module Mλ with λ = 1 in Example 6.2.

4.2. Interval rank invariant. Proposition 4.7 suggests us to define the fol-
lowing.

Definition 4.10. Let M ∈ modA and I ∈ I. Then we set

rankξIM := cξM(I),

and call it the I-rank of M with respect to ξ, and the family rankξI M :=

(rankξIM)I∈I is called the interval rank invariant of M with respect to ξ. Note
that since for each J ∈ I, rankξI VJ does not depend on ξ by Proposition 3.12, we
see that for every interval decomposable module N , rankξI N does not depend
on ξ, and hence we may write it rankI N .

For each I ∈ I, we define the I-rank of δξ(M) with respect to ξ to be

rankξI δ
ξ(M) := rankξI δ

ξ(M)+ − rankξI δ
ξ(M)−

(= rankI δ
ξ(M)+ − rankI δ(M)ξ−).

Note that rankξI δ
ξ(M) may depend on ξ because δξ(M)± depend on ξ. Thus

by Definition 4.1, we have

rankξI δ
ξ(M) =

∑
J∈I

δξM(J) · rankI VJ .

Using the notations given above, we obtain the following.

Theorem 4.11. Let M ∈ modA, and I ∈ I. Then

rankξI δ
ξ(M) = rankξIM.

In particular, for any [x, y] ∈ Seg(P), we have

rankξ[x,y] δ
ξ(M) = rank[x,y]M,

dim δξ(M) = dimM.

Thus, δξ preserves the interval rank invariants of all persistence modules M .
In this sense, we called δξ(M) an interval replacement of M .
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Proof. It is enough to show the first equality because the second (resp. third)
one follows by considering the case that I = [x, y] (resp. the cases that [x, x]
for all x ∈ P). By Definition 4.10, to show the first one, it suffices to show the
following: ∑

J∈I

δξM(J) · rankI VJ = rankξIM.

Let I, J ∈ I. Then by Proposition 3.12, we have

rankI VJ = cξVJ (I) =

{
1 if I ≤ J,

0 otherwise.

Therefore, ∑
J∈I

δξM(J) · rankI VJ =
∑
I≤J∈I

δξM(J) = cξM(I) = rankξIM,

where the second equality follows by Proposition 3.20, and the last one by
definition. □

5. The formula of total I-rank

Definition 5.1. Let I ∈ I. I is said to be of (n,m)-type if | sc(I)| = n and
| sk(I)| = m (n,m ∈ N+). If this is the case, we set sc(I) = {a1, . . . , an} and
sk(I) = {b1, . . . , bm} for I ∈ I in the sequel.

Definition 5.2. Let I ∈ I. I is said to satisfy the existence condition of pairwise
joins in sc(I) (resp. meets in sk(I)) if ai ∨ aj (resp. bi ∧ bj) exists in P for every
i 6= j. To shorten notation, we set aij := ai ∨ aj (resp. bij := bi ∧ bj) whenever
the join (resp. meet) exists subsequently.

Notation 5.3. Let I be an interval in I of (n,m)-type satisfying the existence
condition of pairwise joins in sc(I) and pairwise meets in sk(I).

(1) We set
sc1(I) := {ai1i2 | i1, i2 ∈ [n] with i1 < i2},
sk1(I) := {bi1i2 | i1, i2 ∈ [m] with i1 < i2}.

Furthermore, we equip sc1(I) with another total order �lex, defined
by ai1i2 �lex aj1j2 if and only if their index words satisfy the relation
i1i2 ≤lex j1j2. Here ≤lex denotes the lexicographic order from left to
right. Similarly, we give the total order to sk1(I).

(2) Let us denote ↓Ix := {y ∈ I | y ≤ x} for x ∈ I.
(3) For each X ⊆ P, we set PX :=

⊕
x∈X Px and P ′

X :=
⊕

x∈X P
′
x.

Proposition 5.4. Let M ∈ modA, and I be an interval in I of (n,m)-type
with n ≥ 2, sc(I) = {a1, . . . , an}. Assume I satisfies the existence condition
of pairwise joins of sc(I). Then we have the following projective presentation
(may not be minimal) of VI in mod k[I]:

Psc1(I)
ε1−→ Psc(I)

ε0−→ VI → 0, (5.6)
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where ε0, ε1 are given by

ε0 := (ρ1a1 , ρ1a2 , . . . , ρ1an ),

where we set 1u := 1 ∈ k = VI(u) for all u ∈ I, and

ε1 :=

12 · · · 1n 23 · · · 2n · · · n-1,n



1 Pa12,a1 · · · Pa1n,a1 0 · · · 0 · · · 0
2 −Pa12,a2 · · · 0 Pa23,a2 · · · Pa2n,a2 · · · 0
3 0 · · · 0 −Pa23,a3 · · · 0 · · · 0
...

...
...

...
...

...
n-1 0 · · · 0 0 · · · 0 · · · Pan−1,n,an−1

n 0 · · · −Pa1n,an 0 · · · −Pa2n,an · · · −Pan−1,n,an

.

Proof. We verify the exactness of the sequence (5.6) in the following steps:
(a) showing that ε0 is surjective; (b) showing that ε0ε1 = 0; (c) showing that

dim Im ε1 ≥ dimKer ε0.
(a) This holds by VI = A1a1 + A1a2 + · · ·+ A1an = Im ε0.
(b) It suffices to show the following composition

Pai1i2
ε′1−→
⊕
i∈[n]

Pai
ε0−→ VI (5.7)

is zero for every i1, i2 ∈ [n] with i1 < i2, where

ε′1 :=

i1i2



1 0
...

...
i1 Pai1i2 ,ai1
...

...
i2 −Pai1i2 ,ai2
...

...
n 0

.

Let ai1i2 ≤ t ∈ I. Then

(ε0ε
′
1)(pt,ai1i2 ) = (ρ1ai1

Pai1i2 ,ai1 )(pt,ai1i2 )− (ρ1ai2
Pai1i2 ,ai2 )(pt,ai1i2 )

= VI(pt,ai1 )(1ai1 )− VI(pt,ai2 )(1ai2 ) = 1t − 1t = 0.

(c) It suffices to show dim Im (ε1)x ≥ dimKer (ε0)x for each x ∈ I. Fix x ∈ I,
and set sc(I) ∩ ↓Ix = {ai1 , . . . , aiℓ} (` ∈ Z≥1). By Notation 5.3, Psc(I)(x) =⊕

j∈[ℓ] kpx,aij , and Psc1(I)(x) =
⊕

a∈sc1(I) kpx,a.
If ` = 1, then Psc1(I)(x) = 0, and hence (5.6) becomes

0→ kpx,ai1
α−→ k→ 0,
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where α is an isomorphism defined by α(px,ai1 ) := 1k. The claim follows since
Im (ε1)x = 0 = Ker (ε0)x.

If ` ≥ 2, then sc1(I) ∩ ↓Ix = {aijik | j, k ∈ [`] with ij < ik}. Hence

Psc1(I)(x) =
⊕
j,k∈[ℓ]
ij<ik

kpx,aij ik .

Then (5.6) becomes the first row of the commutative diagram⊕
j,k∈[ℓ]
ij<ik

kpx,aij ik
⊕

j∈[ℓ] kpx,aij k 0

k(
ℓ
2) kℓ k

(ε1)x (ε0)x

ε1(x) ε0(x)

α β
,

where α =
⊕

a αa (resp. β =
⊕

j∈[ℓ] βj) is the isomorphism defined by αa(1k) :=
px,a (resp. βj(1k) := px,aij ) for all a ∈ {aij ,ik | j, k ∈ [`], ij < ik} (resp. j ∈ [`]),
the matrix ε1(x) is given by

i1i2 i1i3 · · · i1iℓ i2i3 · · · i2iℓ · · · iℓ−1iℓ



i1 1 1 · · · 1 0 · · · 0 · · · 0
i2 −1 0 · · · 0 1 · · · 1 · · · 0
i3 0 −1 · · · 0 −1 · · · 0 · · · 0
...

...
...

...
...

...
...

iℓ−1 0 0 · · · 0 0 · · · 0 · · · 1
iℓ 0 0 · · · −1 0 · · · −1 · · · −1

(5.8)

and the matrix ε0(x) is given by (1, 1, · · · , 1︸ ︷︷ ︸
ℓ

). The commutativity of the left

square follows from the fact that Pa,b(px,a) = px,b for all (b, a) ∈ [≤]I . The
remaining commutativity is trivial. It is clear that rank ε0(x) = 1. For the
matrix ε1(x), note that the last ` − 1 rows are linearly independent, and that
the sum of all rows is a zero row vector. This shows that rank ε1(x) = ` −
1. Thus dim Im ε1(x) = ` − 1 = dimKer ε0(x), and hence dim Im (ε1)x =
dimKer (ε0)x. □

For each I ∈ I, we have DVI ∼= VIop in mod k[Iop]. Hence Lemma 5.4 shows
the following.

Proposition 5.5. Let M ∈ modA, and I be an interval in I of (n,m)-type with
m ≥ 2, sk(I) = {b1, . . . , bm}. Assume that I satisfies the existence condition
of pairwise meets in sk(I). Then we have the following projective presentation
(may not be minimal) of DVI in mod k[Iop]:

P ′
sk1(I)

ε′1−→ P ′
sk(I)

ε′0−→ DVI → 0, (5.9)



26 HIDETO ASASHIBA, ETIENNE GAUTHIER AND ENHAO LIU

where ε′0, ε′1 are given by

ε′0 := (ρ1b1 , ρ1b2 , · · · , ρ1bm ),
where 1u := 1 ∈ k = VI(u) for all u ∈ I, and

ε′1 :=

12 · · · 1m 23 · · · 2m · · · m-1,m



1 P ′
b12,b1

· · · P ′
b1m,b1

0 · · · 0 · · · 0
2 −P ′

b12,b2
· · · 0 P ′

b23,b2
· · · P ′

b2m,b2
· · · 0

3 0 · · · 0 −P ′
b23,b3

· · · 0 · · · 0
...

...
...

...
...

...
m-1 0 · · · 0 0 · · · 0 · · · P ′

bm−1,m,bm−1

m 0 · · · −P ′
bm,b1m

0 · · · −P ′
b2m,bm

· · · −P ′
bm−1,m,bm

.

We note here that ε′0 is a projective cover of DVI because it induces an isomor-
phism topP ′

sk(I)
∼= topDVI , but ε′1 : P ′

sk1(I)
→ Im ε′1 is not always a projective

cover. Then we can set
P ′
sk1(I)

= P1 ⊕ P2 (5.10)
with ε′11 : P1 → Im ε′1 a projective cover, where ε′1 = (ε′11, ε

′
12) is a matrix expres-

sion of ε′1 with respect to this decomposition of P ′
sk1(I)

. Then DVI has a minimal
projective resolution

P1

ε′11−→ P ′
sk(I)

ε′0−→ DVI → 0. (5.11)
Hence by applying (-)t := Homk[Iop](-, k[Iop]) to ε′11 in (5.11), we have a minimal
projective presentation

Psk(I)

ε′11
t

−−→ P t
1

coker ε′11
t

−−−−−→ τ−1VI → 0, (5.12)

of τ−1VI = TrDVI in mod k[I] and a projective presentation

Psk(I)

ε′1
t=

ε′11t
ε′12

t


−−−−−−−→ P t

1 ⊕ P t
2 = Psk1(I)

coker ε′11
t⊕1l

Pt
2−−−−−−−−→ τ−1VI ⊕ P t

2 → 0, (5.13)

of τ−1VI ⊕ P t
2, where

ε′1
t
=

1 2 3 · · · m-1 m



12 Pb1,b12 −Pb2,b12 0 · · · 0 0
13 Pb1,b13 0 −Pb3,b13 · · · 0 0
...

...
...

...
...

...
1m Pb1,b1m 0 0 · · · 0 −Pbm,b1m
23 0 Pb23,b2 −Pb23,b3 · · · 0 0
...

...
...

...
...

...
2m 0 Pb2,b2m 0 · · · 0 −Pbm,b2m
...

...
...

...
...

...
m-1,m 0 0 0 · · · Pbm−1,bm−1,m −Pbm,bm−1,m
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□
5.1. (n, 1)-type. We first consider the case where I is an interval of (n, 1)-
type. In this case, we simply write sk(I) = {b}. The following is immediate
from Lemma 3.10.

Lemma 5.6. Let I be an interval in I of (n, 1)-type. Then b is the maximum
element and a1, . . . , an are minimal elements in I. Moreover, for each x ∈ I,
there exists ai ∈ sc(I) such that ai ≤ x ≤ b. □
Theorem 5.7. Let M ∈ modA, and I be an interval in I of (n, 1)-type with
n ≥ 2, sc(I) = {a1, . . . , an} and sk(I) = {b}. Assume I satisfies the existence
condition of pairwise joins of sc(I). Then using Notation 3.7, we have

dR(M)(VI) = rank

[
M
β

]
− rankM, (5.14)

where

M =

1 2 3 · · · n-1 n



12 Ma12,a1 −Ma12,a2 0 · · · 0 0
13 Ma13,a1 0 −Ma13,a3 · · · 0 0
...

...
...

...
...

...
1n Ma1n,a1 0 0 · · · 0 −Ma1n,an

23 0 Ma23,a2 −Ma23,a3 · · · 0 0
...

...
...

...
...

...
2n 0 Ma2n,a2 0 · · · 0 −Ma2n,an

...
...

...
...

...
...

n-1,n 0 0 0 · · · Man−1,n,an−1 −Man−1,n,an

and
β =

[
Mb,a1 0 0 · · · 0 0︸ ︷︷ ︸

n−1

]
.

Here and subsequently, the matrices are written following the lexicographic order
(see Notation 5.3 (1)) of index words of rows (resp. columns).

Proof. (1) Since I has a unique sink b, VI is isomorphic to an injective inde-
composable k[I]-module Ib := D(Homk[I](-, b)). Then again by applying the
formula in [4] to VI , we have

dR(M)(VI) = dimHomk[I](VI , R(M))− dimHomk[I](VI/ socVI , R(M)). (5.15)

A projective presentation of VI in mod k[I] is given by (5.6) in Proposition 5.4.
Hence by Lemma 4.6, we have

dimHomk[I](VI , R(M)) =
∑
i∈[n]

dimM(ai)− rankM. (5.16)

Next, we start with the following diagram:
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Psc1(I) Psc(I) VI 0

Ker ε0

ε1 ε0

ι0τ1

Note that socVI ∼= Pb is projective and ε0 : Psc(I) → VI is epic, which yields a
morphism λ : Pb → Psc(I), defined by

λ :=


Pb,a1
0
...
0

 ,
such that Im(ε0 ◦ λ) = socVI . We have the following projective presentation
(may not be minimal) of VI/ socVI in mod k[I]:

Psc1(I) ⊕ Pb
ε′1−→ Psc(I)

ε′0−→ VI/ socVI → 0, (5.17)

where ε′1, ε′0 is given by

ε′1 :=
[
ε1 λ

]
, ε′0 := π ◦ ε0.

In the above, π : VI → VI/ socVI is the canonical projection. Here, we verify
the exactness of the sequence (5.17) by using the following diagram:

Psc1(I) ⊕ Pb Psc(I) VI/ socVI 0

Ker ε0 ⊕ Pb

ε′1 ε′0

ι′0τ ′1

and proceed in the following steps:
(a) showing that 0→ Ker ε0 ⊕ Pb

ι′0−→ Psc(I)

ε′0−→ VI/ socVI → 0 is exact, where
ι′0 :=

[
ι0 λ

]
; (b) defining an epimorphism τ ′1 : Psc1(I) ⊕ Pb → Ker ε0 ⊕ Pb; (c)

showing that ε′1 factors through Ker ε0 ⊕ Pb.
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(a) We consider the following commutative diagram:

0 0 Ker ι′0 0

0 Ker ε0 Ker ε0 ⊕ Pb Pb 0

0 Ker ε0 Psc(I) VI 0

0 Coker ι′0 VI/ socVI 0

[ 10 ] (0,1)

ι0 ε0

ε0

ι′0 ε0◦λ
λ

coker ι′0 π

By applying the snake lemma to the second and third rows of short exact
sequences, we obtain that Ker ι′0 = 0 and ε0 : Coker ι′0 → VI/ socVI is an
isomorphism. Notice that ε0 ◦ coker ι′0 = π ◦ ε0 = ε′0, it then follows that

0→ Ker ε0 ⊕ Pb
ι′0−→ Psc(I)

ε′0−→ VI/ socVI → 0 is exact.

(b) Set τ ′1 :=
[
τ1 0
0 1l

]
. τ ′1 is surjective since τ1 is.

(c) This is obvious since

ι′0 ◦ τ ′1 =
[
ι0 λ

] [τ1 0
0 1l

]
=
[
ι0τ1 λ

]
=
[
ε1 λ

]
= ε′1.

By Lemma 4.6, we have

dimHomk[I](VI/ socVI , R(M)) =
∑
i∈[n]

dimM(ai)− rank

[
M
β

]
. (5.18)

By equations (5.15), (5.16), (5.18) and Definition 5.21, we obtain (5.14).
□

Remark 5.8. The result in (5.14) is quite redundant because the projective
presentations (5.6) and (5.17) are not minimal in general if there are order
relations between pairwise joins in I. We provide the following lemma and
corollary to explain this redundancy.

In (5.14), let i, j ∈ [n] with i 6= j. For the next lemma, we note by definition
that aij = aji. Hence even if i > j, we may say ij row of M to mean the ji row
of M. This convention allows us to consider the ij row of M without noticing
the order relation between i and j.

Lemma 5.9. We keep the setting of Theorem 5.7. Let i, j, k ∈ [n] be pairwise
distinct. For any distinct subsets S and T of {i, j, k} of cardinality 2, the
intersection S ∩ T has cardinality 1. We may set S := {i, j} and T := {i, k}
with S∩T = {i}. Keeping this in mind, consider aij and aik. Then the following
are equivalent:

(1) aij ≤ aik;
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(2) aj ≤ aik; and
(3) ai, aj, ak ≤ aik.

If one of the above holds, then the equation (5.14) remains valid even if we
replace M with the matrix obtained by deleting the ik row of M.

Proof. The equivalence of the three statements is trivial. Now assume that one
of them holds. Then all of them hold. By (3), we have ajk ≤ aik. Thus there
exist paths paik,aij and paik,ajk . The following row operations on M can be done

keeping the ranks of both M and
[
M
β

]
(to understand these operations easily,

look at the M in Theorem 5.7 for (i, j, k) = (1, 2, 3)):
• To the ik row, add the row obtained from the ij row by the left multi-

plication with −Maik,aij .
• To the ik row, add the row obtained from the jk row by the left multi-

plication with −Maik,ajk .
By these operations, the ik row of M becomes zero, and we can delete the ik
row without changing the value of the right-hand side of (5.14). □

The next result for 2D-grid (see Example 4.9) can be immediately obtained
from Lemma 5.9.

Corollary 5.10 (Specialization to 2D-grids for (n, 1)-type). Let P be a 2D-
grid, I ∈ I, and M ∈ modA. Without loss of generality, we assume that the
first coordinate (i.e., the x-coordinate in Example 4.9) of ai is strictly less than
that of ai+1 (i ∈ [n− 1]). Then using Notation 3.7, we have

dR(M)(VI) = rank

[
M
β

]
− rankM, (5.19)

where

M =

1 2 3 · · · n-1 n


12 Ma12,a1 −Ma12,a2 0 · · · 0 0
23 0 Ma23,a2 −Ma23,a3 · · · 0 0
...

...
...

...
...

...
n-2,n-1 0 0 0 · · · −Man−2,n−1,an−1 0
n-1,n 0 0 0 · · · Man−1,n,an−1 −Man−1,n,an

and
β =

[
Mb,a1 0 0 · · · 0 0︸ ︷︷ ︸

n−1

]
.

Remark 5.11. As a suggestion for further generalization, we could discard
the existence condition of pairwise joins in sc(I) and generalize the results by
changing Psc1(I) in the projective presentation (5.6) to be the direct sum of all
projective indecomposables at minimal elements of the upper bounds for each
pair in sc(I).
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Example 5.12. Let P := G5,2 as in Example 4.9, and I be the interval with
sc(I) := {(1, 2), (2, 1)} and sk(I) := {(3, 2)}. Then ssI does not essentially
cover I. If we take QI := H({(1, 2), (2, 2), (3, 2), (2, 1)}), the Hasse quiver of
the full subposet {(1, 2), (2, 2), (3, 2), (2, 1)} of I, and take ξI : QI → U(A) to
be the inclusion, then ξI essentially covers I.

5.2. (1, n)-type. To compute the Iop-rank of a module M in modA using the
I-rank of M , we use the usual k-duality D := Homk(-, k) : mod k→ mod k. We
need the following three lemmas for this purpose. Here we denote by Rop the
restriction functor mod k[Pop] → mod k[Iop] defined by the inclusion functor
k[Iop]→ k[Pop].

Lemma 5.13. Let M ∈ modA and I ∈ I. Then we have

dRop(DM)(R
op(VIop)) = dR(M)(R(VI)).

Proof. Denote the k-duality mod k[I] → mod k[Iop] by the same symbol D.
Then it is easy to see that the following is a strict commutative diagram of
functors and contravariant functors:

mod k[P] mod k[Pop]

mod k[I] mod k[Iop]

D

D

R Rop .

Set c := dR(M)(R(VI)). Then we have R(M) ∼= R(VI)
c ⊕ N for some N ∈

mod k[I] having no direct summand isomorphic to R(VI). By sending this
isomorphism by D, we obtain

(D ◦R)(M) ∼= (D ◦R)(VI)c ⊕DN,
Rop(DM) ∼= Rop(DVI)

c ⊕DN,
where DN does not have direct summand isomorphic to D(R(VI)) ∼= Rop(DVI).
Hence by noting that DVI ∼= VIop ∼= Rop(VIop), we have the conclusion that
dRop(DM)(R

op(VIop)) = c = dR(M)(R(VI)). □
Lemma 5.14. Let f : V → W be a linear map in mod k. Then rankD(f) =
rank f .

Proof. The linear map f is expressed as the composite f = f1 ◦ f2 for some
epimorphism f2 : V → Im f and some monomorphism f1 : Im f → W . Then
D(f) is expressed as D(f) = D(f2) ◦ D(f1), where D(f1) : D(W ) → D(Im f)
is an epimorphism and D(f2) : D(Im f) → D(V ) is a monomorphism. Hence
we have ImD(f) ∼= D(Im f). Then the assertion follows from dim Im f =
dimD(Im f) = dim ImD(f). □
Lemma 5.15. Let f : V → W be in mod k and V =

⊕
i∈I Vi, W =

⊕
j∈JWj

direct sum decompositions. If f = [fj,i](j,i)∈J×I with fji : Vi → Wj is a matrix
expression of f with respect to these direct sum decompositions, then D(f) has
a matrix expression D(f) = [D(fj,i)](i,j)∈I×J with D(fj,i) : D(Wj)→ D(Vi) with
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respect to the direct sum decompositions D(V ) ∼=
⊕

i∈I D(Vi) and D(W ) ∼=⊕
j∈J D(Wj). Hence by Lemma 5.14, we have

rank [D(fj,i)](i,j)∈I×J = rank [fj,i](j,i)∈J×I = rank t[fi,j](i,j)∈I×J ,

where t(-) denotes the blockwise transpose.

Proof. Let (σVi : Vi → V )i∈I be the family of canonical injections, and let
(πWj : W → Wj)j∈J be the family of canonical projections with respect to the
decompositions of V,W above, respectively. Then fj,i = πWj ◦ f ◦ σVi for all
i ∈ I, j ∈ J . Now (D(σVi ) : D(V )→ D(Vi))i∈I forms the family of the canonical
projections, and (D(πWj ) : D(Wj) → D(W ))j∈J the canonical injections with
respect to the decompositions D(V ) ∼=

⊕
i∈I D(Vi) and D(W ) ∼=

⊕
j∈J D(Wj),

respectively. Hence D(f) has the matrix expression D(f) = [D(f)i,j](i,j)∈I×J ,
where D(f)j,i = D(σVi ) ◦D(f) ◦D(πWj ) = D(πWj ◦ f ◦ σVi ) = D(fj,i). □

These Lemmas give a formula for the intervals of (1, n)-type with n ≥ 2 as
follows.

Theorem 5.16. Let M ∈ modA, and I be an interval in I of (1, n)-type with
n ≥ 2, sc(I) = {a} and sk(I) = {b1, . . . , bn}. Assume that I satisfies the
existence condition of pairwise meets of sk(I), and let bij := bi ∨ bj (in Pop) =
bi ∧ bj (in P) for all i, j. Then using Notation 3.7, we have

dR(M)(VI) = rank
[
γ N

]
− rankN, (5.20)

where N is given by the following:
12 13 · · · 1n 23 · · · 2n · · · n− 1, n



1 Mb1,b12 Mb1,b13 · · · Mbn,b1n 0 · · · 0 · · · 0
2 −Mb2,b12 0 · · · 0 Mb2,b23 · · · Mb2,b2n · · · 0
3 0 −Mb3,b13 · · · 0 −Mb3,b23 · · · 0 · · · 0

...
...

...
...

...
...

...
n− 1 0 0 · · · 0 0 · · · 0 · · · Mbn−1,bn−1,n

n 0 0 · · · −Mbn,b1n 0 · · · −Mbn,b2n · · · −Mbn,bn−1,n

and

γ =

 Mb1,a

0
...
0

n−1

 .
Proof. (1) By Lemma 5.13, we have dR(M)(R(VI)) = dRop(DM)(R

op(VIop)). Here,
it is obvious that Iop is of (n, 1)-type with sc(Iop) = {b1, . . . , bn} and sk(Iop) =
{a} and that Iop satisfies the existence condition of pairwise joins of sc(Iop).
Hence to compute dRop(DM)(R

op(VIop)), we can apply Proposition 5.7 to the
following setting: poset Pop, module DM , the interval Iop, the quiver Qop

I , and
the quiver morphism ξopI : Qop

I → U(Aop) that is defined by ξopI (x) := ξI(x)
for all x ∈ (Qop

I )0 = (QI)0 and ξopI (α) := ξI(α) : ξI(y) → ξI(x) for all arrows
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α : x→ y in QI . Then we have the following.

dRop(DM)(R
op(VIop)) = rank

[
M′

β′

]
− rankM′,

where

M′ =

1 2 3 · · · n-1 n



12 (DM)b12,b1 −(DM)b12,b2 0 · · · 0 0
13 (DM)b13,b1 0 −(DM)b13,b3 · · · 0 0

...
...

...
...

...
...

1n (DM)b1n,b1 0 0 · · · 0 −(DM)b1n,bn
23 0 (DM)b23,b2 −(DM)b23,b3 · · · 0 0

...
...

...
...

...
...

2n 0 (DM)b2n,b2 0 · · · 0 −(DM)b2n,bn
...

...
...

...
...

...
n-1,n 0 0 0 · · · (DM)bn−1,n,bn−1 −(DM)bn−1,n,bn

and
β′ =

[
(DM)a,b1 0 0 · · · 0 0︸ ︷︷ ︸

n−1

]
.

Now for any x, y ∈ Pop with x ≤op y in Pop, let popy,x be the unique morphism
in Pop(x, y). Then we have y ≤ x in P, and px,y = popy,x, which is the unique
morphism in P(y, x) = Pop(x, y). Hence we have

(DM)y,x = (DM)(popy,x) = (DM)(px,y) = D(M(px,y)) = D(Mx,y).

Then (5.20) follows by Lemma 5.15.
□

5.3. (n,m)-type with m,n ≥ 2. Finally, we give a formula of ranktotI M =
dR(M)(VI) for any interval I ∈ I of (n,m)-type with n,m ≥ 2.

Theorem 5.17. Let M ∈ modA and I ∈ I be of (n,m)-type with m,n ≥ 2.
Assume that I satisfies the existence conditions of pairwise joins in sc(I) and
meets in sk(I). Obviously, for each a ∈ sc(I), there exists some b ∈ sk(I) such
that a ≤ b. Hence we may assume that a1 ≤ b1 without loss of generality. Then
We have

dR(M)(VI) = rank

 M 0[
Mb1,a1 0
0 0

]
N

− rankM− rankN, (5.21)

where M,N are defined in Theorems 5.7 and 5.16.

Proof. Since m,n ≥ 2, note first that we can apply Propositions 5.4 and 5.5
and that VI is not injective by m ≥ 2. By the latter, there exists an almost
split sequence

0→ VI → E → τ−1VI → 0 (5.22)
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starting from VI . The value of dR(M)(VI) can be computed from the three terms
of this almost split sequence by using the formula of [4, Theorem 3] as follows:

dR(M)(VI) = dimHomk[I](VI , R(M))− dimHomk[I](E,R(M))

+ dimHomk[I](τ
−1VI , R(M))

= dimHomk[I](VI , R(M))− dimHomk[I](E ⊕ P t
2, R(M))

+ dimHomk[I](τ
−1VI ⊕ P t

2, R(M)),
(5.23)

where P2 is a direct summand of Psk1(I) as in (5.10). Hence the assertion follows
by the following proposition together with a projective presentation (5.6) of VI ,
a projective presentation (5.13) of τ−1VI ⊕ P t

2, and Lemma 4.6. □
Proposition 5.18. Let M ∈ modA and I ∈ I be of (n,m)-type with m,n ≥ 2,
E the middle term in (5.22), and P2 a direct summand of Psk1(I) as in (5.10).
Then the following is a projective presentation of E ⊕ P t

2:

Psc1(I) ⊕ Psk(I)
µE−→ Psc(I) ⊕ Psk1(I)

εE−→ E ⊕ P t
2 → 0,

where µE is given by

µE :=

ε1 [
Pb1,a1 0
0 0

]
0 ε′1

t

 .
Proof. By [15, Sect. 3.6], an almost split sequence (5.22) can be obtained as a
pushout of the sequence (5.12) along a morphism η : Psk(I) → VI as follows:

Psk(I) P t
1 τ−1VI 0

VI E τ−1VI 0

ε′11
t

η . (5.24)

Here, η is the composite of morphisms

Psk(I)
can.−−→ topPsk(I)

∼
→ soc νPsk(I)

∼
→ socVI

α−→ S ↪→ socVI ↪→ VI ,

where ν is the Nakayama functor ν := D ◦ Homk[I](-, k[I]), S is any simple
k[I]-Endk[I](VI)-subbimodule of socVI , and α is a retraction.

Here we claim that any simple k[I]-submodule of socVI is automatically a
simple k[I]-Endk[I](VI)-subbimodule of socVI . Indeed, this follows from the
fact that socVI =

⊕
i∈[m] V{bi}, where V{bi} are mutually non-isomorphic simple

k[I]-modules. More precisely, it is enough to show that f(S) ⊆ S for any f ∈
Endk[I](VI)

op because if this is shown, then S turns out to be a right Endk[I](VI)-
submodule and a simple k[I]-Endk[I](VI)-subbimodule of socVI . Let T be any
simple k[I]-submodule of socVI , then by the fact above T ∼= V{bi} for a unique
i ∈ [m], and hence prj(T ) = 0 for all j ∈ [m] \ {i}, where prj : socVI → V{bj} is
the canonical projection. Thus T ⊆ V{bi}, which shows that T = V{bi} because
the both hand sides are simple. Now there exists a unique i ∈ [m] such that
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S = V{bi}. If f = 0, then f(S) = 0 ⊆ S; otherwise f(S) ∼= S, and then
f(S) = V{bi} = S by the argument above. This proves our claim.

Therefore, we may take S := V{b1}, and

η := [ρ1b1 , 0, . . . , 0] : Psk(I) = Pb1 ⊕ · · · ⊕ Pbm → VI .

By assumption, a1 ≤ b1 in I. Hence we have a commutative diagram

Psc(I) = Pa1 ⊕ · · · ⊕ Pan

Psk(I) VI

ε0=(ρ1a1 ,ρ1a2 ,...,ρ1an )

η

η′:=

Pb1,a1
0

0 0



because for each p ∈ Pb1(= keb1), we have

ρ1a1 (Pb1,a1(p)) = ρ1a1 (p · pb1,a1) = VI(p · pb1,a1)(1a1) = VI(p)(1b1) = ρ1b1 (p).

The pushout diagram (5.24) yields the following exact sequences:

Psk(I)

 η
ε′11

t


−−−−→ VI ⊕ P t

1 → E → 0, and Psk(I)

 η
ε′1
t


−−−→ VI ⊕ P t

sk1(I)
π−→ E ⊕ P t

2 → 0.

The latter is extended to the following commutative diagram with the bottom
row exact:

Psc1(I) ⊕ Psk(I) Psc(I) ⊕ Psk1(I) E ⊕ P t
2 0

Psc1(I) ⊕ Psk(I) VI ⊕ Psk1(I) E ⊕ P t
2 0

µE :=

ε1 η′

0 ε′1
t


εE

0 η

0 ε′1
t

 π

ε0 0

0 1l

 ,

where we set εE := π ◦
[
ε0 0
0 1l

]
, which is an epimorphism as the composite of

epimorphisms.
It remains to show that εE is a cokernel morphism of µE. By the com-

mutativity of the diagram and the exactness of the bottom row, we see that
εEµE = 0. Let (f, g) : Psc(I) ⊕ Psk1(I) → X be a morphism with (f, g)µE = 0.
Then fε1 = 0. Since ε0 is a cokernel morphism of ε1, there exists some

f ′ : VI → X such that f = f ′ε0. Then we have (f, g) = (f ′, g)

[
ε0 0
0 1l

]
.

Now (f ′, g)

[
0 η
0 ε′1

t

]
= (f ′, g)

[
ε0 0
0 1l

]
µE = (f, g)µE = 0. Hence (f ′, g) fac-

tors through π, that is, (f ′, g) = hπ for some h : E → X. Therefore, we have
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(f, g) = hπ

[
ε0 0
0 1l

]
= h εE. The uniqueness of h follows from the fact that εE

is an epimorphism. As a consequence, εE is a cokernel morphism of µE. □
In particular, when (n,m) = (2, 2) we have the following.

Example 5.19. Let M ∈ modA and I ∈ I be of (2, 2)-type with sc(I) =
{a1, a2} and sk(I) = {b1, b2}. Assume that both x := a1 ∨ a2 and y := b1 ∧ b2
exist. Since sk(I) = {b1, b2}, we have a1 ≤ b1 or a1 ≤ b2, and hence we may
assume that a1 ≤ b1 without loss of generality. Then we have

dR(M)(VI) = rank

Mx,a1 −Mx,a2 0
Mb1,a1 0 Mb1,y

0 0 −Mb2,y

− rank
[
Mx,a1 ,−Mx,a2

]
− rank

[
Mb1,y

−Mb2,y

]

= rank

Mx,a1 Mx,a2 0
Mb1,a1 0 Mb1,y

0 0 Mb2,y

− rank
[
Mx,a1 ,Mx,a2

]
− rank

[
Mb1,y

Mb2,y

]
.

The formula in Theorem 5.17 itself covers all cases by using an empty matrix
convention, namely, it is valid even if m or n is equal to 1. We summarize the
result as follows.

Theorem 5.20. Let M ∈ modA, and I ∈ I be of (n,m)-type (m,n ≥ 1).
Assume that I satisfies the existence conditions of pairwise joins in sc(I) and
meets in sk(I). Obviously, for each a ∈ sc(I), there exists some b ∈ sk(I) such
that a ≤ b. Hence we may assume that a1 ≤ b1 without loss of generality. Then
we have

ranktotI M = rank

 M 0[
Mb1,a1 0
0 0

]
N

− rankM− rankN, (5.25)

where if m = 1 (resp. n = 1), then N (resp. M) is an empty matrix, and hence
the formula has the form in Theorems 5.7, 5.16, or Proposition 4.7.

5.4. Essential cover property.

Definition 5.21. Let I ∈ I. Then we say that ξI essentially covers I if there
exists a formula of dR(M)(VI) in terms of linear maps M(p) (p ∈ S) for some
subset S of morphisms in I such that for each p ∈ S, there exist a path q in QI

such that ξI(q) = p.
For example, if I = [x, y] is a segment of P, then always ξI essentially covers

I by our assumptions (2), (3) in Definition 3.1 and by the formula dR(M)(VI) =
rankMy,x given in Proposition 4.7.

Note that sometimes there exist several possibilities of the set S above, say
S1, . . . , St. Then ξI essentially covers I if for some i ∈ [t], for each p ∈ Si, there
exists a path q in QI such that ξI(q) = p.
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Remark 5.22. Let I ∈ I be of (n,m)-type (m,n ≥ 1) satisfying the existence
conditions of pairwise joins in sc(I) and meets in sk(I). Thanks to Theorem
5.20, we can explicitly state a sufficient condition for ξI to essentially cover I as
follows: there exist paths p+

ij,p
−
ij,p in QI (i, j ∈ [n] with i < j) and q+

ij,q
−
ij in

QI (i, j ∈ [m] with i < j) such that ξI(p+
ij) = paij ,ai , ξI(p

−
ij) = paij ,aj , ξI(q

+
ij) =

pbi,bij , ξI(q
−
ij) = pbj ,bij , and ξI(p) ∈ {pbj ,ai | ai ≤ bj for some i ∈ [n], j ∈ [m]}.

Example 5.23 (zz). Assume that each interval I ∈ I satisfies the existence
condition of pairwise joins in sc(I) and pairwise meets in sk(I). (For example,
this assumption is satisfied if P is a 2D-grid.) Let I ∈ I be of (n,m)-type
(m,n ≥ 1). Choose a pair (aI , bI) ∈ sc(I)× sk(I) such that aI ≤ bI in I. Define
a quiver Qzz

I as follows: (Qzz
I )0 := sc(I) ∪ sc1(I) ∪ sk(I) ∪ sk1(I), (Qzz

I )1 :=
{paij ,ai , paij ,aj | i, j ∈ [n], i < j} ∪ {pbi,bij , pbj ,bij | i, j ∈ [m], i < j} ∪ {pbI ,aI}.
For each py,x ∈ (Qzz

I )1, it is an arrow px → py. Let zzI : Q
zz
I → U(A) be the

inclusion quiver morphism. zz := (zzI)I∈I is a compression system for A, which
is called a zigzag compression system. By definition of zz and Theorem 5.20,
zzI essentially covers I for all zigzag zz and I ∈ I.

In the case where P is a 2D-grid, we slightly change the quiver Qzz
I for each

I ∈ I according to the formula in Corollary 5.10 as follows:
Without loss of generality, we may assume that the x-coordinate of ai (resp.

bi) is strictly less than that of ai+1 (i ∈ [n − 1]) (resp. bi+1 (i ∈ [m − 1])).
Then we choose aI := a1, bI := b1, and set (Qzz

I )0 := sc(I) ∪ {ai,i+1 | i ∈
[n− 1]} ∪ sk(I) ∪ {bi,i+1 | i ∈ [m− 1]}, and (Qzz

I )1 to be

{pai,i+1,ai , pai,i+1,ai+1
| i ∈ [n− 1]} ∪ {pbi,bi,i+1

, pbi+1,bi,i+1
| i ∈ [m− 1]} ∪ {pbI ,aI}.

Then this Qzz
I also essentially covers I, and is a Dynkin quiver of type A, which

coincides with the support quiver of the so-called boundary cap (a zigzag path)
defined in [11, Definition 3.7].

Lemma 5.24. Let B be a linear category, W a B-module, and m,n positive in-
tegers. For each matrix g = [gji](j,i)∈[n]×[m] with entries gji : xi → yj morphisms
in B, we set

W (g) := [W (gij)]j,i :
⊕
i∈[m]

W (xi)→
⊕
j∈[n]

W (yj)

to be the linear map expressed by this matrix. Assume that we have a direct
sum decomposition W ∼= W1 ⊕W2 of B-modules. Then we have an equivalence
W (g) ∼= W1(g)⊕W2(g) of linear maps. In particular, the equality

rankW (g) = rankW1(g) + rankW2(g)

holds.
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Proof. Let f : W → W1 ⊕W2 be an isomorphism of B-modules. Then for any
i ∈ [m], j ∈ [n], we have a commutative diagram

W (xi) W (yj)

W1(xi)⊕W2(xi) W1(yj)⊕W2(yj)

fxi fyj

W (gji)

W1(gji)⊕W2(gji)

with both fxi and fyj isomorphisms. This yields the commutative diagram⊕
i∈[m]

W (xi)
⊕
j∈[n]

W (yj)

⊕
i∈[m]

(W1(xi)⊕W2(xi))
⊕
j∈[n]

(W1(yj)⊕W2(yj))

(
⊕
i∈[m]

W1(xi)⊕ (
⊕
i∈[m]

W2(xi)) (
⊕
j∈[n]

W1(yj))⊕ (
⊕
j∈[n]

W2(yj))

⊕
i∈[m]

fxi

σx σy

⊕
j∈[n]

fyj

[W (gji)]j,i

=W (g)

[W1(gji)⊕W2(gji)]j,i

[W1(gji)]j,i⊕[W2(gji)]j,i

=W1(g)⊕W2(g)

,

where σx, σy are given by the permutation matrices corresponding to the per-
mutation σk (for k = m,n, respectively) of the set [2k] defined by

σk(i) :=

{
j (i = 2j − 1, ∃j ∈ [k])

k + j (j = 2j, ∃j ∈ [k])
for all i ∈ [2k],

the nonzero entries of which are the identity maps. Then since all vertical maps
above are isomorphisms, the assertion holds. □
Theorem 5.25. Let M ∈ modA, I ∈ I, and ξ a compression system for A. If
ξI essentially covers I, then we have

rankξIM = ranktotI M.

Proof. Let g = [gji]j,i be a matrix with entries morphisms in BI , and W a
BI-module. Then we set W (g) := [W (gij)]j,i. By C we denote the matrix[
Mb1,a1 0
0 0

]
in (5.25). Then (5.25) can be rewritten as

ranktotI M = rank

[
M 0
C N

]
− rank

[
M 0
0 N

]
. (5.26)

Now assume that ξI essentially covers I. Without loss of generality, we may
assume that a1 ≤ b1 and FI(g′) = pb1,a1 for some path g′ in QI . For any u, v ∈ I
with u ≤ v, and a path g in QI , if FI(g) = pv,u, then we have

Mv,u =M(pv,u) =M(FI(g)) = RI(M)(g).
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Define three matrices g1, g2, and g3 from M,N,C by replacing Mv,u with pv,u
(u, v ∈ I), respectively. Then by Definition 5.21, we have RI(M)(g1) = M,
RI(M)(g2) = N, and RI(M)(g3) = C.

Set r := dR(M)(VI), s := rankξIM = dRI(M)(R
′(VI)). Then it is enough to

show that r = s. The former means that we have R(M) ∼= V r
I ⊕ N for some

module N in mod k[I], which shows that RI(M) = R′(R(M)) ∼= R′(VI)
r ⊕

R′(N). Hence we have r ≤ s. On the other hand, by the latter we have an
isomorphism RI(M) ∼= RI(VI)

s ⊕ L for some module L in modBI . Then by
Lemma 5.24, we have the following equalities:

rank

[
RI(M)(g1) 0
RI(M)(g3) RI(M)(g2)

]
= s rank

[
RI(VI)(g1) 0
RI(VI)(g3) RI(VI)(g2)

]
+ rank

[
L(g1) 0
L(g3) L(g2)

]
,

(5.27)

and

rank

[
RI(M)(g1) 0

0 RI(M)(g2)

]
= s rank

[
RI(VI)(g1) 0

0 RI(VI)(g2)

]
+ rank

[
L(g1) 0
0 L(g2)

]
.

(5.28)

By subtracting (5.28) from (5.27), the formula (5.21) shows the followng:

r = dR(M)(VI) = s · dR(VI)(VI) + rank

[
L(g1) 0
L(g3) L(g2)

]
− rank

[
L(g1) 0
0 L(g2)

]
= s+ rank

[
L(g1) 0
L(g3) L(g2)

]
− rank

[
L(g1) 0
0 L(g2)

]
≥ s.

Hence we have r = s, and the theorem follows. □

The following is immediate from Theorem 5.25 and Example 5.23.

Corollary 5.26. Let zz be any zigzag compression system for A. Then we have

rankzz(M) = ranktot(M)

for all M ∈ modA.

Remark 5.27. Corollary 5.26 above gives an alternative proof of Theorem in
[11, Theorem 3.12] by Dey–Kim–Mémoli for the case where P is a 2D-grid
because ranktotI (M) coincides with their generalized rank invariant M . The
latter statement follows by [10, Lemma 3.1], but the description of the proof
was imprecise, and in the process of making it accurate we found a small gap
in the proof. Therefore, we give a precise proof of it by filling the gap below.

First, we recall the definition of the generalized rank invariant of a module.

Definition 5.28. Let I be a finite connected poset, and M ∈ mod k[I]. Since
I is finite and M ∈ mod k[I], both lim←−M and lim−→M are easily constructed in
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mod k[I]. By definition, we have a commutative diagram

M(x)

lim←−M lim−→M

M(y)

πx

πy

σx

σy

M(py,x)

for any (x, y) ∈ [≤]I , which shows that for any x, y ∈ I, we have σxπx = σyπy if
x and y are in the same connected component of I. But since I is connected,
the equality above holds for all x, y ∈ I. The common linear map is denoted by
µM : lim←−M → lim−→M .

Now, for a (locally finite) poset P, a finite interval subposet I of P, and M ∈
mod k[P], the rank of the linear map µR(M) for the module R(M) ∈ mod k[I] is
called the generalized rank invariant of M at I.

We now give a proof of [10, Lemma 3.1] below.

Lemma 5.29. Let I be a connected poset, and M ∈ mod k[I]. Then M has a
direct sum decomposition

M ∼= V d
I ⊕N

as k[I]-modules for some N , where rankµM = d, rankµN = 0. Hence in par-
ticular, we have dM(VI) = rankµM .

Proof. There exist some subspaces P ≤ lim←−M and T ≤ lim−→M such that P ⊕
KerµM = lim←−M and ImµM ⊕ T = lim−→M . Let σ : P → lim−→M be the inclusion
and π : lim−→M → ImµM the projection with respect to this decomposition. We
set φx := πxσ, ρx := πσx for all x ∈ I. Then we have the following commutative
diagram:

M(x)

P lim←−M lim−→M ImµM

M(y)

πx

πy

σx

σy

M(py,x)

µM

ϕx

ϕy

σ

ρx

ρy

π .

Since µM restricts to an isomorphism µ′ : P → ImµM , we have µ′ = πµMσ.
Thus dimP = dim ImµM = rankµM . Set d := rankµM , the common value.
Then there exists an isomorphism α : kd → P , which gives an isomorphism
β := (µ′α)−1 : ImµM → kd. By setting φ′

x := φxα : kd → M(x) and ρ′x :=
βρx : M(x)→ kd, we have the following two commutative diagrams with exact
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rows:

0 kd M(x) Cokerφx 0

0 kd M(y) Cokerφy 0

ϕ′x ψx

ϕ′y ψy

M(py,x) fy,x , and

0 Ker ρx M(x) kd 0

0 Ker ρy M(y) kd 0

τx ρ′x

τy ρ′y

gy,x M(py,x) ,

(5.29)

where fy,x (resp. gy,x) is the unique linear map making the diagram commuta-
tive, and τz : Ker ρz →M(z) is the inclusion map for all z ∈ I. The uniqueness
of fy,x (resp. gy,x) for all (x, y) ∈ [≤]I defines a k[I]-module C (resp. K) by set-
ting C(x) := Cokerφx, C(py,x) := fy,x (resp. K(x) := Ker ρx, K(py,x) := gy,x)
for all x ∈ I, (x, y) ∈ [≤]I . Set α := (αx)x∈I for all α ∈ {φ′, ψ, τ, ρ′}. Then
the commutative diagrams above show that φ′, ψ, τ, ρ′ are morphisms of k[I]-
modules, and give us the following short exact sequences of k[I]-modules:

0→ V d
I

ϕ′−→M
ψ−→ C → 0 and 0→ K

τ−→M
ρ′−→ V d

I → 0. (5.30)

We here have ρ′φ′ = 1lVI . Indeed, for each x ∈ I, we have ρ′xφ′
x = βρxφxα =

βµ′α = 1lkd . As a consequence, the short exact sequences above split, and hence
M has direct sum decompositions V d

I ⊕ C ∼= M (∼= K ⊕ V d
I ) as k[I]-modules.

By the additivity of both lim←− and lim−→, we have rankµM = d rankµVI +rankµC .
Here note that µVI is given by the identity 1lk : k→ k, thus rankµVI = 1, which
together with rankµM = d shows that rankµC = 0. Therefore the assertion
holds for N := C.

Note that N does not have direct summand isomorphic to VI because rankµN
= 0. Hence we have dM(VI) = d = rankµM . □
Remark 5.30. In the proof of [10, Lemma 3.1], the authors said that the
decompositionM(x) ∼= P⊕Cokerφx is preserved byM(py,x), which is equivalent
to the existence of the commutative diagram with exact rows with a unique
morphism fy,x in (5.29). They continued to say that this fact establishes a
direct sum M ∼= V d

I ⊕ C. This assertion is obvious as vector spaces, but as
k[I]-modules it is not clear. This fact was not proved in the paper. Namely,
the missing part is to show that the exact sequence in (5.30) on the left splits
over k[I]. For this, we need one more exact sequence in (5.30) on the right that
serves us the necessary retraction ρ′ for φ′.

6. Examples

Although the interval rank invariant of a persistence module M with respect
to a compression system ξ captures more information than the rank invariant,
it can still not retrieve all the information contained in M in general. Namely,
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it is possible to construct ξ and two objects M,N ∈ modA not isomorphic to
each other such that δξM(I) = δξN(I) for all I ∈ I. We now give such examples.

Example 6.1. (1) Define a quiver Q and its representations M(θ) by

Q :=
1 2

3 4

, M(θ) :=
R R

R R

1

θ

1

1

for θ ∈ R\{0, 1}. We take ξ := tot (see Example 3.3). Let θ1, θ2 ∈ R\{0, 1} such
that θ1 6= θ2. Then M(θ1) and M(θ2) are clearly not isomorphic to each other
but they have the same interval replacement. One can compute the interval
replacement of M(θ) for θ = θ1, θ2 by using Remark 3.21:

Table 1. Computation of δξM(θ)(I) for θ ∈ R \ {0, 1}.
Interval I-rank Signed interval multiplicity

I rankξIM(θ) δξM(θ)(I)

{1, 2, 3, 4} 0 0
{1, 2, 3} 1 1
{1, 2, 4} 1 1
{1, 3, 4} 1 1
{2, 3, 4} 1 1
{1, 2} 1 -1
{1, 3} 1 -1
{2, 4} 1 -1
{3, 4} 1 -1
{1} 1 0
{2} 1 0
{3} 1 0
{4} 1 0

(2) Define a quiver Q2 and its representations N(θ) by

Q2 :=

7 8

3 4

5 6

1 2

, N(θ) :=

R 0

R R

R R

0 R

1

θ

1

1

1

1

for θ ∈ R \ {0, 1}.
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(3) Define a quiver Q3 and its representations L(θ) by

Q3 :=

1 2 3

4 5 6

7 8 9

, L(θ) :=

R R R

R 0 R

R R R

1

1

1

1

1

1

θ

1

for θ ∈ R \ {0, 1}.

We give another example satisfying commutativity relations non-trivially that
shows the incompleteness of the interval rank invariant with respect to the
compression system tot.

Example 6.2. Let λ ∈ k and Mλ be the following representation of P := G5,2:

k k2 k2 k 0

0 k k2 k2 k

(10) 1l (λ,−1)

(01)

(01) 1l (1,−1)

1l (λ,−1) .

Then it is easy to see that the endomorphism algebra of Mλ is isomorphic to k,
and hence Mλ is indecomposable, and if λ 6= µ in k, then HomP(Mλ,Mµ) = 0.
ThusMλ

∼= Mµ if and only if λ = µ. Let λ 6= µ in k\{0, 1}. By Theorem 5.20 for
m,n ≤ 2, it is easy to check that for any interval I ∈ I, ranktotI Mλ = ranktotI Mµ.

The dimension vector of Mλ is taken from [18, A2. The frames of the tame
concealed algebras] for Ẽ7, and the representation Mλ is constructed by modi-
fying a homogeneous representation of D̃4 in [13, Ch.6 Tables].

References

[1] Hideto Asashiba, Mickaël Buchet, Emerson G. Escolar, Ken Nakashima, and Michio
Yoshiwaki. On interval decomposability of 2D persistence modules. Computational Ge-
ometry, 105/106:Paper No. 101879, 33, 2022. https://doi.org/10.1016/j.comgeo.

2022.101879.
[2] Hideto Asashiba, Emerson G. Escolar, Ken Nakashima, and Michio Yoshiwaki. Approxi-

mation by interval-decomposables and interval resolutions of persistence modules. Jour-
nal of Pure and Applied Algebra, 227(10):107397, 2023. https://doi.org/10.1016/j.
jpaa.2023.107397.

[3] Hideto Asashiba, Emerson G. Escolar, Ken Nakashima, and Michio Yoshiwaki. On ap-
proximation of 2D persistence modules by interval-decomposables. Journal of Computa-
tional Algebra, 6-7:100007, 2023. https://doi.org/10.1016/j.jaca.2023.100007.

[4] Hideto Asashiba, Ken Nakashima, and Michio Yoshiwaki. Decomposition theory of mod-
ules: the case of kronecker algebra. Japan Journal of Industrial and Applied Mathematics,
34(2):489–507, Aug 2017. https://doi.org/10.1007/s13160-017-0247-y.

[5] Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, and Johan Steen. Cotorsion tor-
sion triples and the representation theory of filtered hierarchical clustering. Advances in
Mathematics, 369:107171, 51, 2020. https://doi.org/10.1016/j.aim.2020.107171.

https://doi.org/10.1016/j.comgeo.2022.101879
https://doi.org/10.1016/j.comgeo.2022.101879
https://doi.org/10.1016/j.jpaa.2023.107397
https://doi.org/10.1016/j.jpaa.2023.107397
https://doi.org/10.1016/j.jaca.2023.100007
https://doi.org/10.1007/s13160-017-0247-y
https://doi.org/10.1016/j.aim.2020.107171


44 HIDETO ASASHIBA, ETIENNE GAUTHIER AND ENHAO LIU

[6] Ulrich Bauer and Michael Lesnick. Induced matchings and the algebraic stability of
persistence barcodes. Journal of Computational Geometry, 6(2):162–191, 2015. https:
//doi.org/10.20382/jocg.v6i2a9.

[7] Benjamin Blanchette, Thomas Brüstle, and Eric J. Hanson. Homological approximations
in persistence theory. Canadian Journal of Mathematics, 76(1):66–103, 2024. https:

//doi.org/10.4153/s0008414x22000657.
[8] Magnus Bakke Botnan and Michael Lesnick. Algebraic stability of zigzag persistence

modules. Algebraic & Geometric Topology, 18(6):3133–3204, 2018. https://doi.org/
10.2140/agt.2018.18.3133.

[9] Magnus Bakke Botnan, Steffen Oppermann, and Steve Oudot. Signed barcodes for
multi-parameter persistence via rank decompositions. In 38th International Symposium
on Computational Geometry (SoCG 2022). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2022. https://doi.org/10.4230/lipics.socg.2022.19.

[10] Erin Wolf Chambers and David Letscher. Persistent homology over directed acyclic
graphs. In Research in Computational Topology, pages 11–32. Springer, 2018. https:
//doi.org/10.1007/978-3-319-89593-2_2.

[11] Tamal K Dey, Woojin Kim, and Facundo Mémoli. Computing generalized rank invari-
ant for 2-parameter persistence modules via zigzag persistence and its applications.
Discrete & Computational Geometry, pages 1–28, 2023. https://doi.org/10.1007/

s00454-023-00584-z.
[12] Tamal K. Dey and Cheng Xin. Computing bottleneck distance for 2-D interval decompos-

able modules. In 34th International Symposium on Computational Geometry, volume 99
of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 32, 15. Schloss Dagstuhl. Leibniz-
Zent. Inform., Wadern, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.32.

[13] Vlastimil Dlab and Claus Michael Ringel. Indecomposable representations of graphs and
algebras. Number 6-173 in Memoirs of the American Mathematical Society. American
Mathematical Society, 1976. https://doi.org/10.1090/memo/0173.

[14] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence
and simplification. Discrete & Computational Geometry, 28(4):511–533, 2002. https:
//doi.org/10.1007/s00454-002-2885-2.

[15] Peter Gabriel. Auslander-reiten sequences and representation-finite algebras. In Repre-
sentation Theory I: Proceedings of the Workshop on the Present Trends in Representation
Theory, Ottawa, Carleton University, August 13–18, 1979, pages 1–71. Springer, 2006.
https://doi.org/10.1007/BFb0089778.

[16] Yasuaki Hiraoka, Ken Nakashima, Ippei Obayashi, and Chenguang Xu. Refinement of
interval approximations for fully commutative quivers. arXiv preprint arXiv:2310.03649,
2023. https://doi.org/10.48550/arXiv.2310.03649.

[17] Woojin Kim and Facundo Mémoli. Generalized persistence diagrams for persistence mod-
ules over posets. Journal of Applied and Computational Topology, 5(4):533–581, 2021.
https://doi.org/10.1007/s41468-021-00075-1.

[18] Claus M Ringel. Tame algebras and integral quadratic forms, volume 1099. Springer,
2006. https://doi.org/10.1007/BFb0072870.

[19] Richard P Stanley. Enumerative combinatorics volume 1 second edition. Cambridge stud-
ies in advanced mathematics, 2011. https://doi.org/10.1017/CBO9781139058520.

[20] Afra Zomorodian and Gunnar Carlsson. Computing persistent homology. Dis-
crete & Computational Geometry, 33(2):249–274, 2005. https://doi.org/10.1007/

s00454-004-1146-y.

Department of Mathematics, Faculty of Science, Shizuoka University, 836
Ohya, Suruga-ku, Shizuoka, 422-8529, Japan;

https://doi.org/10.20382/jocg.v6i2a9
https://doi.org/10.20382/jocg.v6i2a9
https://doi.org/10.4153/s0008414x22000657
https://doi.org/10.4153/s0008414x22000657
https://doi.org/10.2140/agt.2018.18.3133
https://doi.org/10.2140/agt.2018.18.3133
https://doi.org/10.4230/lipics.socg.2022.19
https://doi.org/10.1007/978-3-319-89593-2_2
https://doi.org/10.1007/978-3-319-89593-2_2
https://doi.org/10.1007/s00454-023-00584-z
https://doi.org/10.1007/s00454-023-00584-z
https://doi.org/10.4230/LIPIcs.SoCG.2018.32
https://doi.org/10.1090/memo/0173
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/BFb0089778
https://doi.org/10.48550/arXiv.2310.03649
https://doi.org/10.1007/s41468-021-00075-1
https://doi.org/10.1007/BFb0072870
https://doi.org/10.1017/CBO9781139058520
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1007/s00454-004-1146-y


INTERVAL REPLACEMENTS OF PERSISTENCE MODULES 45

Institute for Advanced Study, KUIAS, Kyoto University, Yoshida Ushinomiya-
cho, Sakyo-ku, Kyoto 606-8501, Japan; and

Osaka Central Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-
ku, Osaka, 558-8585, Japan.

Email address: asashiba.hideto@shizuoka.ac.jp

Institute for Advanced Study, KUIAS, Kyoto University, Yoshida Ushinomiya-
cho, Sakyo-ku, Kyoto 606-8501, Japan.

École Polytechnique, Institut Polytechnique de Paris, France
Email address: etienne.gauthier@polytechnique.edu

Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho,
Sakyo-ku, Kyoto 606-8502, Japan.

Email address: liu.enhao.b93@kyoto-u.jp


	1. Introduction
	1.1. Purposes
	1.2. Related works
	1.3. Our contributions
	1.4. Organization

	2. Preliminaries
	2.1. Incidence categories
	2.2. Incidence algebra and Möbius inversion

	3. Compressions and multiplicities
	3.1. Compression systems
	3.2. Compression multiplicities
	3.3. Signed interval multiplicities

	4. Interval replacement and interval rank invariant
	4.1. Interval replacement
	4.2. Interval rank invariant

	5. The formula of total I-rank
	5.1. (n,1)-type
	5.2. (1,n)-type
	5.3. (n,m)-type with m, n 2
	5.4. Essential cover property

	6. Examples
	References

