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ABSTRACT

The kth module of a surface-knot of a genus g in the 4-sphere is the kth
integral homology module of the infinite cyclic covering of the surface-knot
complement. The reduced first module is the quotient module of the first
module by the finite sub-module defining the torsion linking. It is shown that
the reduced first module for every genus g is characterized in terms of properties
of a finitely generated module. As a by-product, a concrete example of the
fundamental group of a surface-knot of genus g which is not the fundamental
group of any surface-knot of genus g−1 is given for every g > 0. The torsion part
and the torsion-free part of the second module are determined by the reduced
first module and the genus-class on the reduced first module. The third module
vanishes. The concept of an exact leaf of a surface-knot is introduced, whose
linking is an orthogonal sum of the torsion linking and a hyperbolic linking.
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1. Introduction
A surface-knot is a closed (connected oriented) surface F with genus g(≥ 0)

smoothly embedded in the 4-sphere S4. Let E = E(F ) = cl(S4 \ N(F )) be the
exterior of a surface-knot F , where N(F ) = F ×D2 is a normal disk bundle of F in
S4, where the section F ×1 of the circle bundle ∂N(F ) = ∂E = F ×S1 of F is chosen
so that the natural homomorphism H1(F × 1;Z) → H1(E;Z) = Z is the zero map.
Let proj : Ẽ → E be the infinite cyclic connected covering belonging to the kernel
of the canonical epimorphism π1(E, x0) → H1(E;Z) = Z. Then the section F × 1
of ∂E lifts to the section F × 0 of ∂E = F × R. Let Λ = Z[Z] = Z[t, t−1] be the
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integral group ring of the infinite cyclic covering transformation group < t > of Ẽ
with generator t identified with the meridian generator of F in H1(E;Z) = Z. The
kth surface-knot module (or simply the kth module of a surface-knot F in S4 is the
kth integral homology group Ak(F ) = Hk(Ẽ;Z) considered as a finitely generated
Λ-module. For a finitely generated Λ-module H, let TH be the Λ-torsion part of H
and BH = H/TH, the Λ-torsion-free part of H. Let DH be the Λ-submodule of TH
consisting of every element x with fi(t)x = 0 (i = 1, 2, . . . , s) for a coprime element
system fi(t) ∈ Λ (i = 1, 2, . . . , s), which is the maximal finite Λ-submodule of TH,
and TDH = TH/DH. Let Eq(H) = ExtqΛ(H,Λ) be the qth extension cohomology
Λ-module of H. Since Λ is a Noetherian ring of global dimension 2, Eq(H) is always
finitely generated and Eq(H) = 0 (q ≥ 3). In particular, E0(H) = homΛ(H,Λ) is a
free Λ-module, whose Λ-rank is defined to be the Λ-rank of H. It is a standard fact
that there is a natural short exact sequence

0 → E1(BH) → E1(H) → E1(TH) → 0,

where E1(BH) is a finite Λ-module and E1(H) is a finitely generated torsion Λ-
module with

E1(BH) ∼= DE1(H), TDE
1(H) = homΛ(TH,Q(Λ)/Λ) = homΛ(TDH,Q(Λ)/Λ)

for the quotient field Q(Λ) of Λ and E1E1(H) = E1E1(TDH) = TDH. The Λ-
module E2(H) is a finite Λ-module with E2(H) = homZ(DH,Q/Z) and E2E2(H) =
E2E2(DH) = DH. It is also a standard fact that there is a natural short exact
sequence

0 → BH → E0E0(BH) → E2E1(BH) → 0.

A (t − 1)-divisible Λ-module is a finitely generated Λ-module H such that the mul-
tiplication t − 1 : H → H is a Λ-isomorphism. Then every Λ-submodule and every
quotient Λ-module of H are torsion (t − 1)-divisible Λ-modules and DH is a finite
Λ-module. See [7, 17, 18] for these properties of Eq(H).

An r-weight of a finite Λ-module D is a Λ-epimorphism ω : Λr → D. Two r-
weights ω and ω′ of D are equivalent if there are Λ-isomorphisms fΛ : Λr → Λr and
fD : D → D such that ω′ = fDωf

−1
Λ . An r-class on D is the equivalence class [ω]

of an r-weight ω of D. For every r, there are only finitely many r-classes on D,
where if there is no Λ-epimorphism Λr → D, then we understand that D has the
empty r-class [∅]. For every non-empty r-class [ω] on D, then there is a unique (up
to Λ-isomorphisms) torsion-free Λ-module B such that the natural Λ-epimorphism
E0E0(B) → E2E1(B) is equivalent to ω. (see Lemma 4.1).

Elementary computations show that Ak(F ) = 0 except for 0 ≤ k ≤ 3, and
A0(F ) = Z (regarded as a Λ-module with trivial t-action). By the zeroth duality
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of [7], there is a non-degenerate Λ-Hermitian form

S : E0E0(BA2(F ))× E0E0(BA2(F )) → Λ

as an invariant of a surface-knot F in S4 with the identities

f(t)S(x, x′) = S(f(t−1)x, x′) = S(x, f(t)x′) (x, x′ ∈ BA2(F ), f(t) ∈ Λ)

extending the non-degenerate Λ-intersection form

SB : BA2(F )× BA2(F ) → Λ

defined by

SB(x, x′) = IntΛ(x, x
′) =

+∞∑
i=−∞

Int(x, tix′)t−i ∈ Λ.

By the second duality of [7], the torsion linking (that is a t-isometric symmetric
bilinear non-singular pairing)

ℓF : Θ(F )×Θ(F ) → Q/Z

on a finite Λ-module Θ(F ) in DA1(F ) is defined as an invariant of a surface-knot
F in S4. The reduced first module of F in S4 is the quotient Λ-module R1(F ) =
A1(F )/Θ(F ) of the first module A1(F ), which is an invariant of a surface-knot F
in S4. Let e(H) denote the minimal number of Λ-generators of H. The following
theorem is the main result of this paper.

Theorem 1.1. The kth surface-knot modules Ak(F ) (1 ≤ k ≤ 3) of every surface-
knot F of genus g > 0 in S4 have the following properties.

(1) A Λ-module H is Λ-isomorphic to the reduced first module R1(F ) of a surface-
knot F in S4 of genus g (≥ 0) if and only if H is a (t− 1)-divisible finitely generated
Λ-module with inequality e(E2(H)) ≤ g.

(2) Every surface-knot F in S4 of genus g defines a g-class invariant [ωF ] on the finite
Λ-module E2(R1(F )) so that the reduced first module R1(F ) and the g-class [ωF ]
determine the Λ-modules TA2(F ) and BA2(F ) up to Λ-isomorphisms. In particular,
there are t-anti Λ-isomorphisms

E1(R1(F )) ∼= TA2(F ), E2(R1(F )) ∼= E2E1(BA2(F )).

(3) There is a direct sum splitting BA2(F ) = XF ⊕ YF with YF a free Λ-module of
rank g such that the Λ-Hermitian form

S : E0E0(BA2(F ))× E0E0(BA2(F )) → Λ
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is given by

S(xi, xj) = S(yi, yj) = 0, S(xi, yj) = (t− 1)δij (i, j = 1, 2, . . . , g)

for a Λ-basis xi, yi (i = 1, 2, . . . , g) of E0E0(BA2(F )) = E0E0(XF )⊕ YF with xi (i =
1, 2, . . . , g) a Λ-basis of E0E0(XF ) and yi (i = 1, 2, . . . , g) a Λ-basis of YF .

(4) A3(F ) = 0.

The g-class [ωF ] on the finite Λ-module E2(R1(F )) is called the genus-class invari-
ant of a surface-knot F . The weaker inequality e(E2(R1(F ))) ≤ 2g has been earlier
obtained and applied to surface-knot theory (see [8, p.192]). If F is an S2-knot K in
S4, then e(E2(R1(F ))) = 0, that is, R1(K) is a Z-torsion-free Λ-module, which is also
the result of Farber-Levine pairing of an S2-knot in S4 ([1, 18]). This weaker inequal-
ity and the symmetric property of Θ(F ) that Θ(F ) admits a t-anti automorphism are
applied to know implicitly the properness of the sequence

G(0) ⊂ G(1) ⊂ G(2) ⊂ · · · ⊂ G(g) ⊂ . . .

where G(g) denotes the set of the fundamental groups of surface-knots of genus g
(see [12]) and the properness of the sequence

A(0) ⊂ A(1) ⊂ A(2) ⊂ · · · ⊂ A(g) ⊂ . . .

where A(g) denotes the set of the first modules of surface-knots of genus g (see [13]).
By Theorem 1.1 (1) and the symmetric property of Θ(F ), the properness of these
sequences can be shown with explicit examples as follows.

Corollary 1.2. For every prime p ≥ 5, consider the finite Λ-module D = Λ/(p, 2t−1)
and the ribbon presented group

π =< x, y| y = (x−1y)x(y−1x), y = (xy−1)py(yx−1)p > .

Then there is a ribbon torus-knot T in S4 with fundamental group π1(S
4 \T, x0) = π

and A1(T ) = D. For every integer g ≥ 1, let Tg be the g-fold connected sum of T in S4

which is a ribbon surface-knot of genus g. Then the fundamental group π1(S
4\Tg, x0)

which has a ribbon presentation

< x, y1, y2, . . . , yg| yi = (x−1yi)x(y
−1
i x), yi = (xy−1

i )pyi(yix
−1)p, i = 1, 2, . . . , g >

belongs to G(g) \ G(g − 1) and the first module A1(Tg) of Tg in S4 belongs to
A(g) \A(g − 1).
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A basic idea of the proof of Theorem 1.1 is to construct a surface-basis for every
surface-knot F of genus g in S4 to apply the 3 dualities in [7] which is described from
now. A loop basis for a closed oriented surface F of genus g > 0 is a system of simple
loops αi, α

′
i (i = 1, 2, . . . , g) in F such that

αi ∩ αj = αi ∩ α′
j = ∅ (i ̸= j) and αi ∩ α′

i = pi, a point.

A loop basis αi, α
′
i (i = 1, 2, . . . , g) of a surface-knot F is spin if q([αi]2) = q([α′

i]2) = 0
for all i with respect to the quadratic function q : H1(F ;Z2) → Z2 associated with
the surface-knot F in S4. By [3], there is a spin loop basis for every surface-knot F
in S4.

Definition. A surface-basis of a surface-knot F in S4 of genus g > 0 is a system of
(compact connected oriented) surfaces Di, D

′
i (i = 1, 2, . . . , g) smoothly embedded in

S4 such that

(1) Di ∩F = ∂Di = αi and D′
i ∩F = ∂D′

i = α′
i, (i = 1, 2, . . . , g)) for a spin loop basis

αi, α
′
i (i = 1, 2, . . . , g) of F ,

(2) Di ∩ Dj = D′
i ∩ D′

j = Di ∩ D′
j = ∅ (i ̸= j), and the self Z-intersection numbers

Int(Di, Di) = Int(D′
i, D

′
i) = 0 with respect to the surface framing of F for all i, and

(3) the natural homomorphisms H1(Di\αi;Z) → H1(S
4\F ;Z) and H1(D

′
i\α′

i;Z) →
H1(S

4 \ F ;Z) are the zero maps for all i.

In this definition, note that no information on the intersection between the interior
IntDi of Di and the interior IntD′

i of D
′
i is given for every i. and the interchange

between some surfaces in Di (i = 1, 2, . . . , g) and the corresponding surfaces in D′
i (i =

1, 2, . . . , g) makes a surface-basis for F in S4. The following theorem is basically
important in this paper, which is shown in Section 2.

Theorem 1.3. For every spin loop system αi, α
′
i (i = 1, 2, . . . , g) of a surface-knot F

of genus g in S4, there is a surface-basis Di, D
′
i (i = 1, 2, . . . , g) for a surface-knot F

in S4 with ∂Di = αi, ∂D
′
i = α′

i (i = 1, 2, . . . , g).

A leaf (or in other words, a Seifert hypersurface) of a surface-knot F in S4 is a
compact connected oriented 3-manifold VF (smoothly embedded) in S4 with ∂VF = F ,
which is always exists (see [2], [16, II]). A leaf VF is also considered as a proper 3-
submanifold of E with ∂VF = F × 1 ⊂ F × S1 = ∂N(F ). Then the homology class
[VF ] ∈ H3(Ẽ, ∂Ẽ;Z) is just the fundamental class of the covering proj : Ẽ → E (see
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[9]). A leaf VF of F in E is exact if the sequence

0 → TorH2(Ẽ, ṼF ;Z) → TorH1(ṼF ;Z) → TorH1(Ẽ;Z)

is exact. This notion is a variation of a closed exact leaf on a closed oriented 4-
manifold with infinite cyclic first homology group in [10].

Theorem 1.4. For every surface-basis Di, D
′
i (i = 1, 2, . . . , g) of every surface-knot

F of genus g in S4, there is an exact leaf VF containing the half surface-basis Di (i =
1, 2, . . . , g) as proper surfaces.

A hyperbolic linking is a linking (i.e., non-singular symmetric bilinear form) ℓ :
G2 × G2 → Q/Z on the direct double G2 of a finite abelian group G such that
ℓ(x, x) = 0 for all x ∈ G (see [15]). The following corollary is a combination result of
Theorem 1.4 and an earlier result on a closed exact leaf in [11].

Corollary 1.5. The torsion linking ℓF : Θ(F )×Θ(F ) → Q/Z of every surface-knot
F in S4 is an orthogonal summand of the linking ℓV : TorH1(VF ;Z)×TorH1(VF ;Z) →
Q/Z for every exact leaf VF containing the half surface-basis Di (i = 1, 2, . . . , g) of
every surface-basis Di, D

′
i (i = 1, 2, . . . , g) as proper surfaces, which is a non-singular

linking and whose complement linking is a hyperbolic linking.

In Section 2, a surface-basis for every surface-knot is constructed. In Section 3,
the surface-knot manifold M which is a closed spin 4-manifold with H1(M ;Z) ∼= Z
obtained from S4 by a surgery along the surface-knot F is considered to apply the
3 dualities of [7] to the integral infinite cyclic covering homology H∗(M̃ ;Z) where a
surface-basis of a surface-knot is used. In Section 4, the proofs of Theorems 1.1 and
Corollary 1.2 are given. In Section 5, Theorem 1.4 and Corollary 1.5 are shown by
using a closed exact leaf of the surface-knot manifold M is discussed in [10, 11].

2. A surface-basis of a surface-knot

A surface-basis in the weak sense for a surface-knot F of genus g > 0 in S4 is
a surface-basis for F that does not impose the condition (3). Namely, there are
(compact connected oriented) surfaces Di, D

′
i (i = 1, 2, . . . , g) smoothly embedded in

S4 such that

(1) Di ∩ F = ∂Di = αi and D′
i ∩ F = ∂D′

i = α′
i, (i = 1, 2, . . . , g) for any given spin

loop basis αi, α
′
i (i = 1, 2, . . . , g) of F , and
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(2) the intersection numbers Int(Di, Dj) = Int(D′
i, D

′
j) = Int(Di, D

′
j) = Int(D′

i, Dj) =
0 (i ̸= j), and the self Z-intersection numbers Int(Di, Di) = Int(D′

i, D
′
i) = 0 with

respect to the surface framing of F are 0 for all i in S4.

A surface-basis in the weak sense is constructed in [3] for every surface-knot F in
S4 with any given spin loop basis αi, α

′
i (i = 1, 2, . . . , g). To be precise, the condition

that Int(Di, D
′
j) = 0 (i ̸= j) is omitted in [3], but it is shown as well. For a spin

loop basis αi, α
′
i (i = 1, 2, . . . , g) in F × 1 ⊂ ∂E, let Di, D

′
i (i = 1, 2, . . . , g) be a

surface-basis in the weak sense in E with ∂Di = αi, ∂D
′
i = α′

i, (i = 1, 2, . . . , g). Let
Ti = ℓi × S1, T ′

i = ℓ′i × S1 (i = 1, 2, . . . , g) be the tori in ∂E. Let a(Di) = Ti ∪Di and
a(D′

i) = T ′
i ∪Di be be the 2-cycles in E homologous to Ti and T ′

i , respectively. The
elements [a(Di)], [a(D

′
i)] (i = 1, 2, . . . , g) form a basis of H2(E;Z) whose dual basis of

H2(E, ∂E;Z) with respect to the non-singular intersection form

Int∂ : H2(E;Z)×H2(E, ∂E;Z) → Z

are given by the homology classes [D′
i], [Di] (i = 1, 2, . . . , g). For the homological

argument on the infinite cyclic covering Ẽ of the exterior E of a surface-knot F of
genus g, the following facts will be used throughout the paper:

Lemma 2.1. The exterior E of a surface-knot F of genus g has the following homo-
logical properties.

(1) A1(F ) and H1(Ẽ, ∂Ẽ;Z) are (t−1)-divisible and there is a natural Λ-isomorphism
A1(F ) ∼= H1(Ẽ, ∂Ẽ;Z).

(2) DA2(F ) = DH2(Ẽ, ∂Ẽ;Z) = 0.

(3) TA2(F ) and TH2(Ẽ, ∂Ẽ;Z) are (t − 1)-divisible, so that there is a natural Λ-
isomorphism TA2(F ) ∼= TH2(Ẽ, ∂Ẽ;Z) and there is a natural short exact sequence

0 → BA2(F )
j∗→ BH2(Ẽ, ∂Ẽ;Z)

∂∗→ H1(∂Ẽ;Z) → 0

with H1(∂Ẽ;Z) ∼= Z2g.

(4) E1(BA2(F )) and E1(BH2(Ẽ, ∂Ẽ;Z)) are (t − 1)-divisible and there is a natural
Λ-isomorphism E1(BH2(Ẽ, ∂Ẽ;Z)) ∼= E1(BA2(F )).

Technically, the following observation is useful (whose proof is direct and omitted).

Observation 2.2. In an exact sequence

H0 → H1
φ→ H2 → H3
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of finitely generated Λ-modules Hi (0 ≤ i ≤ 3) and Λ-homomorphisms, if (t− 1)H0 =
(t−1)H3 = 0 and H1, H2 are (t−1)-divisible, then the Λ-homomorphism φ : H1 → H2

is a Λ-isomorphism.

Proof of Lemma 2.1. Since H1(E;Z) ∼= Z, the Wang exact sequence shows
that t − 1 : A1(F ) → A1(F ) is an isomorphism, showing that A1(F ) is (t − 1)-
divisible. This fact and the homology exact sequence of the pair (Ẽ, ∂̃E) shows that
TA2(F ) ∼= TH2(Ẽ, ∂Ẽ;Z), showing (1). By the second duality of [7], there are t-anti
epimorphisms

θ : DA2(F ) → E1(BH1(Ẽ, ∂Ẽ;Z)) = 0, θ : DH2(Ẽ, ∂Ẽ;Z) → E1(BA1(F )) = 0

whose kernels DA2(F )θ = DA2(F ), DH2(Ẽ, ∂Ẽ;Z)θ = DH2(Ẽ, ∂Ẽ;Z) are t-anti Λ-
isomorphic to homZ(DH0(Ẽ, ∂Ẽ;Z)θ, Q/Z) = 0 and homZ(DA0(F )θ, Q/Z) = 0, for
DA0(F ) = DH0(Ẽ, ∂Ẽ;Z) = 0. Hence DA2(F ) = DH2(Ẽ, ∂Ẽ;Z) = 0, showing (2).
Then by the second duality of [7], TA2(F )and TH2(Ẽ, ∂Ẽ;Z) are t-anti Λ-isomorphic
to E1(TDH1(Ẽ, ∂Ẽ;Z)) = E1(H1(Ẽ, ∂Ẽ;Z)) and E1(TDA1(F )) = E1(A1(F )) which
are (t − 1)-divisible, respectively. This (t − 1)-divisibility and the homology ex-
act sequence of the pair (Ẽ, ∂Ẽ) show that the natural homomorphism TA2(F ) →
TH2(Ẽ, ∂Ẽ;Z) is a Λ-isomorphism, so that there is a natural short exact sequence

(∗) 0 → BA2(F )
j∗→ BH2(Ẽ, ∂Ẽ;Z)

∂∗→ H1(∂Ẽ;Z) → 0,

showing (3). By the second duality of [7], there are t-anti Λ-eimorphisms

θ : DA1(F ) → E1(BH2(Ẽ, ∂Ẽ;Z)), θ : DH1(Ẽ, ∂Ẽ;Z) → E1(BA2(F )).

Since DA1(F ), DH1(Ẽ, ∂Ẽ;Z) are (t − 1)-divisible by (1), it is seen that a natural
Λ-homomorphism E1(BH2(Ẽ, ∂Ẽ;Z)) → E1(BA2(F )) is a Λ-isomorphism by apply-
ing the extension cohomology to the short exact sequence (∗), showing (4). This
completes the proof of Lemma 2.1.

By the zeroth duality of [7], the non-singular Λ-form

S∂ : E0E0(BA2(F ))× E0E0(BH2(Ẽ, ∂Ẽ;Z)) → Λ

is given by extending the non-degenerate Λ-intersection form the non-degenerate Λ-
Hermitian form

SB
∂ : BA2(F )× BH2(Ẽ, ∂Ẽ;Z) → Λ,

defined by SB
∂ (x, x

′) = IntΛ(x, x
′) =

∑+∞
i=−∞ Int(x, tix′)t−i ∈ Λ for x ∈ BA2(F ),

x′ ∈ BH2(Ẽ, ∂Ẽ;Z).
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Let Λ+ be the subring of the quotient field Q(Λ) of Λ generated by the products
u(t)−1f(t) of any elements u(t), f(t) ∈ Λ with u(1) = ±1. Note that the ring Λ+

admits a t-anti automorphism. For a finitely generated Λ-module H, let H+ =
H ⊗Λ Λ+. It is a standard fact that for every (t− 1)-divisible finitely generated
Λ-module H, there is an element u(t) ∈ Λ such that u(1) = ±1 and u(t)H = 0. (In
fact, H = TH. Since TDH has projective dimension 1, there is a short exact sequence

0 → Λm P (t)→ Λm → TDH → 0, where P (t) denotes a presentation Λ-matrix. Then
u1(t) = detP (t) has u1(t)TDH = 0. Since TDH is (t-1)-divisible, P (1) is a unimodular
matrix and u1(1) = detP (1) = ±1. On the other hand, some iteration (t−1)m

′
of t−1

acts on the finite Λ-module DH as the identity. Then u2(t) = 1−(t−1)m
′
has u2(1) =

1 and u2(t)DH = 0. The product u(t) = u1(t)u2(t) has u(1) = ±1 and u(t)H = 0,
as desired.) Since A1(F ) ∼= H1(Ẽ, ∂Ẽ;Z) is (t − 1)-divisible, the second duality of
[7] implies that E2E1(BA2(F )) and E2E1(BH2(Ẽ, ∂Ẽ;Z)) are (t − 1)-divisible, so
that BA2(F )+ = E0E0(BA2(F ))+ and BH2(Ẽ, ∂Ẽ;Z)+ = E0E0(BH2(Ẽ, ∂Ẽ;Z))+

are free Λ+-modules, and the non-degenerate Λ-Hermitian form SB
∂ induces a non-

singular Λ+-Hermitian form

S+
∂ = IntΛ+ : BA2(F )+ × BH2(Ẽ, ∂Ẽ;Z)+ → Λ+

by defining
IntΛ+(x, x′) = u(t−1)−1u′(t)−1IntΛ(u(t)x, u

′(t)x′)

for x ∈ BA2(F )+, x′ ∈ BH2(Ẽ, ∂Ẽ;Z)+ and u(t), u′(t) ∈ Λ such that u(1) = u′(1) = 1
and u(t)x ∈ BA2(F ), u′(t)x′ ∈ BH2(Ẽ, ∂Ẽ;Z). Similarly, the non-degenerate Λ-
Hermitian form SB : BA2(F )×BA2(F ) → Λ induces a non-degenerate Λ+-Hermitian
form

S+ = IntΛ+ : BA2(F )+ × BA2(F )+ → Λ+.

Note that there is a natural short exact sequence

0 → BA2(F )+
i∗→ BH2(Ẽ, ∂Ẽ;Z)+

∂∗→ H1(∂Ẽ;Z) → 0

and H1(∂Ẽ;Z) = Z2g with the Z-basis represented by the spin loop basis αi× 0, α′
i×

0 (i = 1, 2, . . . , g) of F × 0 ⊂ F ×R = ∂Ẽ. Note that

S+(x, x′) = S+
∂ (x, i∗(x

′))

for all x, x′ ∈ BA2(F )+. A well-defined pair of relative 2-cycles in BH2(Ẽ, ∂Ẽ;Z)+

is a pair (c, c′) of relative 2-cycles c, c′ in BH2(Ẽ, ∂Ẽ;Z)+ such that the boundary
1-cycle pair (∂c, ∂c′) is any pair of ±αi × 0,±α′

i × 0 (i = 1, 2, . . . , g) except for the
unordered pair of ±αi × 0 and ±α′

i × 0 for every i. For every well-defined pair (c, c′),
the Λ+-intersection number IntΛ+(c, c′) ∈ Λ+ is well-defined where IntΛ+(c, c′) with
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∂c = ±∂c′ is understood as the Λ+-intersection number by using by the surface-
framing in F × 0. Then the following identities hold.

(t−1 − 1)IntΛ+(c, c′) = IntΛ+((t− 1)c, c′) = S+
∂ (i

−1
∗ [(t− 1)c], [c′]),

(t−1 − 1)(t− 1)IntΛ+(c, c′) = S+(i−1
∗ [(t− 1)c], i−1

∗ [(t− 1)c′]).

The following lemma is used for the present argument.

Lemma 2.2. Let C : F × [0, 1] → S4 × [0, 1] be a smooth concordance form a
surface-knot F = C(F × 0) with a spin loop system αi, α

′
i (i = 1, 2, . . . , g) to a

surface-knot G = C(F × 1) in S4 with a spin loop system βi, β
′
i (i = 1, 2, . . . , g).

Then there is a Λ+-isomorphism φ from the non-singular Λ+-Hermitian form S+
∂ :

BA2(F )+ × BH2(Ẽ(F ), ∂Ẽ(F );Z)+ → Λ+ to the non-singular Λ+-Hermitian form
S+
∂ : BA2(G)+ × BH2(Ẽ(G), ∂Ẽ(G);Z)+ → Λ+ sending the homology classes [αi ×

0], [α′
i × 0] (i = 1, 2, . . . , g) in H1(∂Ẽ(F );Z)) to the homology classes [βi × 0], [β′

i ×
0] (i = 1, 2, . . . , g) in H1(∂Ẽ(G);Z)), respectively.

Proof of Lemma 2.2. Let E(C) = cl(S4 × [0, 1] \ N(F × [0, 1])) be the exte-
rior of the concordance C. Then (E(C);E(F ), E(G)) is a homology cobordism with
(∂′E(C); ∂E(F ), ∂E(G)) the product cobordism for ∂′E(C) = cl(∂E(C) \ (E(F ) ∪
E(G)). Then H∗(Ẽ(C), Ẽ(F );Z) and H∗(Ẽ(C), Ẽ(G);Z) are (t−1)-divisible finitely
generated Λ-modules. Hence

H∗(Ẽ(C), Ẽ(F );Z)+ = H∗(Ẽ(C), Ẽ(G);Z)+ = 0.

Then an argument of the Λ+-homology cobordism (Ẽ(C); Ẽ(F ), Ẽ(G)) similar to the
standard homology cobordism argument shows the desired result. This completes the
proof of Lemma 2.2. ]

The proof of Theorem 1.3 is given as follows.

2.3: Proof of Theorem 1.3. Every surface-knot F in S4 is concordant to a
trivial surface-knot G in S4 by a concordance sending any given spin loop basis
αi, α

′
i (i = 1, 2, . . . , g) of F to the standard spin loop basis βi, β

′
i (i = 1, 2, . . . , g) of G.

To see this, consider a trivial surface-knot Ḡ obtained from F by adding 1-handles
hj (j = 1, 2, . . . ,m) (see [5]). Let αi, α

′
i (i = 1, 2, . . . , g), γj, γ

′
j (j = 1, 2, . . . ,m) be a

spin loop basis of Ḡ with γj a belt loop of hj. By [4], there is an orientation-preserving
diffeomorphism f of (S4, Ḡ) sending the spin loop basis αi, α

′
i (i = 1, 2, . . . , g), γj, γ

′
j

(j = 1, 2, . . . ,m) to a standard spin loop basis of Ḡ. Thus, there are 2-handles on
Ḡ attached along the loops γ′

j (j = 1, 2, . . . ,m) to obtain a trivial surface-knot G by
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the surgery. Then G has a spin loop basis βi, β
′
i (i = 1, 2, . . . , g) inherited from the

spin loop basis αi, α
′
i (i = 1, 2, . . . , g). (This is a similar consideration to [14, (2.5.1),

(2.5.1)].) The surgery trace gives a desired concordance. Let ∆i,∆
′
i (i = 1, 2, . . . , g)

be a standard disk-basis of G with ∂∆i = βi × 1, ∂∆′
i = β′

i × 1 (i = 1, 2, . . . , g) in
G × 1 ⊂ G × S1 = ∂E(G). Let ∆̃i, ∆̃

′
i (i = 1, 2, . . . , g) be the connected lifts of

∆i,∆
′
i (i = 1, 2, . . . , g) to Ẽ(G) with ∂∆̃i = βi × 0, ∂∆̃′

i = β′
i × 0 (i = 1, 2, . . . , g)

in G × 0 ⊂ G × R = ∂Ẽ(G). By Lemma 2.2, there are relative 2-cycles ci, c
′
i (i =

1, 2, . . . , g) in BH2(Ẽ(F ), ∂Ẽ(F );Z)+ with ∂ci = αi × 0, ∂c′i = α′
i × 0 (i = 1, 2, . . . , g)

such that the homology classes [ci], [c
′
i] (i = 1, 2, . . . , g) are sent to the homology

classes [∆̃i], [∆̃
′
i] (i = 1, 2, . . . , g) in BH2(Ẽ(G), ∂Ẽ(G);Z)+ by the Λ+-isomorphism

φ. Since any pair of ci, c
′
i (i = 1, 2, . . . , g) except for (ci, c

′
i), (c

′
i, ci), (i = 1, 2, . . . , g) is

a well-defined pair, the following identities hold.

IntΛ+(ci, cj) = IntΛ+(∆̃i, ∆̃j) = 0, IntΛ+(c′i, c
′
j) = IntΛ+(∆̃′

i, ∆̃
′
j) = 0

for all i, j and

IntΛ+(ci, c
′
j) = IntΛ+(∆̃i, ∆̃

′
j) = 0, IntΛ+(c′i, cj) = IntΛ+(∆̃′

i, ∆̃j) = 0

for all i, j with i ̸= j. There is an element u(t) ∈ Λ with u(1) = 1 such that
the products u(t)[ci], u(t)[c

′
i] (i = 1, 2, . . . , g) are in BH2(Ẽ(F ), ∂Ẽ(F );Z) for all i.

Since u(t) acts on Z2g as the identity u(1) = 1, there are compact connected oriented
proper smoothly embedded surfaces D̃i, D̃

′
i (i = 1, 2, . . . , g) in Ẽ with ∂D̃i = αi, ∂D̃

′
i =

α′
i × 0 (i = 1, 2, . . . , g) in F × 0 ⊂ ∂Ẽ such that

u(t)[ci] = [D̃i], u(t)[c′i] = [D̃′
i] (i = 1, 2, . . . , g)

in BH2(Ẽ, ∂Ẽ(F );Z). The Λ-intersection numbers

IntΛ(D̃i, D̃j) = IntΛ(D̃
′
i, D̃

′
j) = 0

for all i, j and
IntΛ(D̃i, D̃

′
j) = IntΛ(D̃

′
i, D̃j) = 0

for every i, j with i ̸= j. Then the proper surfaces D̃i, D̃
′
i (i = 1, 2, . . . , g) in Ẽ are

modified without changing the boundary loops into higher genus surfaces which are
embeddable into E under the covering projection proj : Ẽ → E by [10, Theorem 4.1].
By writing proj(D̃i), proj(D̃

′
i) (i = 1, 2, . . . , g) as Di, D

′
i (i = 1, 2, . . . , g), a surface-

basis Di, D
′
i (i = 1, 2, . . . , g) of F in S4 is obtained. This completes the proof of

Theorem 1.3.

3. The infinite cyclic covering homology of the surface-knot manifold
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Let Di, D
′
i (i = 1, 2, . . . , g) be a surface-basis of F in E with ∂Di = αi × 1, ∂D′

i =
α′
i × 1 (i = 1, 2, . . . , g) in F × 1 ⊂ F × S1 = ∂E by Theorem 1.3. Let V0 be a

handlebody of genus g with ∂V0 = F such that αi (i = 1, 2, . . . , g) bound disjoint
disks in V0. The surface-knot manifold of a surface-knot F in S4 is the 4D manifold
M = E ∪V0 ×S1 obtained from S4 by replacing N(F ) = F ×D2 with V0 ×S1. Then
H1(M ;Z) ∼= Z. Let a(D′

i) = Ti∪D′
i (i = 1, 2, . . . , g) be the 2-cycles in M homologous

to Ti (i = 1, 2, . . . , g), and s(Di) = Di ∪ di × 1 (i = 1, 2, . . . , g) the closed connected
oriented surfaces for disjoint disks di in V0 × 1 with ∂di = αi (i = 1, 2, . . . , g). The
second homology H2(M ;Z) is a free abelian group of rank 2g with a basis consisting
of the homology classes [a(D′

i)], [s(Di)] (i = 1, 2, . . . , g) with intersection numbers

Int([a(D′
i)], [a(D

′
j)]) = Int([s(Di)], [s(Dj)]) = 0,

Int([a(Di)], [s(Dj)]) = Int([s(Di)], [a(Dj)]) = δij

for all i, j.

Let proj : M̃ → M be the infinite cyclic covering of M with M̃ = Ẽ ∪V0×R. Let
D̃i, D̃

′
i (i = 1, 2, . . . , g) be the connected lifts of Di, D

′
i (i = 1, 2, . . . , g) with ∂D̃i =

αi × 0, ∂D̃′
i = α′

i × 0 (i = 1, 2, . . . , g) in F × 0 ⊂ F ×R = ∂Ẽ. Let

a(D̃′
i) = (−D̃′

i) ∪ [0, 1] ∪ tD̃′
i, s(D̃i) = D̃i ∪ di × 0 (i = 1, 2, . . . , g)

be the closed connected oriented surfaces in M̃ . Let

x′
i = [a(D̃′

i)], yi = [s(D̃i)] (i = 1, 2, . . . , g)

be the homology classes in H2(M̃ ;Z). Let X be the Λ-submodule of BH2(M̃ ;Z)
generated over Λ by the elements x ∈ BH2(M̃ ;Z) with SB(x, x′

i) = 0 for all i, and Y

the Λ-submodule of BH2(M̃ ;Z) generated over Λ by the elements yi (i = 1, 2, . . . , g).
The following lemma is shown.

Lemma 3.1. There is a direct sum splitting E0E0(X) ⊕ Y of the free Λ-module
E0E0(BH2(M̃ ;Z)) with yi (i = 1, 2, . . . , g) a Λ-basis of Y such that the Λ-Hermitian
form

S : E0E0(BH2(M̃ ;Z))× E0E0(BH2(M̃ ;Z)) → Λ

is given by

S(xi, xj) = S(yi, yj) = 0, S(xi, yj) = δij (i, j = 1, 2, . . . , g)

for a Λ-basis xi (i = 1, 2, . . . , g) of E0E0(X).
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Proof of Lemma 3.1. By construction, S(x′
i, x

′
j) = S(yi, yj) = S(x′

i, yj) = 0 (i ̸= j)
and S(x′

i, yi) = 1 + (t − 1)fi(t) for some fi(t) ∈ Λ. Let Xi be the quotient rank one
Λ-module of X by the maximal submodule generated over Λ by x′

j for all j ̸= i, so
that Xi is a torsion-free Λ-module of rank one and E0(Xi) ∼= Λ. Let qi ∈ E0(Xi)
be the Λ-homomorphism sending x ∈ Xi to S(x, yi) ∈ Λ. Then it is shown that
the element qi is a generator of E0(Xi) ∼= Λ. To see this, under the identification
E0(Xi) = Λ, suppose qi is a non-unit element qi = qi(t) in Λ. Then qi(1) = ±1
since qi(t) divides the polynomial 1 + (t − 1)fi(t). Let p be a prime number such
that qi(t) is still a non-unit polynomial in the principal ideal domain Λp = Zp[t, t

−1]
and the first Z-torsion product Tor1(H1(M̃ ;Z), Zp) = 0 by using that the Z-torsion
Λ-submodule of H1(M̃ ;Z) is finite because H1(M̃ ;Z) is (t− 1)-indivisible. Then the
universal coefficient theorem means H2(M̃ ;Zp) = H2(M̃ ;Z)⊗Zp. Hence X ⊗Zp is a
self-orthogonal complement with respect to the nonsingular Λp-intersection form

Sp : BH2(M̃ ;Zp)× BH2(M̃ ;Zp) → Λp

in [6]. This means that there is an element x′′
i in Xi such that S(x′′

i , yi) = 1 +
pgi(t) for some element gi(t) ∈ Λ, so that qi(t) must be a unit element in Λp, which
contradicts that qi(t) is a non-unit element in Λp. Thus, qi is a unit element in Λ. Let
q̄i ∈ E0(X) be the image of qi under the natural monomorphism E0(Xi) → E0(X).
Then the elements q̄i (i = 1, 2, . . . , g) form a Λ-basis for E0(X). In fact, for every
element q ∈ E0(X), let q(x′

i) = ci(t) be the element of Λ. Then q =
∑g

i=1 ci(t)q̄i. If∑g
i=1 c

′
i(t)q̄i = 0, then c′i(t)q̄i(x

′
i) = c′i(t)(1 + (t − 1)fi(t)) = 0 and c′i = 0 for all i.

Let q̄∗i ∈ E0E0(X) (i = 1, 2, . . . , g) be the dual basis of q̄i (i = 1, 2, . . . , g)of E0(X).
Since S(q̄∗i , q̄j) = S(yi, yj) = 0 and S(q̄∗i , yj) = δij for all i, j, the elements xi =
q̄∗i , yi (i = 1, 2, . . . , g) form a desired Λ-basis for E0E0(BH2(M̃ ;Z)) = E0E0(X)⊕ Y .
This completes the proof of Theorem 3.1.

The following corollary is obtained from the proof of Lemma 3.1.

Corollary 3.2. For the elements x′
i = [a(D̃′

i)], yi = [s(D̃i)] (i = 1, 2, . . . , g) inX⊕Y =
BH2(M̃ ;Z), an element x ∈ BH2(M̃ ;Z) belongs to the direct summand X if and only
if the product u(t)x for an element u(t) ∈ Λ with u(1) = ±1 is a linear combination
of x′

i (i = 1, 2, . . . , g) with coefficients in Λ.

Proof of Corollary 3.2. In the proof of Lemma 2.2, the identities (1 + (t −
1)fi(t))xi = x′

i (i = 1, 2, . . . , g) hold, so that if x ∈ BH2(M̃ ;Z) is in X, then the prod-
uct u(t)x for some u(t) with u(1) = ±1 is a linear combination of x′

i (i = 1, 2, . . . , g)
with coefficients in Λ. Conversely, since X is self-orthogonal with respect to the
non-degenerate Λ-intersection form SM : BH2(M̃ ;Z) × BH2(M̃ ;Z) → Λ and every
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linear combination of x′
i (i = 1, 2, . . . , g) with coefficients in Λ is in X, if u(t)x for

some u(t) ∈ Λ with u(1) = ±1 is in X, then x is in X. This completes the proof of
Corollary 3.2.

4. Proofs of Theorems 1.1 and Corollary 1.2

The following lemma is a classification of finitely generated torsion-free Λ-modules.

Lemma 4.1. For a finite Λ-module D, let [ωi] (i = 1, 2, . . . , nr) be all the r-classes
on D, and Bi a finitely generated torsion-free Λ-module of rank r given by the kernel
ker(ωi : Λ

r → D) for every i. Then Bi (i = 1, 2, . . . , nr) are mutually distinct up to
Λ-isomorphisms and every finitely generated torsion-free Λ-module B of rank r with
E2E1(B) ∼= D is Λ-isomorphic to Bi for some i. Further, any two finitely generated
torsion-free Λ-modules B and B′ with E2E1(B) ∼= E2E1(B′) are stably Λ-isomorphic,
i.e., B ⊕ Λm ∼= B′ ⊕ Λm′

for some non-negative integers m,m′.

Proof of Lemma 4.1. For a finitely generated torsion-free Λ-module B with
E2E1(B) ∼= D, there is a short exact sequence 0 → B → E0E0(B) → E2E1(B) → 0.
Since there are Λ-isomorphisms gB : E0E0(B) → Λr and gD : E2E1(B) → D to define
an r-weight ωB : Λr → D whose kernel Ker(ωB) = BD is Λ-isomorphic to B, If there
is a Λ-isomorphism f : B → B′, then the Λ-isomorphism f induces a Λ-isomorphism
from the short exact sequence 0 → B → E0E0(B) → E2E1(B) → 0 to the short
exact sequence 0 → B′ → E0E0(B′) → E2E1(B′) → 0. Hence there are equivalent
r-weights ωB, ωB′ : Λr → D with kernels Ker(ωB) = BD

∼= B, Ker(ωB′) = B′
D
∼= B′.

For Ker(ω) = BD, the inclusion BD ⊂ Λr induces a Λ-isomorphism gB : E0E0(BD) ∼=
Λr. Hence there is a Λ-isomorphism gD : E2E1(BD) → D to define an r-weight
ωBD

: Λr → D which is equivalent to ω. For equivalent r-weights ω, ω′ : Λr → D with
Ker(ω) = BD and Ker(ω′) = B′

D, the five lemma for a short exact sequence shows that
BD is Λ-isomorphic to B′

D. From finiteness of the Λ-module homΛ(Λ
r, D), a desired

system of finitely generated torsion-free Λ-module Bi (i = 1, 2, . . . , nr) of rank r with
E2E1(Bi) ∼= D is obtained. Let e = {ei| i = 1, 2, . . . , r} be a standard Λ-basis of Λr.
For an r-weight ω : Λr → D, assume that ω(e1) = ω(ei) for some i ̸= 1. Then replace
the basis element ei with ei−e1. By continuing this process, there is a Λ-isomorphism
fΛ : Λr → Λr such that ω′ = fΛω is an r-weight such that ω′ sends a Λ-subbase e′ of
e injectively and the remaining Λ-subbasis e \e′ to 0. This means that Ker(ω) = BD

is Λ-isomorphic to B′ ⊕ Λr−r′ for B′ = Λr′ ∩ Ker(ω′) for the Λ-submodule Λr′ given
by the Λ-subbasis e′. For an r-weight ω : Λr → D, assume that ω sends e injectively
to D. Let n = |D|. Let ω̄ : Λn → D be a Λ-epimorphism extending ω so that the
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standard basis ē of Λn bijectively to D. For every basis element ej in ē \ e, write

x̄i(ej) =
r∑

k=1

ajk(t)ξ(ek) (ajk(t) ∈ Λ).

Under the new basis of Λn obtained by replacing every ej with ej −
∑r

k=1 ajk(t)ek,
the kernel of ω̄ : is Λ-isomorphic to BD ⊕ Λn−r. Note that any n-weight ω̄ : Λn → D
sending the standard basis ē of Λn bijectively to D gives the unique class [ω̄]. Thus,
any s-weight ω′ : Λs → D sending the standard basis e′ of Λn injectively to D, so that
there is a Λ-isomorphism BD⊕Λn−r ∼= B′

D⊕Λn−r′ for B′
D = Ker(ω′). This completes

the proof of Lemma 4.1.

4.2: Proof of Theorem 1.1. For the proof of (1), let H = R1(F ) for a surface-
knot F of genus g. By the second duality of [7], E2(R1(F )) = E2(DA1(F )/Θ(F )) ∼=
E2E1(BA2(F ). Hence there is a t-anti Λ-isomorphism

E2(H) = E2(R1(F )) ∼= E2E1(BA2(F )) = E2E1(X ⊕ Y )

by assuming (3). Since E0E0(X) and Y are free Λ-modules of rank g and there is a
Λ-epimorphism E0E0(X) → E2E1(X), the following inequalities hold.

e(E2E1(X ⊕ Y )) = e(E2E1(X)) ≤ e(E0E0(X)) = g.

Thus, e(H) ≤ g, assuming (3). Conversely, let H be a (t − 1)-divisible finitely
generated Λ-module with inequality e(E2(H)) ≤ g. Then H is the first module
A1(F ) of a ribbon surface-knot F of genus g in S4 with Θ(F ) = 0 by [13]. Thus,
H = A1(F ) = R1(F ), which shows (1) by assuming (3). For the proof of (2), let [ωF ]
be the g-class on the finite Λ-module E2E1(BA2(F )), which is t-anti Λ-isomorphic to
E2(R1(F )), so that [ωF ] is considered as a g-class on the finite Λ-module E2(R1(F )).
By Lemmas 4.1, BA2(F ) is determined by this g-class on E2(R1(F )). By the first
duality of [7], the torsion Λ-module TA2(F ) = TDA2(F ) is t-anti Λ-isomorphic to
E1(TDH1(Ẽ, ∂Ẽ;Z)) = E1(TDA1(F )) = E1(TDR1(F )) = E1(R1(F )) by Lemma 2.1,
showing (2). For the proof of (3), note that the zeroth duality of [7] means that there
is a non-singular Λ-form

S∂ : E0E0(BA2(F ))× E0E0BH2(Ẽ, ∂Ẽ;Z) → Λ

extending the non-degenerate Λ-intersection form

SB
∂ : BA2(F )× BH2(Ẽ, ∂Ẽ;Z) → Λ

which also defines a non-degenerate Λ-Hermitian Λ-intersection form SB : BA2(F )×
BA2(F ) → Λ. Since DH2(M̃ ;Z) = 0 and TH2(M̃ ;Z) ∼= E1(H1(M̃ ;Z)) is (t −
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1)-divisible by a method similar to the proof of Lemma 2.1, and H2(M̃, Ẽ;Z) =
H2((V0, F )×R;Z) ∼= Zg, there is a natural exact sequence

0 → BA2(F )
i∗→ BH2(M̃ ;Z)

j∗→ Zg → 0,

which induces a natural exact sequence

0 → E0E0(BA2(F )) → E0E0(BH2(Ẽ, ∂Ẽ;Z)) → Zg → 0.

By Lemma 3.1 and Corollary 3.2, BH2(M̃ ;Z) = X ⊕ Y , where Y is a free Λ-module
and X is characterized by the Λ-submodule of BH2(M̃ ;Z) consisting of an element
x such that the product u(t)x for an element u(t) ∈ Λ with u(1) = 1 is a linear
combination of x′

i (i = 1, 2, . . . , g). If x ∈ X has j∗(u(t)x) = 0, then

j∗(u(t)x) = u(t)j∗(x) = u(1)j∗(x) = j∗(x) = 0

and x ∈ Ker(i∗) = BA2(F ). Let XF = i−1
∗ (X), which is characterized by the Λ-

submodule of BA2(F ) consisting of an element x such that the product u(t)x for an
element u(t) ∈ Λ with u(1) = 1 is a linear combination of x′

i = [a(D̃′
i)] (i = 1, 2, . . . , g)

regarded as elements of BA2(F ). This means that i∗ defines a Λ-isomorphism XF
∼=

X. Let YF = i−1
∗ (Y ) which is a free Λ-module with basis [a(D̃i)], (i = 1, 2, . . . , g)

since i∗([a(D̃i)]) = (t − 1)[s(D̃i] in H2(M̃ ;Z). This means that i∗ defines a natural
excat sequence

0 → YF → Y → Zg → 0.

Then BA2(F ) = XF ⊕ YF and the non-degenerate Λ-Hermitian form

S : E0E0(BA2(F ))× E0E0(BA2(F )) → Λ

is given by

S(xi, xj) = S(yi, yj) = 0, S(xi, yj) = (t− 1)δij (i, j = 1, 2, . . . , g)

for a Λ-basis xi, yi (i = 1, 2, . . . , g) of E0E0(BA2(F )) = E0E0(XF )⊕ YF with xi (i =
1, 2, . . . , g) a Λ-basis of E0E0(XF ) and yi (i = 1, 2, . . . , g) a Λ-basis of YF , showing
(3). To see (4), note that A3(F ) = TA3(F ) since H3(E;Z) = 0 means that A3(F )
is (t − 1)-divisible. By the first duality of [7], TDA3(F ) is t-anti Λ-isomorphic to
homΛ(TDH0(Ẽ, ∂Ẽ;Z), Q(Λ)/Λ) which is 0. By the second duality of [7], DA3(F )
is t-anti Λ-isomorphic to E1(BH0(Ẽ, ∂Ẽ;Z)) which is 0. Thus, A3(F ) = 0, showing
(4). This completes the proof of Theorem 1.1.

In the similar way to the proof of (4) in 4.2, it is shown that H3(Ẽ, ∂Ẽ;Z) ∼= Z

whose integral generator is the fundamental class of the infinite cyclic connected
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covering Ẽ → E represented by a leaf of the surface-knot F (see [9]). In fact, by the
first duality of [7], H3(Ẽ, ∂Ẽ;Z) = TDH3(Ẽ, ∂Ẽ;Z) which is t-anti Λ-isomorphic to
E1(A0(F )) ∼= Z . The proof of Corollary 1.2 is done as follows.

4.3: Proof of Corollary 1.2. Since π is the group of ribbon presentation, of
deficiency 0, there is a ribbon torus-knot T in S4 with π1(S

4\T, x0) = π and A1(T ) =
D (see [12]). Since D is a (t − 1)-divisible finite Λ-module with e(D) = 1, the first
module A1(Tg) of Tg in S4 is the finite Λ-module Dg, the direct sum of g copies of D,
and E2(Dg) is seen to be Λ-isomorphic to Dg and e(Dg) = g since p is a prime number.
For p ≥ 5, the finite Λ-module Dg does not admit any t-anti Λ-automorphism, so that
Θ(F ) = 0 and A1(F ) = R1(F ) for any surface-knot F in S4 with A1(F ) = Dg. Since
e(R1(F )) = g, the reduced first module R1(F ) is not Λ-isomorphic to the reduced
first module of any surface-knot of genus g′ < g by Theorem 1.1 (1), so that π is not
the fundamental group of any surface-knot of genus g′ < g. This completes the proof
of Corollary 1.2.

5. An exact leaf and the torsion-linking of a surface-knot

Let V ′
F be a leaf of a surface-knot F in S4 containing a half surface-basis D′

i (i =
1, 2, . . . , g) of a surface-basis Di, D

′
i (i = 1, 2, . . . , g) as proper surfaces. Let W be

a compact connected oriented 3-manifold with ∂W = F , and V ∗ = V ′
F ∪ W be the

closed oriented 3-manifold obtained from VF and W by pasting along F with an
orientation-reversing diffeomorphism of F . The following lemma is used for the proof
of Theorem 1.4.

Lemma 5.1. IfH1(W ;Z) is a free abelian group and the loop system αi (i = 1, . . . , g)
or α′

i (i = 1, . . . , g) in F represents a basis of the image of the boundary homo-
morphism ∂∗ : H2(W,F ;Z) → H1(F ;Z), then the inclusion V ′

F → V ∗ induces an
isomorphism TorH1(V

′
F ;Z) → TorH1(V

∗;Z).

Proof of Lemmay 5.1. Since the exact leaf V ′
F contains the disjoint proper surfaces

C ′
i (i = 1, 2, . . . , g), there is a retraction rF : V ′

F → γ for a legged loop system γ
with the loops αi (i = 1, 2, . . . , g) in F such that the composite rF iF : γ → γ for
the inclusion iF : γ → V ′

F is homotopic to the identity. Then the homology exact
sequence

H2(V
′
F , F ;Z) → H1(∂F ;Z) → H1(V

′
F ;Z) → H1(V

′
F , F ;Z) → 0

induces a split short exact sequence

0 → Zg → H1(V
′
F ;Z) → H1(V

′
F , F ;Z) → 0,
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where Zg denotes a free abelian group with basis represented by the loops αi (i =
1, 2, . . . , g). Hence there are natural isomorphisms

TorH1(V
′
F ;Z)

∼= Tor(H1(V
′
F ;Z)/Imi∗) ∼=∼= TorH1(V

∗,W ;Z)

for the image Imi∗ = Im(i∗ : H1(F ;Z) → H1(V
′
F ;Z)). Since

H1(V
∗, V ′

F ;Z)
∼= H1(W,F ;Z) ∼= H2(W ;Z)

is a free abelian group and the image Im∂′
∗ = Im(∂′

∗ : H2(V
∗, V ′

F ;Z) → H1(V
′
F ;Z)) is

equal to the image Imi∗∂∗ = Im(i∗∂∗ : H2(W,F ;Z) → H1(F ;Z) → H1(V
′
F ;Z)), the

exact sequence

H2(V
∗, V ′

F ;Z) → H1(V
′
F ;Z) → H1(V

∗;Z) → H1(V
∗, V ′

F ;Z) → 0

induces a natural isomorphism

Tor(H1(V
′
F ;Z)/Im∂′

∗)
∼= TorH1(V

∗;Z).

If the loop system αi (i = 1, 2, . . . , g) or α′
i (i = 1, 2, . . . , g) represents a basis of Im∂∗

in H1(F ;Z), then there is a natural isomorphism

Tor(H1(V
′
F ;Z)/Im∂∗) → Tor(H1(V

′
F ;Z)/Imi∗).

Hence the inclusion V ′
F → V ∗ induces an isomorphism TorH1(V

′
F ;Z) → TorH1(V

∗;Z).
This completes the proof of Lemma 5.1.

Theorem 1.4 is shown as follows.

5.2: Proof of Theorem 1.4. Let VF be any leaf of E with ∂VF = F × 1 in
F × S1 = ∂E, and Di, D

′
i (i = 1, 2, . . . , g) any surface-basis of F in E with ∂Di =

αi×1, ∂D′
i = α′

i×1. Let Gk (k = 1, 2, . . . , s) be closed connected oriented surfaces in E

representing Λ-generators of the direct summand XF of BA2(F ) in Theorem 1.1 (2),
which can be disjointedly embedded in E under the covering projection proj : Ẽ → E
by [10, Theorem 4.1] because S(XF , XF ) = 0. Since VF , Di, Gk are all trivially liftable
in Ẽ, the leaf VF is modified so that the interior IntDi of Di transversely meets VF

in disjoint simple loops each of which is null-homologous in Di and Gi transversely
meets VF in disjoint simple loops each of which is null-homologous in Gk. Let D0

i

be an innermost piece of the surfaces of Di divided by the loops VF ∩ Di. Take a
normal disk bundle D0

i ×D2 of D0
i in E with (∂D0

i )×D2 a normal disk bundle of the
loop ∂D0

i in VF and replace (∂D0
i ) × D2 with D0

i × S1 to obtain from VF to obtain
a new leaf of F in E. By continuing this process, the leaf VF is modified to have
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VF ∩ IntDi = ∅ (i = 1, 2, . . . , g). By continuing the same process after pushing the
αi × 1 into the interior of VF , the 3-manifolds Di × S1 (i = 1, 2, . . . , g) are contained
in the resulting leaf VF of E. By the similar modification, VF is modified so that a
normal circle bundle Gk × S1 of Gk is made disjoint from VF . Replace VF with a
connected sum of VF and Gk × S1 (k = 1, 2, . . . , s) in E. To show that the resulting
leaf VF is a desired leaf of F in S4, let V = VF ∪ V0 × 1 be a closed leaf in the
surface-knot manifold M = E ∪ V0 × S1, where V0 is a handlebody with a disjoint
disk system di (i = 1, 2, . . . , g) bounded by the half loop basis αi (i = 1, 2, . . . , g).
Then the surface Di extends to a closed surface s(Di) = Di ∪ di × 1 in V . By 4.2,
BA2(F ) = XF ⊕ YF , BH2(M̃) = X ⊕ Y and the short exact sequence

0 → E0E0(BA2(F )) → E0E0(BH2(M̃)) → Zg → 0

splits into the isomorphism XF
∼= X and the short exact sequence 0 → YF → Y →

Z2g → 0. Hence the natural homomorphism H2(ṼF ;Z) → E0E0(BH2(Ẽ)) with image
XF induces the natural homomorphism H2(Ṽ ;Z) → E0E0(BH2(M̃)) with image X.
By [10], the closed leaf V of M is a closed exact leaf of M , meaning that the following
natural sequence

(∗) 0 → TorH2(M̃, Ṽ ;Z) → TorH1(Ṽ ;Z) → TorH1(M̃ ;Z)

is an exact sequence on integral torsions. By Lemma 5.1, there is a natural iso-
morphism TorH1(ṼF ;Z) ∼= TorH1(V ;Z). Since H1(Ẽ;Z) and H1(M̃ ;Z) are (t − 1)-
divisible and (t − 1)Hk(M̃, Ẽ;Z) = 0 (k = 1, 2), there is a natural Λ-isomorphism
H1(Ẽ;Z) → H1(M̃ ;Z). Further, there is a natural Λ-isomorphism TorH2(Ẽ, ṼF ;Z) →
TorH2(M̃, Ṽ ;Z). In fact, there are Λ-isomorphisms H2(Ẽ, ṼF ;Z) ∼= H2(Ẽ ∪ Ṽ , Ṽ ;Z)
and Hk(M̃, Ẽ ∪ Ṽ ;Z) ∼= Hk(Ṽ0 × (I, ∂I);Z) ∼= Hk−1(Ṽ0;Z) by the excision theorem,
where I denotes the interval [0, 1]. Since H2(Ṽ0;Z) = 0 and H1(Ṽ0;Z) ∼= Λg, there is
a natural exact sequence

0 → H2(Ẽ ∪ Ṽ , Ṽ ;Z) → H2(M̃, Ṽ ;Z) → Λg,

which implies a natural Λ-isomorphism TorH2(Ẽ, ṼF ;Z) ∼= TorH2(M̃, Ṽ ;Z) as de-
sired. Thus, the natural sequence

0 → TorH2(Ẽ, ṼF ;Z) → TorH1(ṼF ;Z) → TorH1(Ẽ;Z)

is equivalent to the exact sequence (∗) and VF is an exact leaf of E. This completes
the proof of Theorem 1.4.

The proof of Corollary 1.5 is given as follows.
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5.3: Proof of Corollary 1.5. Since V is a closed exact leaf of M , it is shown in
[11] that the linking ℓV : TorH1(V ;Z) × TorH1(V ;Z) → Q/Z is isomorphic to the
orthogonal sum of the torsion linking ℓM : DθH1(M̃ ;Z)×DθH1(M̃ ;Z) → Q/Z given
by the second duality of [7] and a hyperbolic linking. Because DA1(F ) ∼= DH1(M̃ ;Z)
and E1(BA2(F )) ∼= E1(BH2(M̃ ;Z)) as (t − 1)-divisible finite modules, the torsion
linking ℓM is Λ-isomorphic to the torsion linking ℓF : Θ(F ) × Θ(F ) → Q/Z by the
second duality of [7]. By Lemma 5.1, the linking ℓVF

: TorH1(VF ;Z)×TorH1(VF ;Z) →
Q/Z is non-singular and isomorphic to ℓV . Thus, the linking ℓVF

is an orthogonal
sum of ℓF and a hyperbolic linking. This completes the proof of Corollary 1.5.
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