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Abstract. The main purpose of this paper is to construct compact Lagrangian

submanifolds satisfying Maslov quantization condition in the cotangent bundle

of the Cayley projective plane by making use of the explicit realization of its

punctured cotangent bundle as a quadrics in the complex space C27\{0}.
If the geodesic flow is completely integrable, then there are many Lagrangian

submanifolds, which are tori. Our example is not a torus. For this purpose we

explain Maslov class based on our earlier work of the Maslov index defined for

arbitrary paths for the sake of the self-containedness, and based on this treat-

ment of the Maslov index we determine the Lagrangian submanifolds satisfying

Maslov quantization condition.
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1. Introduction

The role of Lagrangian submanifolds in the cotangent bundle is important in

the classical mechanics from the point of quantization theory. In mathematics it

is a topic of geometric quantization theory and Fourier integral operator theory

in which compact Lagrangian submanifolds satisfing a condition called, “Maslov

quantization condition” and conic Lagrangian submanifolds, are mutually related

and play basic roles.

Also it is classical that if the geodesic flow is completely integrable, then there

are Lagrangian submanifolds as the intersections of constant hypersurfaces defined

by the maximal number of linearly independent first integrals. Such Lagrangian

submanifolds are always tori by the Arnold’s theorem.

As the image of the exterier derivative of a smooth function it is always a

(exact) Lagrangian submanifold, however it will not be apparent of the existence

of Lagrangian submanifolds included in the punctured cotangent bundle which are

satisfying Maslov quantization condition. This condition can be seen as a final

form of the N. Bohr’s quantization condition.

Our main purpose is to present some class of compact Lagrangian submanifolds

in the punctured cotangent bundle of the Cayley projective plane satisfying Maslov

quantization condition.

In general, there are several method to construct Lagrangian submanifolds,

such as using momentum maps under a group action, based on the complete

integrability of the geodesic flow or using a functorial property of Lagrangian

submanifolds under (Riemannian) submersions, etc.

In our earlier paper [8], in 4.7 we discussed a behavior of Lagrangian submani-

folds in the cotangent bundle under Riemannian submersions (see also [22], [13],

[4] for relating properties). So, in the cases of projective spaces other than the

Calyley projective plane, the construction of Lagrangian submanifolds are reduced

to the construction of them in the sphere cases.

The main arguments in this paper is to solve the defining equations of the

puncture cotangent bundle of the Cayley projective plane realized in the space

C27\{0} as a quadrics and find explicit solutions which are giving Lagrangian

submanifolds. This realization was given in [6]. Here we determine Lagrangian

submanifolds satisfying Maslov quantization condition based on the treatment of

Maslov indeces explained in §2 ([5], [7], [20]).

The paper is organized as follows.

In §2, we recall the definition of the Maslov index for arbitrary paths and define

Maslov class for a pair of Lagrangian subbundle in a symplectic vector bundle.

As a special case it is defined for a Lagrangian submanifold in cotangent bundles.

In §3, we describe a property of the Maslov index of Lagrangian submanifolds

in a cotangent bundle.

We recall here the Maslov quantization condition and state the Eigenvalue

Theorem which guarantees the existence of a particular series of eigenvalues of
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the Laplacian under the assumption of the Lagrangian submanifold satisfying

Maslov quantization condition.

We also recall typical examples of Lagrangian submanifolds relating with par-

ticular 1-forms which imply some class of Lagrangian submanifold for nilmanifolds

and a case of contact manifolds.

In §4, we show a type of examples of Lagrangian submanifolds in the cotangent

bundle of the sphere, which are not tori, and determine the Maslov class explicitly

following our definition of Maslov index for arbitrary paths. The method here is

elementary and gives a guide for the case of the Cayley projective plane.

In §5, we present Lagrangian submanifolds in the Cayley projective plane, which

are not tori and determine the cases satisfying Maslov quantization condition.

All the examples of Lagrangian submanifolds in this paper are not exact (see

for example [21] on the exact Lagrangian submanifolds).

2. Maslov index and Maslov class

We recall a definition of the Maslov class for symplectic vector bundles with

two Lagrangian subbundles based on the Maslov index defined for arbitrary paths.

The description given here is a summary given in the Appendix of [8] (see also

[11], [20], [7], [8], [5]).

2.1. Maslov index for paths. We consider Cn as a typical symplectic vector

space with the anti-symmetric and non-degenerate bilinear form ω(n)(z, w)

ω(n)(z, w) := Im
(∑

ziwi

)
=
∑

xn+iyi − xiyn+i,

where z = (z1, . . . , zn) = (x1, x2, . . . , xn ; xn+1, . . . , x2n), zi = xi + xn+i

√
−1 and

w = (w1, . . . , wn) = (y1, y2, . . . , yn ; yn+1, . . . , y2n), wi = yi + yn+i

√
−1.

For h a real subspace in Cn, we denote by h◦ the (real) subspace defined by

h◦ = {z ∈ Cn | ω(n)(z, v) = 0 for any v ∈ h}.

So, a subspace h is called isotropic if h ⊂ h◦ and h is a Lagrangian subspace if

h = h◦.

The subspaces

λRe :=
{
(x1, . . . , xn ; 0, . . . , 0)

}
and

λIm :=
{
(0, . . . , 0 ; xn+1, . . . , x2n)

}
are typical Lagrangian subspaces and Cn ∼= Rn⊕Rn = λRe⊕λIm. We understand

that the Euclidean inner product in Cn is the real part < z,w >E:= Re(
∑
ziwi) =∑2n

i=1 xiyi and the Hermitian inner product on Cn is the sum < z,w >H=<

z,w >E +
√
−1ωn(z, w).
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We denote the space of all Lagrangian subspaces in Cn by Λ(n) (called the

Lagrangian-Grassmanian) , which, as is well known, is isomorphic to the quotient

space U(n)/O(n) and denote the projection map by

πΛ : U(n) → Λ(n), U(n) 3 U 7−→ U(λIm).

Let λ ∈ Λ(n) and denote by Pλ the orthogonal projection operator Pλ : Cn →
λ ⊂ Cn. Then the operator τλ := 2Pλ − Id is an involution with λ as the 1-

eigenspace and the orthogonal complement λ⊥ is the −1-eigenspace. Also for

U ∈ U(n) let’s denote the operator τλ ◦ U∗ ◦ τλ by θλ(U). In particular, if λ =

λRe and we express the matrix U =
(
uij
)
with the standard orthonormal basis

{ei}ni=1 of Cn (in the sense of Hermitian inner product), then θλRe
(U) = U , that

is U =
(
uij
)
.

For each λ ∈ Λ(n), let Sλ : Λ(n) → U(n) be a map, called Souriou map, defined

by

Sλ : Λ(n) 3 µ 7−→ U ◦ θλ(U) ∈ U(n),

where µ = U(λIm). In fact this does not depend on the operator U for µ = U(λ⊥),

since we have an expression

(2.1) Sλ(µ) = −τµ ◦ τλ.

Let UM be a subset in U(n) defined by

(2.2) UM = {U ∈ U(n) | U + Id is not invertible }.

Then we call the subset defined by

(2.3) Mλ := Sλ
−1(UM) =

{
µ ∈ Λ(n)

∣∣∣ µ⋂λ 6= {0}
}

the “Maslov cycle” passing through a Lagrangian subspace λ ∈ Λ(n).

Let γ : [0, 1] → Λ(n) be a continuous curve. We define an intersection number

of γ and Mλ in the following way (cf. [7]):

We can find a partition {0 = t0 < t1 < t2 < · · · < tℓ = 1} of the interval [0, 1]

and a set of small positive numbers { 0 < εj � 1 }ℓj=0 satisfying the condition that

for j = 0, . . . , ℓ− 1

(2.4)

{
the values e

√
−1(π± εj) are not eigenvalues of the operators

Sλ(γ(t)) for t ∈ [tj , tj+1].

This condition means that the eigenvalues of the operators {Sλ(γ(t))}tj≤t≤tj+1

included in the “arc” {e
√
−1s | π−εj < s < π+εj} stay there when the parameter

t ∈ [tj , tj+1]. Then we define an integer Mas({γ}, λ), and call it Maslov index for

path {γ} with respect to the Maslov cycle Mλ by



LAGLANGIAN SUBMANIFOLDS 5

Definition 2.1.

Mas({γ}, λ) : =
ℓ−1∑
j=0

the number of the eigenvalues of the operator Sλ(γ(tj+1))

in the arc
{
e
√
−1s

∣∣ π ≤ s < π + εj
}

− the number of the eigenvalues of the operator Sλ(γ(tj))

in the arc
{
e
√
−1s

∣∣ π ≤ s < π + εj
}
.

Then, this integer satisfies

M-ind(1) :The integer Mas({γ}, λ) does not depend on the partition {tj} of

the interval [0, 1] and the small positive numbers {εj} satisfying the

condition (2.4),

M-ind(2) :It is a homotopy invariant for the paths with the fixed end points,

M-ind(3) :It satisfies the additivity under catenations of paths.

We express the Maslov index Mas({γ}, λ) for a special case of a continuously

differentiable curve {γ(t)}|t|≪ϵ in Λ(n) defined on a small interval (−ϵ, ϵ) in terms

of the number of eigenvalues of the derivative of the curve.

We may assume λ = λRe and for small |t| < ϵ, γ(t) ∩ λIm = {0}. By this

assmption there is a differential family of symmetric operator At : Rn = λRe →
Rn = λIm such that

γ(t) = {x⊕ At(x) | x ∈ λRe} := G(At).

Then,

Proposition 2.2. [20] Assume d
dt
At|t=0

is non-singular on KerA0, then

(i) Mas({γ(t)}0≤t≤ϵ′ , λ)

= the number of the positive eigenvalues of Aϵ′

− number of the positive eigenvalues of A0

= the number of positive eigenvalues of
d

dt
A0

|t=0
:= Ȧ0 on Ker (A0)

(ii) Mas({γ(t)}−ϵ′′≤t≤ϵ′ , λ)

= the number of the positive eigenvalues of Aϵ′

− the number of the positive eigenvalues of Aϵ′′

= sign Ȧ0 on Ker (A0)

where 0 < ϵ′, ϵ′′ � ϵ.
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This is proved based on the following Lemmas 2.3 and 2.4 and (ii) is a conse-

quence of (i) by the additivity under catenation. The condition 0 < ϵ′, ϵ′′ � ϵ

requires that the point t at which γ(t) ∩ λRe 6= {0} is only t = 0 in the interval

[−ϵ′′, ϵ′]. The non-singularity assumption for Ȧ0 in Proposition above guarantees

this property. Hence if t = 0 is the only such a point that γ(t) ∩ λRe 6= {0} in

the interval [−ϵ′′, ϵ′], then the first equality in (i) (also the first equality in (ii) )

in the above Proposition holds.

Lemma 2.3. Let {At}|t|≪ϵ be a continuously differentialble family of k × k sym-

metric matrices defined for small t such that

the matrix Ȧ0 is non-singular on Ker (A0).(2.5)

Then for sufficiently small 0 < t � ϵ, “the number of the positive eigenvalues of

At” coincides with

“the number of the positive eigenvalues of Ȧ0 on Ker (A0)” + “the number of the

positive eigenvalues of A0 on the orthogonal complement of Ker (A0)” and

“the number of the negative eigenvalues of At” coincides with

“the number of the negative eigenvalues of Ȧ0 on Ker (A0) + “the number of the

negative eigenvalues of A0 on the orthogonal complement of Ker (A0)”.

Also for sufficiently small 0 > t� −ϵ, it holds similar statements.

Under the same assumption in Propoistion 2.2 we have

Lemma 2.4. For Lagrangian subspace γ = {x⊕ A(x) | x ∈ λRe}

Sλ(γ) = (Id+ A2)−1
(
A2 − Id)− 2

√
−1A

)
.

The proof of this is given by deternining the Souriou map Sλ(µ) using the

formula (2.1) for the case λ = λRe and µ = {x ⊕ A(x) | x ∈ λRe}. Then we can

see easily the behaviour of the eigenvalues of the unitary matrices SλRe
(γ(t)) from

the form above, which gives the proof of Proposition 2.2.

Remark 1. The definition of Maslov index for arbitrary paths given in [20] is

described as the sum of signature of the matrices Ȧti under the assupmtion in

Proposition 2.2 and includes artificial modification terms at the end points t = 0, 1

which are not necessary. However this formula is useful to calculate the Maslov

index around the points satisfying condition in Proposition 2.2 for many of con-

crete cases. In [11] it was noticed for the first time that the Maslov index can be

defined for any path without any modification term, and in [5] and [7] it was given

based on the arguments in [19] including infinite dimensional symplectic Hilbert

space cases.

2.2. Maslov class. Let Ψ : E → X be a symplectic vector bundle over a space

X with dimΨ−1(x) = dimEx = n, where we assume X is path connected, locally

simply path connected. We denote the anti-symmetric non-degenerate bilinear

form on each fiber of E by ωE, then we can install an inner product < · , · > on
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E “compatible” with the symplectic structure ωE in such a sense that there exists

an almost complex structure J : E → E, J2 = −Id, Ψ ◦ J = Ψ such that

ωE(u, v) =< J(u), v >, < J(u), J(v) >=< u, v >, u, v ∈ Ex.

We assume that there exist two Lagrangian sub-bundles λ and µ in E, that is

the fiber at each point x is a Lagrangian subspace in Ex.

Let {γ(t)} be a continuous curve, γ : [0, 1] → X. We divide it into small

segments
{
{γ(t)}ti≤t≤ti+1

}
in such a way that there exist a finite open covering

{Oi}i around the curve {γ(t)} and γ([ti, ti+1]) ⊂ Oi, such that the vector bundle

E has local trivializations

ψi : Oi × Cn ∼= Ψ−1(Oi)

satisfying the property that by this trivialization for each x ∈ Oi, (x, λIm) is

mapped to ψi(x, λIm) = λx = Ψ−1(x)
⋂
λ. Then we can assign an integerMas (λ,µ)({γ(t)})

for an arbitrary continuous path γ : [0, 1] → X as the sum

(2.6) Mas (λ,µ)({γ(t)}) =
∑
i

Mas({ψi
−1(µγ(t))}ti≤t≤ti+1

, λIm).

This quantity can be defined for all paths and has the properties:

M(1) : The definition does not depend on the partition of the interval [0, 1],

nor the local trivializations of the symplectic vector bundle E

satisfying conditions above nor does not depend on the inner

product installed which satisfies the “compatibility properties”,

M(2) : Homotopy invariance for paths with fixed end points,

M(3) : Additivity under catenations.

Hence, let π : X̃ → X be the universal covering space of X consisting of homotopy

classes of paths starting from a fixed initial point x0 ∈ X. Then we can define a

function

(2.7) Mas (λ,µ) : X̃ −→ Z, X̃ 3 {γ} 7−→ Mas (λ,µ)({γ(t)}).

Especially its restriction to the fiber π−1(x0) defines a homomorphism:

Mas (λ,µ) : π
−1(x0) ∼= π1(X) → Z.

Consequently, we have a cohomology class ∈ H1(X,Z), which we denote by m(λ,µ)

and is called the “Maslov class” of the pair of Lagrangian subbundles λ and µ.

Note that m(λ,µ) = −m(µ,λ).

Proposition 2.5. It will be apparent if the intersection λ ∩ µ on a curve {γ(t)}
is trivial bundle, then Mas(λ,µ)({γ}) = 0

Definition 2.6. Let χπ/2 be the representation χπ/2 : Z → U(1), n 7→ eπ/2
√
−1n

and we define an associated complex line bundle Lm(λ,µ)
on X to the principal

bundle π : X̃ → X through the representation π1(X)
Mas(λ,µ)−→ Z

χπ/2−→ U(1). It is

called Maslov line bundle.
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Let E be symplectic a vector bundle on a space X with two Lagrangian sub-

bundle F and G. Let f : Y → X be a continuous map, then we can define the

symplectic vector bundle f∗(E) on Y with two Lagrangian subbundles f∗(F ) and

f∗(G). Let f̃ : Ỹ → X̃ be the map between their universal covering spaces Ỹ and

X̃. Then

(2.8) Mas(F,G) ◦ f̃ =Mas(f∗(F ),f∗(G)).

3. Lagrangian submanifolds

We treat Lagrangian submanifolds in the cotangent bundle, Maslov quantiza-

tion condition and an existence crieterion which also will be useful to see the cases

of nilmanifolds.

3.1. Lagrangian submanifolds in cotangent bundles. We consider a typical

case of symplectic vector bundle with two Lagrangian subbundles. Namely, let L

be a Lagrangian submanifold in a cotangent bundle T ∗(X). Then the restriction of

the tangent bundle T (T ∗(X)) to L is a symplectic vector bundle together with two

Lagrangian subbundles, the tangent bundle T (L) of L itself, and the restriction

of Ker (dπX) to L, the vertical subbundle with respect to the projection map

πX : T ∗(X) → X, which we denote by VL.

Hence we have a cohomology class m(
T (L),Ker dπX

) as a homomorphism

m(
T (L),Ker dπX

) : π1(L) → Z,

which we will denote simply by mL.

Proposition 3.1. Let L be a compact Lagrangian submanifold in T ∗
0 (X). Then

for any positive real number c0 > 0 and any closed curve {γ} in L,

(3.1) < mL, γ >=< mc0·L, c0 · γ > .

Proof. Since the Maslov index < mL, γ > for a path {γ} is defined based on the

data {
dim

(
Tγ(t)(L)

⋂ (
Ker dπX

)
γ(t)

)}
t∈ [0, 1]

and it holds that

dim
(
Tγ(t)(λ)

⋂ (
Ker dπX

)
γ(t)

)
= dim

(
Tc0·γ(t)(c0 · λ)

⋂ (
Ker dπX

)
c0·γ(t)

)
for any t, since the dilation c0· : T ∗

0 (X) −→ T ∗
0 (X), (x; ξ) 7−→ c0·(x; ξ) = (x; c0·ξ),

c0 > 0, is a diffeomorphism. Hence (3.1) holds. □

Let M and N be two Riemannian manifolds and assume there exists a submer-

sion φ :M → N . Then we have the injective bundle map on M :

dφ∗ : φ∗(T ∗(N)) → T ∗(M),
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and the principal symbol σ∆N : T ∗(N) → R can be seen as a function on

φ∗(T ∗(N)). If this submersion φ is Riemannian, then we have a relation

σ∆M ◦ dφ∗ = σ∆N .

In [8] we explained a behavior of Lagrangian submanifolds under Riemannian

submersion. Here we state a Proposition which will cover the construction of

Lagrangian submanifolds for the complex and quaternion projective spaces from

those of spheres.

Proposition 3.2. Let L ⊂ T ∗
0 (N) be a Lagrangian submanifold, then φ∗(L) ⊂

T ∗
0 (M) is also a Lagrangian submanifold.

Hence the construction of Lagrangian submanifolds in T ∗
0 (N) reduces to find

a Lagrangian submanifold in T ∗
0 (M) under suitable conditions. For example, if

φ :M → N is a fiber bundle, then a Lagrangian submanifold in T ∗
0 (M) invariant

under the action of the structure group can be descented to T ∗
0 (N).

3.2. Maslov quantization condition and the Eigenvalue Theorem. Let L

be a Lagrangian submanifold in the cotangent bundle T ∗(X), where we always

assume that X is a closed oriented Riemannian manifold without boundary. Then

the Maslov quantization condition to a Lagrangian submanifold L is stated in

Mas[1] ∼ Mas[3]:

(3.2)



Mas[1]: σ∆X
∣∣L ≡ EL = constant (> 0) on L, σ∆X is the principal

symbol of the Laplacian ∆X ,

Mas[2]: for any (smooth) closed curve {γ} in L,
1

2π

∫
γ

θX − 1

4
< mL, γ > ∈ Z,

where mL is a cohomology class ∈ H1(L,Z), called Maslov

class of L which was explained in §2 precisely,

Mas[3]: there exists a positive invariant measure dµL on L, that

is the measure dµL is a nowhere vanishing highest degree

differential form invariant under the geodesic flow action

(we will treat only orientable L).

Note that by the condition Mas[1], L itself is invariant under the geodesic flow

action.

In the paper [23] it was proved that an existence theorem of eigenvalues of

the Laplacian under the existence of a Lagrangian submanifold in the puncture

cotangent bundle T ∗
0 (X) satisfying all three conditions Mas[1] ∼ Mas[3] (we cite

it as Eigenvalue Theorem):

Theorem 3.3. We assume that there is a compact Lagrangian submanifold L ⊂
T ∗
0 (X) satisfying the three conditions Mas[1] ∼ Mas[3]. Let dL be the smallest

integer in {1, 2, 4} such that dL
2π

· L is “integral”, that is the cohomology class of
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the restriction of the canonical one form to L is in the cohomology group H1(L,Z).
Then there exists a sequence {λk}∞k=0 of eigenvalues of the Laplacian ∆X such that∣∣λk − EL(dLk + 1)2

∣∣ ≤ C : bounded.

The proof is given by constructing a Fourier integral operator A : L2(U(1)) →
L2(X) ([24], [14],[3], [12], [23],[8]) (quasi-) commuting with the Laplacians on U(1)

and X. We noted in [8] that the theorem is also valid for the sub-Laplacian with

an additional assumption that the Lagrangian submanifold does not intersect with

the characteristic variety for the sub-Laplacian. Especially if the sub-Laplacian is

compatible with the Laplacian through Riemannian submersion, then the existing

eigenvalues correspond each other.

One main step for constructing the Fourier integral operator A is to construct

a conic Lagrangian submanifold Λ ⊂ T ∗
0 (U(1)) × T ∗

0 (X) from the compact La-

grangian submanifold L ⊂ T ∗
0 (X) assumed in the Eigenvalue Theorem.

In fact, the Malsov quatization condition implies that there is a constant c0 > 0

such that c0 · L is an integral Lagrangian submanifold in T ∗
0 (X), that is the de

Rham cohomology class [c0 · θX |L] ∈ H1(c0 · L,Z) ∼= H1(L,Z), the restriction of

the canonical one form θX (dθX = 0 on L) to c0 ·L is integral. Now we may replace

c0 · L by just L. Then the local solutions {fi} of the equation dfi = θX defines

an integral 1-cochain cij := fi − fj on L. Then it defines a map φ : L −→ U(1),

L 3 (x, ξ) 7−→ e2π
√
−1fi , which is a submersion, since dfi at (x, ξ) ∈ L is equal

to ξ 6= 0. Let Λ = {(x, τ · ξ, φ(x, ξ), τ) | (x, ξ) ∈ L, τ > 0}. Then this is

a conic Lagrangian submanifold in T ∗
0 (X) × T ∗

0 (U(1)) and determines the phase

function of A(micro-locally). Such construction of a conic Lagrangian submanifold

in T ∗
0 (U(1))× T ∗

0 (X) from a compact Lagrangian submanifold in T ∗
0 (X) connects

Maslov theory of canonical operator and Hörmander theory of Fourier integral

operators ([25], [3]). In this context, it will be interesting to find many concrete

examples of Lagrangian submanifolds in the cotangent bundle of various famous

(named) manifolds.

Remark 2. This Lagrangian submanifold Λ is not a form of the normal bundle of

a ”incidence relation”, which appears in the theory of Radon transformation ([2],

[9]).

3.3. Closed 1-form and Lagrangian submanifold. Let X be a closed man-

ifold and φ : X → U(1) a submersion to U(1) = {e
√
−1s | s ∈ R} ∼= S1. Then

the set of local solutions {fi}, where each real valued function fi is defined on

an open set Ui and satisfying the equation e2π
√
−1 fi = φ, defines an one-Čeck

cochain {cji = fj − fi} of the Z-valued constant sheaf ZX on X and globally

defines a closed one-form η (:= dfj on Uj, which also coincides with φ∗(ds)). The

cohomology class [η] ∈ H1
dR(X) is integral.

Conversely, let α ∈ H1
dR(X) and assume

(1) α is in H1(X,Z), that is α is an integral class, and

(2) there is a nowhere vanishing closed one-form η representating the class α.
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Then, the set of local solutions {fi}, dfi = η on Ui where {Ui} is an open

covering of X, defines a submersion φ : X → U(1), φ := e2π
√
−1 fi on Ui, since by

assumptions fj − fi ∈ Z and dfi does not vanish at any point.

Hence

Proposition 3.4. Let X be a closed manifold. Then there is a submersion φ :

X → U(1), if and only if there is a closed one-form η such that its cohomology

class [η] is integral and the one-form η never vanish.

So, we assume that there is a closed one-form η satisfying the above conditions

(1) and (2).

Then the image η(X), η : X → T ∗(X), is included in T ∗
0 (X) and by the fact

that η∗(θX) = η, η(X) is a Lagrangian submanifold and also coincides with the

pul-back φ∗(ds(S1)) of the Lagrangian submanifold ds(S1) = {(e
√
−1s, 1) | s ∈

R} ⊂ T ∗(S1) ∼= S1 × R.
Moreover we see that the cohomology class [θX |η(X)] of the restriction of the

Liouville one-form to η(X) is in H1(η(X),Z) ∼= H1(X,Z) ⊂ H1
dR(X).

In this case, since the tangent bundle T (η(X)) is transversal to the vertical

subbundle Vη(X) at all the points in η(X)
(
Vη(X) = Ker(dφ) |η(X)

)
, the Maslov

class mη(X) is zero. So if the dimension dimH1(X) = 1, then a constant multiple

c0η(X) satisfys the condition Mas[2].

It will be seen that the above case is a special case of Proposition 3.2. Here we

take L as U(1)× c0 ⊂ T ∗(U(1)) ∼= U(1)× R.

3.4. Nilmanifolds. In this subsection we treat a typical example satisfying the

equivalent condition explained in Proposition 3.4.

Let N be a simply connected nilpotent Lie group having a lattice Γ. Then

by Nomizu theorem (cf. [18]), the de Rham cohomology group H∗
dR(Γ\N) of the

compact nilmanifold Γ\N is isomorphic to the cohomology group of the corre-

sponding Lie algebra n through the induced map from the natural inclusion map

of the subcomplex consisting of left invariant differential forms on N to the Γ-left

action invariant differential forms, i.e., the de Rham complex on the nilmanifold

Γ\N. In particular, H1
dR(Γ\N) ∼= {η ∈ n∗ | η([X,Y ]) = 0, X, Y ∈ n}.

So by Malcev theorem ([17]), let {Xi} be a linear basis of the Lie algebra n such

that the structure constants {cki j}, [Xi, Xj] =
∑

cki jXk are all rational numbers,

then {exp Xi} generates a lattice. Let {ηi} be the dual basis of the space n∗ and

assume η1([n, n]) = 0. Then the space η1(N) = {(g, η1) | g ∈ N} ⊂ N × n∗ ∼=
T ∗(N) is a Lagrangian submanifold. In this case if we consider a left invariant

Riemannian metric on N, then the energy function is constant on η1(N) and the

transformed Haar measure on η1(N) by the map η1 : N → T ∗(N) is invariant

under the geodesic flow.

3.5. Contact manifold and Lagrangian submanifold. Let (M,α) be a com-

pact contact manifold with a contact form α (dimM = 2n + 1) and denote by
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Σα = { tα | t > 0 } ⊂ T ∗
0 (M), the cone bundle on M which is isomorphic to

M × R+. Then throught this isomorphism it holds

(3.3) (ωM
|Σα)

n+1 = (n+ 1)tn · dt ∧ α ∧ (dα)n.

Hence the cone Σα is a symplectic manifold with the symplectic form ωM
|Σα , the

restriction of the natural symplectic form ωM of T ∗(M) (and vise versa).

We assume that

[RP ] : the action generated by the Reeb vector field R reduces to the U(1)-free

action on M .

The vector field R is uniquley determined by the conditions that dα(R, •) ≡ 0

and α(R) ≡ 1. We may assume that the period is “2π”.

Under this assumption the orbit space becomes a symplectic manifold in a

natural way. In fact, let πα : M → M/U(1) =: O be the projection map to the

space of orbits, which is a U(1)-principal bundle and together with the Darboux’s

theorem for contact form, for any point q ∈ O we can find a local coordinates

(x1, . . . , xn, y1, . . . , yn) ∈ R2n defined on a small neighborhood V 3 q such that on

which we have a local trivialization

V := V × U(1) ∼= πα
−1(V ), (x1, . . . , xn, y1, . . . , yn ; e

√
−1s) ∈ R2n × U(1)

and the contact form α is expressed as α = ds +
∑
xidyi. The Reeb vector

field R is expressed as ∂/∂s in terms of this coordinates and the projection is

πα(x1, . . . , xn, y1, . . . , yn ; e
√
−1s) 7→ (x1, . . . , xn, y1, . . . , yn). The differential dα =∑

dxi ∧ dyi is invariant under the structure group action (= action generated by

the Reeb vector field). Hence it defines a symplectic structure ωO on the orbit

space O.

Let (x1
′, . . . , xn

′, y1
′, . . . , yn

′) be another Darboux coodinates defined on V ′ 3
q and on which we have a local trivialization V ′ × U(1) ∼= πα

−1(V ′) := V ′, then

on V ∩ V ′ we have ∑
xi dyi −

∑
xi

′ dyi
′ = ds− ds ′.

Since e
√
−1s = g · e

√
−1s ′

with a transition function g : V ∩ V ′ → U(1), also e
√
−1s ′

= h · e
√
−1s ′′

on V ′ ∩ V ′′ and so on, it holds that

e
√
−1s e−

√
−1s′ e

√
−1s′′ ≡ 1

on the intersection V ∩ V ′ ∩ V ′′. This implies that the symplectic form ωO

2π
is

integral, i.e., the cohomology class [ωO]
2π

∈ H2
dR(M) is in the image of the natural

map Ȟ2(M,Z) → H2
dR(M).

In this case, the maximal non-integrable subbundle Ker (α) = {Z ∈ T (M) | α(Z) =
0} defines a connection to the principal bundle πα : M → O and is bracket gen-

erating so that it defines a 2-step sub-Riemannian structure on M .

Now let L be a Lagrangian submanifold in O. Then from the expression (3.3)
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Proposition 3.5. The submanifold α(πα
−1(L)) is a U(1)-action invariant La-

grangian submanifold in Σα, where we regard α : M → Σα ⊂ T ∗
0 (M). Conversely

if Λ ⊂ M is U(1)-action invariant and α(Λ) is a Lagrangian submanifold in Σα,

then πα(Λ) is a Lagrangian submanifold.

Let Z be a compact symplectic manifold with an integral symplectic form 1
2π
ωZ ,

that is 1
2π
[ωZ ] is in the image of H2(Z,Z) ⊂ H2

dR(Z), then we can construct

a compact contact manifold such that the action generated by the Reeb vector

field satisfies the condition [RP ] and come back to O ∼= Z. These are explained

precisely in [16].

Next we put one more strong assumption on the contact manifold M together

with the assumption [RP ]:

[PF ] : There exists a closed Riemannian manifold X with a Riemannnian met-

ric g(·, ·) and its dual inner product Qg on T ∗(X). When we realize the cotangent

sphere bundle S∗(X) as a submanifold S∗(X) ∼= {(x, ξ) ∈ T ∗(X) | Qg(ξ, ξ) = 1}
with the contact form θX |S∗(X), then we assume that there exists an isomorphism

C : S∗(X) →M keeping the contact structures, i.e., C∗(α) = θX |S∗(X).

Hence under these two assumptions [RP ] and [PF ] we may restate Prorposition

3.5

Proposition 3.6. Let L be a Lagrangian submanifold in O, then πα
−1(L) is a

Lagrangian submanifold in T ∗
0 (X).

These two assumptions [RP ] and [PF ] says that the manifold X must be a

SC2π-manifold and at the moment we may mention only spheres (including Zoll

surfaces) and projective spaces as such manifolds.

4. Sphere case

In this section we consider the Lagrangian submanifolds for spheres. For this

purpose we base on the defining equation of the (punctured) cotangent bundle

T ∗
0 (S

n) as a quadrics in Cn+1. This gives us a similar method to deal with the

Cayley projective plane case.

We can realize the cotangent bundle of the sphere Sn ⊂ Rn+1 as

T ∗(Sn) = {(x, ξ) ∈Rn+1 × Rn+1 |
|x| = 1, < x, ξ >= 0 }

by identifying tangent and cotangent bundles using the standard Riemannian

metric and we will denote hence force by XS := {(x, ξ) ∈ T ∗(Sn) | ξ 6= 0 }, the
punctured cotangent bundle T ∗

0 (S
n).

By this realization of the cotangent bundle, the Liouville one-form θS
n
=: θS

and the symplectic form ωSn
= dθS =: ωS are expressed as

θS =
∑

ξi dxi, ω
S =

∑
dξi ∧ dxi,

that is these can be seen as restrictions of those for Rn+1 × Rn+1.
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Then by the map τS : XS −→ Cn+1

τS : (x, ξ) 7−→ z = |ξ|x+
√
−1ξ

the punctured cotangent bundle XS = T ∗
0 (S

n) is identified with the quadrics

Q2 =

{
z ∈ Cn+1\{0}

∣∣ z2 = n∑
i=0

zi
2 = 0

}
and the symplectic form is expressed as

(4.1) ωS = (τS)
∗(√2

√
−1 ∂∂ |z|

)
, |z| =

√∑
|zi|2,

which says that the space T ∗
0 (S

n) has a Kähler manifold structure. By this realiza-

tion of the space T ∗
0 (S

n), the geodesic flow is expressed as the scalar multiplication

of complex numbers of mudulus 1. Moreover let

σ =
2

|z|2
∑
j

zjdz0 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn,

then σ is a nowhere vanishing holomorphic n-form on T ∗
0 (S

n)
τS∼= Q2 and

(4.2) σ ∧ σ =
√
−1

n
2n/2+3|z|n−2 (−1)n(n−1)/2

n!
(ωS)n

through the identification by the map τS. These relations are found in [?].

We consider an n+ 1-dimensional submanifold Z in Q2 defined by

Z = {e
√
−1τ (s0, . . . , sp,

√
−1tp+1, . . . ,

√
−1tn) | si, tj ∈ R, and

∑
si

2 =
∑

tj
2 > 0},

where we assume p ≥ 2 and n− p ≥ 3 (hence n ≥ 5).

Let H : R× Rp+1 × Rn−p be a map

H : R× Rp+1 × Rn−p 3 (τ, s, t) 7−→ e
√
−1τ (s,

√
−1t) ∈ Cn+1,

then the map H restricted to an n + 1-dimensional submanifold R × {(s, t) ∈
Rp+1 × Rn−p | |s| = |t| > 0} := R × H is a covering map to Z and can be

descended to a double covering map from U(1)×H to Z, which we can see from

the expession of the manifold Z. Then

τS
−1(Z)

(4.3)

=
{( s0 cos τ√

|s|2 cos2 τ + |t|2 sin2 τ
, . . . ,

sp cos τ√
|s|2 cos2 τ + |t|2 sin2 τ

,

−tp+1 sin τ√
|s|2 cos2 τ + |t|2 sin2 τ

, . . . ,
−tn sin τ√

|s|2 cos2 τ + |t|2 sin2 τ
;

s0 sin τ, . . . , sp sin τ, tp+1 cos τ , . . . , tn cos τ
)}
.

We put |s| = |t| = 1 and denote Z1 := H(U(1)× Sp × Sn−p−1), then
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Proposition 4.1. L1 := τS
−1(Z1) ∼= (U(1) × Sp × Sn−p)/Z2 is a geodesic flow

action invariant Lagrangian submanifold in T ∗
0 (S

n). The Z2-action on U(1) ×
Sp × Sn−p is given by

U(1)× Sp × Sn−p 3 (e
√
−1τ , s, t) 7−→

(e
√
−1(τ+π),−s,−t) = −(e

√
−1τ , s, t) ∈ U(1)× Sp × Sn−p.

Proof. By definition it will be apparent of the geodesic flow invariance. Since,

τS
−1(Z1) = L1

(4.4)

= {(s0 cos τ, . . . , sp cos τ,−tp+1 sin τ, . . . ,−tn sin τ ;

s0 sin τ, . . . , sp sin τ, tp+1 cos τ, . . . .tn cos τ) | τ ∈ R,
∑

si
2 =

∑
tp+j

2 = 1},

The symplectic form is expressed as

(4.5)

ωS =
∑

d(si sin τ) ∧ d(si cos τ)−
∑

d(tp+j cos τ) ∧ d(tp+j sin τ)

=
∑

sidτ ∧ dsi −
∑

tp+jdtp+j ∧ dτ =
1

2
dτ ∧ d

(∑
si

2 +
∑

tp+j
2
)
= 0,

which shows that the submanifold L1 is a Lagrangian submanifold. □
The group π1(L1) ∼= Z (this can be seen by the fact that the space R × Sp ×

Sn−p−1 is the universal covering space of L1 and the transformatin R × Sp ×
Sn−p−1 3 (τ, x, y) → (τ + π,−x,−y) ∈ R × Sp × Sn−p−1 generates the covering

transformation group) and the loop {c0(τ)}0≤τ≤2π,

(4.6) c0(τ) = (x0(τ), ξ0(τ)) = (cos τ, 0, . . . , 0︸ ︷︷ ︸
n−1

,− sin τ ; sin τ, 0, . . . , 0︸ ︷︷ ︸
n−1

, cos τ) ∈ L1,

is twice of the generator of π1(L1).

Proposition 4.2. The action integral

1

2π

∫
c0(τ)

θS = −1.

Proof. By the explicit expression of the curve we have∫
c0(τ)

θS =

∫ ∑
ξ0i (τ) dx

0
i (τ) =

∫ 2π

0

sin τd(cos τ)−cos τd sin τ = −
∫ 2π

0

dτ = −2π.

□
Next, we determine the Maslov class mL1 of L1. For this purpose, first we

determine the points (x0(τ), ξ0(τ)) = c0(τ) at which Tc0(τ)(L1) ∩ VL1
c0(τ) 6= {0}

(see 3.1 for VL1).

Let F be map F : R× Rp+1 × Rn−p −→ Rn+1 × Rn+1 by

F : R× Rp+1 × Rn−p 3 (τ, s, t) 7−→
(4.7)
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(s0 cos τ, . . . , sp cos τ,−tp+1 sin τ, . . . ,−tn sin τ ;
s0 sin τ, . . . , sp sin τ, tp+1 cos τ, . . . .tn cos τ),

then F({(τ, s, t) | |s| = |t| = 1}) = L1. On the curve {p(τ)}τ∈R,

p(τ) = (τ, 1, 0, . . . , 0︸ ︷︷ ︸
n−1

, 1) ∈ R× Rp+1 × Rn−p,

the map F is periodic with the period 2π, F(p(τ)) = c0(τ) and

dFp(τ)

(
∂

∂τ

)
= −

∑
si sin τ

∂

∂xi
−
∑

tp+j cos τ
∂

∂xp+j

+
∑

si cos τ
∂

∂ξi
−
∑

tp+j sin τ
∂

∂ξp+j

= − sin τ
∂

∂x0
− cos τ

∂

∂xn
+ cos τ

∂

∂ξ0
− sin τ

∂

∂ξn
∈ Tc0(τ)(L1),

dFp(τ)

(
∂

∂si

)
= cos τ

∂

∂xi
+ sin τ

∂

∂ξi
, i = 0, . . . , p,

dFp(τ)

(
∂

∂tp+j

)
= − sin τ

∂

∂xp+j

+ cos τ
∂

∂ξp+j

, j = 1, . . . , n− p.

Let α, βi and δj ∈ R with the conditions that
∑p

i=0 βisi = 0 and
∑n−p

j=1 δjtp+j = 0,

that is we take

α
∂

∂τ
+
∑

βi
∂

∂si
+
∑

δj
∂

∂tp+j

∈ Tp(τ)(R× Sp × Sn−p−1),

where β0 = 0 = δn−p, and α, βi (i ≥ 1) and δj (1 ≤ j ≤ n − p − 1) can be taken

arbitrarily. The tangent space Tc0(τ)(L1) = dFp(τ)(Tp(τ)(U(1) × Sp × Sn−p−1)) is

expressed as

Tc0(τ)(L1) =
{
α
(
− sin τ

∂

∂x0
− cos τ

∂

∂xn
+ cos τ

∂

∂ξ0
− sin τ

∂

∂ξn

)(4.8)

+

p∑
i=1

βi
(
cos τ

∂

∂xi
+ sin τ

∂

∂ξi

)
+

n−p−1∑
j=1

δj
(
− sin τ

∂

∂xp+j

+ cos τ
∂

∂ξp+j

) ∣∣∣ α, βi, δj ∈ R
}
.

If a tangent vector

α
∂

∂τ
+

p∑
i=1

βi
∂

∂si
+

n−p−1∑
j=1

δj
∂

∂tp+j

∈ Tp(τ)(U(1)× Sp × Sn−p−1)

satisfies

dπSn

c0(τ) ◦ dFp(τ)

(
α
∂

∂τ
+

p∑
i=1

βi
∂

∂si
+

n−p−1∑
j=1

δj
∂

∂tp+j

)
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= −α sin τ
∂

∂x0
− α cos τ

∂

∂xn
+

p∑
i=1

βi cos τ
∂

∂xi
−

n−p−1∑
j=1

δj sin τ
∂

∂xp+j

= 0,

then α = 0 and

(1) at the points c0(τ) for τ 6= π/2 nor 3π/2, that is cos τ 6= 0 we have

βi cos τ = 0 (i = 1, . . . , p), δj sin τ = 0 (j = 1, . . . , n− p− 1), and

(2) at the points c0(τ) for τ 6= 0 nor π, that is sin τ 6= 0

βi cos τ = 0 (i = 1, . . . , p), δj sin τ = 0 (j = 1, . . . , n− p− 1).

Hence except four points of c0(τ) at τ = 0, π/2, π, 3π/2, the intersection

Tc0(τ)(L1) ∩ VL1
c0(τ) = {0} and non-trivial intersections are given as

Case 1: τ = 0 or τ = π,

Tc0(τ)(L1) ∩ VL1
c0(τ) =

{ ∑
1≤j≤n−p−1

δj
∂

∂ξp+j

}
Case 2: τ = π/2 or 3π/2,

Tc0(τ)(L1) ∩ VL1
c0(τ) =

{ ∑
1≤i≤p

βi
∂

∂ξi

}
.

To determine the Malsov class of the Lagrangian submanifold L1, it is enough

to calculate the Maslov indeces on the small intervals including these four points.

We follow our definition of the Malsov index (2.1) and determine the value by

Proposition 2.2 and Lemma 2.3.

So, before the calculation we notice a Lemma whose proof will be apparent.

Lemma 4.3. Let E be a symplectic vector space and F ⊂ E a symplectic subspace.

Let λ be a Lagrangian subspace of E and assume there is a continuous curve of

Lagrangian subspaces {γ(t)}|t|≤ϵ≪1 of E. These satisfy the conditions (R1), (R2)

and (R3) such that

(R1) λF := λ ∩ F is a Lagrangian subspace of F,

(R2) the curve of the intersections γF (t) := γ(t) ∩ F is a continuous family of

Lagrangian subspaces of F and,

(R3) the intersection λ ∩ γ(t) ⊂ F for each t.

Then,

(4.9) Mas({γ(t)}|t|≤ϵ, λ) =Mas({γF (t)}|t|≤ϵ, λF ).

Let {ei, fi}ni=1 be the standard symplectic basis of the symplectic vector space

E := R2n with the symplectic form ω2n, that is they satisfy the conditions

ω2n(ei, ej) = ω2n(fi, fj) = 0, ω2n(ei, fj) = −ω2n(fj, ei) = δi j.

Now we show that our cases can be proved by applying the Lemma 4.3 above.

We must treat the two Cases 1 and 2 separately.
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Case 1:

Let τ be around τ = 0 or π, say |τ | ≤ ϵ � 1, or |τ − π| ≤ ϵ � 1. Then the

tangent space Tc0(τ)(X
S) at c0(τ) are characterized as

Tc0(τ)(X
S)

(4.10)

=
{ n∑

i=0

ai
∂

∂xi
+

n∑
i=0

bi
∂

∂ξi

∣∣∣ a0 cos τ = an sin τ, (an + b0) cos τ = (bn − a0) sin τ
}

=
{ n−1∑

i=1

ai
∂

∂xi
+ an

(
tan τ

∂

∂x0
+

∂

∂xn
− 1

cos2 τ

∂

∂ξ0

)
+

n−1∑
i=1

bi
∂

∂ξi
+ bn

(
tan τ

∂

∂ξ0
+

∂

∂ξn

)}(4.11)

Based on these expressions we define symplectic isomorphisms Sτ : E → Tc0(τ)(X
S)

by 

Sτ : ei 7−→ ∂
∂xi
, for i = 1, . . . , n− 1,

Sτ : en 7−→ cos τ
{
tan τ ∂

∂x0
+ ∂

∂xn
− 1

cos2 τ
∂
∂ξ0

}
,

Sτ : fi 7−→ ∂
∂ξi
, for i = 1, . . . , n− 1,

Sτ : fn 7−→ cos τ
{
tan τ ∂

∂ξ0
+ ∂

∂ξn

}
.

Since

{
∂

∂xi
,
∂

∂ξj

}n

i,j=0

are symplectic basis of the space T (T ∗(Rn+1)), it will be

easily seen that these maps are symplectic, that is it leaves the symplectic forms.

Then the symplectic subspace F in E spanned by the basis vectors {ei, fi}i≤n−1

is maped to the subspace Sτ (F) = Fc0(τ), where Fc0(τ) is a symplectic subspace

in Tc0(τ)(X
S) spanned by the basis vectors

{
∂

∂xi
,
∂

∂ξi

}n−1

i=1

for each |τ | � π/2 or

|τ − π| � π/2.

Also by (4.11) the vertical subbundle VL1
c0(τ) = Ker (dπSn

c0(τ)), π
Sn

: T (XS) →
Sn, is characterized as

VL1
c0(τ) =

{ n−1∑
i=1

bi
∂

∂ξi
+ bn

(
tan τ

∂

∂ξ0
+

∂

∂ξn

) ∣∣∣ bi ∈ R,
}

Hence let λE be a Lagrangian subspace in E spanned by {fi}ni=1, then VL1
c0(τ) =

Sτ (λE).

For each τ , let γ(τ) be a subspace in E spanned by the vectors

{cos τ ·ei+sin τ ·fi (i = 1, . . . , p),− sin τ ·ep+j+cos τ ·fp+j (j = 1, . . . , n−p−1), en+tan τ ·fn}

then Sτ (γ(τ)) = Tc0(τ)(L1).
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Now we prove that these subspaces λE, F and {γ(τ)}|τ |≤ϵ≪π/2 (also {γ(τ)}|τ−π|≤ϵ≪π/2

satisfy the conditions (R1) ∼ (R3) in Lemma 4.3.

Proposition 4.4. (R1) It will be apparent that the intersection F∩λE =: λF is

generated by {f1, . . . , fn−1} and is a Lagrangian subspace in F.

(R2) γ(τ) ∩ F =: γF (τ) is a curve of Lagrangian subspace of F.

(R3) γ(τ) ∩ λE ⊂ F.

Proof. Since the intersection γ(τ) ∩ F is spanned by the vectors

{cos τ ·ei+sin τ ·fi (i = 1, . . . , p), − sin τ ·ep+j+cos τ ·fp+j (j = 1, . . . , n− p− 1)},

we know that γ(τ)∩F is a family of Lagrangian subspace in F, which shows (R2)

condition.

(R3) condition will be seen by the expression that

γ(τ) ∩ λE = {0} or a subspace spanned by {fp+j}n−p−1
j=1 for τ = 0 or π,

which is a subspace in F. □
Then

Proposition 4.5. The curve {γ(τ)}|τ |≤ϵ and a fixed Lagrangian subspace λE in E

are mapped to the curves of Lagrangian subspaces {Tc0(τ)(L1)}|τ |≤ϵ and {VL1
c0(τ)}

in Tc0(τ)(X
S). Hence by α-construction

Mas({Tc0(τ)(L1)}|τ |≤ϵ, {VL1
c0(τ)}|τ |≤ϵ) =Mas({γE(τ)}|τ |≤ϵ, λE).

Also by applying Lemma 4.3

Mas({γE(τ)}|τ |≤ϵ, λE) =Mas({γF (τ)}|τ |≤ϵ, λF ).

The explicit determination of the valueMas({γF (τ)}|τ |≤ϵ, λF ) is done as follows:

Let µ be the Lagrangian subspace of F spanned by the basis vectors {ei+fi}n−1
i=1 ,

then µ and λF are transversal, and also µ and γF (τ) are transversal when |τ | ≤
ϵ� π/2 and the subspace γF (τ) is spanned by the basis vectors

cos τ · ei + sin τ · fi (i = 1, . . . , p),− sin τ · ep+j + cos τ · fp+j (j = 1, . . . , n− p− 1).

For each τ we define a map

Aτ : λF → µ,

Aτ (fi) =
cos τ

sin τ − cos τ
(ei + fi) for i = 1, . . . , p,

Aτ (fp+j) =
− sin τ

sin τ + cos τ
(ep+j + fp+j) for j = 1, . . . , n− p− 1.

Then the space spanned by vectors {fi + Aτ (fi)}n−1
i=1 coincides with the subspace

γF (τ) and the map Aτ can be seen as a symmetric matrix

Aτ (τ) =

 cos τ
sin τ−cos τ

Ip O

O − sin τ
sin τ+cos τ

In−p−1,


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where Ik denotes the identity matrix of size k. Then by Lemma 2.3

Proposition 4.6.

Mas({γF (τ)}|τ |≤ϵ, λF ) = sign (Ȧ0) on Ker (A0) = 1 + p− n,

and

Mas({γF (τ)}|τ−π|≤ϵ, λF ) = sign (Ȧπ) on Ker (Aπ) = 1 + p− n.

The determination of the Maslov indeces around the points c0(π/2) and c0(3π/2)

can be carried out by the same way. We list the necessary data here. Assume

|τ − π/2| ≤ ϵ� π/2 or |τ − 3π/2| ≤ ϵ� π/2. Then

Tc0(τ)(X
S)

(4.12)

=
{
a0

( ∂

∂x0
+ cot τ

∂

∂xn
+

1

sin2 τ

∂

∂ξn

)
+

n−1∑
i=1

ai
∂

∂xi
+

n−1∑
i=1

bi
∂

∂ξi
+ b0

( ∂

∂ξ0
+ cot τ

∂

∂ξn

)}
The symplectic isomorphism Uτ : E → Tc0(τ)(X

S) is defined as

Uτ : ei 7−→ ∂
∂xi
, for i = 1, . . . , n− 1,

Uτ : en 7−→ sin τ
(

∂
∂x0

+ cot τ ∂
∂xn

+ 1
sin2 τ

∂
∂ξn

)
Uτ : fi 7−→ ∂

∂ξi
, for i = 1, . . . , n− 1,

Uτ : fn 7−→ sin τ
(

∂
∂ξ0

+ cot τ ∂
∂ξn

)
.

The vertical subbundle VL1
c0(τ) is

(4.13) VL1
c0(τ) =

{ n−1∑
i=1

bi
∂

∂ξi
+ b0

( ∂

∂ξ0
+ cot τ

∂

∂ξn

)}
The Lagrangian subspace F and λE are the same spaces with the first case. Then

Uτ (F) =
{ n−1∑

i=1

ai
∂

∂xi
+

n−1∑
i=1

bi
∂

∂ξi

}
.

For each τ , |τ − π/2| ≤ ϵ (or |τ − 3π/2| ≤ ϵ), let φ(τ) be a family of Lagrangian

subspaces of E spanned by the vectors

{cos τ · ei + sin τ · fi (i = 1, . . . , p),

− sin τ · ep+j + cos τ · fp+j (j = 1, . . . , n− p− 1), en − cot τ · fn},

then Uτ (φ(τ)) = Tc0(τ)(L1).

We can take the same Lagrangian subspace µ in F which is transversal to

φ(τ)∩F and when we express the space φ(τ)∩F as the graph of a map Bτ : λF → µ

the operator has the same expression of Aτ , so that finnaly we have
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Proposition 4.7.

Mas({Tc0(τ)(L1)}|τ−π/2|≤ϵ, {VL1
c0(τ)}|τ−π/2|≤ϵ) =Mas({φ(τ)}}|τ−π/2|≤ϵ ∩ F, λF )

= sign (Ȧπ/2) on Ker (Aπ/2) = −p,

and

Mas({Tcτ (L1)}|τ−π/2|≤ϵ, {VL1
c0(τ)}|τ−3π/2|≤ϵ) =Mas({φ(τ)}|τ−3π/2|≤ϵ ∩ F, λF )

= sign (Ȧ3π/2) on Ker (A3π/2) = −p.

Summing up these calculation we have

Proposition 4.8.

mL1 : π1(L1) ∼= Z −→ Z, 1 7−→ (1− n).

Corollary 4.9. For n = 4k + 3, then L1 satisfies the condition Mas[2].

For n = 4k + 2, then 1/2 · L1 satisfies the condition Mas[2].

For n = 4k + 1, then 2 · L1 satisfies the condition Mas[2].

For n = 4k, then 3/2 · L1 satisfies the condition Mas[2].

It will be clear that on L1 the principal symbol of the Laplacian is constant = 1

(Condition Mas[1]).

As for the condition Mas[3], there is a way to construct a measure on any

geodesic flow invariant Lagrangian submanifold in T ∗
0 (S

n) ∼= Q2 based on the

Kähler structure and the properties (4.1) and (4.2).

In fact, the property (4.2) says that |σ| is a nowhere vanishing half density on

the whole space Q2. If Λ is a U(1)-invariant Lagrangian subspace, then by the

characterization of Q2 and the relation (4.2) we can regard that the complexifica-

tion T ∗(Λ)⊗C is isomorphic to T ∗(Q2)|Λ considered as a complex vector bundle,

or it is the same thing that it is isomorphic to the restriction to Λ of the holo-

morphic part T ∗′(Q2) of the complexification T ∗(Q2) ⊗ C = T ∗′(Q2) ⊕ T ∗′′(Q2),

hence
n∧

(T ∗(Λ)⊗ C) =
( n∧

T ∗(Λ)
)
⊗ C ∼=

n∧
T ∗′(Q2)|Λ.

Then we can define a half density on Λ by restricting the half density |σ| to Λ.

5. Cayley projective plane

In this section we construct Lagrangian submanifolds in the cotangent bundle

of the Cayley projective plane satisfying Maslov quantization condition based on

our earlier works [7], [6],[8] and [1].

5.1. Octanion number field and Cayley projective plane. Let e0, . . . , e7 be

the standard basis of the octanion number field O, where e0 is the basis of the

center with respect to the octanionic multiplication law. Here we only recall some

properties of the octanion numbers what we need in the following sections(for

details see [24] and [7]).
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We define for x =
∑7

i=0 xiei ∈ O(xi ∈ R) its conjugation θ(x) by

θ : x 7−→ θ(x) = x0 −
7∑

i=1

xiei ∈ O.

This operation satisfies the relation

(5.1) θ(yz) = θ(z)θ(y).

We denote by J (3)

(5.2) J (3) :=

A =

 ξ1 z θ(y)

θ(z) ξ2 x

y θ(x) ξ3

 ∣∣∣ z, y, x ∈ O, ξ1, ξ3, ξ3 ∈ R

 ,

that is J (3) is a 3×3 ”symmetric” octanion matrices with the ”Jordan product”:

J (3) 3 A,B 7−→ A ◦B :=
AB +BA

2
∈ J (3).

This is called a Jordan algebra (over R).
When we consider the complexification C ⊗RO of the octanion number field,

the elements in C⊗RO is understood as
∑

ziei with the complex coefficients zi.

We will also use the expression of the (complex) octanion number as z =∑7
i=0 {z}iei, that is {z}i indicates the coefficient of z ∈ O (or z ∈ C ⊗R O)

of the basis ei.

We should disitinguish the conjugation θ(z) and complex conjugation z :=∑
ziei. These two satisfy the relation:

θ(z) = θ(z).

The inner product in O is defined as the Euclidean inner product:

(5.3) < x, y >O:=
7∑

i=0

xiyi

for x =
∑7

i=0 xiei and y =
∑7

i=0 yiei. This inner product is multiplicative:

(5.4) < xy, xy >=< x, x >< y, y > .

Also the inner product < ·, · >=< ·, · >J (3) in J (3) is defined by

(5.5) < A,B >:= tr(A◦B) =
3∑

i=1

ξiηi+2(< z, z′ >O + < y, y′ >O + < x, x′ >O)

for A =

 ξ1 z θ(y)

θ(z) ξ2 x

y θ(x) ξ3

 and B =

 η1 z′ θ(y′)

θ(z′) η2 x′

y′ θ(x′) η3

.

We also consider the complexification of this Jordan algebra, J (3)C := C⊗J (3),

with the elements in C ⊗RO. The inner products < ·, · >O and < ·, · >J (3) are

naturally extended to the complex bilinear form on C⊗RO and J (3)C respectively
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and we denote them with the same notations. Then the Hermitian inner products

are given as

z =
∑

ziei, z
′ =
∑

zi
′ei ∈ C⊗R O 7−→< z, z′ >=

∑
zizi

′,(5.6)

A,B ∈ J (3)C 7−→< A,B >∈ C,(5.7)

where B is the matrix with the complex conjugate elements:

B =

 η1 z′ θ(y′)

θ(z′) η2 x′

y′ θ(x′) η3

 .

We denote by |z| =
√
< z, z >O for z ∈ O, or for z ∈ C⊗RO by |z| =

√
< z, z >,

and ||A|| =
√
tr (A ◦ A) for A ∈ J (3) or ||A|| =

√
tr (A ◦ A) for A ∈ J (3)C for

their norms, respectively.

The Calyley projective plane P 2O is realized in J (3) as

(5.8) P 2O =
{
X ∈ J (3) | X2 = X, tr (X) = 1

}
.

The tangent bundle T (P 2O) is given as

(5.9) T (P 2O) =
{
(X,Y ) ∈ J (3)× J (3)

∣∣ X ∈ P 2O, X ◦ Y = 1/2 · Y
}
.

The tangent bundle T (P 2O) and the cotangent bundle T ∗(P 2O) are identfied by

the inner product < ·, · >J (3) following the identification T (J (3)) ∼= T ∗(J (3)),

that is we have an inclusion map T ∗(P 2O) −→ T ∗(J (3)):

T ∗(P 2O) −→ T (P 2O) −→ T (J (3)) −→ T ∗(J (3)).

Through this inclusion map the natural symplectic form on T ∗(J (3)) is pull-

backed to the natural symplectic form on T ∗(P 2O), so that we work on the tangent

bundle T (P 2O).

Under this isomorphism, we may express the canonical one form θP
2O on P 2O

in terms of the inner product < · , · >J (3) as

(5.10) θP
2O =

∑
ηidξi + 2

∑
aidxi + bidyi + cidzi =:< Y, dX >J (3),

where we express (X,Y ) ∈ T ∗(P 2O) as

X =

ξ1 z θ(y)

y ξ2 x

y θ(x) ξ3

 and Y =

 η1 c θ(b)

θ(c) η2 a

b θ(a) η3

 .

Theorem 5.1 ([7]). The puncture tangent bundle T0(P
2O) = T (P 2O)\{0} (hence

the punctured cotangent bundle T ∗
0 (P

2O) through the above identification) is real-

ized as a quadrics XO in the complexfied Jordan algebra J (3)C ∼= C27 (as a vector space):

(5.11) XO :=
{
A ∈ J (3)C | A2 = 0, A 6= 0

}
by the map

τO : T ∗(P 2O) 7−→ XO ⊂ J (3)C,
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τO : (X,Y ) 7−→ ||Y ||2X − Y 2 +
√
−1⊗ ||Y ||√

2
Y.(5.12)

Moreover by this map

Theorem 5.2 ([7]).

(5.13) τO
∗(
√
−2∂∂||A||1/2) = ωP 2O = dθP

2O,

where ωP 2O is the natural symplectic form of the cotangent bundle T ∗(P 2O) under

the identification T ∗(P 2O) ∼= T (P 2O).

The inverse τO
−1(A) = (X(A), Y (A)) ∈ J (3)× J (3) is given by

X(A) =
A+ A

2||A||
+
A ◦ A
||A||2

,(5.14)

Y (A) = −
√
−1(A− A)√

2||A||
.(5.15)

5.2. Lagrangian submanifold in T ∗
0P

2O. Let A =

 ξ1 z θ(y)

θ(z) ξ2 x

y θ(x) ξ3

 ∈

J (3)C. Then the condition for A ∈ XO is expressed in terms of each compo-

nent as

(ξ3 + ξ2)x+ θ(yz) = 0, (ξ1 + ξ3)y + θ(zx) = 0, (ξ2 + ξ1)z + θ(xy) = 0,

(5.16)

ξ1
2 + zθ(z) + θ(y)y = 0, ξ2

2 + θ(z)z + xθ(x) = 0, ξ3
2 + θ(x)x+ yθ(y) = 0.

(5.17)

Also we have one condition (see Proposition 4.1 in [1] or [7]):

trA = ξ1 + ξ2 + ξ3 = 0.(5.18)

Assume z and y are in O, that is z and y have real coefficients in the expression

z =
∑

ziei, y =
∑

yiei

and we assume

(5.19) θ(z)z + yθ(y) = |z|2 + |y|2 ≡ r2, r > 0.

Then we can solve the equations (5.16) and (5.17) in terms of (z, y) in two ways:

(1) from the first equation of (5.17) we have ξ1 = ±
√
−1r, then

(2) from the first equation of (5.16) we have x = ∓
√
−1

θ(yz)

r
.

Then the second equation in (5.17) is

ξ2
2 + |z|2 − |z|2|y|2

r2
= ξ2

2 + |z|2
(
r2 − |y|2

r2

)
= ξ2

2 +
|z|4

r2
= 0.
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Hence ξ2 = ±
√
−1 |z|2

r
and similarly ξ3 = ±

√
−1 |y|2

r
. If we take a solution ξ1 =√

−1r, then the condition (5.18) requires that

ξ2 = −
√
−1

|z|2

r
and ξ3 = −

√
−1

|y|2

r
, and x = −

√
−1

θ(yz)

r
.

Other set of solutions is given by

(5.20) ξ1 = −
√
−1r, ξ2 =

√
−1

|z|2

r
, ξ3 =

√
−1

|y|2

r
, and x =

√
−1

θ(yz)

r
,

and a relation with the first solutions is explained in Remark 3.

By using the first set of solutions of the equations (5.16) and (5.17), that is

(5.21) ξ1 =
√
−1r, ξ2 = −

√
−1

|z|2

r
, ξ3 −

√
−1

|y|2

r
=, x = −

√
−1

θ(yz)

r

we consider a submanifold L defined by

(5.22) L =



√
−1
√

|z|2 + |y|2 z θ(y)

θ(z) −
√
−1|z|2√

|z|2+|y|2
−
√
−1θ(yz)√
|z|2+|y|2

y −1
√
−1yz√

|z|2+|y|2
−
√
−1|y|2√

|z|2+|y|2


∣∣∣∣∣ (z, y) ∈ O2\{0},

 .

Then L is a conic (i.e., invariant under the R+-action) submanifold in XO isomor-

phic to R16\{0} and we have

Proposition 5.3.

τO
−1(L) := Λ

is a conic Lagrangian submanifold.

Proof. If A ∈ L, then

||A||2 = r2 +
|z|4

r2
+

|y|4

r2
+ 2

(
|z|2 + |y|2 + |y|2|z|2

r2

)
= 4r2.

By the formulas (5.14) and (5.15), for A ∈ L we have

X(A) =
A+ A

2||A||
+
A ◦ A
||A||2

=
1

4r

 0 2z 2θ(y)

2θ(z) 0 0

2y 0 0

+
1

4r2

2r2 0 0

0 2|z|2 2θ(yz)

0 2yz 2|y|2


=

 1
2

z
2r

θ(y)
2r

θ(z)
2r

|z|2
2r2

θ(yz)
2r2

y
2r

yz
2r2

|y|2
2r2

 ,(5.23)

Y (A) = −
√
−1

A− A√
2||A||

=
1

2
√
r

2r 0 0

0 −2|z|2
r

−2θ(yz)
r

0 −2yz
r

−2|y|2
r

 =
1√
r

r 0 0

0 − |z|2
r

− θ(yz)
r

0 −yz
r

− |y|2
r

 .

(5.24)
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Since a closed submanifold of the same dimension with the base manifold in a

punctured cotangent bundle is a conic Lagrangian submanifold, if and only if the

canonical one-form θP
2O vanishes on it ([15]).

So by using the above formulas (5.23) and (5.24), the canonical one form θP
2O

is expressed on Λ in terms of the coordinates (z, y) as

θP
2O

|Λ =< Y (A), dX(A) >J (3)

= − |z|2

r
√
r
d

(
|z|2

2r2

)
− |y|2

r
√
r
d

(
|y|2

2r2

)
− 2

7∑
i=0

{yz}i
r
√
r
d

(
{yz}i
2r2

)
(see (5.10)).

Then

−2θP
2O

|Λ =
|z|2

r
√
r

(
r2d|z|2 − |z|2dr2

r4

)
+

|y|2

r
√
r

(
r2d|y|2 − |y|2dr2

r4

)
+ 2

7∑
i=0

{yz}i
r
√
r

(
r2d{yz}i − {yz}idr2

r4

)
=

1

2r3
√
r
· dr4 − 1

r
√
r
dr2 =

2√
r
dr − 2√

r
dr = 0,

where we used the multiplicative property of the norm |yz| = |y||z| and replace

all the term r2 with r2 = |z|2 + |y|2 (see (5.4)). □

Put

(5.25) Sr := {A ∈ L | ||A|| = 2r = 2
√

|z|2 + |y|2 = constant > 0}.

By definition this is isomorphic to 15-dimensional sphere S15 and Sr is an isotropic

submanifold. Also L ∼= Sr × R+.

Let

(5.26) φ : R× Sr 3 (t, A) 7−→ e2π
√
−1t · A ∈ XO.

For φ(t, A) = e2π
√
−1t · A,

X(e2π
√
−1t · A) = e2π

√
−1t · A+ e−2π

√
−1t · A

2||A||
+
A ◦ A
||A||2

=

 − sin 2πt
2

cos 2πt·z
2r

cos 2πt·θ(y)
2r

cos 2πt·θ(z)
2r

|z|2 sin 2πt
2r2

sin 2πt·θ(yz)
2r2

cos 2πt·y
2r

sin 2πt·yz
2r2

|y|2 sin 2πt
2r2

+
1

4r2

2r2 0 0

0 2|z|2 2θ(yz)

0 2yz 2|y|2



=
1

2

1− sin 2πt cos 2πt·z
r

cos 2πt·θ(y)
r

cos 2πt·θ(z)
r

(1+sin 2πt)|z|2
r2

(1+sin 2πt)·θ(yz)
r2

cos 2πt·y
r

(1+sin 2πt)·yz
r2

(1+sin 2πt)|y|2
r2

 ,(5.27)

Y (e2π
√
−1t · A) = −

√
−1 · e

2π
√
−1tA− e−2π

√
−1tA√

2||A||



LAGLANGIAN SUBMANIFOLDS 27

=
1√
r

 r cos 2πt sin 2πt · z sin 2πt · θ(y)
sin 2πt · θ(z) − |z|2 cos 2πt

r
− cos 2πt

r
θ(yz)

sin 2πt · y − cos 2πt
r

· yz − |y|2 cos 2πt
r

 .(5.28)

Then we can see from the expressions (5.27) and (5.28),

Proposition 5.4. The space R× Sr is the universal covering of the space

φ(R× Sr) ∼= U(1)× Sr.

Since the multiplications by {e2π
√
−1t} is the geodesic flow action of the space P 2O

expressed via the map τO, the Hamiltonian (= the metric function = tr (A◦A) ) is
constant ||A||2 ≡ 4r2 on the space φ(R×Sr), so that the submanifold τO

−1(φ(R×
Sr)) is a geodesic flow invariant compact Lagrangian submanifold.

We put

(5.29) Λr := τO
−1(φ(R× Sr))

Remark 3. Let σ =

1 0 0

0 −1 0

0 0 −1

 and define a map on J (3) (also on J (3)C)

by

(5.30) σ̃ : J (3) 3 A 7−→ σAσ,

then σ̃ is an automorphism of the Jordan algebra J (3) (also of the complexfied

Jordan algebra J (3)C) and the space XO is invariant, σ̃(XO) = XO. Then for

A ∈ Sr, −σAσ is the matrix constructed from the solutions (5.20).

The space Λ−r := −τO−1 (σ̃(φ(R× Sr))) is also a Lagrangian submanifold and

Λr ∩ Λ−r = ∅.

Although there are several choices of the variables instead of (y, z), from now

on we only deal with the manifold Λr.

Let A0 =

√
−1r re0 0

re0 −
√
−1r 0

0 0 0

 ∈ Sr, and define a loop {ℓ1(t)} in Λr by

ℓ1 : [0, 1] 3 t 7−→ τO
−1

e2π√−1t ·

√
−1r r 0

r −
√
−1r 0

0 0 0


=
(
X(e2π

√
−1t · A0), Y (e2π

√
−1t · A0)

)

=

1

2
·

1− sin 2πt cos 2πt 0

cos 2πt 1 + sin 2πt 0

0 0 0

 ,
1√
r
·

r cos 2πt r sin 2πt 0

r sin 2πt −r cos 2πt 0

0 0 0

 ∈ Λr.

(5.31)

Then,
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Lemma 5.5.

ℓ1
∗(θP

2O)(t) = −2π
√
rdt.(5.32)

This can be seen by the expression (5.31) as

θP
2O

|ℓ1(t) =
√
r cos 2πt · (−π cos 2πt)dt−

√
r cos 2πt · (π cos 2πt)dt

+ 2
√
r sin 2πt · (−π sin 2πt)dt

= −2π
√
rdt.

Proposition 5.6. The action integral

(5.33)

∫
ℓ1

θP
2O =

∫ 1

0

−2π
√
rdt = −2π

√
r.

Let mΛr be the Maslov class of the Lagrangian submanifold Λr.

Proposition 5.7.

(5.34) <mΛr , ℓ1 >= −22.

We consider the projection map q : Λr −→ P 2O on the loop {ℓ1(t)}t∈[0,1], where

q(ℓ1(t)) = X(e2π
√
−1t · A0) =

1

2
·

1− sin 2πt cos 2πt 0

cos 2πt 1 + sin 2πt 0

0 0 0

 ,

and determine the caustics on the loop {ℓ1(t)} in the Lagrangian submanifold Λr.

By the expressions (5.22) and (5.27), the projection map q|Λr does not degen-

erate at t 6= 1/4, 3/4 mod Z. In fact for such t the function 1−sin 2πt is monotone

and the function cos 2πt does not vanish. Hence we can see that the map

{(t, z, y) | t 6= 1/4, 3/4 mod Z, |z|2 + |y|2 = r2} 3 (t, z, y) 7−→

q ◦ τ−1
O (e2

√
−1πt · A) = X(e2

√
−1πt · A)

=
1

2

1− sin 2πt cos 2πt·z
r

cos 2πt·θ(y)
r

cos 2πt·θ(z)
r

(1+sin 2πt)|z|2
r2

(1+sin 2πt)·θ(yz)
r2

cos 2πt·y
r

(1+sin 2πt)·yz
r2

(1+sin 2πt)|y|2
r2


is locally diffeomorphic.

Hence, we consider a neighborhood of the points

ℓ1(1/4) =

0 0 0

0 1 0

0 0 0

 ,
√
r

0 1 0

1 0 0

0 0 0

 , and

ℓ1(3/4) =

1 0 0

0 0 0

0 0 0

 ,
√
r

 0 −1 0

−1 0 0

0 0 0

 ,
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for the determination of the Malsov index of the loop {ℓ1(t)}. The condition for

X =

 s1 c θ(b)

θ(c) s2 a

b θ(a) s3

 ∈ P 2O is given in terms of the components as

(5.35)



(s3 + s2)a+ θ(bc) = a,

(s1 + s3)b+ θ(ca) = b,

(s2 + s1)c+ θ(ab) = c,

s1
2 + cθ(c) + θ(b)b = s1,

s2
2 + θ(c)c+ aθ(a) = s2,

s3
2 + θ(a)a+ bθ(b) = s3,

trX = s1 + s2 + s3 = 1.

where a, b, c ∈ O, si ∈ R. They are rewritten as

(5.36)


s1a = θ(bc), s2b = θ(ca), s3c = θ(ab),

(s1 − 1/2)2 + cθ(c) + θ(b)b = (s1 − 1/2)2 + |c|2 + |b|2 = 1/4,

(s2 − 1/2)2 + θ(c)c+ aθ(a) = (s2 − 1/2)2 + |c|2 + |a|2 = 1/4,

(s3 − 1/2)2 + θ(a)a+ bθ(b) = (s3 − 1/2)2 + |a|2 + |b|2 = 1/4.

We consider local coordinates around the point

X(e2
√
−1πt · A) = 1

2

1− sin 2πt cos 2πt·z
r

cos 2πt·θ(y)
r

cos 2πt·θ(z)
r

(1+sin 2πt)|z|2
r2

(1+sin 2πt)·θ(yz)
r2

cos 2πt·y
r

(1+sin 2πt)·yz
r2

(1+sin 2πt)|y|2
r2


with |t− 1/4| � 1 and |t− 3/4| � 1.

[I] t = 1/4 case.

So we solve the equations (5.36) in terms of a and c with |a| � 1, |c| � 1. The

components b, s1, s2, s3 are

s2(a, c) = 1/2 +
√

1/4− |a|2 − |c|2 > 1/2,

b(a, c) =
θ(ca)

s2
,

s1(a, c) = 1/2−
√

1/4− |b|2 − |c|2 = 1/2−

√
1/4− ||c|

2|a|2
s22

− |c|2 < 1/2,

s3(a, c) = 1− s1 − s2.

PutW1 = {(a, c) ∈ O×O | |a|2+|c|2 � 1} and with these solutions (b, s1, s2, s3)

we consider the map G1 : W1 → P 2O

(a, c) 7−→ X =

s1(a, c) c θ(b(a, c))

θ(c) s2(a, c) a

b(a, c) θ(a) s3(a, c)


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and put W̃1 = G1(W1), where G1(0, 0) =

0 0 0

0 1 0

0 0 0

. Let (α, γ) ∈ O × O be the

dual coordinates of (a, c), then

dG1 : W1 ×O2 ∼= q−1(W̃1),

which is understood as

(a, c, α, γ) 7−→ (X,Y ) =

s1(a, c) c θ(b(a, c))

θ(c) s2(a, c) a

b(a, c) θ(a) s3(a, c)

 ,

 t1 γ θ(β)

θ(γ) t2 α

β θ(α) t3


where the components (t1, t2, t3, β) are given by solving the equation

XY + Y X = Y

with the variables (a, c, α, γ).

This equation are expressed in terms of the components as

(5.37)



s1t1 + cθ(γ) + θ(b)β + t1s1 + γθ(c) + θ(β)b = t1,

s1γ + ct2 + θ(b)θ(α) + t1c+ γs2 + θ(β)θ(a) = γ,

s1θ(β) + cα + θ(b)t3 + t1θ(b) + γa+ θ(β)s3 = θ(β),

θ(c)γ + s2t2 + aθ(α) + θ(γ)c+ t2s2 + αθ(a) = t2,

θ(c)θ(β) + s2α + at3 + θ(γ)θ(b) + t2a+ s3α = α,

bθ(β) + θ(a)α + s3t3 + βθ(b) + θ(α)a+ t3s3 = t3.

Although the solutions β, t1, t2, t3 in terms of the variables (a, c, α, γ) are ob-

tained by differentiate the corresponding variables b = b(a, c), s1 = s1(a, c), s2 =

s2(a, c), s3(a, c), for example we calculate d b(a(δ),c(δ))
dδ

∣∣δ=0
where a and c are func-

tions of a temporary variable δ, (|δ| � 1) and by replacing ȧ(0) = α, and ċ(0) = γ.

Also we can solve these algebraic equations by the following order

t2 =
θ(c)γ + θ(γ)c+ aθ(α) + αθ(a)

1− 2s2
,

β =
θ(cα + γa)− t2b

s2
,

t1 =
cθ(γ) + γθ(c) + θ(b)β + θ(β)b

1− 2s1
,

t3 = t1 − t2.

Of course, by the definition of the matrix Y these two solutions coincide.

By the map dG1 the subbundle at the point (0, 0, α, γ) ∈ W1 × O2 ∈ q−1(W̃1)

and the vertical subbundle V(0,0,α,γ)(Λr) ⊂ T (q−1(W̃1)) are isomorphic, for the

determination of the Maslov index of the curve {ℓ1(t)} when it across the caustics,

it is enough to calculate in the space W1 ×O2.
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Let z = (z0, . . . , z7) = (z0, z
′) ∼=

∑
ziei ∈ R8 ∼= O and y = (y0, . . . , y7) ∼=∑

yiei ∈ R8 ∼= O, where we put z0 =
√
r2 − |z′|2 − |y|2 and define a map R :

(t, z′, y) −→ (a, c, α, γ) by

R(t, z′, y) = (a0, . . . , a7, c0, . . . , c7, α0, · · · , α7, γ0, · · · , γ7)

=

(
(1 + sin 2πt)

2r2
· θ(yz), cos 2πt

2r
· z, − cos 2πt

r
√
r

· θ(yz), sin 2πt√
r

· z
)
.

Then τO ◦ G1 ◦ R(t, 0, 0) = e2π
√
−1t · A0 and its differential at (t, z′, y) are

dR(t,z′,y)

(
∂

∂t

)
=
π cos 2πt

r2

7∑
i=0

{θ(yz)}i
(
∂

∂ai

)
− π sin 2πt

r

7∑
i=0

{z}i
(
∂

∂ci

)

− 2π sin 2πt

r
√
r

7∑
i=0

{θ(yz)}i
(

∂

∂αi

)
+

2π cos 2πt√
r

7∑
i=0

{z}i
(
∂

∂γi

)
,

dR(t,z′,y)

(
∂

∂zi

)
=

1 + sin 2πt

2r2

7∑
j=0

∂{θ(yz)}j
∂zi

(
∂

∂aj

)
+

cos 2πt

2r

(
∂z0
∂zi

(
∂

∂c0

)
+

(
∂

∂ci

))

− cos 2πt

r
√
r

7∑
j=0

∂{θ(yz)}j
∂zi

(
∂

∂αj

)
+

sin 2πt√
r

(
∂z0
∂zi

(
∂

∂γ0

)
+

(
∂

∂γi

))
,

dR(t,z′,y)

(
∂

∂yi

)
=

1 + sin 2πt

2r2

7∑
j=0

∂{θ(yz)}j
∂yi

(
∂

∂aj

)
− cos 2πt

r
√
r

7∑
j=0

∂{θ(yz)}j
∂yi

(
∂

∂αj

)
.

Here note that
∂z0
∂zi
∣∣z′=0

= 0, so that especially we have

dR(t,0,0)

(
∂

∂t

)
= −π sin 2πt

(
∂

∂c0

)
+ 2π

√
r cos 2πt

(
∂

∂γ0

)
,

dR(t,0,0)

(
∂

∂zi

)
=

cos 2πt

2r

(
∂

∂ci

)
+

sin 2πt√
r

(
∂

∂γi

)
, i = 1, . . . , 7,

dR(t,0,0)

(
∂

∂y0

)
=

(1 + sin 2πt)

2r

(
∂

∂a0

)
− cos 2πt√

r

(
∂

∂α0

)
,

dR(t,0,0)

(
∂

∂yi

)
= −(1 + sin 2πt)

2r

(
∂

∂ai

)
+

cos 2πt√
r

(
∂

∂αi

)
, i = 1, . . . , 7.

The Maslov index of the line segment, when it acrosses the vertical subspace

Vℓ1(1/4) at (a, c) = (0, 0) is the sum of each such value in the symplectic subspaces

spanned by the symplectic bases

H0 =

{(
∂

∂c0

)
,

(
∂

∂γ0

)}
,

Hi =

{(
∂

∂ci

)
,

(
∂

∂γi

)}
, i = 1, . . . 7,
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H7+i =

{(
∂

∂ai

)
,

(
∂

∂αi

)}
, i = 0, . . . 7.

Since the vectors R(1/4,0,0)

(
∂
∂t

)
and R(1/4,0,0)

(
∂
∂yi

)
(i = 0, . . . 7) are transversal to

the vertical space Vℓ1(1/4) and the derivative
d cos 2πt
sin 2πt

dt
∣∣t=1/4

< 0

Proposition 5.8. The Maslov index of the line segment {ℓ1(t)}|t−1/4|≪1 with re-

spect to the vertical subbundle Vℓ1(1/4), when t varies from 1/4 − ϵ to 1/4 + ϵ is

−7.

[II] t = 3/4 case

In this case cos 2πt · z and cos 2πt · y both vanish when t = 3/4, and also

s1 =
1−sin 2πt

2
> 1/2 when t is close to 3/4, we consider the local coordinates

P2 : P
2O 3 X =

 s1 c θ(b)

θ(c) s2 a

b θ(a) s3

 7−→ (b, c) ∈ O2 ∼= R16.

In fact, as the same way for the case of t = 1/4 we have explicit solutions s1, a

and s2 (hence s3) in terms of the coordinates (c, b), when |b|2 + |c|2 � 1:

s1 = 1/2 +
√
1/4− |b|2 − |c|2 > 1/2,

a =
θ(bc)

s1
=

θ(bc)

1/2 +
√

1/4− |b|2 − |c|2
,

s2 = 1/2−
√
1/4− |a|2 − |c|2 < 1/2, and

s3 = 1− s1 − s2.

Let W2 ⊂ O2 be an small open subset around the point (0, 0) on which we have

the above solutions (s1, a, s2, s3) in terms of (c, b) ∈ W2 and define a map G2 :

W2 3 (c, b) 7−→

 s1 c θ(b)

θ(c) s2 a

b θ(a) s3

 with these solutions in the matrix elements.

We denote G2(W2) := W̃2 ⊂ P 2O and satisfies

G2 ◦ P2 = Id on W̃2.

The point ℓ1(3/4) ∈ q−1(W̃2), hence points {ℓ1(t)}|t−3/4|≪1 ⊂ q−1(W̃2).

As before we identify

q−1(W̃2) ∼= T ∗(W̃2) ∼= W2 × R16 ∼= T (W2)

and denote (γ, β) the dual coordinates of the local coordinates (c, b). The La-

grangian submanifold Λr ∩q−1(W̃2) on this coordinates neighborhood W̃2 is given

τO
−1 ({φ(t, A) | |t− 3/4| � 1, A ∈ Sr}) .
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Then it is expressed on W2 ×O2 = W2 × R8 × R8 as{
(c, b, γ, β) =

(
cos 2πt

2r
z,

cos 2πt

2r
y,

sin 2πt√
r

z,
sin 2πt√

r
y

) ∣∣∣ |t− 3/4| � 1, |z|2 + |y|2 = r2
}
.

Now we can work in this expression of the Lagrangian submanifold Λr on W̃2.

Then the curve ℓ1 is expressed as

ℓ1(t) =

(
cos 2πt

2r
re0, 0,

sin 2πt√
r

re0, 0

)
=

(
cos 2πt

2
, 0, . . . , 0,

√
r sin 2πt, 0, . . . , 0

)
.

Hence gain as before the case of [I], we work on the coordinates (t, z1, . . . , z7, y0, . . . , y7)

by expressing z0 =
√
r2 −

∑7
i=1 zi

2 − |y|2 and denote the map

T : (t, z′, y) = (t, z1, . . . , z7, y0, . . . , y7) 7→ P2 ◦ φ(t, z0, z1, . . . , z7, y0, . . . , y7)

When we identify the tangent space Tφ(t,z,y)(Λr) with the spaceW2×O2 ∼= W2×R16

through the map (differential of the graph map G2)

S : (t, z′, y) 7→ (c, b, γ, β) =

(
cos 2πt

2r
z,

cos 2πt

2r
y,

sin 2πt√
r

z,
sin 2πt√

r
y

)
,

where we put z0 =
√
r2 − |z′|2 − |y|2 is spanned by the basis vectors

dS(t,z′,y)

(
∂

∂t

)
= − π sin 2πt

r

7∑
i=0

zi

(
∂

∂ci

)
− π sin 2πt

r

7∑
i=0

yi

(
∂

∂bi

)

+
2π cos 2πt√

r

7∑
i=0

zi

(
∂

∂γi

)
+

2π cos 2πt√
r

7∑
i=0

yi

(
∂

∂βi

)
dS(t,z′,y)

(
∂

∂zi

)
=

cos 2πt

2r

(
∂z0
∂zi

(
∂

∂c0

)
+

(
∂

∂ci

))
+

sin 2πt√
r

(
∂z0
∂zi

(
∂

∂γ0

)
+

(
∂

∂γi

))
, (i = 1, . . . , 7),

dS(t,z′,y)

(
∂

∂yi

)
=

cos 2πt

2r

(
∂

∂bi

)
+

sin 2πt√
r

(
∂

∂βi

)
, (i = 0, . . . , 7).

Especially on the curve ℓ1 around t = 3/4, they are spanned by basis vectors

dS(t,0,0)

(
∂

∂t

)
= −π sin 2πt

(
∂

∂c0

)
+ 2π

√
r cos 2πt

(
∂

∂γ0

)
,

dS(t,0,0)

(
∂

∂zi

)
=

cos 2πt

2r

(
∂

∂ci

)
+

sin 2πt√
r

(
∂

∂γi

)
,

dS(t,0,0)

(
∂

∂yi

)
=

cos 2πt

2r

(
∂

∂bi

)
+

sin 2πt√
r

(
∂

∂βi

)
.
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The spaces Gi, G7+i, (i = 0, . . . , 7), each spanned by symplectic basis vectors{(
∂

∂ci

)
,

(
∂

∂γi

)}
and

{(
∂

∂bi

)
,

(
∂

∂βi

)}
are 2-dimensional symplectic sub-

spaces and give the decompositions of the tangent space T(t,0,0)(W2 × O2) ∼= R32

invariant along the curve {ℓt}3/4−ϵ<t<3/4+ϵ.

In the space G0 the tangent space

T(t,0,0)(S((3/4− ϵ, 3/4 + ϵ)× {(z′, y) | |z′|2 + |y|2 � 1})

is transversal to the vertical space spanned by ∂
∂β0

so that the Maslov index of the

line segment {ℓt}3/4−ϵ<t<3/4+ϵ is zero.

From the expression of the curve {ℓt}3/4−ϵ<t<3/4+ϵ in each subspace Gi, i ≥ 1

and G7+j, j ≥ 0 we know that the Maslov index are all −1, so that totally the

Maslov index of the curve {ℓt}1/4−ϵ<t<1/4+ϵ is −15.

Finally we have

Proposition 5.9. The Maslov index of the loop {ℓ1} with respect to the vertical

subbundle of the projection map q : T ∗P 2O → P 2O is −22.

Then the Maslov quantization condition requires that

1

2π

∫
ℓ1

θP
2O − 1

4
<mΛr , ℓ1 >∈ Z,

which in our case of Λr is

−
√
r +

22

4
∈ Z.

Hence

Theorem 5.10. When r =
(
11+2k

2

)2
for k ∈ Z, the Lagrangian submanifold

satisfies the Maslov quantization condition.

Proof. The existence of the invariant measure is shown by two ways:

(1) The geodesic flow action is periodic, so that we can prove the existence of

geodesic flow invariant measure by integrating any measure.

(2) Since the space XO has a Calabi-Yau structure, that is the canonical line

bundle is holomorphically trivial by a nowhere vanishing holomorphic 16-form,

the absolute section of this holomorphic 16 form restricted to any Lagrangian

submanifold defines a half density on it. □

References

[1] K. Baba, K. Furutani, Calabi-Yau structure and Bargmann type transformation on the

Cayley projective plane, submitted.

[2] S. S. Chern, On integral geometry in Klein spaces, Annals of Math., Vol. 43,178–189, 1942.

[3] J. J. Duistermaat, Oscillatory Integrals, Lagrange Immersions and Unfolding of Singulari-

ties, Comm. Pure and Appl. Math. 27 (1974), 207–281.

[4] D. Betounes, Kaluza-Klein geometry, Differential Geom. and its Applications 1 (1991),

77–88.



LAGLANGIAN SUBMANIFOLDS 35

[5] B. Booß–Bavnbek and K. Furutani, The Maslov index – a functional analytical definition

and the spectral flow formula, Tokyo J. Math. 21 (1998), 1–34.

[6] K. Furutani A Kähler structure on the punctured cotangent bundle of the Cayley projective

plane, Jean Leray’99 Conference Proceedings, pp. 163–182, in Math. Phy. Studies 24(2003),

Kluwer academic publishers.

[7] K. Furutani, Fredholm-Lagrangian-Grasmannian and the Maslov index, J. Geom. Phys. 51

(2004), 269–331.

[8] K. Furutani, M. Tamura, Riemann submersion and Maslov quantization condition, Applied

Analysis and Optimization, 2, No. 3(2018), 373–401.

[9] K. Furutani, Radon transformation and Fourier integral operators, to appear in Annals of

Mathematical Science and Applications.

[10] A. Gadbled, Obstructions to the existence of monotone Lagrangian embeddings into cotan-

gent bundles of manifolds fibered over the circle, Ann. Inst. Fourier, Grenoble 59, 3 (2009),

1135–1175.
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