Note on surface-link of trivial components

Akio Kawauchi

Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@omu..ac.jp

Abstract

As a previous result, it has shown that every sphere-link consisting of trivial components is a ribbon sphere-link. In this note, it is shown that for every closed oriented disconnected surface \mathbf{F} with just one non-sphere component, every \mathbf{F} -link consisting of trivial components is a ribbon surface-link. Further, it is shown that for every closed oriented disconnected surface \mathbf{F} containing at least two non-sphere components, there exist a pair of a ribbon \mathbf{F} -link and a non-ribbon \mathbf{F} -link that consist of trivial components and have meridian-preservingly isomorphic fundamental groups.

Keywords: Ribbon, Non-ribbon, Surface-link. Mathematics Subject Classification 2010: Primary 57Q45; Secondary 57N13

Let \mathbf{F} be a (possibly disconnected) closed surface. An \mathbf{F} -link in the 4-sphere S^4 is the image of a smooth embedding $\mathbf{F} \to S^4$. When \mathbf{F} is connected, it is also called an \mathbf{F} -knot. An \mathbf{F} -link or \mathbf{F} -knot for an \mathbf{F} is called a surface-link or surface-knot in S^4 , respectively. If \mathbf{F} consists of some copies of the 2-sphere S^2 , then it is also called an S^2 -link. and an S^2 -knot for $\mathbf{F} = S^2$. A trivial surface-link is a surface-link F which bounds disjoint handlebodies smoothly embedded in S^4 . A ribbon surface-link is a surface-link F which is obtained from a trivial nS^2 -link O for some n (where nS^2 denotes the disjoint union of n copies of S^2) by surgery along an embedded 1-handle system, [6], [7], [8], [9], [11]. It was shown that every S^2 -link consisting of trivial components is a ribbon S^2 -link, [10]. The following result is a generalization of this result.

Theorem 1. Let \mathbf{F} be a closed oriented disconnected surface with at most one non-sphere component. Then every \mathbf{F} -link L in S^4 consisting of trivial components is a ribbon \mathbf{F} -link in S^4 .

Proof of Theorem 1. The case that \mathbf{F} consists of only S^2 -components has been given, [10, Theorem 1.5]. This proof is done by a similar method. Let \mathbf{F} have S^2 -components and only

one non-sphere component, and L an **F**-link in S^4 consisting of trivial components. Let F be the trivial non-sphere component of L and $L' = L \setminus F$ the remaining S²-link consists of trivial components. Since the second homology class [F] = 0 in $H_2(S^4 \setminus L'; Z) = 0$, there is a compact connected oriented 3-manifold V_F smoothly embedded in S^4 with $\partial V_F = F$ and $V_F \cap L' = \emptyset$. The S²-link L' is a ribbon S²-link in S⁴, [10, Theorem 1.5]. Let W be a SUPH system in S^4 with $\partial W = L' \cup O$ for a trivial S^2 -link O, [10]. Let α be an arc system in W spanning O such that the closed complement $cl(W \setminus N(\alpha))$ is identified with a boundary collar $L' \times [0,1]$ of L' in W with $L' \times 0 = L'$ where $N(\alpha)$ is a regular neighborhood of α in W which is written as a trivial disk fiber bundle $d \times \alpha$ over α . Since $V_F \cap L' = \emptyset$, it can be assumed that $(L' \times [0,1]) \cap V_F = \emptyset$ and the interior of the disk fiber $d \times x$ for a point x of α meets V_F transversely with a simple proper arc system and a simple loop system. By deforming V_F , the interior of the disk fiber $d \times x$ meets V_F transversely only with a simple proper arc system β . As a result, the intersection $N(\alpha) \cap V_F$ is assumed to be a thickening $\beta \times [0,1]$ of β . A regular neighborhood of $\beta \times [0,1]$ in V_F is a 1-handl system $h(\beta)$ on F. By adding a disjoint 1-handle system h^+ on F embedded in V_F , the closed complement $H = \operatorname{cl}(V_F \setminus (h(\beta) \cup h^+))$ is a handlebody of genus, say n. Let $F^+ = \partial H$. Let H^0 be a once-punctured handlebody obtained from H by removing a 3-ball with $\partial H^0 = F^+ \cup O^H$. The union $W \cup H^0$ is a SUPH system for the surface-link $L' \cup F^+$ in S^4 , so that $L' \cup F^+$ is a ribbon surface-link in S⁴ by [10, Lemma 3.1]. The 1-handle system $h(\beta) \cup h^+$ on F is a 2-handle system $D_i \times I$ (i = 1, 2, ..., n) on F^+ , where I denotes an interval containing 0 in the interior. Then there is a disjoint O2-handle pair system $(D_i \times I, D'_i \times I)$ (i = 1, 2, ..., n)on F^+ because any disjoint 1-handle system on the trivial surface-knot F is a disjoint trivial 1-handle system on F, [4], [10, Lemma 4.1]. Let $(O \cup O^H, \alpha \cup \alpha^H)$ be a chorded sphere system for the ribbon surface-link $L' \cup F^+$ constructed in the SUPH system $W \cup H^0$. Let $B(O) \cup B(O^H)$ be a disjoint 3-ball system bounded by the trivial S²-link $O \cup O^H$ in S⁴. The intersections $B(O) \cap D_i = B(O) \cap D'_i = \emptyset(i = 1, 2, ..., n)$ can be assumed by moving the 3-ball system $B(O) \cup B(O^H)$ in S^4 . The intersections $(\alpha \cup \alpha^H) \cap D_i = (\alpha \cup \alpha^H) \cap D'_i =$ \emptyset (i = 1, 2, ..., n) can be also assumed by general position. Thus, the disjoint O2-handle pair system $(D_i \times I, D'_i \times I)$ (i = 1, 2, ..., n) on F is deformed into a disjoint O2-handle pair system on the ribbon surface-link $L' \cup F^+$ in S^4 , whose surgery surface-link $L = L' \cup F$ is a ribbon surface-link, [10, Corollary 1.2, & Lemma 2.1]. This completes the proof of Theorem 1.

In the case that \mathbf{F} has at least two non-sphere components, the following result is obtained.

Theorem 2. Let \mathbf{F} be any closed oriented disconnected surface with at least two non-sphere components. Then there exist a pair of a ribbon \mathbf{F} -link L and a non-ribbon \mathbf{F} -link L' in S^4 that consist of trivial components and have meridian-preservingly isomorphic fundamental groups.

Proof of Theorem 2. Let $k \cup k'$ be a non-splitable link in the interior of a 3-ball B such that

k and k' are trivial knots. For the boundary 2-sphere $S = \partial B$ and the disk D^2 with the boundary circle S^1 , let L be the torus-link consisting of the torus-components $T = k \times S^1$ and $T' = k' \times S^1$ in the 4-sphere S^4 with $S^4 = B \times S^1 \cup S \times D^2$, which is a ribbon torus-link in S^4 , [6]. Since k and k' are trivial knots in B, the torus-knots T and T' are trivial torus-knots in S^4 by construction. Since $k \cup k'$ is non-splitable in B, there is a simple loop t(k) in T coming from the longitude of k in B such that t(k) does not bound any disk not meeting T' in S^4 , meaning that there is a simple loop c in T unique up to isotopies of T which bound a disk d in S⁴ not meeting T', where c and d are given by $c = p \times S^1$ and $d = a \times S^1 \cup q \times D^2$ for a simple arc a in B joining a point p of k to a point q in S with $a \cap (k \cup k') = \{p\}$ and $a \cap S = \{q\}$. Regard the 3-ball B as the product $B = B_1 \times [0,1]$ for a disk B_1 . Let τ_1 is a diffeomorphism of the solid torus $B_1 \times S^1$ given by one full-twist along the meridian disk B_1 , and $\tau = \tau_1 \times 1$ the product diffeomorphism of $(B_1 \times S^1) \times [0,1] = B \times S^1$. Let $\partial \tau$ be the diffeomorphism of the boundary $S \times S^1$ of $B \times S^1$ obtained from τ by restricting to the boundary, and the 4-manifold M obtained from $B \times S^1$ and $S \times D^2$ by pasting the boundaries $\partial(B \times S^1) = S \times S^1$ and $\partial(S \times D^2) = S \times S^1$ by the diffeomorphism $\partial \tau$. Since the diffeomorphism $\partial \tau$ of $S \times S^1$ extends to the diffeomorphism τ of $B \times S^1$, the 4-manifold M is diffeomorphic to S^4 . Let $L_M = T_M \cup T'_M$ be the torus-link in the 4-sphere M arising from $L = T \cup T'$ in $B \times S^1$. The fundamental groups $\pi_1(S^4 \setminus L, x)$ and $\pi_1(M \setminus L_M, x)$ are meridian-preservingly isomorphic by van Kampen theorem. The loop t(k) in T_M does not bound any disk not meeting T'_M in M, so that the loop c in T_M is a unique simple loop up to isotopies of T_M which bounds a disk $d_M = a \times S^1 \cup D_M^2$ in M not meeting T'_M , where D_M^2 denotes a proper disk in $S \times D^2$ bounded by the loop $\partial \tau(q \times S^1)$. An important observation is that the self-intersection number $Int(d_M, d_M)$ in M with respect to the surface-framing on L_M is ± 1 . This means that the loop c in T_M is a non-spin loop and thus, the torus-link L_M in M is not any ribbon torus-link, [3], [5]. Let $(S^4, L') = (M, L_M)$. If **F** consists of two tori, then the pair (L, L') forms a desired pair. If **F** is any surface consisting of two non-sphere components, then a desired **F**-link pair is obtained from the pair (L, L') by taking connected sums of some trivial surface-knots, because every stabilization of a ribbon surface-link is a ribbon surface-link and every stable-ribbon surface-link is a ribbon surface-link, [10]. If **F** has some other surface \mathbf{F}_1 in addition to a surface \mathbf{F}_0 of two non-sphere components, then a desired **F**-link pair is obtained from a desired \mathbf{F}_0 -link pair by adding the trivial \mathbf{F}_1 -link as a split sum. Thus, a desired **F**-link pair (L, L') is obtained. This completes the proof of Theorem 2.

In the proof of Theorem 2, the diffeomorphism $\partial \tau$ of $S \times S^1$ coincides with Gluck's nonspin diffeomorphism of $S^2 \times S^1$, [2]. The torus-link (M, T_M) called a *turned torus-link* of a link $k \cup k'$ in B is an analogy of a turned torus-knot of a knot in B, [1]. There is an invariant of a surface-knot used to confirm a non-ribbon surface-knot, [5]. This invariant is easily generalized to an invariant of a surface-link, which can be also applied to confirm that L' is a non-ribbon surface-link. Acknowledgements. This work was partly supported by JSPS KAKENHI Grant Number JP21H00978 and MEXT Promotion of Distinctive Joint Research Center Program JP-MXP0723833165.

References

- [1] J. Boyle, J. (1993). The turned torus knot in S^4 . J Knot Theory Ramifications, 2: 239-249.
- [2] Gluck, H. (1962). The embedding of two-spheres in the four-sphere, Trans Amer Math Soc, 104: 308-333.
- [3] Hillman, J. A., & Kawauchi, A. (1995). Unknotting orientable surfaces in the 4-sphere. J Knot Theory Ramifications, 4: 213-224.
- [4] F. Hosokawa, F., & Kawauchi, A. (1979). Proposals for unknotted surfaces in four-space. Osaka J Math, 16: 233-248.
- [5] Kawauchi, A. (2002). On pseudo-ribbon surface-links. J Knot Theory Ramifications, 11: 1043-1062.
- [6] Kawauchi, A. (2015). A chord diagram of a ribbon surface-link, J Knot Theory Ramifications, 24: 1540002 (24 pages).
- [7] Kawauchi, A. (2017). Supplement to a chord diagram of a ribbon surface-link, J Knot Theory Ramifications, 26: 1750033 (5 pages).
- [8] Kawauchi, A. (2017). A chord graph constructed from a ribbon surface-link, Contemporary Mathematics (AMS). 689: 125-136.
- [9] Kawauchi, A. (2018). Faithful equivalence of equivalent ribbon surface-links, J Knot Theory Ramifications, 27: 1843003 (23 pages).
- [10] Kawauchi, A. (2024). Ribbonness of a stable-ribbon surface-link, II. General case. arxiv:1907.09713, https://sites.google.com/view/kawauchiwriting.
- [11] Kawauchi, A., Shibuya, T., Suzuki, S. (1982). Descriptions on surfaces in four-space, I : Normal forms. Math Sem Notes Kobe Univ, 10: 75-125; (1983). II: Singularities and cross-sectional links. Math Sem Notes Kobe Univ, 11: 31-69.