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ABSTRACT

A free surface-link is a surface-link whose fundamental group is a free group
not necessarily meridian-based. Free ribbon lemma says that every free sphere-
link in the 4-sphere is a ribbon sphere-link. Four different proofs of Free ribbon
lemma are explained. The first proof is done in an earlier paper. The second
proof is done by showing that there is an O2-handle basis of a ribbon surface-
link. The third proof is done by removing the commuter relations from a
Wirtinger presentation of a free group, which a paper on another proof of Free
ribbon lemma complements. The fourth proof is given by the special case of the
proof of the result that every free surface-link is a ribbon surface-link which is
a stabilization of a free ribbon sphere-link. As a consequence, it is shown that
a surface-link is a sublink of a free surface-link if and only if it is a stabilization
of a ribbon sphere-link.

Keywords: Free ribbon lemma, Free surface-link, Ribbon sphere-link, Stabi-
lization.
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1. Introduction
A surface link is a closed, possibly disconnected, oriented surface F smoothly

embedded in the 4-sphere S4, and it is called a surface knot if F is connected. If F
consists of 2-spheres Fi (i = 1, 2, . . . , r), then F is called a sphere-link (or an S2-link)
of r components. It is shown that a surface-link F is a trivial surface-link (i.e., bounds
disjoint handlebodies in S4) if the fundamental group π1(S

4 \ F, x0) is a meridian-
based free group, [10], [11], [12]. A surface-link F is ribbon if F is obtained from
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a trivial S2-link O in S4 by surgery along a smoothly embedded disjoint 1-handle
system hO on O, [20], [29], [30], [32]. A surface-link F in the 4-sphere S4 is free
if the fundamental group π1(S

4 \ F, x0) is a (not necessarily meridian-based) free
group. In this paper, four different proofs of the following Free ribbon lemma and its
generalization to a general free surface-link are explained.

Free ribbon lemma. Every free S2-link in S4 is a ribbon S2-link.

Free ribbon lemma leads to the following conjectures: Poincaré conjecture, [15],
[24], [25]. [26]. J. H. C. Whitehead asphericity conjecture for aspherical 2-complex,
[5], [14], [17], [28]. Kervaire conjecture on group weight, [1], [16], [21], [23], [22]. The
first proof is given [14]. For convenience, an outline of the first proof is explained
here.

First proof of Free ribbon lemma. Let Li (i = 1, 2, . . . , r) be the components of
a free S2-link L in S4. By a base change of the free fundamental group π1(S

4 \L, x0),
take a basis xi (i = 1, 2, . . . , r) of π1(S

4 \ L, x0) inducing a meridian basis of L in
H1(S

4 \ L;Z), [23]. Let Y be the 4-manifold obtained from S4 by surgery along L,
which is diffeomorphic to the connected sum of r copies S1 × S3

i (i = 1, 2, . . . , r) of
S1 × S3, [13], [14]. Under a canonical isomorphism π1(S

4 \ L, x0) → π1(Y, x0), the
factors S1 × pi (i = 1, 2, . . . , r) of S1 × S3

i (i = 1, 2, . . . , r) with suitable paths to the
base point x0 represent the basis xi (i = 1, 2, . . . , r). Let ki (i = 1, 2, . . . , r) be the
loop system in Y produced from the components Li (i = 1, 2, . . . , r) by the surgery.
By using the fact that any homotopy deformations of ki (i = 1, 2, . . . , r) in Y do not
change the link type of the surface-link L in S4, the loop system ki (i = 1, 2, . . . , r)
is homotopically deformed in Y so that the surface-link L in S4 obtained from the
deformed loop system ki (i = 1, 2, . . . , r) by back surgery is a ribbon surface-link in
S4, completing the proof of Free ribbon lemma.

To explain the second and third proofs of Free ribbon lemma, the notion of an
O2-handle basis of a surface-link is needed, [10], [19]. An O2-handle pair on a surface-
link F in S4 is a pair (D × I,D′ × I) of 2-handles D × I, D′ × I on F in S4 which
intersect orthogonally only with the attaching parts (∂D) × I, (∂D′) × I to F , so
that the intersection Q = (∂D) × I ∩ (∂D′) × I is a square. Let (D × I,D′ × I) be
an O2-handle pair on a surface-link F . Let F (D × I) and F (D′ × I) be the surface-
links obtained from F by the surgeries along D × I and D′ × I, respectively. Let
F (D × I,D′ × I) be the surface-link which is the union δ ∪ F c

δ of the plumbed disk

δ = δD×I,D′×I = D × ∂I ∪Q ∪D′ × ∂I
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and the surface F c
δ = cl(F \(∂D×I∪∂D′×I)). The surface-links F (D×I), F (D′×I)

and F (D×I,D′×I) are equivalent surface-links, [10]. An O2-handle basis of a surface-
link F is a disjoint system of O2-handle pairs (Di × I,D′

i × I) (i = 1, 2, . . . , r) on F

in S4 such that the boundary loop pair system (∂Di, ∂D
′
i) (i = 1, 2, . . . , r) of the core

disk system (Di, D
′
i) (i = 1, 2, . . . , r) of (Di × I,D′

i × I) (i = 1, 2, . . . , r) is a spin loop
basis for F in S4, which is a system of a spin loop basis of every component Fi of F .
Note that there is a spin loop basis for every surface-knot in F , [3]. In this paper,
for simplicity, an O2-handle basis (Di × I,D′

i × I) (i = 1, 2, . . . , r) for F is denoted
by (D× I,D′ × I). The surgery surface-link of F by (Di × I,D′

i × I) (i = 1, 2, . . . , r)
is denoted by F (D × I,D′ × I). The following theorem is shown for the second and
third proofs of Free ribbon lemma.

Theorem 1.1. For every free ribbon surface-link F in S4, there is an O2-handle
basis (D × I,D′ × I) on F in S4 such that D × I belongs to the 1-handle system of
the ribbon surface-link F .

The second proof of Free ribbon lemma is explained as follows.

Second proof of Free ribbon lemma. Let L be a free S2-link. Then there is a
ribbon surface-link F such that the fundamental group π1(S

4 \F, x0) is isomorphic to
the free fundamental group π1(S

4 \L, x0) by a meridian-preserving isomorphism, [18].
By Theorem 1.1, the surgery surface-link L′ = F (D×I,D′×I) is a ribbon S2-link, [10],
[19]. Then there is a meridian-preserving isomorphism π1(S

4 \L′, x0) → π1(S
4 \L, x0)

on free groups, which implies that L′ is equivalent to L, [14], [18]. Thus, L is a ribbon
S2-link, completing the proof of Free ribbon lemma.

The third proof of Free ribbon lemma is related to a Wirtinger presentation of a
free group. A finite group presentation (x1, x2, . . . , xn|R1, R2, . . . , Rm) is a Wirtinger
presentation if Rj = WjxsjWj

−1x−1
tj for some indexes sj, tj in {1, 2, . . . , n} for ev-

ery j (j = 1, 2, . . . ,m). The relator Rj is a commutator relation if xsj = xtj . It
is well-known that a Wirtinger presentation of a finitely presented group G with
H1(G;Z) ∼= Zr is always equivalent (without changing the gerenating set) to a
Wirtinger presentation P such that the Wirtinger presentation P ′ obtained by re-
moving all the commutator relations from P has deficiency r. Such a Wirtinger
presentation P is called a normal Wirtinger presentation. The following corollary is
obtained from Theorem 1.1.

Corollary 1.2. If a free group G of rank r has a normal Wirtinger presentation P ,
then G has the Wirtinger presentation P ′ of deficiency r obtained from P by removing
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all the commutator relations.

Proof of Corollary 1.2 assuming Theorem 1.1. For a free group G of rank
r, let P = (x1, x2, . . . , xn|R1, R2, . . . , Rm) be a normal Wirtinger presentation of G
such that the relators Rj (n − r + 1 ≤ j ≤ m) are the commutator relations. Let
O be a trivial S2-link of n components in S4 such that the meridian basis of the
free fundamental group π1(S

4 \ O, x0) are identified with xi (i = 1, 2, . . . , n). Let
hj (1 ≤ j ≤ m) be the 1-handles on O indicated by the relators Rj (1 ≤ j ≤ m). By
the van Kampen theorem, the ribbon surface-link F in S4 obtained by surgery along
hj (1 ≤ j ≤ m) has the normal Wirtinger presentation P of the fundamental group
π1(S

4 \ F, x0) with the meridian generators set {x1, x2, . . . , xn}, [7], [8]. Let L be the
ribbon surface-link obtained from O by surgery along the 1-handles hj (1 ≤ j ≤ n−r),
which is a ribbon S2-link of r components. The fundamental group π1(S

4 \L, x0) has
the Wirtinger presentation P ′ of deficiency r obtained from P by removing all the
commutator relations. By Theorem 1.1, the 1-handles hj (n − r + 1 ≤ j ≤ m)
on L are trivial 1-handles, so that π1(S

4 \ L, x0) is isomorphic to π1(S
4 \ F, x0) by a

meridian-preserving isomorphism. This completes the proof of Corollary 1.2 assuming
Theorem 1.1.

The author has published a paper on another proof of Free ribbon lemma, which
this paper complements, [18]. The third proof of Free ribbon lemma is nothing but
the proof of the paper except for adding to it the assertion of Corollary 1.5 which was
missing from it. For convenience, an outline of the third proof is explained here.

Third proof of Free ribbon lemma. Let L be a free S2-link of r components.
Since the fundamental group G = π1(S

4 \ L, x0) is a free group with H1(G;Z) = Zr

and H2(G;Z) = 0, there is a normal Wirtinger presentation P of G whose generator
set comes from meridians of L in S4, [18], [31]. Note that there is also another method
to find such a normal Wirtinger presentation P using a normal form of L in S4, [6], [7],
[8], [20]. Let L′ be a ribbon S2-link given by the Wirtinger presentation P ′ obtained
from P by removing all the commutators. By Corollary 1.2, there is a meridian-
preserving isomorphism π1(S

4 \L′, x0) → π1(S
4 \L, x0), so that L′ is equivalent to L.

Thus, L is a ribbon S2-link, completing the proof of Free ribbon lemma.

The fourth proof of Free ribbon lemma is given by a direct proof of the following
theorem.

Theorem 1.3. Every free surface-link F in S4 is a ribbon surface-link in S4.
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Fourth proof of Free ribbon lemma. It is obtained by restricting F to every free
S2-link, completing the proof of Free ribbon lemma.

Thus, after the proofs of Theorems 1.1 and 1.3, there are four different proofs of
Free ribbon lemma.

To generalize the free ribbon lemma to a free surface-link, the notion of a stabiliza-
tion of a surface-link is needed, [10], [19]. A stabilization of a surface-link L is a con-
nected sum F = L#s

k=1Tk of L and a system of trivial torus-knots Tk (k = 1, 2, . . . , s).
By granting s = 0, a surface-link L itself is regarded as a stabilization of L. Free
ribbon lemma is generalized to a general free surface-link as follows.

Corollary 1.4. Every free surface-link F in S4 is a stabilization of a free ribbon
S2-link L in S4.

Proof of Crollary 1.4 assuming Theorems 1.1 and 1.3. Theorem 1.1 implies
that every free surface-link F is a stabilization of a free S2-link L, [10]. By Free
ribbon lemma, the free S2-link L is a ribbon S2-link. This completes the proof of
Crollary 1.4 assuming Theorems 1.1 and 1.3.

It is shown that an S2-link L is a sublink of a free S2-link if and only if L is a
ribbon S2-link, [14]. The following corollary generalizes this property to a general
surface-link.

Corollary 1.5. A surface-link L in S4 is a sublink of a free surface-link F in S4 if
and only if L is a stabilization of a ribbon S2-link in S4.

Proof of Corollary 1.5 assuming Theorem 1.3. If L is a sublink of a free
surface-link F , then L is a stabilization of a ribbon S2-link since every free surface-
link is a stabilization of a free ribbon S2-link by Corollary 1.2. Conversely, if L is a
stabilization of a ribbon S2-link, then L is a sublink of a stabilization of a free ribbon
S2-link which is a free surface-link F since every ribbon S2-link is a sublink of a free
S2-link. This completes the proof of Corollary 1.5 assuming Theorem 1.3.

2. Proofs of Theorems 1.1 and 1.3.

Let F be a free surface-link in S4 with components Fi (i = 1, 2, . . . , r). Let N(F ) =
∪r

i=1N(Fi) be a tubular neighborhood of F = ∪r
i=1Fi in S4 which is a trivial normal

disk bundle F ×D2 over F , where D2 denotes the unit disk of complex numbers of
norm ≦ 1. Let E = E(F ) = cl(S4 \N(F )) be the exterior of F in S4. The boundary
∂E = ∂N(F ) = ∪r

i=1∂N(Fi) of the exterior E is a trivial normal circle bundle over
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F = ∪r
i=1Fi. Identify ∂N(Fi) = Fi × S1 for S1 = ∂D2 such that the composite

inclusion

Fi × 1 → ∂N(Fi) → cl(S4 \N(Fi))

induces the zero-map in the integral first homology. The following lemma uses the
assumption that the fundamental group π1(E, x0) is a free group of rank r and the
fact that the first homology group H1(E;Z) is a free abelian group of rank r with
meridian basis.

Lemma 2.1. The composite inclusion Fi × 1 → ∂N(Fi) → E is null-homotopic for
all i.

Proof of Lemma 2.1. Since ∂N(Fi) = Fi × S1, the fundamental group elements
between the factors Fi × 1 and qi × S1 are commutive. Let ai (i = 1, 2, . . . , r) be
embedded edges with common vertex x0 in E such that ai \ {x0} (i = 1, 2, . . . , r) are
mutually disjoint and ai ∩ (∪r

j=1Fj × 1) = pi × 1 for a point pi of Fi × 1. The surface
Fi × 1 in ∂N(Fi) = Fi × S1 is chosen so that the inclusion Fi × 1 → cl(S4 \ N(Fi))
induces the zero-map in the integral first homology. Since H1(E;Z) is a free abelian
group of rank r with meridian basis and π1(E, x0) is a free group of rank r, the
image of the homomorphism π1(ai ∪ Fi × S1, x0) → π1(E, x0) is an infinite cyclic
group generated by the homotopy class [ai ∪ pi × S1]. This implies that the inclusion
Fi × 1 → E is null-homotopic. This completes the proof of Lemma 2.1. □

By using the free group π1(E, x0) of rank r, let

Γ = ((∪r
i=1ai) ∪ (∪r

i=1Ci)

be a connected graph in the interior Int(E) of E consisting of embedded edges ai (i =
1, 2, . . . , r) with the common base point x0 and disjoint embedded circles Ci (i =
1, 2, . . . , r) such that

(1) the half-open edges ai \ {x0} (i = 1, 2, . . . , r) are mutually disjoint and ai ∩
(∪r

j=1Cj) = vi, a point in Ci for every i,

(2) the inclusion i : (Γ, x0) → (E, x0) induces an isomorphism i# : π1(K, x0) →
π1(E, x0), and

(3) the homology class [pi × S1] = [Ci] in H1(E;Z) for all i.

In fact, by (2), the homotopy classes [ai ∪ Ci] (i = 1, 2, . . . , r) form a basis of the
free group π1(E, q0). (3) is obtained by a base change of the free group π1(E, x0),
[23]. Since Γ is a K(π, 1)-space, there is a piecewise-linear map f : (E, x0) → (Γ, x0)
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inducing the inverse isomorphism f# = (i#)
−1 : π1(E, q0) → π1(Γ, q0), and by the

homotopy extension property, the restriction of f to Γ is the identity map, [27]. The
restriction of f to ∂E is homotopic to the composite map

g : ∂E = F × S1 → ∪r
i=1qi × S1 → Γ

such that the first map F × S1 → ∪r
i=1qi × S1 is induced from the constant map

F → ∪r
i=1{qi} and the second map ∪r

i=1qi×S1 → Γ is defined by the map f . By using
a boundary collar of ∂E in E, assume that the piecewise-linear map f : (E, x0) →
(Γ, x0) defines the map g : ∂E → Γ. For a non-vertex point pi of Ci, the preimage
Vi = (f)−1(pi) is a bi-collard compact oriented proper piecewise-linear 3-manifold in
E. Take the compact 4-manifold E ′ obtained from E by splitting along V = ∪r

i=1Vi

to be connected. Then join the components in each Vi with 1-handles in E ′. By these
modifications, Vi is assumed to be connected for all i within a homotopic deformation
of f . The boundary ∂Vi is the disjoint union Pi(F ) of mij parallel copies mijFj

of Fj × 1 for all j (j = 1, 2, . . . , r) in S4, where mii is an odd integer and mij for
distinct i, j is an even integer. Let P (F ) = ∪r

i=1Pi(F ) be the surface-link in S4.
Let hi be a disjoint 1-handle system on Pi(F ) embedded in Vi such that the surface
Pi(F ;hi) obtained from Pi(F ) by surgery along hi is connected and the genus of
Pi(F ;hi) is equal to the total genus of Pi(F ). Assume that one copy of the parallel
miiFi of Fi is identified with Fi and just one 1-handle hF

i of hi attaches to Fi. Let
P (F ;h) = ∪r

i=1Pi(F ;hi) be a surface-link in S4. By further taking a disjoint 1-handle
system h′

i on Pi(F, hi) embedded in Vi, the closed surface Pi(F ;hi, h
′
i) obtained from

Pi(F ;hi) by surgery along h′
i bounds a handlebody V ′

i in Vi, so that the surface-
link P (F ;h, h′) = ∪r

i=1Pi(F ;hi, h
′
i) is a trivial surface-link in S4. Because of the

isomorphism f#, the compact 4-manifold E ′ is simply connected, so that the 1-handle
system h′ = ∪r

i=1h
′
i is a trivial 1-handle system on the surface-link P (F ;h) in S4, [4],

[12]. Thus, the surface-link P (F ;h) is a trivial surface-link in S4, [10], [11]. The proof
of Theorem 1.1 is done as follows.

Proof of Theorem 1.1. A ribbon surface-link F is obtained from a trivial S2-link
O in S4 by surgery along a disjoint 1-handle system hO on O, so that the surface-link
P (F ) of a free ribbon surface-link F is a ribbon surface-link obtained from a trivial
S2-link P (O) in S4 by surgery along a disjoint 1-handle system P (hO) on P (O). Let
V P (F ) is a SUPH system for the ribbon surface-link P (F ) in S4, namely a multi-
punctured handlebody system V P (F ) in S4 such that ∂V P (F ) = P (F )∪P (O), [19].
Actually, consider the SUPH system V P (F ) obtained from the collar P (O)× [0, 1] of
O in S4 by attaching the 1-handle system P (hO) on P (O)× 0 = P (O). The 1-handle
system h = ∪r

i=1hi on P (F ) and the SUPH system V P (F ) construct a SUPH system
V P (F )∪h for the trivial surface-link P (F ;h) with ∂(V P (F )∪h) = P (F ;h)∪P (O).
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A spin loop basis (ℓ, ℓ′) for P (F ) is the system consisting of a spin loop basis of
every component of P (F ) where the spin loop system ℓ belongs to a meridian system
of the 1-handle system hO. This system (ℓ, ℓ′) is a spin loop basis of the trivial
ribbon surface-link P (F ;h). Equivalent ribbon surface-links are faithfully equivalent
and they are moved into each other by the moves M0,M1,M2, [9]. This means that
there is an orientation-preserving diffeomorphism f of S4 sending the SUPH system
V P (F ) ∪ h for P (F ;h) to a standard multi-punctured handlebody system W in S4.
By a choice of f , the system (f(ℓ), f(ℓ′)) is a meridian-longitude pair system of the
standard multi-punctured handlebody system W in S4, [2], [10]. The loop system
f(ℓ′) bounds a disjoint disk system δ′ in S4 with δ′ ∩ W = f(ℓ′), so that the loop
system ℓ′ bounds a disjoint disk system D′ = f−1(δ′) in S4 with D′∩(V P (F )∪h) = ℓ′.
The loop system ℓ belongs to a meridian system of the 1-handle system P (hO) and
hence bounds a sub-system D of the meridian disk system P (hO). Thus, it is shown
that there is an O2-handle basis (D× I,D′ × I) on P (F ) in S4, whose sub-system to
F gives an O2-handle basis on F in S4. This completes the proof of Theorem 1.1.

The proof of Theorem 1.3 is done as follows.

Proof of Theorem 1.3. An anti-parallel of Fj in S4 is the boundary surface-link
of a normal line bundle Fj × I of Fj in S4. Note that the boundary surface-knot

∂(F
(0)
j × I) for a compact once-punctured surface F

(0)
j of Fj is a trivial surface-knot

in S4 since F
(0)
j × I is a handlebody. Let nii = (mii − 1)/2 and nij = mij/2 for

distinct i, j. The surface-link Pi(F ) consists of Fi and nij copies of the anti-parallel
of Fj for all j. Since E

′ is simply connected, the 1-handle system hi can be chosen so
that every anti-parallel of Fj in Pi(F ) produces a trivial surface-knot F t

ij by surgery
along a 1-handle in hi. Let h(1)i be the system of 1-handles in hi other than the
system h(0)i of 1-handles in hi used for these surgeries in Pi(F ). The trivial surface-
knot Pi(F ;hi) is obtained from the surface-link Pi(F ;h(0)i) consisting of Fi and a
system of nij trivial surface-knots as F t

ij for all j by surgery along the 1-handle
system h(1)i. Let h(1) = ∪r

i=1h(1)i. Let P (F ;h(0)) = ∪r
i=1Pi(F ;h(0)i). The surface-

link P (F ;h, h′) bounds a handlebody system V ′ = ∪r
i=1V

′
i in V . Note that h′ is a

trivial 1-handle system on P (F ;h). Then there is a disjoint handlebody system U
in S4 with ∂U = P (F ;h) extending the handlebody system V ′ by adding a 2-handle
system e × I which makes an O2-handle system together with a thickened meridian
disk system of h′, [10], [11]. Let Ui (i = 1, 2, . . . , r) be the components of U with
∂Ui = Pi(F ;hi) (i = 1, 2, . . . , r). Let di be a meridian disk system of the 1-handle
system h(1)i, and d = ∪r

i=1di a meridian disk system of h(1). In general, the disk
system d meets the core disk system e of e × I transversely in finite points in S4,
but the interior of d is deformed so to have d ∩ U = ∂d by Finger Move Canceling
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Operation, [11]. For h(1) = d × I, the union U ∪ h(1) is a compact oriented 3-
manifold with boundary P (F ;h(0)) obtained from U by adding the 2-handle system
h(1) to P (F ;h) since h(1) ∩ U = (∂d)× I. Let (ℓ, ℓ′) be a spin loop basis of P (F ;h)
given for P (F ;h(0)) such that when restricted to every trivial surface-knot F t

ij it
becomes a standard spin loop basis. Since P (F ;h) is a trivial surface-link, there is an
orientation-preserving diffeomorphism w of S4 sending P (F ;h) to the boundary ∂W
of a standard handlebody system W in S4 such that the spin loop basis (w(ℓ), w(ℓ′)) of
∂W is a meridian-longitude pair system of W , [2], [10]. Let U(W ) = w−1(W ) be the
handlebody system in S4 with ∂U(W ) = P (F ;h). The spin loop basis (w(ℓ), w(ℓ′))
of W bounds a core disk-pair system (δ, δ′) of an O2-handle basis (δ × I, δ′ × I) of
the trivial surface-link ∂W in S4, where δ denotes a meridian disk system of W .
Hence the spin loop basis (ℓ, ℓ′) of P (F ;h) bounds the core disk pair system (D,D′)
of the O2-handle basis (D × I,D′ × I) = (w−1(δ)× I, w−1(δ′)× I) on P (F ;h) in S4

with D ⊂ U(W ), so that d ∩ D = h(1) ∩ D = ∅. The handlebody system U(W )
is isotopically deformed to be U(W ) = U in S4. Consider the 3-manifold U ′ ∪ h(1)
obtained from the 3-manifold U ∪ h(1) by splitting along the disk system D, which
is a multi-punctured 3-sphere system consisting of the multi-punctured 3-spheres
U ′
i ∪ h(1)i (i = 1, 2, . . . , r) obtained from the 3-manifolds Ui ∪ h(1)i (i = 1, 2, . . . , r).

Since ∂(Ui ∪ h(1)i) = Pi(F ;h(0)i), the boundary ∂(U ′
i ∪ h(1)i) consists of an S2-knot

Si obtained from Fi and a system of nij S2-knots as St
ij obtained from the system of

nij trivial surface-knots as F
t
ij for all j. Every S2-knot as St

ij is shown to be a trivial
S2-knot in S4. To see this, note that there is a 2-handle system hD(1) on P (F ;h)
embedded in U such that there is a diffeomorphism of S4 sending P (F ;h)∪ hD(1) to
P (F ;h) ∪ h(1) with the spin loop basis (ℓ, ℓ′) and the disk system D preserved. The
O2-handle subsystem of the O2-handle basis (D × I,D′ × I) on P (F ;h) is disjoint
from hD(1). On the other hand, every trivial surface-knot F t

ij admits a standard
O2-handle basis (D(F t

ij)× I,D′(F t
ij)× I) on F t

ij not meeting h(1) with the spin loop
basis (∂D(F t

ij), ∂D
′(F t

ij)) on F t
ij a subsystem of (ℓ, ℓ′). Then the O2-handle system

on every trivial surface-knot F t
ij restricted from the O2-handle basis (D × I,D′ × I)

on P (F ;h) is considered to be a standard O2-handle basis by the uniqueness of an
O2-handle pair, [11]. Thus, every S2-knot as St

ij is seen to be a trivial S2-knot, as
desired. This means that the S2-link S = ∪r

i=1Si is a ribbon S2-link in S4, [14]. Thus,
the surface-link F is a ribbon surface-link in S4 because F is obtained from the ribbon
S2-link S by surgery along 1-handles. This completes the proof of Theorem 1.3.
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