Another proof of free ribbon lemma

Akio Kawauchi

Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@omu.ac.jp

ABSTRACT

Free ribbon lemma that every free sphere-link in the 4-sphere is a ribbon sphere-link is shown in an earlier paper by the author. In this paper, another proof of this lemma is given.

Keywords: Free ribbon lemma, Wirtinger presentation, Ribbon sphere-link. *Mathematics Subject Classification 2010*: Primary 57N13; Secondary 57Q45

1. Introduction

A surface-link is a closed oriented (possibly, disconnected) surface L smoothly embedded in the 4-sphere S^4 . When L is connected, L is called a surface-knot. If Lconsists of 2-spheres L_i (i = 1, 2, ..., n), then L is called a sphere-link (or an S^2 -link) of n components. It is shown that every surface-link L is a trivial surface-link (i.e., bounds disjoint handlebodies in S^4 if $\pi_1(S^4 \setminus L, x_0)$ is a meridian-based free group (see [4, 5, 6]). A surface-link L is ribbon if L is obtained from a trivial S^2 -link O in S^4 by surgery along smoothly embedded disjoint 1-handles on O. A surface-link L in the 4-sphere S^4 is free if the fundamental group $\pi_1(S^4 \setminus L, x_0)$ is a (not necessarily meridian-based) free group. The free ribbon lemma is the following theorem.

Theorem. Every free S^2 -link is a ribbon S^2 -link.

This theorem is a basic result concerning Whitehead aspherical conjecture [8] [10] and classical Poincaré conjecture [9], and the proof is done in [8] as an appendix.

At present, it appears unknown whether or not every free surface-link is a ribbon surface-link. In this paper, another proof of this theorem is given as follows.

Proof of Theorem. Let L_i (i = 1, 2, ..., n) be the components of a free S^2 -link L. Let x_i , (i = 1, 2, ..., n) be a basis of the free fundamental group $G = \pi_1(S^4 \setminus L, x_0)$. Let y_i be a meridian element of L_i in G, so that y_i (i = 1, 2, ..., n) are a meridian system of G. By Nielsen transformations, y_i is equal to x_i modulo the commutator subgroup [G, G] of G. It is known that the group G is isomorphic to a group G^P with Wirtinger presentation

$$P = \langle y_{ij} (1 \le j \le m_i, 1 \le i \le n) | r_{ij} (2 \le j \le m_i + s_i, 1 \le i \le n) \rangle$$

such that $y_{i1} = y_i (i = 1, 2, ..., n)$ and the relators $r_{ij} (j = 2, 3, ..., m_i + s_i, i = 1, 2, ..., n)$ $(1, 2, \ldots, n)$ are given by r_{ij} : $y_{ij} = w_{ij}y_{i1}w_{ij}^{-1}$ for j with $2 \le j \le m_i$, $1 \le i \le n$, and $r_{ij}: y_{i1} = w_{ij}y_{i1}w_{ij}^{-1}$ for j with $m_i + 1 \leq j \leq m_i + s_i, 1 \leq i \leq n$, where $w_{ij}(j = m_i + s_i)$ $2, 3, \ldots, m_i + s_i, i = 1, 2, \ldots, n$ are words in the letters y_{ij} $(j = 1, 2, \ldots, m_i, i = 1, 2, \ldots, m_i)$ $1, 2, \ldots, n$). This result is obtained from Yajima [13] because G has a weight system $y_i (i = 1, 2, \ldots, n), H_1(G; Z) \cong Z^n$ and $H_2(G; Z) = 0$. It is observed that this result can be also obtained by an alternative geometric method using a normal form of a surface-link in \mathbb{R}^4 [11]. In fact, put the S²-link L in a normal form of in the 4-space R^4 with $L[0] = L \cap R^3[0]$ a middle cross-sectional link and calculate the fundamental groups $\pi_1(R^3[0, +\infty) \setminus L \cap R^3[0, +\infty), x_0)$ and $\pi_1(R^3(-\infty, 0] \setminus L \cap R^3(-\infty, 0], x_0)$ with Wirtinger presentations starting from the fundamental group $\pi_1(R^3[0] \setminus L[,0], x_0)$ with a Wirtinger presentation to obtain the group G with a Wirtinger presentation by van Kampen theorem. See [2, 3] for this construction and [1] for a generalization. By fixing an isomorphism $G^P \to G$, regard the generators y_{ij} $(j = 1, 2, \ldots, m_i, i =$ $1, 2, \ldots, n$) of P as fixed words in the basis $x_i, (i = 1, 2, \ldots, n)$ of G. Then the relator $y_{i1} = w_{ij}y_{i1}w_{ij}^{-1}$ for every *i* and *j* with $m_i + 1 \le j \le m_i + s_i$ can be written as $y_{i1} = a_{ij}^{u(i,j)}$ and $w_{ij} = a_{ij}^{v(i,j)}$ for a deduced word a_{ij} in x_i , (i = 1, 2, ..., n) and some integers u(i, j), v(i, j) by Dehn's solution of the word problem of the free group $\langle x_1, x_2, \ldots, x_n \rangle$. The elements $y_i = y_{i1} (i = 1, 2, \ldots, n)$ form the same abelian basis as x_i (i = 1, 2, ..., n) in the free abelian group G/[G, G], so that $u(i, j) = \pm 1$ for every *i* and *j*. Thus, $w_{ij} = y_{i1}^{u(i,j)v(i,j)}$ for every *i* and *j* with $m_i + 1 \le j \le m_i + s_i$, which means that the relators r_{ij} : $y_{i1} = w_{ij}y_{i1}w_{ij}^{-1}$ $(m_i + 1 \le j \le m_i + s_i)$ are identity relations in the free group $\langle y_{ij} (1 \leq j \leq m_i, 1 \leq i \leq n) \rangle$. Thus, the Wirtinger presentation P is equivalent to the Wirtinger presentation

$$R = \langle y_{ij} (1 \le j \le m_i, 1 \le i \le n) | r_{ij} (2 \le j \le m_i, 1 \le i \le n) \rangle$$

with $y_{i1} = y_i (i = 1, 2, ..., n)$ and the relators $r_{ij} (2 \le j \le m_i, 1 \le i \le n)$ given by $r_{ij} : y_{ij} = w_{ij}y_{i1}w_{ij}^{-1} (1 \le j \le m_i, 1 \le i \le n)$. By Yajima's construction [12] (see also

[2, 3]), there is a ribbon S^2 -link L^R with the fundamental group $G^R = \pi_1(S^4 \setminus L^R, x_0)$ of the Wirtinger presentation R which is isomorphic to G by an isomorphism $G^R \to G$ sending a meridian element y_i^R of the *i*th component L_i^R of L^R to the meridian element y_i of L_i in G for every i (i = 1, 2, ..., n) and a basis x_i^R , (i = 1, 2, ..., n) of G^R to the basis x_i , (i = 1, 2, ..., n) of G. Let Y^R and Y be the 4D manifolds (both diffeomorphic to the *n*-fold connected sum of $S^1 \times S^3$) obtained from S^4 by surgeries along L^R and L, respectively, and ℓ_i^R , (i = 1, 2, ..., n) and ℓ_i , (i = 1, 2, ..., n) the loop systems obtained from L_i^R (i = 1, 2, ..., n) and L_i (i = 1, 2, ..., n), respectively. By [8], there is an orientation-preserving diffeomorphism $f: Y^R \to Y$ sending the loop system ℓ_i^R (i = 1, 2, ..., n) to the loop system ℓ_i (i = 1, 2, ..., n). Note that this result is obtained from the smooth unknotting conjecture for S^2 -knots [4, 5, 6] and the 4D smooth Poincaré conjecture [7]. By the back surgeries from Y^R to S^4 along ℓ_i^R (i = 1, 2, ..., n) and from Y to S^4 along ℓ_i (i = 1, 2, ..., n), this diffeomorphism f induces an orientation-preserving diffeomorphism $f': S^4 \to S^4$ sending L^R to L. Thus, the S^2 -link L is a ribbon S^2 -link. This completes the proof of Theorem.

In the proof of Theorem, the ribbon S^2 -link L^R is called a *ribbon presentation* of the free S^2 -link L. The following corollary is obtained from the proof of Theorem.

Corollary. Let L be a free S^2 -link in the 4-sphere S^4 containing a free S^2 -link K as a sublink. For any ribbon presentation of K^R of K, there is a ribbon presentation L^R of L containing K^R as a sublink.

Proof of Corollary. The ribbon presentation of K^R of K is in a normal form. Thus, the result is obtained from the observation that a normal form of L is taken to contain K^R as a sublink (see [11]).

Acknowledgements. This work was partly supported by JSPS KAKENHI Grant Number JP21H00978 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165.

References

- [1] S. Kamada, Wirtinger presentations for higher dimensional manifold knots obtained from diagrams, Fund. Math., 168(2001), 105-112.
- [2] A. Kawauchi, On the surface-link groups, Intelligence of low dimensional topology 2006, Series on knots and everything 40 (2007), 157-164, World Sci. publ.

- [3] A. Kawauchi, The first Alexander Z[Z]-modules of surface-links and of virtual links, Geometry & Topology Monographs 14 (2008), 353-371.
- [4] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, Topology and its Applications 301(2021), 107522 (16pages).
- [5] A. Kawauchi, Uniqueness of an orthogonal 2-handle pair on a surface-link, Contemporary Mathema tics (UWP) 4 (2023), 182-188.
- [6] A. Kawauchi, Triviality of a surface-link with meridian-based free fundamental group, Transnational Journal of Mathematical Analysis and Applications 11 (2023), 19-27.
- [7] A. Kawauchi, Smooth homotopy 4-sphere, WSEAS Transactions on Mathematics 22 (2023), 690-701.
- [8] A. Kawauchi, Ribbonness of Kervaire's sphere-link in homotopy 4-sphere and its consequences to 2-complexes. Journal of Mathematical Techniques and Computational Mathematics, 3(4) (2024), 01-08 (online).
- [9] A. Kawauchi, Classical Poincaré conjecture via 4D topology. Journal of Mathematical Techniques and Computational Mathematics, 3(4) (2024), 1-7 (online).
- [10] A. Kawauchi, Whitehead aspherical conjecture via ribbon sphere-link. Journal of Mathematical Techniques and Computational Mathematics, 3(5) (2024), 01-10 (online).
- [11] A. Kawauchi, T. Shibuya, S. Suzuki, Descriptions on surfaces in four-space I : Normal forms, Mathematics Seminar Notes, Kobe University, 10 (1982), 75-125; II: Singularities and cross-sectional links, Mathematics Seminar Notes, Kobe University 11 (1983), 31-69. Available from: https://sites.google.com/view/ kawauchiwriting
- [12] T. Yajima, On the fundamental groups of knotted 2-manifolds in the 4-space, J. Math. Osaka City Univ., 13(1962), 63-71.
- T. Yajima, Wirtinger presentations of knot groups, Proc. Japan Acad., 46(1970), 997-1000.