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Abstract

Let M be a surface with a Riemannian metric and UM the unit tangent bundle over M with
the canonical contact sub-Riemannian structure D ⊂ T (UM). In this paper, the complete
local classification of singularities, under the Legendre projection UM → M , is given for
sub-Riemannian geodesics of (UM,D). Legendre singularities of sub-Riemannian geodesics
are classified completely also for another Legendre projection from UM to the space of
Riemannian geodesics on M . The duality on Legendre singularities is observed related to
the pendulum motion.

1 Introduction

Let M be a C∞ surface with a Riemannian metric g. Then the unit tangent bundle UM over M
has the canonical contact structure D ⊂ T (UM). Moreover D has a sub-Riemannian structure
induced from the Riemannian metric on M . A sub-Riemannian geodesic of D (or a D-geodesic)
is a curve on UM which is tangent to D and is a local minimizer of the sub-Riemannian or
Carnot-Carathéodory arc length for the metric on D ([16]). Any D-geodesic on UM is known
to be an immersion if it is not a constant map. However the projection π : UM → M , which
is a Legendre projection, restricted to a D-geodesic on UM may have singularities, which are
called the Legendre singularities.

In this paper we study Legendre singularities of D-geodesics on (UM,D) and give the local
classification result which determines the Legendre singularities of D-geodesics completely.

The unit tangent bundle UM has the geodesic flow for the metric g on M and is foliated
by the horizontal lifts of Riemannian geodesics on M to UM for the projection π : UM → M .
Each leaf is a Legendre curve for the contact structure D and then we have another Legendre
projection π′, at least locally, from UM to the leaf space, i.e. the space of Riemannian geodesics.

We determine Legendre singularities of D-geodesics on (UM,D) also for the projection π′

completely in this paper.

Theorem 1.1 Let Γ : (R, t0) → UM be any germ of D-geodesic. Then the composite mapping
diagram (Γ, π) : (R, t0)

Γ−→ (UM, Γ(t0))
π−→ (M,π(Γ(t0)) is Legendre equivalent to one of following

normal forms:
(i) (c1, Π), c1 : (R, 0) → (R3, 0), c1(t) = (0, 0, 0),
(ii) (c2, Π), c2 : (R, 0) → (R3, 0), c2(t) = (0, 0, t),
(iii) (c3, Π), c3 : (R, 0) → (R3, 0), c3(t) = (t, 0, 0),
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(iv) (c4, Π), c4 : (R, 0) → (R3, 0), c4(t) = (1
2 t2, 1

3 t3, t).
Here R3 with coordinates (x, y, p) has the canonical contact structure defined by dy − pdx = 0
and Π : (R3, 0) → R2 is the Legendre projection defined by Π(x, y, p) = (x, y).

Moreover the pair of Legendre equivalence classes of (Γ, π) and (Γ, π′) is given by
((i), (i)), ((ii), (iii)), ((iii), (ii)), ((iii), (iii)), ((iii), (iv)) or ((iv), (iii)).

In Theorem 1.1, the case (i) means that Γ itself is a constant curve, (ii) (resp. (iii)) means Γ
is an embedding to a π-fiber, (resp. π′-fiber), and (iv) means that Γ has the cusp singularities by
the Legendre projection π or π′. Note that the projection π ◦ Γ (resp. π′ ◦ Γ) of any D-geodesic
Γ is a front with only cusp singularities, provided it is not a constant map.

The transformation of a Riemannian geodesic to the π′-projection of its π-lift is a kind of
Legendre transformation. For instance, the set of oriented geodesics of the unit sphere S2 in R3

is identified to itself by taking the orthogonal cuts of S2 by the orthogonal planes to unit vectors
in S2. The set of oriented geodesics on the hyperbolic space modelled in the Minkowski 3-space
R2,1 is identified to the de-Sitter space S1,1. Moreover the space of geodesics on the Euclidean
plane R2 is identified with S1 × R naturally in the framework of projective duality([8]). Then
Theorem 1.1 provides the complete local classification of projections to both surfaces for any
oriented sub-Riemannian geodesics on the unit tangent bundle in each case.

In this paper we investigate locally such Legendre transformations and related “projective
duality” on surfaces along the idea in sub-Riemannian contact geometry and geometric control
theory, but in classical differential geometric language.

In §2 we recall basic constructions related to Riemannian surfaces, and in §3 we recall some
facts in singularities of differentiable mappings used for the proof of Theorem 1.1. We prove
Theorem 1.1 in the flat case. After a preliminary from basic differential geometry of surfaces in
§5, we show Theorem 1.1 in the general case in §6. In the last section §7, we mention a native
motivation of our problem treated in this paper.

For geometric control theory and sub-Riemannian geometry, consult [2, 1, 16, 17, 12]. The
sub-Riemannian geometry on UM or U∗M , the unit cotangent bundle in the flat case M =
R2 has been investigated in detail, in particular, the problems on conjugate-loci, cut-loci and
wavefronts for the sub-Riemannian geodesics were solved in [15, 18]. See also the related work
[7]. Though our aim in this paper to study on Legendre duality of singularites, our method
of construction in the present paper essentially follows these preceding works. Then it would
be an interesting, for example, to study global behaviors of projections for general Riemannian
surfaces and to find applications.

In this paper, all manifolds and maps are supposed to be of class C∞ unless otherwise stated.

2 Basic constructions from Riemannian surfaces

Let M be an oriented 2-dimensional Riemannian manifold with metric g and TM the tangent
bundle of M . Let UM be the unit tangent bundle over M ,

UM := {(x, v) ∈ TM | x ∈ M,v ∈ TxM, g(v, v) = 1}.

The bundle π : UM → M , π(x, v) = x, is a principal SO(2) = U(1) bundle and is naturally
regarded as the orthonormal frame bundle over M . The Levi-Civita (Riemannian) connection
on M gives the decomposition

T (UM) = H ⊕ V
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into the vertical distribution V of rank 1 and the horizontal distribution H of rank 2. Since π
induces an isomorphism π∗ : H(x,v) → TxM , the bundle H has the induced Riemannian metric
and the orientation. Moreover, for each x ∈ M , the fiber UxM of π over x ∈ M is regarded the
unit circle of the Euclidean plane TxM , and therefore the bundle V has the induced metric, which
is written as (dθ)2 using a radian angle parameter θ. Thus UM has the induced Riemannian
metric g + dθ2 from H and V so that H ⊥ V .

Note that the parameter θ itself is determined if the base point on the circle is fixed. Therefore
if a unit vector field on an open set Ω ⊂ M is provided, then the function θ : π−1(Ω) → R is
determined, which is periodic along π-fibers with period “2π”.

For each (x, v) ∈ UM , TxM is decomposed as 〈v〉R ⊕ 〈Jv〉R, where J is the 90◦ rotation,
and therefore we have the decomposition H = K ⊕L induced by π∗. Note also that L = K⊥ in
H and the orthogonal decomposition T (UM) = K ⊕ L ⊕ V .

Recall that the connection form ω on UM is characterized as the SO(2)-invariant 1-form ω
satisfying Ker(ω) = H and ω(ξ) = 1 for the unit tangent vector ξ with positive direction along
the π-fiber, i.e. the fundamental vector corresponding to 1 ∈ R = so(2) (see [21]).

The canonical bundle D ⊂ T (UM) is defined by

D := {(x, v; ξ) ∈ T (UM) | (x, v) ∈ UM, ξ ∈ T(x,v)UM,π∗(ξ) ∈ 〈v〉R}.

The distribution D is a contact distribution on UM . Note that D = K ⊕ V and K = D ∩ H.
Note that the geodesic flow on UM induced by the Riemannian metric of M preserves K,L

and V respectively and its trajectories, the horizontal lifts of Riemannian geodesics are integral
curves of K.

Recall that a contact structure on a manifold W means a subbundle D ⊂ TW of codimension
1 such that, any local 1-form α on W defining D, satisfies that dα|D is non-degenerate. Then the
dimension of W is odd, say, 2n+1 for some n. An immersion Γ : N → W from an n-dimensional
manifold N is called a Legendre immersion if dΓ(TN) ⊂ D. A submersion π : W → M to an
(n+1)-dimensional manifold M is calle a Legendre projection if the tangent bundle of any π-fiber
is contained in D ([3, 5]). In this paper we concern only on the case n = 1.

Definition 2.1 A pseudo-product sub-Riemannian contact structure D on a 3-dimensional man-
ifold W is a sub-Riemannian contact structure D ⊂ TW with an orthogonal decomposition
D = K ⊕ V into subbundles K and V of rank 1 respectively.

Therefore D ⊂ T (UM) is a pseudo-product sub-Riemannian contact structure on UM .
Let us denote by N := UM/K the local leaf space of K at a point (x, v) ∈ UM and

π′ : UM → UM/K the projection. Then we have locally the double Legendre projection

M
π←− UM

π′
−→ N,

for the contact structure D on UM . Note that Ker(π∗) = V and Ker(π′
∗) = K.

For the general theory of pseudo-product structures or double Legendre projections, see
[11, 19, 20, 23].

3 Around the recognition of cusps

Recall that two composite mapping diagrams (R, t0)
Γ−→ (W,Γ(t0))

π−→ (M,π(Γ(t0)) and (R, t′0)
Γ′
−→

(W ′, Γ′(t′0))
π′
−→ (M ′, π′(Γ′(t′0)), where W,W ′ are contact manifolds, are called Legendre equiva-
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lent if there exist diffeomorphism-germs σ : (R, t0) → (R, t′0), τ : (M,π(Γ(t0))) → (M ′, π′(Γ′(t′0)),
and a contactomorphism-germ Φ : (W,Γ(t0)) → (W ′,Γ′(t′0)) such that the diagram

(R, t0)
Γ−→ (W,Γ(t0))

π−→ (M,π(Γ(t0)))
σ ↓ Φ ↓ τ ↓

(R, t′0)
Γ′
−→ (W ′, Γ′(t′0))

π′
−→ (M ′, π′(Γ′(t′0)))

is commutative ([3, 5, 4]). Then the compositions π ◦ Γ and π′ ◦ Γ′ are right-left equivalent by
diffeomorphisms σ and τ .

A map-germ γ : (R, t0) → M to a surface is called a cusp if γ is right-left equivalent to the
standard cusp (R, 0) → (R2, 0), t 7→ (1

2 t2, 1
3 t3).

We use the following fundamental recognition lemma on cusp singularities.

Lemma 3.1 ([24]) Let k = (x1, x2) : (R, t0) → R2 be a germ of C∞ curve on the plane. Suppose
k is not an immersion at t0, i.e. (ẋ1(t0), ẋ2(t0)) = (0, 0). Then k is a cusp if and only if

∆ :=
∣∣∣∣ ẍ1

...
x 1

ẍ2
...
x 2

∣∣∣∣ (t0) ̸= 0.

Proof : Suppose k is not an immersion at t0. Then we see, by simple direct calculations, that
the condition ∆ ̸= 0 depends only on the right-left equivalence class of k. Then we see if
k is cusp then ∆ ̸= 0 for the normal form of cusp. Now suppose ∆ ̸= 0. Then we have
(X1 ◦ k)(T ) = Tm, (X2 ◦ k)(T ) = Tm+1a(T ) for an integer m ≥ 2 and a C∞ function-germ
a : (R, 0) → R, by taking a new coordinate T = t − t0 of R and a system of coordinates
(X1, X2) on (R2, k(t0)) centered at k(t0). Since ∆ ̸= 0, we have m = 2 and a(0) ̸= 0. Then
(X1 ◦ k)(T ) = T 2, (X2 ◦ k)(T ) = T 3a(T ). We see there exist C∞ function-germs b(T ), c(T )
such that a(T ) = b(T 2) + Tc(T 2). Then (X2 ◦ k)(T ) = T 3a(T 2) + T 4c(T 2), using Malgrange
preparation theorem (see [6, 14]). Set Y1 = X1, Y2 = 1

a(X1)

(
X2 − X2

1c(X1)
)
. Then the Jacobian

∂(Y1,Y2)
∂(X1,X2) ̸= 0 at (0, 0) and (Y1 ◦ k)(T ) = T 2, (Y2 ◦ k)(T ) = T 3 for the new system of coordinates
(Y1, Y2). After a linear transformation, we have the result. 2

Remark 3.2 It is known that any two Legendre projections π : (W, z0) → (M,x0) and π′ :
(W ′, z′0) → (M ′, x′

0) are Legendre equivalent, i.e. there exist a diffeomorphism-germ τ : (M,x0) →
(M ′, x′

0) and a contactomorphism-germ Φ : (W, z0) → (W ′, z′0) such that τ ◦π = π′ ◦Φ ([3, 5]).

Lemma 3.3 Let W be a 3-dimensional contact manifold, π : W → M a Legendre projection
and Γ : (R, t0) → W a Legendre immersion. Suppose π ◦ Γ is not an immersion at t0. Then we
have that π ◦ Γ : (R, t0) → M is a cusp if and only if the second derivative (π ◦ Γ)′′(t0) ̸= 0.

Proof : Assume π ◦ Γ is a cusp. Take a system of local coordinates x1, x2, x3 of W centered at
Γ(t0) such that x1 and x2 are constant along each π-fibers. Then we have that (x1, x2) induces a
system of local coordinates of M centered at π ◦ Γ(t0) and π′ is given by (x1, x2, x3) 7→ (x1, x2).
Then, by Lemma 3.1, (x′′

1(t0), x
′′
2(t0)) ̸= (0, 0), for the system of local coordinates (x1, x2, x3).

Conversely assume π ◦Γ(t0) ̸= 0. Then the planer curve (x1(Γ(t)), x2(Γ(t)) is singular at t0 and
a non-vanishing term of second order for the coordinate T = t − t0. Changing the systems of
local coordinates (x1, x2) and T if necessary, we have x1 ◦ Γ(T ) = T 2, x2 ◦ Γ(T ) = cT 3 + e(T ),
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the order of e(T ) at 0 being > 3, for some c ∈ R. Since Legendre lift of the planer curve is
unique and must be an immersion which is Legendre equivalent to Γ at t0, we have c ̸= 0. Then,
by Lemma 3.1 or a direct argument as in the proof of Lemma 3.1, we see that π ◦ Γ is a cusp,
i.e., it is right-left equivalent to the normal form of the cusp. 2

4 The flat case

First we consider the case M = R2, the Euclidean plane with coordinates x1, x2. Then UM has
coordinates x1, x2, θ, where θ is the radian angle coordinate for the section ∂

∂x1
. We explain the

general basic constructions in sub-Riemannian geometry along this simple situation.
We set

V1 = cos θ
∂

∂x1
+ sin θ

∂

∂x2
, V2 =

∂

∂θ
,

which form an orthonormal frame of D ⊂ T (UM). Let Γ : [a, b] → UM be an absolutely
continuous or a piecewise smooth curve such that Γ′(t) ∈ D for almost every t ∈ [a, b]. The
sub-Riemannian or Carnot-Caratheodory arc length of Γ is defined by

L(Γ) =
∫ b

a
∥Γ′(t)∥dt

using the norm of the sub-Riemannian metric on D introduced in §2. It is known the length
minimizing problem is equivalent to the energy minimizing problem ([16]).

We represent vectors in D ⊂ T (UM) using the frame V1, V2 as

F (x1, x2, θ; u1, u2) = u1V1 + u2V2 = u1

(
cos θ

∂

∂x1
+ sin θ

∂

∂x2

)
+ u2

∂

∂θ
.

The parameters u1, u2 are regarded as control parameters. The energy function E : D → R is
given by using the squared norm of F as

E(x1, x2, θ;u1, u2) :=
1
2
(u2

1 + u2
2).

Now we consider the optimal control problem on D-integral curves of minimizing the energy
E. Then the Hamiltonian function H : D ×UM T ∗(UM) → R of the optimal control problem
is given by H(x, v, p) := 〈p, F (v)〉 + cE(x, v). for some constant c. Here (x, v) ∈ D, (x, p) ∈
T ∗(UM) and x ∈ M . In coordinates, it is written as

H(x1, x2, θ; u1, u2; p1, p2, ϕ) := u1(p1 cos θ + p2 sin θ) + u2ϕ +
1
2
c(u2

1 + u2
2).

By the Pontryagin principle, any solution (x1(t), x2(t), θ(t), u1(t), u2(t)) of the optimal con-
trol problem is obtained by the constrained Hamilton equation

ẋ1 =
∂H

∂p1
, ẋ2 =

∂H

∂p2
, θ̇ =

∂H

∂ϕ
, ṗ1 = −∂H

∂x1
, ṗ2 = −∂H

∂x2
, ϕ̇ = −∂H

∂θ

with constraint
∂H

∂u1
= 0,

∂H

∂u2
= 0 for some (p1(t), p2(t), ϕ(t)) ̸= 0, c ∈ R.

The extremal is called abnormal if c = 0 and is called normal if c ̸= 0. See [10].
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A curve Γ : (R, t0) → UM , Γ(t) = (x1(t), x2(t), θ(t)), is called a D-geodesic if the above
constrained Hamiltonian equation is satisfied for some p1(t), p2(t), ϕ(t), u1(t), u2(t) and c ∈ R.

In our case the condition is given by explicitly

ẋ1 = u1 cos θ, ẋ2 = u1 sin θ, θ̇ = u2, ṗ1 = 0, ṗ2 = 0, ϕ̇ = u1(p1 sin θ − p2 cos θ),
p1 cos θ + p2 sin θ + cu1 = 0, ϕ + cu2 = 0, (p1, p2, ϕ, c) ̸= 0, c ∈ R.

By the above condition we see that each of p1 and p2 is a locally constant on t. Because our
distribution is a contact structure it is known that there are no non-trivial abnormal extremals.
Here a trivial extremal means a locally constant (x1(t), x2(t), θ(t)). To make sure we will check
that fact in our simple situation: Suppose there exists an extremal with c = 0. Then p1 cos θ +
p2 sin θ = 0 and ϕ = 0. For any t with u1(t) ̸= 0, we have p1 sin θ − p2 cos θ = 0. Then we have
p1 = p2 = ϕ = 0, which leads a contradiction. Therefore u1(t) must be 0 almost everywhere.
Since (p1, p2) ̸= (0, 0) and it is a locally constant vector, we have also (cos θ, sin θ) and so θ must
be a locally constant, which implies u2(t) = 0 a.e. also, which means that the extremal is trivial.

Now suppose c ̸= 0 and seek normal extremals. Then, by replacing −1
cp1,−1

cp2,−1
cϕ by

p1, p2, ϕ respectively, we may set c = −1. Then u1 = p1 cos θ + p2 sin θ, u2 = ϕ. Therefore the
extremal (x1(t), x2(t), θ(t), p1(t), p2(t), ϕ(t)) satisfies a system of ordinary differential equations

ẋ1 = (p1 cos θ + p2 sin θ) cos θ, ẋ2 = (p1 cos θ + p2 sin θ) sin θ, θ̇ = ϕ,

ṗ1 = 0, ṗ2 = 0, ϕ̇ = (p1 cos θ + p2 sin θ)(p1 sin θ − p2 cos θ),

with C∞ right hand sides, and any solution is of class C∞. Suppose that Γ is not an immersion
at t0. Then (ẋ1(t0), ẋ2(t0), θ̇(t0)) = (0, 0, 0). Then p1, p2, ϕ must be all identically zero, and Γ
should be a constant map. Therefore any non-constant D-geodesic Γ is an immersion. Moreover
we observe that θ satisfies the second order ordinary differential equation

θ̈ = (p1 cos θ + p2 sin θ)(p1 sin θ − p2 cos θ)

= p2
1 cos θ sin θ − p1p2 cos2 θ + p1p2 sin2 θ − p2

2 cos θ sin θ.

Suppose the constants p1 = p2 = 0, then u1 = 0 and ẋ1 = ẋ2 = 0, each of x1, x2 being a
constant. Moreover ϕ̇ = 0 and ϕ is a constant. Therefore θ̇ is a constant and θ(t) = at for some
a ∈ R. If a = 0, then Γ is a constant curve. If a ̸= 0, then Γ gives a parametrization of a π-fiber
over a point on M , and the D-geodesic Γ can be regarded as a constant directed curve, or a
frontal, on the plane endowed with rotating directions of constant angular velocity.

Next suppose (p1, p2) ̸= (0, 0). For example, for p1 = 0, p2 = 1, then the D-geodesic
Γ(t) = (ẋ1(t), ẋ2(t), θ(t)) satisfies ẋ1 = sin θ cos θ, ẋ2 = sin2 θ and θ̈ = − sin θ cos θ = −1

2 sin 2θ.
In general we have θ̈ = −r sin(2θ + ρ), where we set r = 1

2(p2
1 + p2

2), cos ρ = − 1
2r (p2

1 − p2
2) and

sin ρ = 1
rp1p2. If we set Θ = 2θ + ρ, ω =

√
2r, then we have

Θ̈ = −ω2 sinΘ,

that is the non-linear equation of a simple pendulum. See also [15, 18]. Therefore θ can be
expressed by elliptic functions. We need only the simple behavior of θ hereafter: When θ̇ = 0,
then θ̈ ̸= 0. When θ̈ = 0, then θ̇ ̸= 0.

Now we begin to show Theorem 1.1.
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Proof of Theorem 1.1 in the flat case. Let Γ : (R, t0) → (UM, Γ(t0)) be a D-geodesic. Set
Γ(t) = (x1(t), x1(t), θ(t)) as above.

Part I. π-Legendre classification of Γ.
We have by setting c = −1,

ẋ1 = (p1 cos θ + p2 sin θ) cos θ, ẋ2 = (p1 cos θ + p2 sin θ) sin θ.

Let Γ̃(t) = (Γ(t);u1(t), u2(t); p1(t), p2(t), ϕ(t)) be a corresponding extremal. If Γ is a constant
curve, then (Γ, π) is Legendre equivalent to the case (i) of Theorem 1.1. If γ is not a constant
curve, but π◦Γ = (x1, x2) is a constant curve. Then (Γ, π) is Legendre equivalent to (ii). Suppose
π ◦ Γ is not a constant curve. First suppose (ẋ1(t0), ẋ2(t0)) ̸= (0, 0), i.e. π ◦ γ is an immersion-
germ. Then (Γ, π) is Legendre equivalent to (iii). Now suppose (ẋ1(t0), ẋ2(t0)) = (0, 0). Note
that, then, we have p1 cos θ(t0) + p2 sin θ(t0) = 0 and therefore θ̈(t0) = 0. Then we have

ẍ1 = θ̇{(− sin θ)(p1 cos θ + p2 sin θ) + cos θ(−p1 sin θ + p2 cos θ)} = θ̇(−p1 sin 2θ + p2 cos 2θ),

ẍ2 = θ̇{cos θ(p1 cos θ + p2 sin θ) + sin θ(−p1 sin θ + p2 cos θ)} = θ̇(p1 cos 2θ + p2 sin 2θ),
...
x 1 = θ̈(−p1 sin 2θ + p2 cos 2θ) + θ̇2(−2p1 cos 2θ − 2p2 sin 2θ),
...
x 2 = θ̈(p1 cos 2θ + p2 sin 2θ) + θ̇2(−2p1 sin 2θ + 2p2 cos 2θ).

Therefore we have∣∣∣∣ ẍ1
...
x 1

ẍ2
...
x 2

∣∣∣∣ =
∣∣∣∣ θ̇(−p1 sin 2θ + p2 cos 2θ) θ̈(−p1 sin 2θ + p2 cos 2θ) + θ̇2(−2p1 cos 2θ − 2p2 sin 2θ)

θ̇(p1 cos 2θ + p2 sin 2θ) θ̈(p1 cos 2θ + p2 sin 2θ) + θ̇2(−2p1 sin 2θ + 2p2 cos 2θ)

∣∣∣∣
= 2θ̇3

∣∣∣∣ −p1 sin 2θ + p2 cos 2θ −p1 cos 2θ − p2 sin 2θ
p1 cos 2θ + p2 sin 2θ −p1 sin 2θ + p2 cos 2θ

∣∣∣∣
= 2θ̇3{(−p1 sin 2θ + p2 cos 2θ)2 + (p1 cos 2θ + p2 sin 2θ)2} = 2θ̇3(p2

1 + p2
2)

Thus we have ∆ = 2θ̇(t0)3(p2
1 + p2

2). Since θ̈(t0) = 0, and since θ(t) satisfies the above second
order ordinary differential equation and is not a constant, we see that θ̇(t0) ̸= 0. Therefore
∆ ̸= 0, and we see that π ◦ Γ is right-left equivalent to the cusp t 7→ (1

2 t2, 1
3 t3), which has

the unique Legendre lift t 7→ (1
2 t2, 1

3 t3, t) to the standard contact manifold R3 with coordinates
(x, y, p) with dy − pdx = 0. Thus we have that (Γ, π) is Legendre equivalent to (iv).

Part II. π′-Legendre classification of Γ.
In our flat case, the projection π′ is given by (x1, x2, θ) 7→ (F,E), where

F = −x1 sin θ + x2 cos θ, E = θ.

Note that F and E are independent first integrals of the geodesic flow for the flat metric on
M = R2. We set f = F ◦ Γ, e = E ◦ Γ. Then we have

ḟ = −θ̇(x1 cos θ + x2 sin θ),

f̈ = −θ̇(p1 cos θ + p2 sin θ) − θ̇2(−x1 sin θ + x2 cos θ) − θ̈(−x1 cos θ + a2 sin θ)
...
f = θ̇2(p1 cos θ − p2 sin θ) − 2θ̈(p1 cos θ + p2 sin θ) + 3θ̇θ̈(x1 cos θ − x2 sin θ)

+ θ̇3(x1 cos θ + x2 sin θ) −
...
θ (x1 cos θ + x2 sin θ)
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If Γ is a constant curve, then (Γ, π′) is Legendre equivalent to (i). If θ is a constant function,
then (Γ, π′) is Legendre equivalent to (ii). If θ̇(t0) ̸= 0, then π′ ◦ Γ is an immersion at t0 and
(Γ, π′) is Legendre equivalent to (iii). Suppose π′ ◦ Γ is not an immersion at t0. Then θ̇(t0) = 0.
Then we have that ∣∣∣∣ f̈

...
f

ë
...
e

∣∣∣∣ (t0) = 2θ̈(t0)2(p1 cos θ(t0) + p2 sin θ(t0)).

If p1 cos θ(t0) + p2 sin θ(t0) = 0, then ẋ1(t0) = ẋ2(t0) = θ̇(t0) = ṗ1(t0) = ṗ2(t0) = ϕ̇(t0) =
0, which leads that Γ is a constant curve. Thus, if Γ is not a constant curve, then we see
p1 cos θ(t0) + p2 sin θ(t0) ̸= 0. Therefore we see that ∆ = θ̈(t0)2(p1 cos θ(t0) + p2 sin θ(t0)) ̸= 0
whenever θ̇(t0) = 0. Thus we have that, in this case, (Γ, π′) is Legendre equivalent to (iv).

The last claim on the combination of Legendre singularities for π and π′ is obtained just by
observing the “pendulum” duality on points t = t0 where θ̇(t0) = 0, θ̈(t0) ̸= 0 and points t = t1
where θ̇(t1) ̸= 0, θ̈(t1) = 0, which appears as the Legendre duality in our case. 2

Remark 4.1 It is the geometry of the curve π ◦ Γ(t) = (x1(t), x2(t)) on R2, which is the
projection to R2 of a D-geodesic Γ(t) = (x1(t), x2(t), θ(t)). We see π ◦ Γ is singular at t =
t0 when p1 cos θ(t0) + p2 sin θ(t0) = 0. For instance we see the curvature of the plane curve
π ◦ Γ(t) = (x1(t), x2(t)) is given by

κ(t) =
θ̇(t)

|p1 cos θ(t) + p2 sin θ(t)|
,

by simple calculations, if π ◦ Γ is an immersion at t. Therefore we see π ◦ Γ(t) has an inflection
point at t = t0 if θ̇(t0) = 0. Moreover we have that, if π ◦ Γ has a cusp at t = t0, then the
cuspidal curvature κc of π ◦ Γ at t = t0 is given by

κc = 2 (sign θ̇)
|θ̇|

1
2

(p2
1 + p2

2)
1
4

.

For the cuspidal curvature see [24].
Further we observe that, for any non-constant solution of the equation of pendulum, the

points t where θ̇(t) = 0 and θ̈(t) = 0 appear alternately. Note that, for any D-geodesic Γ,
we have an inflection point t = t0 where θ(t0) = 0 and a cusp point t = t1 on π ◦ Γ where
p1 cos θ(t0) + p2 sin θ(t0) = 0 and so θ̈(t0) = 0, and θ(t0) ̸= 0. For a sub-Riemannian geodesic
Γ : R → UR2, if the variation of the angle θ(t) is small, then the inflection points, where θ̇ = 0,
and the cusp points, where θ̈ = 0, appear alternately along the non-constant projection π ◦ Γ,
which may be called a “zigzag” curve ([24]). Moreover we observe the directions of cusps are
all parallel. This will provide a severe restriction on the front curve π ◦ Γ. An example of the
projection of D-geodesic is illustrated roughly like as follows.

See illustrations also in [1, 15, 18].
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5 Geodesic parallel coordinates

To analyze the equation of sub-Riemannian geodesics on UM in the case of general Riemannian
surface M , it is useful to take a system of special local coordinates on M , which are called a
system of geodesic parallel coordinates. We will recall it.

Let (M, g) be a 2-dimensional Riemannian manifold, p ∈ M and v ∈ TpM a unit tangent
vector. For a system of local coordinates (x1, x2), we set g( ∂

∂xi
, ∂

∂xj
) = gij .

Lemma 5.1 There exists a system of local coordinates (x1, x2) centered at p satisfying that
(1) g11 = 1, g12 = g21 = 0 so that g is of form (dx1)2 + g22(dx2)2 and moreover g22 satisfies the

conditions g22(0, x2) = 1 and
∂g22

∂x1
(0, x2) = 0.

(2)
∂gij

∂xk
(p) = 0 for any i, j, k = 1, 2, and all connection coefficients (Christoffel symbols) Γk

ij

vanish at p.
(3) v = ∂

∂x1
|p and the curve x1(t) = t, x2(t) = c, c being a constant, gives the Riemannian

geodesic on M . If c = 0, it is the Riemannian geodesic starting from p with the initial velocity
vector v.
(4) Let θ be the angle function with the base section ∂

∂x1
. Then the generating vector field V of

the geodesic flow on UM satisfies 〈dθ, V 〉(x1, x2, 0) = 0.

Proof of Lemma 5.1: We take the geodesic parallel coordinates around p on M . See, for
instance, [13] on its existence. Then we have (1). The assertion (2) follows from (1) and
Γk

ij = 1
2gkℓ

(
∂gℓi
∂xj

+ ∂gℓj

∂xi
− ∂gij

∂xℓ

)
using Einstein convention. The assertion (3) follows from (1) by

rotating the coordinates (x1, x2) linearly if necessary. From (3), we see the coefficient of ∂
∂θ in V

vanishes along the each geodesic x1(t) = t, x2(t) = c. Therefore we have 〈dθ, V 〉(x1, x2, 0) = 0,
and we have (4). 2

Lemma 5.2 There exists a local orthonormal frame v1, v2 of TM on a neighborhood of p such
that, for some geodesic parallel coordinates x1, x2, they are written as

v1 = k(x1, x2)
∂

∂x1
+ ℓ(x1, x2)

∂

∂x2
, v2 = m(x1, x2)

∂

∂x1
+ n(x1, x2)

∂

∂x2
,

with all of first order partial derivatives of k, ℓ,m, n vanished at p.

Proof : In general, if we set k = 1√
g11

, ℓ = 0,m = − g12√
g11

√
g11g12−g2

12

and n =
√

g11
√

g11

√
g11g12−g2

12

, then

v1 = k ∂
∂x1

+ ℓ ∂
∂x1

, v2 = m ∂
∂x1

+ n ∂
∂x2

form a local orthonormal frame. If (x1, x2) is a system of
geodesic parallel coordinates, then we see k = 1, ℓ = 0,m = 0 and 1√

g22
. Then, for the exterior

derivatives, we have dk = dℓ = dn = 0 and dk = − k
2g22

dg22. Thus, by Lemma 5.1 (2), we have
the result. 2

6 The case of general Riemannian surfaces

Let us study the case with a general Riemannian surface (M, g). Let Γ : (R, t0) → UM be any
curve-germ. Let (x1, x2) be a system of geodesic parallel coordinates of M centered at π(Γ(t0)).
Let

v1 = k(x1, x2)
∂

∂x1
+ ℓ(x1, x2)

∂

∂x2
, v2 = m(x1, x2)

∂

∂x1
+ n(x1, x2)

∂

∂x2

9



be a local orthonormal frame for g on M . For the local coordinates x1, x2, θ of UM introduced

in §2 for the base section
∂

∂x1
, we have that

V1 = v1 cos θ + v2 sin θ, V2 =
∂

∂θ
,

form a local sub-Riemannian orthonormal frame of D ⊂ T (UM). In this case the Hamiltonian
for sub-Riemannian geodesics is given by

H = u1{(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ} + u2ϕ +
1
2
c(u2

1 + u2
2),

where c ∈ R, and the equation for the extremal (x1, x2, θ, p1, p2, ϕ) is written as

ẋ1 = u1(k cos θ + m sin θ), ẋ2 = u1(ℓ cos θ + n sin θ), θ̇ = u2

ṗ1 = −u1{(
∂k

∂x1
p1 +

∂ℓ

∂x1
p2) cos θ + (

∂m

∂x1
p1 +

∂n

∂x1
p2) sin θ},

ṗ2 = −u1{(
∂k

∂x2
p1 + ℓx2p2) cos θ + (

∂m

∂x2
p1 +

∂n

∂x2
p2) sin θ},

ϕ̇ = −u1{−(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ}

with the constraint

(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ + cu1 = 0, ϕ + cu2 = 0.

Suppose c = 0. Then, by the constraint, (kp1 + ℓp2) cos θ + (mp1 + np2) sin θ = 0 and ϕ = 0.
For any t with u1(t) ̸= 0, we have −(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ = 0. Then we have(

cos θ sin θ
− sin θ cos θ

) (
k ℓ
m n

) (
p1

p2

)
=

(
0
0

)
Then we have p1 = p2 = ϕ = 0, which leads a contradiction. Therefore u1(t) must be 0 almost
everywhere. Then x1(t), x2(t), p1(t), p2(t) are locally constants and therefore (cos θ(t), sin θ(t))
and θ(t) must be a constant. Thus we have checked directly that any non-trivial D-geodesic is
normal in our case.

Now suppose c ̸= 0. By replacing −1
cp1,−1

cp2,−1
cϕ by p1, p2, ϕ respectively, we may set

c = −1. Then we have

u1 = (kp1 + ℓp2) cos θ + (mp1 + np2) sin θ, u2 = ϕ.

Thus we have a first order ordinary differential equation

ẋ1 = {(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}(k cos θ + m sin θ),
ẋ2 = {(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}(ℓ cos θ + n sin θ),

θ̇ = ϕ,

ṗ1 = −{(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}{( ∂k

∂x1
p1 +

∂ℓ

∂x1
p2) cos θ + (

∂m

∂x1
p1 +

∂n

∂x1
p2) sin θ},

ṗ2 = −{(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}{( ∂k

∂x2
p1 +

∂ℓ

∂x2
p2) cos θ + (

∂m

∂x2
p1 +

∂n

∂x2
p2) sin θ},

ϕ̇ = −{(kp1 + ℓp2) cos θ + (mp1 + np2) sin θ}{−(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ}.
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In our general case, we have θ̈ = −r sin(2θ+ρ), where r = r(t) = 1
2{(kp1 +ℓp2)2 +(mp1 +np2)2}

and ρ = ρ(t) satisfies sin ρ = −(kp1 + ℓp2)(mp1 + np2)/r and cos ρ = 1
2{(kp1 + ℓp2)2 − (mp1 +

np2)2}/r. Note that r and ρ depend on t. Therefore we observe that θ follows a generalized
equation of pendulum.

Now we return to show Theorem 1.1.

Remark 6.1 It is known that any normal sub-Riemannian geodesic (x(t), θ(t)) is obtained as
the projection of a solution x(t), θ(t), p(t), ϕ(t) of the Hamiltonian equation

ẋ =
∂H̃

∂p
, θ̇ =

∂H̃

∂ϕ
, ṗ = −∂H̃

∂x
, ϕ̇ = −∂H̃

∂θ
,

on T ∗(UM) for the another Hamiltonian

H̃(x, θ, p, ϕ) =
1
2

(
〈p, V1〉2 + 〈ϕ, V2〉2

)
.

See [16] Theorem 1.14. One can check that the same result is obtained also by analyzing the
above Hamiltonian equation.

Proof of Theorem 1.1 in the general case.
Let Γ : (R, t0) → (UM, Γ(t0)) be a D-geodesic and Γ̃ : (R, t0) → (T ∗(UM), Γ̃(t0)) be a corre-

sponding extremal for some c ̸= 0. Set Γ(t) = (x1(t), x2(t), θ(t)) and Γ̃(t) = (Γ(t); p1(t), p2(t), ϕ(t)).
We set

A(x1, x2, θ, p1, p2) := (kp1 + ℓp2) cos θ + (mp1 + np2) sin θ,
B(x1, x2, θ, p1, p2) := −(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ.

Part I. π-Legendre classification of Γ. If (ẋ1(t0), ẋ2(t0)) ̸= (0, 0), then we have the case (iii).
Suppose (ẋ1(t0), ẋ2(t0)) = (0, 0). Then A(x1(t0), x2(t0), θ(t0), p1(t0), p2(t0)) = 0 at t0. Assume
θ̇(t0) = 0. Then we have ẋ1(t0) = ẋ2(t0) = θ̇(t0) = ṗ1(t0) = ṗ2(t0) = ϕ̇(t0) = 0. Therefore,
by the uniqueness of solution, we see Γ̃ itself is a constant curve, and Γ is also constant, then
we have (i). Suppose θ̇(t0) ̸= 0. Set a = θ̇(t0). If B(x1(t0), x2(t0), θ(t0), p1(t0), p2(t0)) = 0
at t0, then we have (p1(t0), p2(t0)) = (0, 0). Since (p1(t), p2(t)) satisfies a linear homogeneous
differential equation as above, we see p1(t) and p2(t) are identically zero. Then π◦Γ is a constant
map. and then θ(t) = at. Thus we have the case (ii).

Suppose B(x1(t0), x2(t0), θ(t0), p1(t0), p2(t0)) ̸= 0 at t0. Now we calculate ∆ as in Lemma
3.1.

ẋ1 =
(

∂A
∂p1

)
A, ẋ2 =

(
∂A
∂p2

)
A,

ẍ1 =
(

∂A
∂p1

)′
A +

(
∂A
∂p1

)
A′, ẍ2 =

(
∂A
∂p2

)′
A +

(
∂A
∂p2

)
A′,

...
x 1 =

(
∂A
∂p1

)′′
A + 2

(
∂A
∂p1

)′
A′ +

(
∂A
∂p1

)
A′′,

...
x 2 =

(
∂A
∂p2

)′′
A + 2

(
∂A
∂p2

)′
A′ +

(
∂A
∂p2

)
A′′,

At t = t0, we have A = 0, k̇ = ℓ̇ = ṁ = ṅ = 0, ṗ1 − ṗ2 = 0. Therefore we have

∆ :=
∣∣∣∣ ẍ1

...
x 1

ẍ2
...
x 2

∣∣∣∣ (t0) = A′(t0)

∣∣∣∣∣∣
∂A
∂p1

2
(

∂A
∂p1

)′
A′ +

(
∂A
∂p1

)
A′′

∂A
∂p2

2
(

∂A
∂p2

)′
A′ +

(
∂A
∂p2

)
A′′

∣∣∣∣∣∣ (t0) = 2A′(t0)2

∣∣∣∣∣∣
∂A
∂p1

(
∂A
∂p1

)′

∂A
∂p2

(
∂A
∂p2

)′

∣∣∣∣∣∣ (t0)
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We have, at t = t0,

A′ = {−(kp1 + ℓp2) sin θ + (mp1 + np2) cos θ}θ̇ = Bθ̇

and ∣∣∣∣∣∣
∂A
∂p1

(
∂A
∂p1

)′

∂A
∂p2

(
∂A
∂p2

)′

∣∣∣∣∣∣ (t0) = θ̇(t0)(kn − ℓm)(t0)

Therefore we have
∆ = 2B(t0)2(kn − ℓm)(t0)θ̇(t0)3 ̸= 0.

Therefore π ◦ Γ is right-left equivalent to the cusp and this is the case (v).
Part II. π′-Legendre classification of Γ.
Next we analyse (Γ, π′). If π′ ◦ Γ is an immersion at t0, then we have (iii). If Γ is a constant

curve, then we have (i). If π′ ◦ Γ is a constant curve, then since Γ is an immersion, we have (ii).
Now suppose π′ ◦ Γ is not an immersion at t0. We take geodesic parallel coordinates around

π ◦ Γ(t0) and local frame v1, v2 as in Lemma 5.1.
Set

R(x1, x2, θ) := k(x1, x2) cos θ + m(x1, x2) sin θ

and
S(x1, x2, θ) := ℓ(x1, x2) cos θ + n(x1, x2) sin θ.

Then the geodesic flow in a neighborhood of Γ(t0) is written as

V = R
∂

∂x1
+ S

∂

∂x2
+ W

∂

∂θ

for some function W = W (x1, x2, θ). We use the geodesic parallel coordinates around π ◦ Γ(t0).
Then, by Lemma 5.1, we see W (x1, x2, 0) = 0.

The projection π′ is locally expressed by taking a pair of independent first integrals (F,E)
of V in a neighborhood of Γ(t0). We set π′ ◦ Γ(t) = (F (Γ(t)), E(Γ(t))) =: (f(t), e(t)). Then we
have 

ḟ(t) =
(

∂F

∂x1
◦ Γ

)
(t) ẋ1(t) +

(
∂F

∂x2
◦ Γ

)
(t) ẋ2(t) +

(
∂F

∂θ
◦ Γ

)
(t) θ̇(t),

ė(t) =
(

∂E

∂x1
◦ Γ

)
(t) ẋ1(t) +

(
∂E

∂x2
◦ Γ

)
(t) ẋ2(t) +

(
∂E

∂θ
◦ Γ

)
(t) θ̇(t),



f̈(t) =
(

∂2F

∂x2
1

◦ Γ
)

(t) ẋ1(t)2 +
(

∂2F

∂x2
2

◦ Γ
)

(t) ẋ2(t)2 +
(

∂2F

∂θ2
◦ Γ

)
(t) θ̇(t)2

+2
(

∂2F

∂x1∂x2
◦ Γ

)
(t) ẋ1(t)ẋ2(t) + 2

(
d∂2F∂x1∂θ ◦ Γ

)
(t) ẋ1(t)θ̇(t) + 2

(
∂2F

∂x2∂θ
◦ Γ

)
(t) ẋ2(t)θ̇(t)

+
(

∂F

∂x1
◦ Γ

)
(t) ẍ1(t) +

(
∂F

∂x2
◦ Γ

)
(t) ẍ2(t) +

(
∂F

∂θ
◦ Γ

)
(t) θ̇(t),

ë(t) =
(

∂2E

∂x2
1

◦ Γ
)

(t) ẋ1(t)2 +
(

∂2E

∂x2
2

◦ Γ
)

(t) ẋ2(t)2 +
(

∂2E

∂θ2
◦ Γ

)
(t) θ̈(t)2

+2
(

∂2E

∂x1∂x2
◦ Γ

)
(t) ẋ1(t)ẋ2(t) + 2

(
∂2E

∂x1∂θ
◦ Γ

)
(t) ẋ1(t)θ̇(t) + 2

(
∂2K

∂x2∂θ
◦ Γ

)
(t) ẋ2(t)θ̇(t)

+
(

∂E

∂x1
◦ Γ

)
(t) ẍ1(t) +

(
∂E

∂x2
◦ Γ

)
(t) ẍ2(t) +

(
∂E

∂θ
◦ Γ

)
(t) θ̈(t),
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Since π′ ◦ Γ is not an immersion at t0, we have (ḟ(t0), ė(t0)) = (0, 0). Moreover we have

ẋ1(t0) = k(kp1 + ℓp2)|t=t0 , ẋ2(t0) = ℓ(kp1 + ℓp2)|t=t0 , θ̇(t0) = 0.

Moreover, since ṗ1(t0) = ṗ2(t0) = 0 and all partial derivatives of first order of k, ℓ,m, n vanish
at
pi ◦ Γ(t0), we see ẍ1(t0) = ẍ2(t0) = 0. On the other hand we have θ̈(t0) ̸= 0. Thus we have

f̈(t0) =
∂2F

∂x2
1

k2(kp1 + ℓp2)2 + 2
∂2F

∂x1∂x2
kℓ(kp1 + ℓp2)2 +

∂2F

∂x2
2

ℓ2(kp1 + ℓp2)2 +
∂F

∂θ
θ̈

∣∣∣∣
t=t0

= k(kp1 + ℓp2)2
(

k
∂2F

∂x2
1

+ ℓ
∂2F

∂x1∂x2

)
+ ℓ(kp1 + ℓp2)2

(
k

∂2F

∂x1∂x2
+ ℓ

∂2F

∂x2
1

)
+

∂F

∂θ
θ̈

∣∣∣∣
t=t0

,

ë(t0) =
∂2E

∂x2
1

k2(kp1 + ℓp2)2 + 2
∂2E

∂x1∂x2
kℓ(kp1 + ℓp2)2 +

∂2E

∂x2
2

ℓ2(kp1 + ℓp2)2 +
∂E

∂θ
θ̈

∣∣∣∣
t=t0

= k(kp1 + ℓp2)2
(

k
∂2E

∂x2
1

+ ℓ
∂2E

∂x1∂x2

)
+ ℓ(kp1 + ℓp2)2

(
k

∂2E

∂x1∂x2
+ ℓ

∂2E

∂x2
1

)
+

∂E

∂θ
θ̈

∣∣∣∣
t=t0

,

Because F and E are first integrals of V , as functions on x1, x2, θ,

R
∂F

∂x1
+ S

∂F

∂x2
+ W

∂F

∂θ
= 0, R

∂E

∂x1
+ S

∂H

∂x2
+ W

∂H

∂θ
= 0.

By taking the differentials by x1 and x2 of the right hand sides of the above equations respectively,
we have 

∂R

∂x1

∂F

∂x1
+

∂S

∂x1

∂F

∂x2
+

∂W

∂x1

∂F

∂θ
+ R

∂2F

∂x2
1

+ S
∂2F

∂x1∂x2
+ W

∂2F

∂x1∂θ
= 0,

∂R

∂x2

∂F

∂x1
+

∂S

∂x2

∂F

∂x2
+

∂W

∂x2

∂F

∂θ
+ R

∂2F

∂x1∂x2
+ S

∂2F

∂x2
2

+ W
∂2F

∂x2∂θ
= 0,

∂R

∂x1

∂E

∂x1
+

∂S

∂x1

∂E

∂x2
+

∂W

∂x1

∂E

∂θ
+ R

∂2E

∂x2
1

+ S
∂2E

∂x1∂x2
+ W

∂2E

∂x1∂θ
= 0,

∂R

∂x2

∂E

∂x1
+

∂S

∂x2

∂E

∂x2
+

∂W

∂x2

∂E

∂θ
+ R

∂2E

∂x1∂x2
+ S

∂2E

∂x2
2

+ W
∂2E

∂x2∂θ
= 0,

At the point Γ(t0), we have that all of
∂R

∂x1
,

∂R

∂x2
,

∂S

∂x1
,

∂S

∂x2
,W,

∂W

∂x1
,
∂W

∂x2
vanish. Moreover we

have R(Γ(t0)) = k(π ◦ Γ(t0)), S(Γ(t0) = ℓ(π ◦ Γ(t0)). Therefore we obtain

k
∂2F

∂x2
1

+ ℓ
∂2F

∂x1∂x2

∣∣∣∣
t=t0

= 0, k
∂2F

∂x1∂x2
+ ℓ

∂2F

∂x2
1

∣∣∣∣
t=t0

= 0,

k
∂2E

∂x2
1

+ ℓ
∂2E

∂x1∂x2

∣∣∣∣
t=t0

= 0, k
∂2E

∂x1∂x2
+ ℓ

∂2E

∂x2
1

∣∣∣∣
t=t0

= 0.

Therefore we have
f̈(t0) =

∂F

∂θ
(t0)θ̈(t0), ḧ(t0) =

∂E

∂θ
(t0)θ̈(t0).

Since
∂

∂θ
does not belongs to the kernel of the differential of (F,E) : (UM, Γ(t0)) → R2 at Γ(t0),

we have (
∂F

∂θ
(t0),

∂E

∂θ
(t0)) ̸= (0, 0). Since θ̈(t0) ̸= 0, we have (f̈(t0), ë(t0)) ̸= (0, 0). Therefore,

by Lemma 3.3, we have π′ ◦ Γ is a cusp.

13



The last statement on the combination of singularities of π◦Γ and π′◦Γ follows by remarking
that the combinations ((iii), (iii)), ((iv), (iv)) never occur because Ker(dπ)∩Ker(dπ′) = V ∩K =
{0}. This completes the proof of Theorem 1.1.

7 Appendix: A naive motivation

In the winter snow season, you will observe many cusp-shaped traces of vehicles on many roads
and parking lots usually. Naturally it can be supposed that we control vehicles in a (nearly)
optimal way, when we drive and park. Therefore the cuspidal shape of such snow-traces may
be regarded as an appearance of generic singularities for solutions to some problem of optimal
control theory. For instance:

Problem. Suppose your car is located on a parking place. You are asked to move your car
to the very next (right) place. How do you drive and move your car ?

Maybe you will go forward to a right direction a little and then go back to the proper parking
place. Then the trace of your drive wheel will form a cusp-shaped curve. The front direction of
the wheel or its left-side normal is determined anytime, so the trace can be regarded as a kind
of so-called a “front” or a “frontal” ([9]). The short lines indicate the left side directions of the
driver, which form a normal field to the trace.

The phenomena of the appearance of singularities do not depend on the flatness of the field
and you will observe the singularities also on slopes and non-flat parking lots everywhere. The
singularities can be understood as Legendre singularities of sub-Riemannian geodesics for general
Riemannian surfaces which we have discussed in the present paper.
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