Ribbonness of Kervaire's sphere-link in homotopy 4-sphere and its consequences to 2-complexes

Akio KAWAUCHI

Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@omu.ac.jp

ABSTRACT

M. A. Kervaire showed that every group of deficiency d and weight d is the fundamental group of a smooth sphere-link of d components in a smooth homotopy 4-sphere. In the use of the smooth unknotting conjecture and the smooth 4D Poincaré conjecture, any such sphere-link is shown to be a sublink of a free ribbon sphere-link in the 4-sphere. Since every ribbon sphere-link in the 4-sphere is also shown to be a sublink of a free ribbon sphere-link in the 4-sphere, Kervaire's sphere-link and the ribbon sphere-link are equivalent concepts. By applying this result to a ribbon disk-link in the 4-disk, it is shown that the compact complement of every ribbon disk-link in the 4-disk is aspherical. By this property, a ribbon disk-link presentation for every contractible finite 2-complex is introduced. By using this presentation, it is shown that every connected subcomplex of a contractible finite 2-complex is aspherical (meaning partially yes for Whitehead aspherical conjecture).

Keywords: Kervaire's sphere-link, ribbon sphere-link, 2-complex, Whitehead aspherical conjecture

Mathematics Subject classification 2010:57Q45, 57M20

1. Introduction

A group with finite presentation $\langle x_1, x_2, ..., x_n | r_1, r_2, ..., r_{n-d} \rangle$ is called a group of *deficiency d*. A group *G* has *weight d* if there are *d* elements $w_1, w_2, ..., w_d$ in *G* whose normal closure is equal to *G*, where the system of elements $w_1, w_2, ..., w_d$ is called a weight system of G. Let X be a closed connected oriented smooth 4manifold. A sphere-link or an S^2 -link in X is a disjoint sphere system smoothly embedded in X. A surgery of X along a loop system k_i (i = 1, 2, ..., n) is the operation replacing a normal D^3 -bundle system $k_i \times D^3$ (i = 1, 2, ..., n) of k_i (i = 1, 2, ..., n)in X by a normal D^2 -bundle system $D_i^2 \times S^2$ (i = 1, 2, ..., n) of the 2-sphere system $K_i = 0_i \times S^2$ (i = 1, 2, ..., n) under the identifications that $\partial D_i^2 = k_i$ (i = 1, 2, ..., n)and $\partial D^3 = S^2$. Let X' be the smooth 4-manifold resulting from X by this surgery. The spheres K_i (i = 1, 2, ..., n) form an S^2 -link K in X'. The 4-manifold X' is said to be obtained from the 4-manifold X by surgery along a loop system k_i (i = 1, 2, ..., n)in X, and conversely the 4-manifold X is said to be obtained from the 4-manifold X' by surgery along a sphere system K in X'. Note that there are canonical fundamental group isomorphisms

$$\pi_1(X, v) \cong \pi_1(X \setminus k, v) \cong \pi_1(X' \setminus K, v)$$

by general position. The closed 4D handlebody of genus n is the 4-manifold

$$Y^S = S^4 \#_{i=1}^n S^1 \times S_i^3$$

which is the connected sum of S^4 and n copies $S^1 \times S_i^3$ (i = 1, 2, ..., n) of the closed 4D handle $S^1 \times S^3$. A legged loop system with base point v in X is a graph ωk of legged loops $\omega_i k_i$ (i = 1, 2, ..., d) embedded in X consisting of a disjoint simple loop system k_i (i = 1, 2, ..., d) and a leg system (=embedded path system) ω_i (i = 1, 2, ..., d) such that ω_i connects the base point v and a point $p_i \in k_i$ for every i and the legs ω_i for all i are made disjoint except for the base point v. The fundamental group $\pi_1(Y^S, v^S)$ is identified with the free group $< x_1, x_2, ..., x_n >$ with basis $x_1, x_2, ..., x_n$ represented by the standard legged loop system $\omega^S x$ of legged loops $\omega_i k_i$ (i = 1, 2, ..., n) with base point v^S in Y^S using the standard loop $k_i = S^1 \times \mathbf{1}_i$ of $S^1 \times S_i^3$ and a leg ω_i joining v^S and the point $(1, \mathbf{1}_i) \in 1 \times S_i^3$ not meeting $1 \times (S_i^3 \setminus {\mathbf{1}_i})$, for every i. A smooth homotopy 4-sphere is a smooth 4-manifold M homotopy equivalent to the 4-sphere S^4 . A meridian system of an S^2 -link K with k components in M is a legged loop system ωm with base point v in $M \setminus L$ whose loop system m consists of a meridian loop of every component of K. Kervaire showed the following theorem in [13]¹.

Kervaire's Theorem. For every group G of deficiency d and weight d, there is an S^2 -link K with d components in a smooth homotopy 4-sphere M such that there is an isomorphism $G \cong \pi_1(M \setminus K, v)$ sending the weight system to a meridian system of K.

¹The condition that $H_1(G) = G/[G,G]$ is a free abelian group of rank d is omitted since every group G of deficiency d and weight d has this condition.

The construction of an S^2 -link in this theorem is explained as follows.

Construction of Kervaire's S²-link. Let $\langle x_1, x_2, ..., x_n | r_1, r_2, ..., r_{n-d} \rangle$ be a finite presentation of G of deficiency d, and $w_1, w_2, ..., w_d$ a weight system of G. Let G(n; n-d, d) be the triple system of the free group $\langle x_1, x_2, ..., x_n \rangle$, the relator system $r_1, r_2, ..., r_{n-d}$ written as words in $x_1, x_2, ..., x_n$ and a weight system $w_1, w_2, ..., w_d$ written as words in $x_1, x_2, ..., x_n$. Identify the free group $\langle x_1, x_2, ..., x_n \rangle$ with the fundamental group $\pi_1(Y^S, v^S)$ of the 4D closed handlebody Y^S . Let X be a 4-manifold obtained from Y^S by surgery along a loop system $k(r_1), k(r_2), \ldots, k(r_{n-d})$ in Y^S representing the words $r_1, r_2, \ldots, r_{n-d}$ in $\pi_1(Y^S, v^S)$. The fundamental group $\pi_1(X, v^S)$ has the presentation $\langle x_1, x_2, ..., x_n | r_1, r_2, ..., r_{n-d} \rangle$ by Seifert-van Kampen theorem. Let M be the 4-manifold obtained by surgery along a loop system $k(w_1), k(w_2), \ldots, k(w_d)$ in X representing the weight system $w_1, w_2, ..., w_d$ of $\pi_1(X, v^S)$. The manifold M is a smooth homotopy 4-sphere by Seifert-van Kampen theorem. The S^2 -link K of d components in M is given by the core spheres $K_i = 0_i \times \partial D^3 (i = 1, 2, ..., d)$ of $D_i^2 \times \partial D^3$ replacing $k(w_i) \times D^3$ (i = 1, 2, ..., d). The fundamental group $\pi_1(M \setminus K, v)$ is isomorphic to $\pi_1(X, v) \cong G$ by an isomorphism sending a meridian system of K in M to the weight system $w_1, w_2, ..., w_d$. This completes the construction of Kervaire's S^2 -link.

Kervaire's S^2 -link K in this construction is uniquely determined by the triple system G(n; n-d, d) of the free group $\langle x_1, x_2, ..., x_n \rangle$, the relator system $r_1, r_2, ..., r_{n-d}$ and the weight system $w_1, w_2, ..., w_d$, which is called Kervaire's S^2 -link of type G(n; n-d, d) or simply an S^2 -link of type G(n; n-d, d). For a smooth surface-link L in S^4 , the fundamental group $\pi_1(S^4 \setminus L, v)$ is a meridian-based free group if $\pi_1(S^4 \setminus L, v)$ is a free group with a basis represented by a meridian system of L with base point v. A smooth surface-link L in S^4 is a trivial surface-link if the components of L bound disjoint handlebodies smoothly embedded in S^4 . In this paper, Kervaire's S^2 -link is studied by using Smooth 4D Poincaré Conjecture and Smooth Unknotting Conjecture for a surface-link stated as follows:

Smooth 4D Poincaré Conjecture. Every 4D smooth homotopy 4-sphere M is diffeomorphic to S^4 .

Smooth Unknotting Conjecture. Every smooth surface-link F in S^4 with a meridian-based free fundamental group $\pi_1(S^4 \setminus F, v)$ is a trivial surface-link.

The positive proofs of these conjectures are in [10] and [7, 8, 9], respectively. From

now on, every smooth homotopy 4-sphere M is identified with the 4-sphere S^4 . An S^2 -link L in S^4 is a ribbon S^2 -link if L is an S^2 -link obtained from a trivial S^2 -link O in S^4 by surgery along embedded 1-handles on O. See [12, II], [17] for earlier concept of a ribbon surface-link. An S^2 -link L in S^4 is a free S^2 -link of rank n if the fundamental group $\pi_1(S^4 \setminus L, v)$ is a (not necessarily meridian based) free group of rank n. The following theorem is the first result of this paper.

Theorem 1.1. The following three statements on an S^2 -link K with d components in the 4-sphere S^4 are mutually equivalent:

(1) The S²-link K is an S²-link of type G(n; n - d, d) for some n.

(2) The S²-link K is a sublink with d components of a free ribbon S²-link of some rank n.

(3) The S^2 -link K is a ribbon S^2 -link with d components.

By combining Kervaire's Theorem with Theorems 1.1, the following characterization of the fundamental group $\pi_1(S^4 \setminus K, v)$ of a ribbon S^2 -link K in S^4 is obtained.

Corollary 1.2. A group G is a group of deficiency d and weight d if and only if G is isomorphic to the group $\pi_1(S^4 \setminus K, v)$ of a ribbon S^2 -link K of d components in S^4 by an isomorphism sending the weight system of G to a meridian system of K.

In the proof of Theorem 1.1, the claim that every free S^2 -link is a free ribbon S^2 link is needed whose proof is done in [11]. For completeness of the present argument, this claim is moved to Appendix of this paper as *Free Ribbon Lemma* together with the proof. The proof of Theorem 1.1 is done in Section 2 by assuming Free Ribbon Lemma. A trivial proper disk system in the 4-disk D^4 is a disjoint proper disk system $D_i (i = 1, 2, ..., n)$ in D^4 obtained by an interior push of a disjoint disk system D_i^0 (i = 1, 2, ..., n) in the 3-sphere $S^3 = \partial D^4$. A ribbon disk-link of d components in D^4 is a disjoint proper disk system L^D in D^4 of d components which is obtained by an interior push of a disjoint disk system which is the union of a trivial proper disk system D_i (i = 1, 2, ..., n) in D^4 for some n and a disjoint band system b_j^0 (j = 1, 2, ..., n - d) in S^3 spanning the trivial link ∂D_i (i = 1, 2, ..., n) in S^3 . The link ∂L^D in S^3 is called a *classical ribbon link*. By construction, the double of a ribbon disk-link L^D of k components in D^4 is a ribbon S^2 -link L of k components in S^4 . It is a standard fact that every ribbon S^2 -link (S^4, L) is considered as the double $(D^4 \cup -D^4, L^D \cup -L^D)$ of a ribbon disk-link (D^4, L^D) and its copy $(-D^4, -L^D)$, namely $(S^4, L) = (\partial (D^4 \times I), \partial (L^D \times I)), I = [-1, 1].$ To construct a ribbon disk-link (D^4, L^D) from a ribbon S^2 -link (S^4, L) , it is noted that a trivial S^2 -link O and embedded 1handles to construct L are always isotopically deformed into a symmetric position with respect to the equatorial 3-sphere $S^3 = \partial D^4 = \partial (-D^4)$ in $S^4 = D^4 \cup -D^4$ (see [12, II]). A free ribbon disk-link of rank n is a ribbon disk-link L^D in D^4 such that the fundamental group $\pi_1(D^4 \setminus L^D, v)$ is a free group of rank n. In Lemma 3.1, it is shown that the inclusion $(D^4, L^D) \to (S^4, L)$ induces an isomorphism

$$\pi_1(D^4 \setminus L^D, v) \to \pi_1(S^4 \setminus L, v).$$

Thus, the S^2 -link L is a free ribbon S^2 -link in S^4 if and only if the ribbon disk-link L^{D} is a free ribbon disk-link in D^{4} . The compact complement of a ribbon disk-link L^D in the 4-disk D^4 is the compact 4-manifold $E(L^D) = \operatorname{cl}(D^4 \setminus N(L^D))$ for a normal disk-bundle $N(L^D) = L^D \times D^2$ of L^D in D^4 . By Theorem 1.1, every ribbon S²-link K is a sublink of a free ribbon S^2 -link L of some rank n, so that every ribbon disklink K^D is a sublink of a free ribbon disk-link L^D of some rank n by Lemma 3.1. A connected complex is understood as a cell complex P obtained from a bouquet of loops, called the 1-skelton P^1 of P, by adding $q \geq 2$ -cells to P^1 . A connected complex is aspherical if the universal covering space is contractible. A connected 2complex P is aspherical if and only if the second homotopy group $\pi_2(P, v) = 0$. For a subcomplex P' of a cell complex P, a deformation retract from P to P' is a map $r: P \to P'$ such that the composite map $ir: P \to P$ for the inclusion $i: P' \subset P$ is homotopic to the identity $1: P \to P$, where if the homotopy is further relative to P', then the map r is called a strong deformation retract from P to P' (see [15]). It is shown in Lemma 3.2 that for every free ribbon disk-link L^{D} in D^{4} , there is a strong deformation retract

$$r: E(L^D) \to \omega x$$

from the compact complement $E(L^D)$ to a legged *n*-loop system ωx in $E(L^D)$ representing the free group $\pi_1(E(L^D), v) = \langle x_1, x_2, \ldots, x_n \rangle$. Section 3 is devoted to explanations of Lemmas 3.1 and 3.2 on ribbon disk-links. In Section 4, a decomposition of the 4-disk D^4 into a normal disk-bundle $N(L^D) = L^D \times D^2$ of a free ribbon disk-link L^D and the compact complement $E(L^D)$ is considered. Let $Q(L^D) = E(L^D) \cup N(L^D)$ denote this decomposition of D^4 . For a disk-link L^D of n components, let $p_* = \{p_i | i = 1, 2, \ldots, n\}$ be a set of n points, one point taken from each component of L^D . The strong deformation retract $N(L^D) \to p_* \times D^2$ shrinking L^D into p_* and the strong deformation retract $r : E(L^D) \to \omega x$ in Lemma 3.2 define a map

$$\rho: Q(L^D) \to P(L^D)$$

with $P(L^D)$ a finite 2-complex consisting of the 1-skelton $P(L^D)^1 = \omega x$ and the 2cells $p_* \times D^2$ attached by the attaching map $p_* \times \partial D^2 \to \omega x$ defined by r. The map ρ is called a *ribbon disk-link presentation* for the finite 2-complex $P(L^D)$. A 1-full subcomplex of a cell complex P is a subcomplex P' of P such that the 1-skelton $(P')^1$ of P' is equal to the 1-skelton P^1 of P. For a sublink K^D of L^D , let $N(K^D) = K^D \times D^2$ be the subbundle of the disk-bundle $N(L^D)$. Then the union $Q(K^D; L^D) = E(L^D) \cup N(K^D)$ is a decomposition of the compact complement $E(L^D \setminus K^D)$ of the sublink $L^D \setminus K^D$ of L^D in D^4 and the ribbon disk-link presentation $\rho: Q(L^D) \to P(L^D)$ for $P(L^D)$ sends $Q(K^D; L^D)$ to a 1-full 2-subcomplex $P(K^D; L^D)$ of $P(L^D)$. Further, every 1-full 2-subcomplex of $P(L^D)$ is obtained from a sublink K^D of L^D in this way. The following theorem is shown in Section 4.

Theorem 1.3. For every free ribbon disk-link L^D in the 4-disk D^4 , the ribbon disk-link presentation $\rho: Q(L^D) \to P(L^D)$ for the finite 2-complex $P(L^D)$ induces a homotopy equivalence $Q(K^D; L^D) \to P(K^D; L^D)$ for every sublink K^D of L^D including $K^D = \emptyset$ and $K^D = L^D$. In particular, the finite 2-complex $P(L^D)$ is contractible. Further, every contractible finite 2-complex P is taken as $P = P(L^D)$ for a free ribbon disk-link L^D in the 4-disk D^4 .

In Section 5, the following theorem is shown by using Theorem 1.3.

Theorem 1.4. The compact complement $E(K^D)$ of every ribbon disk-link K^D in the 4-disk D^4 is aspherical.

The asphericity of the compact complement of a ribbon disk-knot in D^4 has been conjectured by Howie [5] after having found some gaps on the arguments of Yanagawa [18] and Asano, Marumoto, Yanagawa [1]. Since the fundamental group of an aspherical complex is torsion-free, the following corollary is obtained from Lemma 3.1 and Theorem 1.4.

Corollary 1.5. The fundamental group $\pi_1(S^4 \setminus L, v)$ of every ribbon S^2 -link in the 4-sphere S^4 is torsion-free.

This result gives the positive answer to the author's old question in [12, II(pp.57-58)]. The following corollary is obtained from Theorems 1.3 and 1.4, because if a connected subcomplex P' of a contractible finite 2-complex P is not 1-full, then a 1-full subcomplex P'' of P is constructed from P' by adding a bouquet of some loops in the 1-skelton P^1 of P to P', and P'' is aspherical if and only if P' is aspherical.

Corollary 1.6. Every connected subcomplex of every contractible finite 2-complex is aspherical.

This result is a partial positive confirmation of Whitehead aspherical conjecture [16] claiming that every connected subcomplex of an aspherical 2-complex is aspherical.

2. Proof of Theorem 1.1

The following lemma is a standard result obtained as a corollary of Smooth 4D Poincaré Conjecture and Smooth Unknotting Conjecture is shown in [10, Corollary 1.5] without a mention of a legged loop system.

Lemma 2.1. Every closed connected orientable smooth 4-manifold Y with $\pi_1(Y, v)$ a free group and $H_2(Y; \mathbb{Z}) = 0$ is diffeomorphic to the closed 4D handlebody Y^S by a diffeomorphism $f: Y \to Y^S$ sending any given a legged loop system ωx with base point v representing a basis x_1, x_2, \ldots, x_n of $\pi_1(Y, v)$ to a standard legged loop system $\omega^S x$ of Y^S . For any given spin structures on Y and Y^S , the diffeomorphism f can be taken spin-structure-preserving.

Proof of Lemma 2.1. (The proof is moved from [11, Lemma 3.2] to here for completeness of the present argument.) Let M be the 4-manifold obtained from Yby surgery along the loop system $k(\omega x)$ of ωx , which is identified with S^4 by Smooth 4D Poincaré Conjecture since it is a smooth homotopy 4-sphere by the van Kampen theorem and a homological argument. Let L be the S^2 -link in S^4 obtained from $k(\omega x)$ by the surgery. Then $\pi_1(S^4 \setminus L, v) = \langle x_1, x_2, \ldots, x_n \rangle$ and the legged loop system ωx with base point v in Y is a meridian system of L in S⁴ representing the basis x_1, x_2, \ldots, x_n . By Smooth Unknotting Conjecture for an S²-link, the S²-link L bounds disjoint 3-balls smoothly embedded in S^4 so that each 3-ball meets ωx with just one transverse intersection point in the loop system $k(\omega x)$ (see [9]). By the back surgery from (M, L) to $(Y, k(\omega x))$, there is an orientation-preserving diffeomorphism $f: Y \to X$ Y^S with $f(\omega x) = \omega^S x$. Given any spin structures on Y and Y^S , note that there is an orientation-preserving spin-structure-changing diffeomorphism : $S^1 \times S^3 \to S^1 \times S^3$ (see [3] for a similar diffeomorphism on $S^1 \times S^2$). Thus, by composing f with the orientation-preserving spin-structure-changing diffeomorphisms on some connected summands of Y^S which are copies of $S^1 \times S^3$, the diffeomorphism $f: Y \to Y^S$ is modified into an orientation-preserving spin-structure-preserving diffeomorphism. This completes the proof of Lemma 2.1. \Box

The proof of Theorem 1.1 is done as follows.

2.2: Proof of Theorem 1.1.

Proof of $(1) \rightarrow (2)$. Assume that an S²-link K of type G(n; n - d, d) in S⁴ for any

n is constructed from the triple system G(n; n-d, d) consisting of the free basis $x_i (i = 1, 2, \dots, n)$, the relator system $r_i (i = 1, 2, \dots, n - d)$ written as words in $x_i (i = 1, 2, ..., n)$ and a weight system $w_j (j = 1, 2, ..., d)$ written as words in $x_i (i = 1, 2, ..., d)$ $1, 2, \ldots, n$). The fundamental group $\pi_1(Y^S, v^S)$ of Y^S of rank n is identified with the free group $\langle x_1, x_2, \dots, x_n \rangle$. Note that the elements r_i, w_j $(i = 1, 2, \dots, n - d; j = 1, 2, \dots, n$ $(1, 2, \ldots, d)$ form a weight system of the free group $\pi_1(Y^S, v^S)$. Represent the elements $r_i, w_j \in \pi_1(Y^S, v^S)$ $(i = 1, 2, \dots, n - d; j = 1, 2, \dots, d)$ by a disjoint simple loop system $k(r_i), k(w_i) (i = 1, 2, ..., n - d; j = 1, 2, ..., d)$ in Y^S . The 4-manifold M obtained from Y^S by surgery along the loop system $k(r_i), k(w_i)$ (i = 1, 2, ..., n-d; j = $1, 2, \ldots, d$ is a smooth homotopy 4-sphere identified with S^4 . Let L be the S^2 link in S^4 of the sphere system $K(r_i), K(w_j) (i = 1, 2, \dots, n - d; j = 1, 2, \dots, d)$ occurring from the loop system $k(r_i), k(w_i)$ $(i = 1, 2, \dots, n - d; j = 1, 2, \dots, d)$ by the surgery. The fundamental group $\pi_1(S^4 \setminus L, v)$ is isomorphic to the free group $\langle x_1, x_2, ..., x_n \rangle$ by an isomorphism sending a meridian system of L to the weight system r_i, w_j (i = 1, 2, ..., n-d; j = 1, 2, ..., d). By Free Ribbon Lemma of Appendix, the S²-link L is a free ribbon S²-link in S⁴ of rank n. The sublink of L consisting of the components $K(w_i)$ (j = 1, 2, ..., d) is is just the S²-link K of type G(n; n - d, d), which is a sublink of the free ribbon S^2 -link L in S^4 . This shows $(1) \rightarrow (2)$.

Proof of $(2) \rightarrow (1)$. Let K be a sublink of d components of a free ribbon S^2 -link L of n components in S^4 of rank n. Let $\pi_1(S^4 \setminus L, v) = \langle x_1, x_2, \ldots, x_n \rangle$. Let Y be the 4-manifold obtained from S^4 by surgery along L. By Lemma 2.1, Y is identified with Y^S of genus n such that $\pi_1(S^4 \setminus L, v) = \langle x_1, x_2, \ldots, x_n \rangle$ is identified with $\pi_1(Y^S, v^S)$ by an isomorphism sending a meridian system of L in S^4 to a weight system of $\pi_1(Y^S, v^S)$. This means that the ribbon S^2 -link K is nothing but an S^2 link of type G(n; n - d, d) for the triple system G(n; n - d, d) consisting of the free group $\pi_1(Y^S, v) = \langle x_1, x_2, \ldots, x_n \rangle$, a relator system $r_1, r_2, \ldots, r_{n-d}$ coming from the meridian system of $L \setminus K$, and a weight system w_1, w_2, \ldots, w_d coming from the meridian system of K. This shows $(2) \rightarrow (1)$.

Proof of (2) \rightarrow *(3).* This proof is trivial.

Proof of $(3) \rightarrow (2)$. By definition, assume that a ribbon S^2 -link K of d components in S^4 is obtained from a trivial S^2 -link O of n components in S^4 by surgery along a 1-handle system h on O. Let $O \times [0, 1]$ be a collar of O in S^4 where the 1-handle system h meets only to $O \times 0$, and $W = O \times [0, 1] \cup h$ a d-component compact 3-manifold bounded by $K \cup O \times 1$. Let K_i $(i = 1, 2, \ldots, d)$ be the components of K. Let O' be a sublink of $O \times 1$ of n - d components obtained by removing any one component of $O \times 1$ from the boundary of the component of W containing the component K_i for every i. Then there are isomorphisms

$$\pi_1((S^4 \setminus W, v) \to \pi_1(S^4 \setminus K \cup O'), v) \quad \text{and} \quad \pi_1(S^4 \setminus W, v) \to \pi_1(S^4 \setminus O, v).$$

This is because there are deformation retracts from W to a 2-complex consisting of

 $K \cup O'$ and some spanning arcs and from W to a 2-complex consisting of O and some spanning arcs, and the spanning arcs do not affect the fundamental group. Since $\pi_1(S^4 \setminus O, v)$ is a free group of rank n, the S^2 -link $L = K \cup O'$ of n components is a free ribbon S^2 -link of rank n in S^4 containing K as a sublink. This shows $(3) \rightarrow (2)$.

This completes the proof of Theorem 1.1. \Box

3. Basic Lemmas of ribbon disk-links

For a ribbon disk-link (D^4, L^D) of a ribbon S^2 -link (S^4, L) , let α be the reflection of (S^4, L) exchanging (D^4, L^D) and the other copy $(-D^4, -L^D)$ in (S^4, L) . Although the following lemma may be more or less known (cf. [18]), the proof is given here for convenience.

Lemma 3.1. For a ribbon disk-link L^D in D^4 of a ribbon S^2 -link L in S^4 , the inclusion $(D^4, L^D) \to (S^4, L)$ induces an isomorphism

$$\pi_1(D^4 \setminus L^D, v) \to \pi_1(S^4 \setminus L, v).$$

Proof of Lemma 3.1. Use the retraction $S^4 \setminus L \to D^4 \setminus L^D$ induced from the quotient by the reflection α . Then the canonical homomorphism $\pi_1(D^4 \setminus L^D, v) \to \pi_1(S^4 \setminus L, v)$ is shown to be a monomorphism. On the other hand, for the copy $(-D^4, -L^D)$ of (D^4, L^D) , the inclusion $(\partial(-D^4), \partial(-L^D)) \to (-D^4, -L^D)$ induces an epimorphism $\pi_1(\partial(-D^4) \setminus \partial(-L^D), v) \to \pi_1(-D^4 \setminus -L^D, v)$ by the definition of ribbon disk-link and Seifert-van Kampen theorem. This means that the canonical monomorphism $\pi_1(D^4 \setminus L^D, v) \to \pi_1(S^4 \setminus L, v)$ is also an epimorphism and thus, an isomorphism. \Box

The 4D handlebody of genus n is the 4-manifold

$$Y^D = D^4{}_{\partial} \#^n_{i=1} S^1 \times D^3_i$$

which is the boundary connected sum of D^4 and n copies $S^1 \times D_i^3$ (i = 1, 2, ..., n) of the 4D handle $S^1 \times D^3$. By using the asphericity of Y^D , the following lemma is obtained.

Lemma 3.2. For every free ribbon disk-link L^D of rank n in D^4 , there is a strong deformation retract

$$r: E(L^D) \to \omega x$$

from the compact complement $E(L^D)$ to a legged *n*-loop system ωx with base point v in $E(L^D)$ representing any basis x_1, x_2, \ldots, x_n of the free group $\pi_1(E(L^D), v)$.

Proof of Lemma 3.2. Let L be the free ribbon S^2 -link of rank n in S^4 obtained by taking the double of (D^4, L^D) . Note that the double

$$Y = \partial(E(L^D) \times I) = E(L^D) \times \{-1\} \cup (\partial E(L^D)) \times I \cup E(L^D) \times \{1\}$$

of $E(L^D)$ is diffeomorphic to the 4-manifold Y' obtained from S^4 by surgery along L. Since there is a canonical isomorphism $\pi_1(S^4 \setminus L, v) = \langle x_1, x_2, \ldots, x_n \rangle \rightarrow \pi_1(Y', v)$ and $H_2(Y'; \mathbf{Z}) = 0$, the 4-manifold Y' is identified with Y^S under the canonical identities $\pi_1(E(L^D, v) = \pi_1(Y^S, v) = \langle x_1, x_2, ..., x_n \rangle$ by Lemmas 2.1 and 3.1. Let ωx be a legged *n*-loop system in $E(L^D)$, and $-\omega x$ a copy of ωx in the copy $-E(L^D)$ of $E(L^D)$ in $Y' = Y^S$. Note that $\pm \omega x$ are isotopically deformed into the standard *n*-loop system in Y^S . Let $N(\omega x)$ be a regular neighborhood of ωx in $E(L^D)$, and $N(-\omega x)$ the copy of $N(\omega x)$ in the copy $-E(L^D)$. Since $N(\omega x)$ is diffeomorphic to the 4D handlebody Y^D of genus n, it is shown that the compact complement $E(L^D)^+ = cl(Y^S \setminus N(-\omega x))$ is diffeomorphic to Y^D and the compact complement $H = \operatorname{cl}(Y^S \setminus N(\omega x) \cup N(-\omega x))$ is diffeomorphic to the product $Z^S \times I$ for the closed 3D handlebody $Z^S = S^3 \#_{i=1}^n S^1 \times S_i^2$ of genus *n*. Note that the reflection α in Y^S exchanging $E(L^D)$ and $-E(L^D)$ induces a reflection in H whose fixed point set is the boundary $Z(\partial L^D) = \partial E(L^D)$ of $E(L^D)$. Let H' be one of the two 3manifolds obtained by splitting H along $Z(\partial L^D)$ such that $E(L^D)^+ = E(L^D) \cup$ H'. Then $H = H' \cup \alpha(H')$. By [6], the 3-manifold $Z(\partial L^D)$ is an imitation of Z^S which has the property that the inclusion homomorphism $\pi_1(Z^S, v) \to \pi_1(H', v)$ is an isomorphism and any covering triad $(\tilde{H}'; \tilde{Z}(\partial L^D), \tilde{Z}^S)$ of the triad $(\tilde{H}'; Z(\partial L^D), Z^S)$ is a homology cobordism. This means that the inclusion $i: E(L^D) \to E(L^D)^+$ is a homotopy equivalence by Seifert-van Kampen theorem and the universal covering lift $\tilde{i}: \tilde{E}(L^D) \to \tilde{E}(L^D)^+$ induces an isomorphism $\tilde{i}_*: H_*(\tilde{E}(L^D); \mathbf{Z}) \to H_*(\tilde{E}(L^D)^+; \mathbf{Z})$ because

$$H_*(\tilde{E}(L^D)^+, \tilde{E}(L^D); \mathbf{Z}) \cong H_*(\tilde{H}', Z(\partial L^D); \mathbf{Z}) = 0$$

by the excision isomorphism. Thus, $E(L^D)$ is homotopy equivalent to the legged *n*loop system ωx . For a polyhedral pair (P, P'), if the inclusion $i : P' \subset P$ is homotopy equivalent, then there is a strong deformation retract $r : P \to P'$ (see [15, p. 31]). Thus, there is a strong deformation retract $r : E(L^D) \to \omega x$. \Box

In Lemma 3.2, note that in general the compact complement $E(L^D)$ of a free ribbon disk-link L^D in D^4 is not diffeomorphic to Y^D . For example, the Kinoshita-Terasaka knot k_{KT} in S^3 bounds a free ribbon-disk knot K^D of rank one in D^4 . Since the 3-manifold $Z(\partial K^D)$ which is the 0-surgery manifold of k_{KT} is not diffeomorphic to $Z^S = S^1 \times S^2$ by the solution of property R conjecture (see [2]), the compact complement $E(K^D)$ is not diffeomorphic to Y^D (see [6]).

4. Proof of Theorem 1.3

The proof of Theorem 1.3 is done as follows.

4.1: Proof of Theorem 1.3. Identifications

$$\pi_1(E(L^D), v) = \pi_1(\omega x) = \langle x_1, x_2, \dots, x_n \rangle$$

are fixed by the strong deformation retract $r : E(L^D), v) \to \omega x$. The ribbon disk-link presentation ρ : $Q(L^D) \rightarrow P(L^D)$ for $P(L^D)$ induces an isomorphism $\rho_{\#}$: $\pi_1(Q(K^D; L^D), v) \rightarrow \pi_1(P(K^D; L^D), v)$ for every sublink K^D of L^D including $K^D = \emptyset$ and $K^D = L^D$ by Seifert-van Kampen theorem, because the strong deformation retract $r: E(L^D), v) \to \omega x$ induces the identical word system $r_* =$ $\{r_1, r_2, \ldots, r_n\}$ of the loop system $p_* \times \partial D^2$ in $\langle x_1, x_2, \ldots, x_n \rangle$ by the attaching map $r: p_* \times \partial D^2 \to \omega x$ of the 2-cell system $p_* \times D^2$. In particular, $\pi_1(P(L^D), v) = <$ $x_1, x_2, \ldots, x_n | r_1, r_2, \ldots, r_n \rangle = \{1\}$. Let $\tilde{\rho} : \tilde{Q}(K^D; L^D) \to \tilde{P}(K^D; L^D)$ be the universal covering lift of ρ : $Q(K^D; L^D) \rightarrow P(K^D; L^D)$. By Mayer-Vietoris homology sequence, $H_m(\tilde{Q}(K^D; L^D); \mathbf{Z}) = 0$ for all $m \geq 3$ and $\tilde{\rho}$ induces an isomorphism $\tilde{\rho}_*: H_2(\tilde{Q}(K^D; L^D); \mathbf{Z}) \to H_2(\tilde{P}(K^D; L^D); \mathbf{Z})$ for every sublink K^D of L^D including $K^D = \emptyset$ and $K^D = L^D$. Thus, $\rho: Q(K^D; L^D) \to P(K^D; L^D)$ is a homotopy equivalence for every sublink K^D of L^D including $K^D = \emptyset$ and $K^D = L^D$. In particular, $P(L^D)$ is a finite contractible 2-complex. Let P be a contractible finite 2-complex obtained from the 1-skelton $P^1 = \omega x$, a legged n loop system with base point v, so that $\pi_1(P^1, v) = \langle x_1, x_2, \ldots, x_n \rangle$. Assume that P is obtained from P^1 by attaching 2-cells e_1, e_2, \ldots, e_n . Since $\pi_1(P, v) = 1$, the 2-complex P provides the triple system G(n; 0, n) in the construction of Kervaire's 2-link which consists of the free group $\langle x_1, x_2, \ldots, x_n \rangle$, the empty relator set and the weight system w_1, w_2, \ldots, w_n given by the attaching data of e_1, e_2, \ldots, e_n to P^1 . By Theorem 1.1, there is a free ribbon S^2 link (S^4, L) with an isomorphism $\pi_1(S^4 \setminus L, v) \cong \langle x_1, x_2, \ldots, x_n \rangle$ sending a meridian system of L to the weight system $w_1, w_2, ..., w_n$. By Lemma 3.1, there is a free ribbon disk-link (D^4, L^D) with an isomorphism $\pi_1(D^4 \setminus L^D, v) \cong \langle x_1, x_2, \dots, x_n \rangle$ sending a meridian system of L^D in D^4 to the weight system $w_1, w_2, ..., w_n$. By Lemma 3.2, there is a strong deformation retract $r: E(L^D) \to P^1 = \omega x$, which induces a ribbon-disk presentation $\rho: Q(L^D) \to P(L^D)$ for $P(L^D) = P$ because the loop system $p_* \times \partial D^2$ is just the meridian system of L^D . \Box

5. Proof of Theorem 1.4

The proof of Theorem 1.4 is done as follows.

5.1: Proof of Theorem 1.4. Let K^D be a ribbon disk-link in D^4 of d components, and S(*) any immersed 2-sphere in $E(K^D)$. It suffices to show that there is a free

ribbon disk-link L^D in D^4 of some rank n which contains K^D as a sublink and is disjoint from S(*). This is because $S(*) \subset E(L^D) \subset E(K^D)$ meaning that S(*) is null-homotopic in $E(L^D)$ and hence in $E(K^D)$ since $\pi_2(E(L^D), v) = 0$ by Lemma 3.2, so that $\pi_2(E(K^D), v) = 0$ meaning that $E(K^D)$ is aspherical, for $E(K^D)$ is homotopy equivalent to a 2-complex by Theorem 1.3.

The pair (D^4, S^3) is considered as the one-point compactification of the pair $(\mathbf{R}^3[0, +\infty), \mathbf{R}^3)$ of the upper-half 4-space

$$\mathbf{R}^{3}[0, +\infty) = \{ (x_{1}, x_{2}, x_{3}, t) | -\infty < x_{i} < +\infty \ (i = 1, 2, 3), t \ge 0 \}$$

and the 3-space

$$\mathbf{R}^{3} = \{ (x_{1}, x_{2}, x_{3}) | -\infty < x_{i} < +\infty \ (i = 1, 2, 3) \}.$$

Also, K^D and S(*) are considered in $\mathbf{R}^3[0, +\infty)$. By the motion picture method [12, I], assume that a normal form of the disk-link K^D in $(\mathbf{R}^3[0, +\infty)$ is given as follows:

$$K^{D} \cap \mathbf{R}^{3}[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ d_{*}[t], & \text{for } t = 2, \\ o_{*}[t], & \text{for } 1 < t < 2, \\ (o_{*} \cup b_{*})[t], & \text{for } 1 < t < 2, \\ (o_{*} \cup b_{*})[t], & \text{for } t = 1, \\ k^{D}[t], & \text{for } 0 \le t < 1, \end{cases}$$

where d_* is a disjoint trivial disk system of m disks d_i (i = 1, 2, ..., m) for some m in \mathbb{R}^3 with $o_* = \partial d_*$, b_* is a disjoint band system of m - d bands b_j (j = 1, 2, ..., m - d) in \mathbb{R}^3 spanning the trivial loop system o_* used for a fusion operation, and k^D is a ribbon link in \mathbb{R}^3 of d-components obtained from o_* by surgery along the band system b_* as a fusion. By the proof of Theorem 1.1 and Lemma 3.1, there is a free ribbon disk-link L^D in $\mathbb{R}^3[0, +\infty)$ of some rank n such that $L^D = K^D \cup C^D$ for a trivial disk system C^D in $\mathbb{R}^3[0, +\infty)$ whose normal form is given as follows by extending the normal form of K^D :

$$L^{D} \cap \mathbf{R}^{3}[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ (d_{*} \cup d^{C})[t], & \text{for } t = 2, \\ (o_{*} \cup o^{C})[t], & \text{for } 1 < t < 2, \\ (o_{*} \cup b_{*} \cup o^{C})[t], & \text{for } t = 1, \\ (k^{D} \cup o^{C})[t], & \text{for } 0 \le t < 1, \end{cases}$$

where d^C is a disjoint disk system in \mathbf{R}^3 with $o^C = \partial d^C$. Note that the disk systems d_* and d^C are disjoint, but in general the band system b_* meets the interior of d^C in a disjoint arc system. By pulling down a neighborhood of every double point of S(*) into $\mathbf{R}^3[0]$, the immersed 2-sphere S(*) is changed into a non-immersed singular

2-sphere in $\mathbf{R}^3[0, +\infty)$, but a normal form of the union $K^D \cup S(*)$ in $\mathbf{R}^3[0, +\infty)$ extending the normal form of K^D is given as follows (see [12, I]):

$$(K^{D} \cup S(*)) \cap \mathbf{R}^{3}[t] = \begin{cases} \emptyset, & \text{for } t > 2, \\ (d_{*} \cup d^{S(*)})[t], & \text{for } t = 2, \\ (o_{*} \cup o^{S(*)})[t], & \text{for } 1 < t < 2, \\ (o_{*} \cup b_{*} \cup c^{S(*)} \cup b^{S(*)})[t], & \text{for } t = 1, \\ (k^{D} \cup c^{S(*)})[t], & \text{for } t = 1, \\ (k^{D} \cup e^{S(*)})[t], & \text{for } t = 0, \end{cases}$$

where $d^{S(*)}$ is a disjoint band system in \mathbf{R}^3 with $o^{S(*)} = \partial d^{S(*)}$, $b^{S(*)}$ is a disjoint band system spanning $o^{S(*)}$ in \mathbf{R}^3 , $c^{S(*)}$ is a split union of a split Hopf link system $c^{H(*)}$ and a trivial link system $c^{o(*)}$ in \mathbf{R}^3 obtained from $o^{S(*)}$ by surgery along $b^{S(*)}$, and $e^{S(*)}$ is a split union of a disjoint Hopf disk pair system bounded by $c^{H(*)}$ and a disjoint disk system bounded by $c^{o(*)}$ in \mathbf{R}^3 , where a *Hopf disk pair* means a disk pair with a clasp singularity in \mathbf{R}^3 bounded by a Hopf link. By construction, note that $e^{S(*)}$ is split from k^D . By an isotopic move of the union of the disk system d^C and a neighborhood of the arc system $b_* \cap d^C$ in b_* in \mathbf{R}^3 keeping the disk system d_* fixed, it can be assumed that

$$d^C \cap (d_* \cup e^{S(*)} \cup b^{S(*)}) = \emptyset.$$

Then the link $o_* \cup o^{S(*)} \cup o^C$ is a trivial link in \mathbf{R}^3 . In general the disk system d^C meets the interior of the disk system $d^{S(*)}$. However, by Horibe-Yanagawa lemma in [12, I], even if the disk systems $d_*, d^{S(*)}, d^C$ are replaced by any disjoint disk systems bounded by the trivial link $o_* \cup o^{S(*)} \cup o^C$ in \mathbf{R}^3 , the union $K^D \cup S(*)$ and the free ribbon disk-link L^D in do not change up to ambient isotopies (with compact supports) of $\mathbf{R}^3[0, +\infty)$ keeping $\mathbf{R}^3[0]$ fixed. This means that the disjoint union $K^D \cup S(*)$ extends to a disjoint union $L^D \cup S(*)$ for a free ribbon disk-link L^D , so that $S(*) \subset E(L^D) \subset E(K^D)$, and thus, $E(K^D)$ is aspherical. This completes the proof of Theorem 1.4. \Box

Appendix: Free Ribbon Lemma

The purpose of this appendix is to prove the following lemma.

Free Ribbon Lemma. Every free S^2 -link L in S^4 is a ribbon S^2 -link.

Proof of Free Ribbon Lemma. The following observation is used to determine a ribbon S^2 -link.

(A.1) Let $(S_i^3)^{(1+m_i)}$ (i = 1, 2, ..., n) be a system of mutually disjoint compact $(1 + m_i)$ -punctured 3-spheres in S^4 such that the boundary $\partial(S_i^3)^{(1+m_i)}$ is the union of the

component K_i and an S^2 -link O_i of m_i components. If the union $O = \bigcup_{i=1}^n O_i$ is a trivial S^2 -link in S^4 , then the S^2 -link $L = \bigcup_{i=1}^n K_i$ is a ribbon S^2 -link in S^4 .

Proof of (A.1). Let K'_i be a 2-sphere obtained from O_i by surgery along mutually disjoint 1-handles h_i $(i = 1, 2, ..., m_i - 1)$ in $(S_i^3)^{(1+m_i)}$, whose closed complement is diffeomorphic to the spherical shell $S^2 \times [0, 1]$. This means that the component K_i with reversed orientation is isotopic to the 2-sphere K'_i in $(S_i^3)^{(1+m_i)}$. This shows that $L = \bigcup_{i=1}^n K_i$ is a ribbon S^2 -link in S^4 , completing the proof of (A.1). \Box

Let K_i (i = 1, 2, ..., n) be the components of a free S²-link L in S⁴. Let Y be the 4-manifold obtained from S^4 by surgery along L. Let $k_i (i = 1, 2, ..., n)$ be the loop system in Y produced from K_i (i = 1, 2, ..., n) by the surgery. Since the fundamental group $\pi_1(Y, v)$ is a free group and $H_2(Y; \mathbf{Z}) = 0$, the 4-manifold Y is identified with Y^S by Lemma 2.1. The 3-sphere $1 \times S_i^3$ of the connected summand $S^1 \times S_i^3$ of Y^S is fixed and denoted by S_i^3 . Let $x_i (i = 1, 2, ..., n)$ be the basis of $\pi_1(Y^S, v)$ represented by a standard legged loop system $\omega^S x$ with vertex $v = v^S$. Let $k(\omega^S x) =$ $\{k_i^S | i = 1, 2, \dots, n\}$ be the loop system of $\omega^S x$. Let $\omega m = \{\omega_i m_i | i = 1, 2, \dots, n\}$ be a meridian system with vertex v of the components K_i (i = 1, 2, ..., n) of L in S^4 . The meridian system ωm is taken in Y^S as a legged loop system with loop system $k(\omega m) = \{m_i | j = 1, 2, \dots, n\}$ parallel to the loop system $k_i (i = 1, 2, \dots, n)$ in Y^S . Assume that the meridian system ωm in Y^S is made disjoint from ωx except for the vertex v and meets S_i^3 (i = 1, 2, ..., n) only in the loop system $k(\omega m)$ transversely. Let $y_i (i = 1, 2, ..., n)$ be the elements of $\pi_1(Y^S, v)$ represented by $\omega_i m_i (i = 1, 2, ..., n)$. By Nielsen transformations of the basis x_i (i = 1, 2, ..., n), assume that the product $x_i^{-1}y_i$ is in the commutator subgroup $[\pi_1(Y^S, v), \pi_1(Y^S, v)]$ of $\pi_1(Y^S, v)$ for every i (see [14]). For the 3-sphere S_i^3 , consider all the loops m_j with $m_j \cap S_i^3 \neq \emptyset$. For a point $p \in m_i \cap S^3_t$ $(t \neq i)$, let I(p) be an arc neighborhood of p in a parallel $k_t^S(p)$ of k_t^S and then replace the arc I(p) with the arc $cl(k_t^S(p) \setminus I(p))$. Let \tilde{m}_i be a loop obtained from m_j by doing this operation on m_j for every $t \ (t \neq i)$ and every point $p \in m_j \cap S_t^3$. For every i (i = 1, 2, ..., n), let $m(S_i^3)$ be the system of the loops \tilde{m}_j in Y^S obtained from all the loops m_j with $m_j \cap S_i^3 \neq \emptyset$, where the loops m_j with $m_j \cap S_i^3 = \emptyset$ are discarded. There is a smoothly embedded annulus A_i with $\partial A_i = (-k_i^S) \cup \tilde{m}_i$ in the open 4-manifold

$$Y_{i(i)}^S = Y^S \setminus \bigcup_{1 \le t (\ne i) \le n} S_t^3$$

because the fundamental group $\pi_1(Y_{ji}^S, v)$ is an infinite cyclic group and the loop \tilde{m}_i is homotopic to k_i^S in Y_{ji}^S . The annulus A_i meets S_i^3 transversely with disjoint simple loops and simple arcs. Let α_{is} $(s = 1, 2, ..., n_i)$ be the arc system of the intersection $A_i \cap S_i^3$ where α_{i1} joins the point $p_i^S = k_i^S \cap S_i^3$ to a point of the loop \tilde{m}_i and the arc α_{is} with s > 1 joins two points of \tilde{m}_i . For j with $j \neq i$, the loop \tilde{m}_j is null-homotopic in Y_{ji}^S and hence bounds a disk D_{ji} in Y_{ji} which meets S_i^3 transversely with disjoint simple loops and simple arcs. Let α_{jis} ($s = 1, 2, ..., n_{ji}$) be the arc system of the intersection $D_{ji} \cap S_i^3$ each of which joints two points of \tilde{m}_j . The annulus A_i and the disk D_{ji} with $i \neq j$ are made disjoint while fixing the intersection with S_i^3 in Y^S for all i, j by doing double point cancellations using free boundary arcs while fixing the intersection with S_i^3 for m_j . The following observation helps clarify the relationship between the point system $m(S_i^3) \cap S_i^3$ and the arc system $(A_i \cup D_{ji}) \cap S_i^3$ for all j with $j \neq i$.

Observation (A.2) Let $\partial \alpha_{is} = \{q_s, q'_s\} (s = 1, 2, \dots, n_i)$ with $q_1 = p_i^S$ for the arc system $\alpha_{is} (s = 1, 2, ..., n_i)$ of $A_i \cap S_i^3$. Then the open arc of \tilde{m}_i that is separated by any couple $\{q_s, q'_s\}$ with s > 1 and does not contain the point q'_1 meets S^3_i with intersection number 0. Conversely, let $\{q_s, q'_s\}$ $(s = 1, 2, ..., n_i)$ be any system of couples of distinct points with $q_1 = p_i^S$ such that the union of these points matches the set $(k_i^S \cup \tilde{m}_i) \cap S_i^3$ and the open arc of \tilde{m}_i that is divided by any couple $\{q_s, q'_s\}$ with s > 1 and does not contain the point q'_1 meets S^3_i with intersection number 0. Then $\{q_s, q'_s\}$ $(s = 1, 2, ..., n_i)$ is realized by $\partial \alpha_{is} = \{q_s, q'_s\}$ $(s = 1, 2, ..., n_i)$ of the arc system α_{is} $(s = 1, 2, ..., n_i)$ of $A_i \cap S_i^3$ for an annulus A_i with $\partial A_i = (-k_i^S) \cup \tilde{m}_i$ in Y_{ji}^S . Let $\partial \alpha_{jis} = \{q_s, q'_s\}$ $(s = 1, 2, \dots, n_{ji})$ for the arc system α_{jis} $(s = 1, 2, \dots, n_{ji})$ of $D_{ji} \cap S_i^3$. Then every open arc of \tilde{m}_j divided by any couple $\{q_s, q'_s\}$ meets S_i^3 with intersection number 0. Conversely, let $\{q_s, q'_s\}$ $(s = 1, 2, ..., n_{ji})$ be any system of couples of distinct points such that the union of these points matches the set $\tilde{m}_i \cap S_i^3$ and every open arc of \tilde{m}_i which is divided by any couple $\{q_s, q'_s\}$ meets S_i^3 with intersection number 0. Then $\{q_s, q'_s\}$ $(s = 1, 2, \ldots, n_{ji})$ is realized by $\partial \alpha_{jis} =$ $\{q_s, q'_s\}$ $(s = 1, 2, \dots, n_{ji})$ of the arc system α_{jis} $(s = 1, 2, \dots, n_{ji})$ of $D_{ji} \cap S_i^3$ for a disk D_{ji} with $\partial D_{ji} = \tilde{m}_j$ in Y_{ji}^S .

Let $B(\alpha_{is})$ $(s = 1, 2, ..., n_i)$ be disjoint 3-ball neighborhoods of the arcs α_{is} $(s = 1, 2, ..., n_i)$ in S_i^3 , and $B(\alpha_{jis})$ $(s = 1, 2, ..., n_{ji})$ disjoint 3-ball neighborhoods of the arcs α_{jis} $(s = 1, 2, ..., n_{ji})$ in S_i^3 . Let $S(\alpha_{is}) = \partial B(\alpha_{is})$ $(s = 1, 2, ..., n_i)$ and $S(\alpha_{jis}) = \partial B(\alpha_{jis})$ $(s = 1, 2, ..., n_{ji})$ be the boundary 2-spheres of them. The S^2 -link L in S^4 with meridian system ωm is recovered from Y^S by the back surgery along the loop system k_i $(i = 1, 2, ..., n_j)$ in Y^S . Since the 2-spheres $S(\alpha_{is})$ $(s = 1, 2, ..., n_i)$ and $S(\alpha_{jis})$ $(s = 1, 2, ..., n_{ji})$ in Y^S are disjoint from the loop system k_i $(i = 1, 2, ..., n_i)$, the 2-spheres $S(\alpha_{is})$ $(s = 1, 2, ..., n_i)$ and $S(\alpha_{jis})$ $(s = 1, 2, ..., n_{ji})$ is identified with K_i in S^4 for all i (i = 1, 2, ..., n). The following claim is shown.

(A.3) The 2-spheres
$$S(\alpha_{is})$$
 $(i = 1, 2, ..., n; s = 2, 3, ..., n_i)$ and $S(\alpha_{jis})$ $(i, j = 1, 2, ..., n; s = 2, 3, ..., n_i)$

 $1, 2, \ldots, n, j \neq i; s = 1, 2, \ldots, n_{ji}$ form a trivial S²-link in S⁴.

By (A.1) and (A.3), the S²-link $L = \bigcup_{i=1}^{n} K_i$ is shown to be a ribbon S²-link in S⁴.

Proof of (A.3). The loops $k_t^S (t = 1, 2, ..., n)$ in S^4 bound disjoint disks $D_t^S (i = 1, 2, ..., n)$ in S^4 . Hence the loop k_t^S in S^4 is isotopic to a band sum k_t' of some parallel links $P_t(m_i)$ (i = 1, 2, ..., n) of the meridian loops m_i (i = 1, 2, ..., n) of K_i (i = 1, 2, ..., n) in S^4 . For a parallel k_t^{S+} of k_t^S in S^4 , let D_t^{S+} be a move of D_t^S with $\partial D_t^{S+} = k_t^{S+}$ in S^4 so that the disk D_t^{S+} is disjoint from the annuli A_i (i = 1, 2, ..., n) and the disks D_{ji} $(i, j = 1, 2, ..., n; j \neq i)$. The 2-spheres $S(\alpha_{is})$ $(i = 1, 2, ..., n; s = 1, 2, ..., n_i)$ and $S(\alpha_{jis})$ $(i, j = 1, 2, ..., n, j \neq i; s = 1, 2, ..., n_{ji})$ may be disjoint from the disk D_t^{S+} in S^4 . By passing through a thickening $D_t^{S+} \times I$ of the disk D_t^{S+} for every $t(\neq i)$ in S^4 , the annulus A_i and the disk D_{ji} in Y^S extend respectively in S^4 to an annulus \bar{A}_i with $\partial \bar{A}_i = (-k_i^S) \cup m_i$ and a disk \bar{D}_{ji} with $\partial \bar{D}_{ji} = m_j$. The annuli \bar{A}_i (i = 1, 2, ..., n) and the disks \bar{D}_{ji} (i, j = 1, 2, ..., n) and the disks \bar{D}_{ji} and a disk \bar{D}_{ji} with $\partial \bar{D}_{ji} = m_j$. The annulus \bar{A}_i with $\partial \bar{A}_i = (-k_i^S) \cup m_i$ and a disk \bar{D}_{ji} with $\partial \bar{D}_{ji} = m_j$. The annuli \bar{A}_i (i = 1, 2, ..., n) and the disks \bar{D}_{ji} $(i, j = 1, 2, ..., n; j \neq i)$ should be disjoint in S^4 . For $s \geq 2$, let $S(\partial \alpha_{is})$ be the two sphere union which is the boundary of a regular neighborhood $B(\partial \alpha_{is})$ of the two point set $\partial \alpha_{is}$ in $B(\alpha_{is})$. The 2-sphere $S(\alpha_{is})$ can be replaced by the 2-sphere obtained from $S(\partial \alpha_{is})$ by surgery along a 1-handle attaching to $S(\partial \alpha_{is})$ whose core is a subarc α'_{is} of α_{is} in $B(\alpha_{is})$. The following observation (whose proof is obvious) is used.

Observation A.4 The 2-sphere S' obtained from the 2-spheres $S^2 \times \{0, 1\}$ by surgery along a 1-handle h' thickening the arc $p \times [0, 1]$ ($p \in S^2$) bounds the unique 3-ball $B' = \operatorname{cl}(S^2 \times [0, 1] \setminus h')$. Further, let S'' obtained from the 2-spheres $S^2 \times \{\frac{1}{4}, \frac{3}{4}\}$ by surgery along a 1-handle h'' thickening the arc $p \times [\frac{1}{4}, \frac{3}{4}]$, and $B'' = \operatorname{cl}(S^2 \times [\frac{1}{4}, \frac{3}{4}] \setminus h'')$ the 3-ball bounded by S''. If the 1-handle h' is thinner than the 1-handle h'', then the 3-ball B'' is in the interior of the 3-ball B'.

Assume that the arc α_{is} cuts an innermost disk δ from the annulus A_i . Then the arc α'_{is} is ∂ -relatively isotopic to an arc J in m_i through the disk δ , so that the arc α'_{is} joining the two sphere union $S(\partial \alpha_{is})$ is ∂ -relatively isotopic to an arc J joining the boundary $(\partial J) \times K_i$ of a spherical shell $J \times K_i$ of the circle bundle $\partial D^2 \times K_i$ with $J \subset \partial D^2$ for a normal disk bundle $D^2 \times L$ in S^4 . Thus, the 2-sphere $S(\alpha_{is})$ is isotopic to the boundary 2-sphere $\partial \Delta(\alpha_{is})$ of a 3-ball $\Delta(\alpha_{is})$ in the spherical shell $J \times K_i$ (see [4]). Note that the 3-ball $\Delta(\alpha_{is})$ does not meet the S^2 -link L although the trace of this isotopy may meet L since the disk δ may meet L. By continuing this process, it is seen from Observation A.4 that the 2-spheres $S(\alpha_{is})$ ($s = 2, 3, \ldots, n_i$) are isotopic to the disjoint boundary 2-spheres $\partial \Delta(\alpha_{is})$ ($s = 2, 3, \ldots, n_i$) of an inclusive 3-ball family $\Delta(\alpha_{is})$ $(s = 2, 3, ..., n_i)$ in $D^2 \times K_i$, where an *inclusive 3-ball family* is a family of finite number of 3-balls such that any two members B_1 and B_2 have the property

$$B_1 \subset \operatorname{Int}(B_2), \quad B_2 \subset \operatorname{Int}(B_1), \quad \text{or} \quad B_1 \cap B_2 = \emptyset.$$

For the disk \overline{D}_{ji} , the same argument above can be applied to see that the 2-spheres $S(\alpha_{jis})$ $(s = 1, 2, ..., n_{ji})$ are isotopic to the disjoint boundary 2-spheres $\partial \Delta(\alpha_{jis})$ $(s = 1, 2, ..., n_{ji})$ of an inclusive 3-ball family $\Delta(\alpha_{jis})$ $(s = 1, 2, ..., n_{ji})$ in $D^2 \times K_j$ with $j \neq i$. Thus, for every *i*, the 2-spheres $S(\alpha_{is})$ $(s = 2, 3, ..., n_i)$ and $S(\alpha_{jis})$ $(s = 1, 2, ..., n_{ji})$ form a trivial S^2 -link in S^4 . Since the annuli \overline{A}_i (i = 1, 2, ..., n) and the disks \overline{D}_{ji} $(i, j = 1, 2, ..., n; j \neq i)$ are disjoint, it can be seen that the 2-spheres $S(\alpha_{is})$ $(i = 1, 2, ..., n; s = 2, 3, ..., n_i)$ and $S(\alpha_{jis})$ $(i, j = 1, 2, ..., n; j \neq i; s = 1, 2, ..., n_{ji})$ form a trivial S^2 -link in S^4 by varying the radius of the disk D of the normal disk bundle $D \times L$ of L for every i. This completes the proof of (A.3). \Box

This completes the proof of Free Ribbon Lemma. \Box

Acknowledgments. This work was partly supported by JSPS KAKENHI Grant Numbers JP19H01788, JP21H00978 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165.

References

- K. Asano, Y. Marumoto, T. Yanagawa, Ribbon knots and ribbon discs. Osaka J. Math. 18 (1981), 161-174.
- [2] D. Gabai, Foliations and the topology of 3-manifolds, III, J. Differential Geom., 26 (1987), 479-536.
- [3] H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308-333.
- [4] F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-space, Osaka J. Math. 16 (1979), 233-248.
- [5] J. Howie, Some remarks on a problem of J. H. C. Whitehead, Topology 22 (1983), 475-485.
- [6] A. Kawauchi, An imitation theory of manifolds, Osaka J. Math. 26 (1989), 447-464

- [7] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, Topology and its Applications 301 (2021), 107522 (16 pages).
- [8] A. Kawauchi, Uniqueness of an orthogonal 2-handle pair on a surface-link, Contemporary Mathematics (UWP) 4 (2023), 182-188.
- [9] A. Kawauchi, Triviality of a surface-link with meridian-based free fundamental group, Transnational Journal of Mathematical Analysis and Applications 11 (2023), pp.19-27.
- [10] A. Kawauchi, Smooth homotopy 4-sphere, WSEAS Transactions on Mathematics 22 (2023), 690-701.
- [11] A. Kawauchi, Classical Poincaré Conjecture via 4D topology. https://sites.google.com/view/kawauchiwriting, arXiv:2103.16001
- [12] A. Kawauchi, T. Shibuya and S. Suzuki, Descriptions on surfaces in four-space, I : Normal forms, Math. Sem. Notes, Kobe Univ. 10(1982), 75-125; II: Singularities and cross-sectional links, Math. Sem. Notes, Kobe Univ. 11(1983), 31-69.
- [13] M. A. Kervaire, On higher dimensional knots, in: Differential and combinatorial topology, Princeton Math. Ser. 27 (1965), 105-119, Princeton Univ. Press.
- [14] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publisheres (1966).
- [15] E. H. Spanier, Algebraic topology, McGraw-Hill (1966).
- [16] J. H. C. Whitehead, On adding relations to homotopy groups. Ann. Math. 42 (1941), 409-428.
- [17] T. Yanagawa, On ribbon 2-knots I; the 3-manifold bounded by the 2-knot, Osaka J. Math., 6 (1969), 447-464.
- [18] T. Yanagawa, On ribbon 2-knots II. the second homotopy group of the complementary domain, Osaka J. Math. 6 (1969), 465-473.