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ABSTRACT

M. A. Kervaire showed that every group of deficiency d and weight d is
the fundamental group of a smooth sphere-link of d components in a smooth
homotopy 4-sphere. In the use of the smooth unknotting conjecture and the
smooth 4D Poincaré conjecture, any such sphere-link is shown to be a sublink
of a free ribbon sphere-link in the 4-sphere. Since every ribbon sphere-link in
the 4-sphere is also shown to be a sublink of a free ribbon sphere-link in the
4-sphere, Kervaire’s sphere-link and the ribbon sphere-link are equivalent con-
cepts. By applying this result to a ribbon disk-link in the 4-disk, it is shown that
the compact complement of every ribbon disk-link in the 4-disk is aspherical.
By this property, a ribbon disk-link presentation for every contractible finite
2-complex is introduced. By using this presentation, it is shown that every
connected subcomplex of a contractible finite 2-complex is aspherical (meaning
partially yes for Whitehead aspherical conjecture).

Keywords: Kervaire’s sphere-link, ribbon sphere-link, 2-complex, Whitehead aspherical

conjecture
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1. Introduction
A group with finite presentation < x1, x2, ..., xn| r1, r2, ..., rn−d > is called a group

of deficiency d. A group G has weight d if there are d elements w1, w2, ..., wd in
G whose normal closure is equal to G, where the system of elements w1, w2, ..., wd
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is called a weight system of G. Let X be a closed connected oriented smooth 4-
manifold. A sphere-link or an S2-link in X is a disjoint sphere system smoothly
embedded inX. A surgery ofX along a loop system ki (i = 1, 2, . . . , n) is the operation
replacing a normal D3-bundle system ki × D3 (i = 1, 2, . . . , n) of ki (i = 1, 2, . . . , n)
in X by a normal D2-bundle system D2

i × S2 (i = 1, 2, . . . , n) of the 2-sphere system
Ki = 0i × S2 (i = 1, 2, . . . , n) under the identifications that ∂D2

i = ki (i = 1, 2, . . . , n)
and ∂D3 = S2. Let X ′ be the smooth 4-manifold resulting from X by this surgery.
The spheres Ki (i = 1, 2, . . . , n) form an S2-link K in X ′. The 4-manifold X ′ is said to
be obtained from the 4-manifold X by surgery along a loop system ki (i = 1, 2, . . . , n)
in X, and conversely the 4-manifold X is said to be obtained from the 4-manifold X ′

by surgery along a sphere system K in X ′. Note that there are canonical fundamental
group isomorphisms

π1(X, v) ∼= π1(X \ k, v) ∼= π1(X
′ \K, v)

by general position. The closed 4D handlebody of genus n is the 4-manifold

Y S = S4#n
i=1S

1 × S3
i

which is the connected sum of S4 and n copies S1 × S3
i (i = 1, 2, . . . , n) of the closed

4D handle S1×S3. A legged loop system with base point v in X is a graph ωk of legged
loops ωiki (i = 1, 2, . . . , d) embedded in X consisting of a disjoint simple loop system
ki (i = 1, 2, . . . , d) and a leg system (=embedded path system) ωi (i = 1, 2, . . . , d) such
that ωi connects the base point v and a point pi ∈ ki for every i and the legs ωi for all
i are made disjoint except for the base point v. The fundamental group π1(Y

S, vS) is
identified with the free group < x1, x2, . . . , xn > with basis x1, x2, . . . , xn represented
by the standard legged loop system ωSx of legged loops ωiki (i = 1, 2, . . . , n) with base
point vS in Y S using the standard loop ki = S1 × 1i of S

1 × S3
i and a leg ωi joining

vS and the point (1,1i) ∈ 1× S3
i not meeting 1 × (S3

i \ {1i}), for every i. A smooth
homotopy 4-sphere is a smooth 4-manifold M homotopy equivalent to the 4-sphere
S4. A meridian system of an S2-link K with k components in M is a legged loop
system ωm with base point v in M \ L whose loop system m consists of a meridian
loop of every component of K. Kervaire showed the following theorem in [13]1.

Kervaire’s Theorem. For every group G of deficiency d and weight d, there is an
S2-link K with d components in a smooth homotopy 4-sphere M such that there is
an isomorphism G ∼= π1(M \K, v) sending the weight system to a meridian system
of K.

1The condition that H1(G) = G/[G,G] is a free abelian group of rank d is omitted since every
group G of deficiency d and weight d has this condition.
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The construction of an S2-link in this theorem is explained as follows.

Construction of Kervaire’s S2-link. Let < x1, x2, ..., xn| r1, r2, ..., rn−d > be a fi-
nite presentation of G of deficiency d, and w1, w2, ..., wd a weight system of G. Let
G(n;n− d, d) be the triple system of the free group < x1, x2, ..., xn >, the relator sys-
tem r1, r2, ..., rn−d written as words in x1, x2, ..., xn and a weight system w1, w2, ..., wd

written as words in x1, x2, ..., xn. Identify the free group < x1, x2, ..., xn > with the
fundamental group π1(Y

S, vS) of the 4D closed handlebody Y S. LetX be a 4-manifold
obtained from Y S by surgery along a loop system k(r1), k(r2), . . . , k(rn−d) in Y S repre-
senting the words r1, r2, . . . , rn−d in π1(Y

S, vS). The fundamental group π1(X, vS) has
the presentation < x1, x2, ..., xn| r1, r2, ..., rn−d > by Seifert-van Kampen theorem. Let
M be the 4-manifold obtained by surgery along a loop system k(w1), k(w2), . . . , k(wd)
in X representing the weight system w1, w2, ..., wd of π1(X, vS). The manifold M is
a smooth homotopy 4-sphere by Seifert-van Kampen theorem. The S2-link K of d
components in M is given by the core spheres Ki = 0i × ∂D3 (i = 1, 2, . . . , d) of
D2

i ×∂D3 replacing k(wi)×D3 (i = 1, 2, . . . , d). The fundamental group π1(M \K, v)
is isomorphic to π1(X, v) ∼= G by an isomorphism sending a meridian system of K in
M to the weight system w1, w2, ..., wd. This completes the construction of Kervaire’s
S2-link.

Kervaire’s S2-link K in this construction is uniquely determined by the triple sys-
tem G(n;n−d, d) of the free group < x1, x2, ..., xn >, the relator system r1, r2, ..., rn−d

and the weight system w1, w2, ..., wd, which is called Kervaire’s S2-link of type G(n;n−
d, d) or simply an S2-link of type G(n;n − d, d). For a smooth surface-link L in S4,
the fundamental group π1(S

4 \ L, v) is a meridian-based free group if π1(S
4 \ L, v) is

a free group with a basis represented by a meridian system of L with base point v.
A smooth surface-link L in S4 is a trivial surface-link if the components of L bound
disjoint handlebodies smoothly embedded in S4. In this paper, Kervaire’s S2-link is
studied by using Smooth 4D Poincaré Conjecture and Smooth Unknotting Conjecture
for a surface-link stated as follows:

Smooth 4D Poincaré Conjecture. Every 4D smooth homotopy 4-sphere M is
diffeomorphic to S4.

Smooth Unknotting Conjecture. Every smooth surface-link F in S4 with a
meridian-based free fundamental group π1(S

4 \ F, v) is a trivial surface-link.

The positive proofs of these conjectures are in [10] and [7, 8, 9], respectively. From
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now on, every smooth homotopy 4-sphere M is identified with the 4-sphere S4. An
S2-link L in S4 is a ribbon S2-link if L is an S2-link obtained from a trivial S2-link
O in S4 by surgery along embedded 1-handles on O. See [12, II], [17] for earlier
concept of a ribbon surface-link. An S2-link L in S4 is a free S2-link of rank n if the
fundamental group π1(S

4 \ L, v) is a (not necessarily meridian based) free group of
rank n. The following theorem is the first result of this paper.

Theorem 1.1. The following three statements on an S2-link K with d components
in the 4-sphere S4 are mutually equivalent:

(1) The S2-link K is an S2-link of type G(n;n− d, d) for some n.

(2) The S2-link K is a sublink with d components of a free ribbon S2-link of some
rank n.

(3) The S2-link K is a ribbon S2-link with d components.

By combining Kervaire’s Theorem with Theorems 1.1, the following characteriza-
tion of the fundamental group π1(S

4 \K, v) of a ribbon S2-link K in S4 is obtained.

Corollary 1.2. A group G is a group of deficiency d and weight d if and only if G
is isomorphic to the group π1(S

4 \K, v) of a ribbon S2-link K of d components in S4

by an isomorphism sending the weight system of G to a meridian system of K.

In the proof of Theorem 1.1, the claim that every free S2-link is a free ribbon S2-
link is needed whose proof is done in [11]. For completeness of the present argument,
this claim is moved to Appendix of this paper as Free Ribbon Lemma together with
the proof. The proof of Theorem 1.1 is done in Section 2 by assuming Free Ribbon
Lemma. A trivial proper disk system in the 4-disk D4 is a disjoint proper disk system
Di (i = 1, 2, . . . , n) in D4 obtained by an interior push of a disjoint disk system
D0

i (i = 1, 2, . . . , n) in the 3-sphere S3 = ∂D4. A ribbon disk-link of d components
in D4 is a disjoint proper disk system LD in D4 of d components which is obtained
by an interior push of a disjoint disk system which is the union of a trivial proper
disk system Di (i = 1, 2, . . . , n) in D4 for some n and a disjoint band system b0j (j =
1, 2, . . . , n − d) in S3 spanning the trivial link ∂Di (i = 1, 2, . . . , n) in S3. The link
∂LD in S3 is called a classical ribbon link. By construction, the double of a ribbon
disk-link LD of k components in D4 is a ribbon S2-link L of k components in S4.
It is a standard fact that every ribbon S2-link (S4, L) is considered as the double
(D4∪−D4, LD∪−LD) of a ribbon disk-link (D4, LD) and its copy (−D4,−LD), namely
(S4, L) = (∂(D4×I), ∂(LD×I)), I = [−1, 1]. To construct a ribbon disk-link (D4, LD)
from a ribbon S2-link (S4, L), it is noted that a trivial S2-link O and embedded 1-
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handles to construct L are always isotopically deformed into a symmetric position
with respect to the equatorial 3-sphere S3 = ∂D4 = ∂(−D4) in S4 = D4 ∪ −D4 (see
[12, II]). A free ribbon disk-link of rank n is a ribbon disk-link LD in D4 such that
the fundamental group π1(D

4 \ LD, v) is a free group of rank n. In Lemma 3.1, it is
shown that the inclusion (D4, LD) → (S4, L) induces an isomorphism

π1(D
4 \ LD, v) → π1(S

4 \ L, v).

Thus, the S2-link L is a free ribbon S2-link in S4 if and only if the ribbon disk-link
LD is a free ribbon disk-link in D4. The compact complement of a ribbon disk-link
LD in the 4-disk D4 is the compact 4-manifold E(LD) = cl(D4 \N(LD)) for a normal
disk-bundle N(LD) = LD ×D2 of LD in D4. By Theorem 1.1, every ribbon S2-link
K is a sublink of a free ribbon S2-link L of some rank n, so that every ribbon disk-
link KD is a sublink of a free ribbon disk-link LD of some rank n by Lemma 3.1.
A connected complex is understood as a cell complex P obtained from a bouquet
of loops, called the 1-skelton P 1 of P , by adding q(≥ 2)-cells to P 1. A connected
complex is aspherical if the universal covering space is contractible. A connected 2-
complex P is aspherical if and only if the second homotopy group π2(P, v) = 0. For
a subcomplex P ′ of a cell complex P , a deformation retract from P to P ′ is a map
r : P → P ′ such that the composite map ir : P → P for the inclusion i : P ′ ⊂ P is
homotopic to the identity 1 : P → P , where if the homotopy is further relative to P ′,
then the map r is called a strong deformation retract from P to P ′ (see [15]). It is
shown in Lemma 3.2 that for every free ribbon disk-link LD in D4, there is a strong
deformation retract

r : E(LD) → ωx

from the compact complement E(LD) to a legged n-loop system ωx in E(LD) rep-
resenting the free group π1(E(LD), v) =< x1, x2, . . . , xn >. Section 3 is devoted
to explanations of Lemmas 3.1 and 3.2 on ribbon disk-links. In Section 4, a de-
composition of the 4-disk D4 into a normal disk-bundle N(LD) = LD × D2 of a
free ribbon disk-link LD and the compact complement E(LD) is considered. Let
Q(LD) = E(LD) ∪N(LD) denote this decomposition of D4. For a disk-link LD of n
components, let p∗ = {pi| i = 1, 2, . . . , n} be a set of n points, one point taken from
each component of LD. The strong deformation retract N(LD) → p∗ ×D2 shrinking
LD into p∗ and the strong deformation retract r : E(LD) → ωx in Lemma 3.2 define
a map

ρ : Q(LD) → P (LD)

with P (LD) a finite 2-complex consisting of the 1-skelton P (LD)1 = ωx and the 2-
cells p∗ × D2 attached by the attaching map p∗ × ∂D2 → ωx defined by r. The
map ρ is called a ribbon disk-link presentation for the finite 2-complex P (LD). A
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1-full subcomplex of a cell complex P is a subcomplex P ′ of P such that the 1-
skelton (P ′)1 of P ′ is equal to the 1-skelton P 1 of P . For a sublink KD of LD,
let N(KD) = KD × D2 be the subbundle of the disk-bundle N(LD). Then the
union Q(KD;LD) = E(LD)∪N(KD) is a decomposition of the compact complement
E(LD \KD) of the sublink LD \KD of LD in D4 and the ribbon disk-link presentation
ρ : Q(LD) → P (LD) for P (LD) sends Q(KD;LD) to a 1-full 2-subcomplex P (KD;LD)
of P (LD). Further, every 1-full 2-subcomplex of P (LD) is obtained from a sublink
KD of LD in this way. The following theorem is shown in Section 4.

Theorem 1.3. For every free ribbon disk-link LD in the 4-disk D4, the ribbon
disk-link presentation ρ : Q(LD) → P (LD) for the finite 2-complex P (LD) induces a
homotopy equivalence Q(KD;LD) → P (KD;LD) for every sublink KD of LD includ-
ing KD = ∅ and KD = LD. In particular, the finite 2-complex P (LD) is contractible.
Further, every contractible finite 2-complex P is taken as P = P (LD) for a free ribbon
disk-link LD in the 4-disk D4.

In Section 5, the following theorem is shown by using Theorem 1.3.

Theorem 1.4. The compact complement E(KD) of every ribbon disk-link KD in
the 4-disk D4 is aspherical.

The asphericity of the compact complement of a ribbon disk-knot in D4 has been
conjectured by Howie [5] after having found some gaps on the arguments of Yana-
gawa [18] and Asano, Marumoto, Yanagawa [1]. Since the fundamental group of an
aspherical complex is torsion-free, the following corollary is obtained from Lemma 3.1
and Theorem 1.4.

Corollary 1.5. The fundamental group π1(S
4 \ L, v) of every ribbon S2-link in the

4-sphere S4 is torsion-free.

This result gives the positive answer to the author’s old question in [12, II(pp.57-
58)]. The following corollary is obtained from Theorems 1.3 and 1.4, because if a
connected subcomplex P ′ of a contractible finite 2-complex P is not 1-full, then a
1-full subcomplex P ′′ of P is constructed from P ′ by adding a bouquet of some loops
in the 1-skelton P 1 of P to P ′, and P ′′ is aspherical if and only if P ′ is aspherical.

Corollary 1.6. Every connected subcomplex of every contractible finite 2-complex
is aspherical.
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This result is a partial positive confirmation of Whitehead aspherical conjecture
[16] claiming that every connected subcomplex of an aspherical 2-complex is aspher-
ical.

2. Proof of Theorem 1.1

The following lemma is a standard result obtained as a corollary of Smooth 4D
Poincaré Conjecture and Smooth Unknotting Conjecture is shown in [10, Corol-
lary 1.5] without a mention of a legged loop system.

Lemma 2.1. Every closed connected orientable smooth 4-manifold Y with π1(Y, v)
a free group and H2(Y ;Z) = 0 is diffeomorphic to the closed 4D handlebody Y Sby
a diffeomorphism f : Y → Y S sending any given a legged loop system ωx with base
point v representing a basis x1, x2, . . . , xn of π1(Y, v) to a standard legged loop system
ωSx of Y S. For any given spin structures on Y and Y S, the diffeomorphism f can be
taken spin-structure-preserving.

Proof of Lemma 2.1. (The proof is moved from [11, Lemma 3.2] to here for
completeness of the present argument.) Let M be the 4-manifold obtained from Y
by surgery along the loop system k(ωx) of ωx, which is identified with S4 by Smooth
4D Poincaré Conjecture since it is a smooth homotopy 4-sphere by the van Kampen
theorem and a homological argument. Let L be the S2-link in S4 obtained from
k(ωx) by the surgery. Then π1(S

4 \ L, v) =< x1, x2, . . . , xn > and the legged loop
system ωx with base point v in Y is a meridian system of L in S4 representing the basis
x1, x2, . . . , xn. By Smooth Unknotting Conjecture for an S2-link, the S2-link L bounds
disjoint 3-balls smoothly embedded in S4 so that each 3-ball meets ωx with just one
transverse intersection point in the loop system k(ωx) (see [9]). By the back surgery
from (M,L) to (Y, k(ωx)), there is an orientation-preserving diffeomorphism f : Y →
Y S with f(ωx) = ωSx. Given any spin structures on Y and Y S, note that there is an
orientation-preserving spin-structure-changing diffeomorphism : S1 × S3 → S1 × S3

(see [3] for a similar diffeomorphism on S1 × S2). Thus, by composing f with the
orientation-preserving spin-structure-changing diffeomorphisms on some connected
summands of Y S which are copies of S1 × S3, the diffeomorphism f : Y → Y S

is modified into an orientation-preserving spin-structure-preserving diffeomorphism.
This completes the proof of Lemma 2.1. □

The proof of Theorem 1.1 is done as follows.

2.2: Proof of Theorem 1.1.

Proof of (1)→(2). Assume that an S2-link K of type G(n;n − d, d) in S4 for any
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n is constructed from the triple system G(n;n − d, d) consisting of the free basis
xi (i = 1, 2, . . . , n), the relator system ri (i = 1, 2, . . . , n − d) written as words in
xi (i = 1, 2, . . . , n) and a weight system wj (j = 1, 2, . . . , d) written as words in xi (i =
1, 2, . . . , n). The fundamental group π1(Y

S, vS) of Y S of rank n is identified with the
free group < x1, x2, ..., xn >. Note that the elements ri, wj (i = 1, 2, . . . , n − d; j =
1, 2, . . . , d) form a weight system of the free group π1(Y

S, vS). Represent the elements
ri, wj ∈ π1(Y

S, vS) (i = 1, 2, . . . , n − d; j = 1, 2, . . . , d) by a disjoint simple loop
system k(ri), k(wj) (i = 1, 2, . . . , n − d; j = 1, 2, . . . , d) in Y S. The 4-manifold M

obtained from Y S by surgery along the loop system k(ri), k(wj) (i = 1, 2, . . . , n−d; j =
1, 2, . . . , d) is a smooth homotopy 4-sphere identified with S4. Let L be the S2-
link in S4 of the sphere system K(ri), K(wj) (i = 1, 2, . . . , n − d; j = 1, 2, . . . , d)
occurring from the loop system k(ri), k(wj) (i = 1, 2, . . . , n − d; j = 1, 2, . . . , d) by
the surgery. The fundamental group π1(S

4 \ L, v) is isomorphic to the free group
< x1, x2, ..., xn > by an isomorphism sending a meridian system of L to the weight
system ri, wj (i = 1, 2, . . . , n−d; j = 1, 2, . . . , d). By Free Ribbon Lemma of Appendix,
the S2-link L is a free ribbon S2-link in S4 of rank n. The sublink of L consisting of
the components K(wj) (j = 1, 2, . . . , d) is is just the S2-link K of type G(n;n− d, d),
which is a sublink of the free ribbon S2-link L in S4. This shows (1)→(2).
Proof of (2)→(1). Let K be a sublink of d components of a free ribbon S2-link L
of n components in S4 of rank n. Let π1(S

4 \ L, v) =< x1, x2, . . . , xn >. Let Y be
the 4-manifold obtained from S4 by surgery along L. By Lemma 2.1, Y is identified
with Y S of genus n such that π1(S

4 \ L, v) =< x1, x2, . . . , xn > is identified with
π1(Y

S, vS) by an isomorphism sending a meridian system of L in S4 to a weight
system of π1(Y

S, vS). This means that the ribbon S2-link K is nothing but an S2-
link of type G(n;n − d, d) for the triple system G(n;n − d, d) consisting of the free
group π1(Y

S, v) =< x1, x2, . . . , xn >, a relator system r1, r2, ..., rn−d coming from the
meridian system of L\K, and a weight system w1, w2, ..., wd coming from the meridian
system of K. This shows (2)→(1).
Proof of (2)→(3). This proof is trivial.
Proof of (3)→(2). By definition, assume that a ribbon S2-link K of d components in
S4 is obtained from a trivial S2-link O of n components in S4 by surgery along a 1-
handle system h on O. Let O× [0, 1] be a collar of O in S4 where the 1-handle system
h meets only to O × 0, and W = O × [0, 1] ∪ h a d-component compact 3-manifold
bounded by K ∪ O × 1. Let Ki (i = 1, 2, . . . , d) be the components of K. Let O′ be
a sublink of O× 1 of n− d components obtained by removing any one component of
O × 1 from the boundary of the component of W containing the component Ki for
every i. Then there are isomorphisms

π1((S
4 \W, v) → π1(S

4 \K ∪O′), v) and π1(S
4 \W, v) → π1(S

4 \O, v).

This is because there are deformation retracts from W to a 2-complex consisting of
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K ∪O′ and some spanning arcs and from W to a 2-complex consisting of O and some
spanning arcs, and the spanning arcs do not affect the fundamental group. Since
π1(S

4 \O, v). is a free group of rank n, the S2-link L = K ∪O′ of n components is a
free ribbon S2-link of rank n in S4 containing K as a sublink. This shows (3)→(2).

This completes the proof of Theorem 1.1. □

3. Basic Lemmas of ribbon disk-links

For a ribbon disk-link (D4, LD) of a ribbon S2-link (S4, L), let α be the reflection
of (S4, L) exchanging (D4, LD) and the other copy (−D4,−LD) in (S4, L). Although
the following lemma may be more or less known (cf. [18]), the proof is given here for
convenience.

Lemma 3.1. For a ribbon disk-link LD in D4 of a ribbon S2-link L in S4, the
inclusion (D4, LD) → (S4, L) induces an isomorphism

π1(D
4 \ LD, v) → π1(S

4 \ L, v).

Proof of Lemma 3.1. Use the retraction S4\L → D4\LD induced from the quotient
by the reflection α. Then the canonical homomorphism π1(D

4\LD, v) → π1(S
4\L, v)

is shown to be a monomorphism. On the other hand, for the copy (−D4,−LD) of
(D4, LD), the inclusion (∂(−D4), ∂(−LD)) → (−D4,−LD) induces an epimorphism
π1(∂(−D4) \ ∂(−LD), v) → π1(−D4 \ −LD, v) by the definition of ribbon disk-link
and Seifert-van Kampen theorem. This means that the canonical monomorphism
π1(D

4 \ LD, v) → π1(S
4 \ L, v) is also an epimorphism and thus, an isomorphism. □

The 4D handlebody of genus n is the 4-manifold

Y D = D4
∂#

n
i=1S

1 ×D3
i

which is the boundary connected sum of D4 and n copies S1 × D3
i (i = 1, 2, . . . , n)

of the 4D handle S1 × D3. By using the asphericity of Y D, the following lemma is
obtained.

Lemma 3.2. For every free ribbon disk-link LD of rank n in D4, there is a strong
deformation retract

r : E(LD) → ωx

from the compact complement E(LD) to a legged n-loop system ωx with base point
v in E(LD) representing any basis x1, x2, . . . , xn of the free group π1(E(LD), v).
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Proof of Lemma 3.2. Let L be the free ribbon S2-link of rank n in S4 obtained by
taking the double of (D4, LD). Note that the double

Y = ∂(E(LD)× I) = E(LD)× {−1} ∪ (∂E(LD))× I ∪ E(LD)× {1}

of E(LD) is diffeomorphic to the 4-manifold Y ′ obtained from S4 by surgery along L.
Since there is a canonical isomorphism π1(S

4 \ L, v) =< x1, x2, . . . , xn >→ π1(Y
′, v)

and H2(Y
′;Z) = 0, the 4-manifold Y ′ is identified with Y S under the canonical

identities π1(E(LD, v) = π1(Y
S, v) =< x1, x2, . . . , xn > by Lemmas 2.1 and 3.1. Let

ωx be a legged n-loop system in E(LD), and −ωx a copy of ωx in the copy −E(LD)
of E(LD) in Y ′ = Y S. Note that ±ωx are isotopically deformed into the standard
n-loop system in Y S. Let N(ωx) be a regular neighborhood of ωx in E(LD), and
N(−ωx) the copy of N(ωx) in the copy −E(LD). Since N(ωx) is diffeomorphic
to the 4D handlebody Y D of genus n, it is shown that the compact complement
E(LD)+ = cl(Y S \ N(−ωx)) is diffeomorphic to Y D and the compact complement
H = cl(Y S \ N(ωx) ∪ N(−ωx)) is diffeomorphic to the product ZS × I for the
closed 3D handlebody ZS = S3#n

i=1S
1 × S2

i of genus n. Note that the reflection α
in Y S exchanging E(LD) and −E(LD) induces a reflection in H whose fixed point
set is the boundary Z(∂LD) = ∂E(LD) of E(LD). Let H ′ be one of the two 3-
manifolds obtained by splitting H along Z(∂LD) such that E(LD)+ = E(LD) ∪
H ′. Then H = H ′ ∪ α(H ′). By [6], the 3-manifold Z(∂LD) is an imitation of ZS

which has the property that the inclusion homomorphism π1(Z
S, v) → π1(H

′, v) is an
isomorphism and any covering triad (H̃ ′; Z̃(∂LD), Z̃S) of the triad (H̃ ′;Z(∂LD), ZS)
is a homology cobordism. This means that the inclusion i : E(LD) → E(LD)+ is a
homotopy equivalence by Seifert-van Kampen theorem and the universal covering lift
ĩ : Ẽ(LD) → Ẽ(LD)+ induces an isomorphism ĩ∗ : H∗(Ẽ(LD);Z) → H∗(Ẽ(LD)+;Z)
because

H∗(Ẽ(LD)+, Ẽ(LD);Z) ∼= H∗(H̃
′, Z(∂LD);Z) = 0

by the excision isomorphism. Thus, E(LD) is homotopy equivalent to the legged n-
loop system ωx. For a polyhedral pair (P, P ′), if the inclusion i : P ′ ⊂ P is homotopy
equivalent, then there is a strong deformation retract r : P → P ′ (see [15, p. 31]).
Thus, there is a strong deformation retract r : E(LD) → ωx. □

In Lemma 3.2, note that in general the compact complement E(LD) of a free
ribbon disk-link LD in D4 is not diffeomorphic to Y D. For example, the Kinoshita-
Terasaka knot kKT in S3 bounds a free ribbon-disk knot KD of rank one in D4. Since
the 3-manifold Z(∂KD) which is the 0-surgery manifold of kKT is not diffeomorphic
to ZS = S1 × S2 by the solution of property R conjecture (see [2]), the compact
complement E(KD) is not diffeomorphic to Y D (see [6]).
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4. Proof of Theorem 1.3

The proof of Theorem 1.3 is done as follows.

4.1: Proof of Theorem 1.3. Identifications

π1(E(LD), v) = π1(ωx) =< x1, x2, . . . , xn >

are fixed by the strong deformation retract r : E(LD), v) → ωx. The ribbon
disk-link presentation ρ : Q(LD) → P (LD) for P (LD) induces an isomorphism
ρ# : π1(Q(KD;LD), v) → π1(P (KD;LD), v) for every sublink KD of LD includ-
ing KD = ∅ and KD = LD by Seifert-van Kampen theorem, because the strong
deformation retract r : E(LD), v) → ωx induces the identical word system r∗ =
{r1, r2, . . . , rn} of the loop system p∗ × ∂D2 in < x1, x2, . . . , xn > by the attaching
map r : p∗ × ∂D2 → ωx of the 2-cell system p∗ ×D2. In particular, π1(P (LD), v) =<
x1, x2, . . . , xn| r1, r2, . . . , rn >= {1}. Let ρ̃ : Q̃(KD;LD) → P̃ (KD;LD) be the uni-
versal covering lift of ρ : Q(KD;LD) → P (KD;LD). By Mayer-Vietoris homol-
ogy sequence, Hm(Q̃(KD;LD);Z) = 0 for all m ≥ 3 and ρ̃ induces an isomorphism
ρ̃∗ : H2(Q̃(KD;LD);Z) → H2(P̃ (KD;LD);Z) for every sublink KD of LD including
KD = ∅ and KD = LD. Thus, ρ : Q(KD;LD) → P (KD;LD) is a homotopy equiv-
alence for every sublink KD of LD including KD = ∅ and KD = LD. In particular,
P (LD) is a finite contractible 2-complex. Let P be a contractible finite 2-complex
obtained from the 1-skelton P 1 = ωx, a legged n loop system with base point v, so
that π1(P

1, v) =< x1, x2, . . . ., xn >. Assume that P is obtained from P 1 by attaching
2-cells e1, e2, . . . , en. Since π1(P, v) = 1, the 2-complex P provides the triple system
G(n; 0, n) in the construction of Kervaire’s 2-link which consists of the free group
< x1, x2, . . . ., xn >, the empty relator set and the weight system w1, w2, ..., wn given
by the attaching data of e1, e2, . . . , en to P

1. By Theorem 1.1, there is a free ribbon S2-
link (S4, L) with an isomorphism π1(S

4\L, v) ∼=< x1, x2, . . . , xn > sending a meridian
system of L to the weight system w1, w2, ..., wn. By Lemma 3.1, there is a free ribbon
disk-link (D4, LD) with an isomorphism π1(D

4 \LD, v) ∼=< x1, x2, . . . , xn > sending a
meridian system of LD inD4 to the weight system w1, w2, ..., wn. By Lemma 3.2, there
is a strong deformation retract r : E(LD) → P 1 = ωx, which induces a ribbon-disk
presentation ρ : Q(LD) → P (LD) for P (LD) = P because the loop system p∗ × ∂D2

is just the meridian system of LD. □

5. Proof of Theorem 1.4

The proof of Theorem 1.4 is done as follows.

5.1: Proof of Theorem 1.4. Let KD be a ribbon disk-link in D4 of d components,
and S(∗) any immersed 2-sphere in E(KD). It suffices to show that there is a free
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ribbon disk-link LD in D4 of some rank n which contains KD as a sublink and is
disjoint from S(∗). This is because S(∗) ⊂ E(LD) ⊂ E(KD) meaning that S(∗) is
null-homotopic in E(LD) and hence in E(KD) since π2(E(LD), v) = 0 by Lemma 3.2,
so that π2(E(KD), v) = 0 meaning that E(KD) is aspherical, for E(KD) is homotopy
equivalent to a 2-complex by Theorem 1.3.

The pair (D4, S3) is considered as the one-point compactification of the pair
(R3[0,+∞),R3) of the upper-half 4-space

R3[0,+∞) = {(x1, x2, x3, t)| −∞ < xi < +∞ (i = 1, 2, 3), t ≥ 0}

and the 3-space

R3 = {(x1, x2, x3)| −∞ < xi < +∞ (i = 1, 2, 3)}.

Also, KD and S(∗) are considered in R3[0,+∞). By the motion picture method [12,
I], assume that a normal form of the disk-link KD in (R3[0,+∞) is given as follows:

KD ∩R3[t] =


∅, for t > 2,

d∗[t], for t = 2,
o∗[t], for 1 < t < 2,

(o∗ ∪ b∗)[t], for t = 1,
kD[t], for 0 ≤ t < 1,

where d∗ is a disjoint trivial disk system of m disks di (i = 1, 2, . . . ,m) for some m in
R3 with o∗ = ∂d∗, b∗ is a disjoint band system of m− d bands bj (j = 1, 2, . . . ,m− d)
in R3 spanning the trivial loop system o∗ used for a fusion operation, and kD is a
ribbon link in R3 of d-components obtained from o∗ by surgery along the band system
b∗ as a fusion. By the proof of Theorem 1.1 and Lemma 3.1, there is a free ribbon
disk-link LD in R3[0,+∞) of some rank n such that LD = KD ∪ CD for a trivial
disk system CD in R3[0,+∞) whose normal form is given as follows by extending the
normal form of KD:

LD ∩R3[t] =


∅, for t > 2,

(d∗ ∪ dC)[t], for t = 2,
(o∗ ∪ oC)[t], for 1 < t < 2,

(o∗ ∪ b∗ ∪ oC)[t], for t = 1,
(kD ∪ oC)[t], for 0 ≤ t < 1,

where dC is a disjoint disk system in R3 with oC = ∂dC . Note that the disk systems
d∗ and dC are disjoint, but in general the band system b∗ meets the interior of dC

in a disjoint arc system. By pulling down a neighborhood of every double point of
S(∗) into R3[0], the immersed 2-sphere S(∗) is changed into a non-immersed singular
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2-sphere in R3[0,+∞), but a normal form of the union KD ∪ S(∗) in R3[0,+∞)
extending the normal form of KD is given as follows (see [12, I]):

(KD ∪ S(∗)) ∩R3[t] =



∅, for t > 2,
(d∗ ∪ dS(∗))[t], for t = 2,
(o∗ ∪ oS(∗))[t], for 1 < t < 2,

(o∗ ∪ b∗ ∪ cS(∗) ∪ bS(∗))[t], for t = 1,
(kD ∪ cS(∗))[t], for 0 < t < 1,
(kD ∪ eS(∗))[t], for t = 0,

where dS(∗) is a disjoint band system in R3 with oS(∗) = ∂dS(∗), bS(∗) is a disjoint
band system spanning oS(∗) in R3, cS(∗) is a split union of a split Hopf link system
cH(∗) and a trivial link system co(∗) in R3 obtained from oS(∗) by surgery along bS(∗),
and eS(∗) is a split union of a disjoint Hopf disk pair system bounded by cH(∗) and a
disjoint disk system bounded by co(∗) in R3, where a Hopf disk pair means a disk pair
with a clasp singularity in R3 bounded by a Hopf link. By construction, note that
eS(∗) is split from kD. By an isotopic move of the union of the disk system dC and a
neighborhood of the arc system b∗ ∩ dC in b∗ in R3 keeping the disk system d∗ fixed,
it can be assumed that

dC ∩ (d∗ ∪ eS(∗) ∪ bS(∗)) = ∅.

Then the link o∗ ∪ oS(∗) ∪ oC is a trivial link in R3. In general the disk system dC

meets the interior of the disk system dS(∗). However, by Horibe-Yanagawa lemma in
[12, I], even if the disk systems d∗, d

S(∗), dC are replaced by any disjoint disk systems
bounded by the trivial link o∗ ∪ oS(∗) ∪ oC in R3, the union KD ∪ S(∗) and the
free ribbon disk-link LD in do not change up to ambient isotopies (with compact
supports) of R3[0,+∞) keeping R3[0] fixed. This means that the disjoint union
KD ∪ S(∗) extends to a disjoint union LD ∪ S(∗) for a free ribbon disk-link LD, so
that S(∗) ⊂ E(LD) ⊂ E(KD), and thus, E(KD) is aspherical. This completes the
proof of Theorem 1.4. □

Appendix: Free Ribbon Lemma
The purpose of this appendix is to prove the following lemma.

Free Ribbon Lemma. Every free S2-link L in S4 is a ribbon S2-link.

Proof of Free Ribbon Lemma. The following observation is used to determine a
ribbon S2-link.

(A.1) Let (S3
i )

(1+mi) (i = 1, 2, . . . , n) be a system of mutually disjoint compact (1 +
mi)-punctured 3-spheres in S4 such that the boundary ∂(S3

i )
(1+mi) is the union of the
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component Ki and an S2-link Oi of mi components. If the union O = ∪n
i=1Oi is a

trivial S2-link in S4, then the S2-link L = ∪n
i=1Ki is a ribbon S2-link in S4.

Proof of (A.1). Let K ′
i be a 2-sphere obtained from Oi by surgery along mutually

disjoint 1-handles hi (i = 1, 2, . . . ,mi − 1) in (S3
i )

(1+mi), whose closed complement is
diffeomorphic to the spherical shell S2 × [0, 1]. This means that the component Ki

with reversed orientation is isotopic to the 2-sphere K ′
i in (S3

i )
(1+mi). This shows that

L = ∪n
i=1Ki is a ribbon S2-link in S4, completing the proof of (A.1). □

Let Ki (i = 1, 2, . . . , n) be the components of a free S2-link L in S4. Let Y be the
4-manifold obtained from S4 by surgery along L. Let ki (i = 1, 2, . . . , n) be the loop
system in Y produced from Ki (i = 1, 2, . . . , n) by the surgery. Since the fundamental
group π1(Y, v) is a free group and H2(Y ;Z) = 0, the 4-manifold Y is identified with
Y S by Lemma 2.1. The 3-sphere 1 × S3

i of the connected summand S1 × S3
i of

Y S is fixed and denoted by S3
i . Let xi (i = 1, 2, . . . , n) be the basis of π1(Y

S, v)
represented by a standard legged loop system ωSx with vertex v = vS. Let k(ωSx) =
{kS

i | i = 1, 2, . . . , n} be the loop system of ωSx. Let ωm = {ωimi| i = 1, 2, . . . , n} be
a meridian system with vertex v of the components Ki (i = 1, 2, . . . , n) of L in S4.
The meridian system ωm is taken in Y S as a legged loop system with loop system
k(ωm) = {mj| j = 1, 2, . . . , n} parallel to the loop system ki (i = 1, 2, . . . , n) in Y S.
Assume that the meridian system ωm in Y S is made disjoint from ωx except for the
vertex v and meets S3

i (i = 1, 2, . . . , n) only in the loop system k(ωm) transversely. Let
yi (i = 1, 2, . . . , n) be the elements of π1(Y

S, v) represented by ωimi (i = 1, 2, . . . , n).
By Nielsen transformations of the basis xi (i = 1, 2, . . . , n), assume that the product
x−1
i yi is in the commutator subgroup [π1(Y

S, v), π1(Y
S, v)] of π1(Y

S, v) for every i
(see [14]). For the 3-sphere S3

i , consider all the loops mj with mj ∩ S3
i ̸= ∅. For a

point p ∈ mj∩S3
t (t ̸= i), let I(p) be an arc neighborhood of p in a parallel kS

t (p) of k
S
t

and then replace the arc I(p) with the arc cl(kS
t (p)\ I(p)). Let m̃j be a loop obtained

from mj by doing this operation on mj for every t (t ̸= i) and every point p ∈ mj∩S3
t .

For every i (i = 1, 2, . . . , n), let m(S3
i ) be the system of the loops m̃j in Y S obtained

from all the loops mj with mj ∩ S3
i ̸= ∅, where the loops mj with mj ∩ S3

i = ∅ are
discarded. There is a smoothly embedded annulus Ai with ∂Ai = (−kS

i ) ∪ m̃i in the
open 4-manifold

Y S
)i( = Y S \ ∪1≤t( ̸=i)≤nS

3
t

because the fundamental group π1(Y
S
)i(, v) is an infinite cyclic group and the loop m̃i

is homotopic to kS
i in Y S

)i(. The annulus Ai meets S3
i transversely with disjoint simple

loops and simple arcs. Let αis (s = 1, 2, . . . , ni) be the arc system of the intersection
Ai ∩ S3

i where αi1 joins the point pSi = kS
i ∩ S3

i to a point of the loop m̃i and the arc
αis with s > 1 joins two points of m̃i. For j with j ̸= i, the loop m̃j is null-homotopic
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in Y S
)i( and hence bounds a disk Dji in Y)i( which meets S3

i transversely with disjoint
simple loops and simple arcs. Let αjis (s = 1, 2, . . . , nji) be the arc system of the
intersection Dji ∩ S3

i each of which joints two points of m̃j. The annulus Ai and the
disk Dji with i ̸= j are made disjoint while fixing the intersection with S3

i in Y S for
all i, j by doing double point cancellations using free boundary arcs while fixing the
intersection with S3

i for mj. The following observation helps clarify the relationship
between the point system m(S3

i )∩S3
i and the arc system (Ai∪Dji)∩S3

i for all j with
j ̸= i.

Observation (A.2) Let ∂αis = {qs, q′s} (s = 1, 2, . . . , ni) with q1 = pSi for the arc
system αis (s = 1, 2, . . . , ni) of Ai ∩ S3

i . Then the open arc of m̃i that is separated
by any couple {qs, q′s} with s > 1 and does not contain the point q′1 meets S3

i with
intersection number 0. Conversely, let {qs, q′s} (s = 1, 2, . . . , ni) be any system of
couples of distinct points with q1 = pSi such that the union of these points matches
the set (kS

i ∪ m̃i) ∩ S3
i and the open arc of m̃i that is divided by any couple {qs, q′s}

with s > 1 and does not contain the point q′1 meets S3
i with intersection number 0.

Then {qs, q′s} (s = 1, 2, . . . , ni) is realized by ∂αis = {qs, q′s} (s = 1, 2, . . . , ni) of the
arc system αis (s = 1, 2, . . . , ni) of Ai ∩ S3

i for an annulus Ai with ∂Ai = (−kS
i ) ∪ m̃i

in Y S
)i(. Let ∂αjis = {qs, q′s} (s = 1, 2, . . . , nji) for the arc system αjis (s = 1, 2, . . . , nji)

of Dji ∩ S3
i . Then every open arc of m̃j divided by any couple {qs, q′s} meets S3

i

with intersection number 0. Conversely, let {qs, q′s} (s = 1, 2, . . . , nji) be any system
of couples of distinct points such that the union of these points matches the set
m̃j ∩ S3

i and every open arc of m̃j which is divided by any couple {qs, q′s} meets S3
i

with intersection number 0. Then {qs, q′s} (s = 1, 2, . . . , nji) is realized by ∂αjis =
{qs, q′s} (s = 1, 2, . . . , nji) of the arc system αjis (s = 1, 2, . . . , nji) of Dji ∩ S3

i for a
disk Dji with ∂Dji = m̃j in Y S

)i(.

Let B(αis) (s = 1, 2, . . . , ni) be disjoint 3-ball neighborhoods of the arcs αis (s =
1, 2, . . . , ni) in S3

i , and B(αjis) (s = 1, 2, . . . , nji) disjoint 3-ball neighborhoods of
the arcs αjis (s = 1, 2, . . . , nji) in S3

i . Let S(αis) = ∂B(αis) (s = 1, 2, . . . , ni) and
S(αjis) = ∂B(αjis) (s = 1, 2, . . . , nji) be the boundary 2-spheres of them. The S2-link
L in S4 with meridian system ωm is recovered from Y S by the back surgery along the
loop system ki (i = 1, 2, . . . , n) in Y S. Since the 2-spheres S(αis) (s = 1, 2, . . . , ni) and
S(αjis) (s = 1, 2, . . . , nji) in Y S are disjoint from the loop system ki (i = 1, 2, . . . , n),
the 2-spheres S(αis) (s = 1, 2, . . . , ni) and S(αjis) (s = 1, 2, . . . , nji) are considered in
S4. The 2-sphere S(αi1) is identified with Ki in S4 for all i (i = 1, 2, . . . , n). The
following claim is shown.

(A.3) The 2-spheres S(αis) (i = 1, 2, . . . , n; s = 2, 3, . . . , ni) and S(αjis) (i, j =
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1, 2, . . . , n, j ̸= i; s = 1, 2, . . . , nji) form a trivial S2-link in S4.

By (A.1) and (A.3), the S2-link L = ∪n
i=1Ki is shown to be a ribbon S2-link in

S4.

Proof of (A.3). The loops kS
t (t = 1, 2, . . . , n) in S4 bound disjoint disks DS

t (i =
1, 2, . . . , n) in S4. Hence the loop kS

t in S4 is isotopic to a band sum k′
t of some

parallel links Pt(mi) (i = 1, 2, . . . , n) of the meridian loops mi (i = 1, 2, . . . , n) of
Ki (i = 1, 2, . . . , n) in S4. For a parallel kS+

t of kS
t in S4, let DS+

t be a move of DS
t with

∂DS+
t = kS+

t in S4 so that the disk DS+
t is disjoint from the annuli Ai (i = 1, 2, . . . , n)

and the disks Dji (i, j = 1, 2, . . . , n; j ̸= i). The 2-spheres S(αis) (i = 1, 2, . . . , n; s =
1, 2, . . . , ni) and S(αjis) (i, j = 1, 2, . . . , n, j ̸= i; s = 1, 2, . . . , nji) may be disjoint
from the disk DS+

t in S4. By passing through a thickening DS+
t × I of the disk DS+

t

for every t( ̸= i) in S4, the annulus Ai and the disk Dji in Y S extend respectively
in S4 to an annulus Āi with ∂Āi = (−kS

i ) ∪ mi and a disk D̄ji with ∂D̄ji = mj.
The annuli Āi (i = 1, 2, . . . , n) and the disks D̄ji (i, j = 1, 2, . . . , n; j ̸= i) should be
disjoint in S4. For s ≥ 2, let S(∂αis) be the two sphere union which is the boundary
of a regular neighborhood B(∂αis) of the two point set ∂αis in B(αis). The 2-sphere
S(αis) can be replaced by the 2-sphere obtained from S(∂αis) by surgery along a 1-
handle attaching to S(∂αis) whose core is a subarc α′

is of αis in B(αis). The following
observation (whose proof is obvious) is used.

Observation A.4 The 2-sphere S ′ obtained from the 2-spheres S2×{0, 1} by surgery
along a 1-handle h′ thickening the arc p × [0, 1] (p ∈ S2) bounds the unique 3-ball
B′ = cl(S2 × [0, 1] \ h′). Further, let S ′′ obtained from the 2-spheres S2 × {1

4
, 3
4
} by

surgery along a 1-handle h′′ thickening the arc p× [1
4
, 3
4
], and B′′ = cl(S2× [1

4
, 3
4
] \h′′)

the 3-ball bounded by S ′′. If the 1-handle h′ is thinner than the 1-handle h′′, then
the 3-ball B′′ is in the interior of the 3-ball B′.

Assume that the arc αis cuts an innermost disk δ from the annulus Āi. Then the
arc α′

is is ∂-relatively isotopic to an arc J in mi through the disk δ, so that the arc
α′
is joining the two sphere union S(∂αis) is ∂-relatively isotopic to an arc J joining

the boundary (∂J)×Ki of a spherical shell J×Ki of the circle bundle ∂D
2×Ki with

J ⊂ ∂D2 for a normal disk bundle D2×L in S4. Thus, the 2-sphere S(αis) is isotopic
to the boundary 2-sphere ∂∆(αis) of a 3-ball ∆(αis) in the spherical shell J ×Ki (see
[4]). Note that the 3-ball ∆(αis) does not meet the S2-link L although the trace of
this isotopy may meet L since the disk δ may meet L. By continuing this process, it is
seen from Observation A.4 that the 2-spheres S(αis) (s = 2, 3, . . . , ni) are isotopic to
the disjoint boundary 2-spheres ∂∆(αis) (s = 2, 3, . . . , ni) of an inclusive 3-ball family
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∆(αis) (s = 2, 3, . . . , ni) in D2 × Ki, where an inclusive 3-ball family is a family of
finite number of 3-balls such that any two members B1 and B2 have the property

B1 ⊂ Int(B2), B2 ⊂ Int(B1), or B1 ∩ B2 = ∅.

For the disk D̄ji, the same argument above can be applied to see that the 2-spheres
S(αjis) (s = 1, 2, . . . , nji) are isotopic to the disjoint boundary 2-spheres ∂∆(αjis) (s =
1, 2, . . . , nji) of an inclusive 3-ball family ∆(αjis) (s = 1, 2, . . . , nji) in D2 ×Kj with
j ̸= i. Thus, for every i, the 2-spheres S(αis) (s = 2, 3, . . . , ni) and S(αjis) (s =
1, 2, . . . , nji) form a trivial S2-link in S4. Since the annuli Āi (i = 1, 2, . . . , n) and
the disks D̄ji (i, j = 1, 2, . . . , n; j ̸= i) are disjoint, it can be seen that the 2-spheres
S(αis) (i = 1, 2, . . . , n; s = 2, 3, . . . , ni) and S(αjis) (i, j = 1, 2, . . . , n, j ̸= i; s =
1, 2, . . . , nji) form a trivial S2-link in S4 by varying the radius of the disk D of the
normal disk bundle D × L of L for every i. This completes the proof of (A.3). □

This completes the proof of Free Ribbon Lemma. □
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