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1. Introduction

Wavelets were originally defined as functions that form an orthonormal basis in the L2

space, and their mathematical theory has seen significant development. Nowadays, vari-
ous types of wavelets are known, possessing desirable properties such as smoothness, rapid
decay, compact support, and band-limitedness. By leveraging these properties appropri-
ately, it is possible to characterize function spaces via alternative norms and to construct
bases with excellent properties across a wide range of spaces beyond just L2.

The wavelet characterization of function spaces is a fascinating subject in real analysis
and applied mathematics. In particular, the interplay between weights and wavelets has
been extensively developed. Such characterizations are especially useful when analyzing
the boundedness of operators. Here and below, by a “weight”, we mean a non-negative
measurable function that is positive almost everywhere.

In this paper, we explore the connection between wavelets and an extrapolation result
for ball Banach function spaces. Our assumptions are stated entirely in terms of the
ball Banach function space and its Köthe dual. As an application, we obtain wavelet
characterizations of various function spaces.

As mentioned above, wavelet characterizations of function spaces can be effectively used
to investigate the boundedness properties of operators. In recent years, the use of weights
has become extremely useful in the analysis of operators arising in harmonic analysis.

The study of weighted function spaces has a rich history, grounded in Muckenhoupt’s
theory in real analysis. For an overview, see [1, Introduction]. In particular, weighted
Lebesgue spaces have been characterized via the boundedness of integral operators; see,
for example, [13, 30]. This method extends to more general function spaces, including
weighted Lebesgue spaces with variable exponent [21] and Herz-type spaces [20, 25].

1



2 MITSUO IZUKI, TAKAHIRO NOI AND YOSHIHIRO SAWANO

Furthermore, the wavelet characterization of Herz-type spaces has been achieved via
the ϕ-transform [16]. Another approach to the wavelet characterization of function spaces
involves the use of extrapolation theorems. This method has been applied, for instance,
in the setting of Lebesgue spaces with variable exponent [18, 27].

We recall the definition of ball Banach function spaces defined in [43]. The space
L0(Rn) denotes the space of all equivalence classes of measurable functions modulo null
functions. Let ρ be a mapping which maps L0(Rn) to [0,∞]. Recall that it is called a
ball Banach function norm (over Rn) if, for all non-negative measurable functions f, g, fj
(j = 1, 2, 3, . . .), for all constants a ≥ 0 and for all open balls B in Rn, the following
properties hold:

(P1) ρ(f) = 0 ⇔ f = 0 a.e.; ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),
(P2) ρ(g) ≤ ρ(f) if 0 ≤ g ≤ f a.e.,
(P3) the Fatou property; ρ(fj) ↑ ρ(f) holds whenever 0 ≤ fj ↑ f a.e.,
(P4) ρ(χB) <∞,
(P5) ‖χBf‖L1 ≲ ρ(f) with the implicit constant depending on B and ρ but independent

of f .

Accordingly, the space generated by such ρ, which is given by

X = Xρ = {f ∈ L0(Rn) : f is a measurable function satisfying ‖f‖Xρ := ρ(|f |) <∞},
is called a ball Banach function space. Furthermore its “associate norm” ρ′ is defined
for a non-negative measurable function g by ρ′(g) := sup {‖f · g‖L1 : f ∈ X, ρ(f) ≤ 1} .
Likewise we can consider the Köthe dual X ′ = (Xρ)

′ = Xρ′ for Banach lattices.
We will use the Hardy–Littlewood maximal operator M to describe our assumption.

For f ∈ L0(Rn), one defines a function Mf by

Mf(x) := sup
r>0

1

rn

ˆ
|y−x|<r

|f(y)|dy

for x ∈ Rn. The mapping f 7→Mf is called the Hardy–Littlewood maximal operator.
In [38] Rutsky characterized the condition for which the Riesz transforms, given by

Rjf(x) := lim
ε↓0

ˆ
|y−x|>ε

xj − yj
|x− y|n+1

f(y)dy (x ∈ Rn),

for j = 1, 2, . . . , n, are bounded on X. In fact, he showed that M is bounded on X and
on X ′ if and only if Rj is bounded on X for all j = 1, 2, . . . , n.

As we mentioned, weights are fundamental tools to investigate the boundedness of
operators. Let w be a weight and 1 < p < ∞. We also consider Lp(w) which collects all

f ∈ L0(Rn) for which ‖f‖Lp(w) := ‖fw
1
p ‖Lp is finite. Using the Muckenhoupt class Ap,

which will be recalled in (1.3) below, we begin by recalling an extrapolation theorem. We
then extend this theorem to the case of the local Muckenhoupt class Ap,loc.

Our main focus in this paper is on applications of these extrapolation results. This
approach clearly demonstrates the fundamental role that weights play in analyzing the
boundedness properties of operators.

Theorem 1.1. Let X be a ball Banach function space and 1 < p < ∞. Assume that M
is bounded on X and on X ′. For a given increasing function N : [1,∞) → (0,∞), write

(1.1) F := {(f, g) ∈ L0(Rn)2 : ‖f‖Lp(w) ≤ N([w]Ap)‖g‖Lp(w) for all w ∈ Ap}.
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Then there exists a constant C > 0 such that ‖f‖X ≤ C‖g‖X for all (f, g) ∈ F .

The proof of Theorem 1.1 is known; see [7, Theorem 10.1], [4, Theorem 3.1] and [36,
Theorem A, Theorem 4.7 and Remark 4.8]. This theorem is a special case of [36, The-
orem A] with X = Y , r1 = r2 = 1, and s1 = s2 = ∞. For clarity and convenience, we
restate Theorem 1.1 in a more accessible form below.

Corollary 1.2. Let X be a Banach function space and 1 < p < ∞. Then the following
are equivalent:

(A) M is bounded on X and on X ′.
(B) The Riesz transform Rj is bounded on X for each j = 1, 2, . . . , n.
(C) Define F by (1.1). Then there exists a constant C > 0 such that ‖f‖X ≤ C‖g‖X

for all (f, g) ∈ F .

Corollary 1.2 is also a known result. See [37] for more equivalent conditions. Neverthe-
less, we briefly recall its proof for completeness.

Corollary 1.2 follows directly from a combination of a known equivalence and Theo-
rem 1.1. As previously mentioned, Rutsky established the equivalence between condi-
tions (A) and (B). Theorem 1.1 asserts that (A) implies (C). Finally, it is known that

(Rjf, f) ∈ F for N(t) = αtmax(p,p′) with sufficiently large α; see [42, Theorem 305], for
example. This yields the implication (C) ⇒ (B), completing the proof.

We have an analogy to local Hardy–Littlewood maximal operatorMloc. For f ∈ L0(Rn),
one defines a function Mlocf by

Mlocf(x) := sup
0<r<1

1

rn

ˆ
|y−x|<r

|f(y)|dy

for x ∈ Rn. The mapping f 7→ Mlocf is called the local Hardy–Littlewood maximal
operator.

Theorem 1.3. Let X be a ball Banach function space and 1 < p <∞. Assume that Mloc

is bounded on X and on X ′. For a given increasing function N : [1,∞) → (0,∞), write

(1.2) Floc := {(f, g) ∈ L0(Rn)2 : ‖f‖Lp(w) ≤ N([w]Ap,loc
)‖g‖Lp(w) for all w ∈ Ap,loc}.

Then there exists a constant C > 0 such that ‖f‖X ≤ C‖g‖X for all (f, g) ∈ Floc.

This result is also known: see [4, Theorem 3.1]. For readers’ convinience, we provide
a short proof of Theorem 1.3 as an appendix in Section 4. Here, we make a clarifying
remark on the strength of the assumption in Theorems 1.1 and 1.3 regarding X.

Remark 1.4. If X satisfies the assumption in Theorem 1.1, meaning that M is bounded
on both X and X ′, then according to Lerner and Pérez [29], there exists a constant η > 1

such that the operator f 7→ (M [|f |η])
1
η is bounded on both X and X ′. In this scenario,

we can establish X ↪→ Lη(w) for some w ∈ A1. We refer to [34, Lemma 2.7]. See also [41,
Lemma 3]. An analogy to Mloc is available to Theorem 1.3.

Curbera, Garćıa-Cuerva, Martell, and Pérez made a significant breakthrough by obtain-
ing the extrapolation theorem for rearrangement invariant Banach function spaces [10].
The case where X is not rearrangement invariant has gained increasing attention. For
instance, in [17, Theorem 3.3] and [11, Theorem 3.1], Ho employed p-convexification to
achieve a vector-valued extension of the maximal inequality. For a ball Banach function
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space X and p > 0, we consider its p-convexification given by Xp := {f ∈ L0(Rn) : |f |
1
p ∈

X}. The norm of Xp is given by ‖f‖Xp := (‖ |f |
1
p ‖X)p. Remarkably, Theorems 1.1 and

1.3 do not require p-convexification. Nor do we need the absolute continuity of the norm
of X. Recall that X is said to have the absolutely continuous norm if ‖fχEj‖X → 0 as
j → ∞ for any f ∈ X and any sequence {Ej}∞j=1 of sets decreasing to ∅. If the space X

is separable, then X has the absolutely continuous norm. See [3].
Here and below, in addition to the above notation, we use the following convention in

this paper.

• By a “cube” we mean a compact cube whose edges are parallel to the coordinate
axes. The metric closed ball defined by `∞ is called a cube. If a cube has center x
and radius r, we denote it by Q(x, r). Namely, we write

Q(x, r) ≡
{
y = (y1, y2, . . . , yn) ∈ Rn : max

j=1,2,...,n
|xj − yj | ≤ r

}
when x = (x1, x2, . . . , xn) ∈ Rn and r > 0. The symbol Q stands for all cubes.

• Given x ∈ Rn and r > 0, we denote the open ball centered at x and having radius
r > 0 by B(x, r). We abbreviate B(r) := B(0, r).

• Let A,B ≥ 0. Then A ≲ B means that there exists a constant C > 0 such that
A ≤ CB, where C is usually independent of the functions we are considering. The
symbol A ∼ B stands for the two-sided inequality A ≲ B ≲ A.

• Let l ∈ N. We denote by M l the l-fold composition of the Hardy-Littlewood
maximal operator M . We write M0 for the operator

f ∈ L0(Rn) 7→ |f | ∈ L0(Rn).

The symbol M l
loc corresponds to the one for the local Hardy-Littlewood maximal

operator Mloc.
• Given a measurable set E ⊂ Rn, the characteristic function of E is denoted by χE .
We write |E| for the Lebesgue measure of E.

• The space L∞
c (Rn) denotes the set of bounded and compactly supported measur-

able functions on Rn.
• For a measurable set E ⊂ Rn and a weight w, the notation

w(E) :=

ˆ
E
w(x) dx

stands for the integral of w over E.
• A weight is a measurable function w : Rn → [0,∞] that is positive and finite
almost everywhere.

A locally integrable weight w belongs to the A1-class (or is an A1-weight) if
0 < w <∞ almost everywhere and

[w]A1 :=

∥∥∥∥Mw

w

∥∥∥∥
L∞

<∞.

The local A1 constant is defined similarly, withM replaced by a localized maximal
operator Mloc:

[w]A1,loc
:=

∥∥∥∥Mlocw

w

∥∥∥∥
L∞

<∞.
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• Let 1 < p < ∞. A locally integrable weight w belongs to the Ap-class (or is an
Ap-weight) if 0 < w <∞ almost everywhere and

(1.3) [w]Ap := sup
Q∈Q

(
1

|Q|

ˆ
Q
w(x) dx

)(
1

|Q|

ˆ
Q
w(x)

− 1
p−1 dx

)p−1

<∞,

where Q is the collection of all cubes in Rn with sides parallel to the coordinate
axes.

The local Ap constant is defined by restricting the supremum in (1.3) to cubes
with side length at most 1:

[w]Ap,loc
:= sup

Q∈Q
ℓ(Q)≤1

(
1

|Q|

ˆ
Q
w(x) dx

)(
1

|Q|

ˆ
Q
w(x)

− 1
p−1 dx

)p−1

.

• We denote by ‖M‖X→X the operator norm of the Hardy-Littlewood maximal
operator M acting on a function space X. The operator norm ‖Mloc‖X→X is
defined analogously for the localized maximal operator Mloc.

• Given two complex-valued functions f, g, we formally write the L2-inner product
by

〈f, g〉 :=
ˆ
Rn

f(x)g(x) dx.

Here is the organization of this paper. Section 2 is oriented to applications of Theo-
rems 1.1 and 1.3. We obtain the boundedness properties of operators and the wavelet
characterization in Section 2. We also take up the vector-valued inequality of M and the
extension operator in Section 2. We will see that our method allows us to include more
function spaces than are dealt with in [47]. We take up various function spaces in Section
3. We compare what we can say from Theorems 1.1 and 1.3 with known results in Sections
2 and 3. Finally, Section 4 gives a short proof of Theorem 1.3.

2. Main results: applications of the extrapolation

We present applications. To this end, we introduce some terminology. We consider
X-based Sobolev spaces over domains. First we recall the one over Rn. Let s > 0. Recall
that the Bessel potential (1 − ∆)

s
2 := F−1[(1 + | · |2)

s
2Ff ] is an isomorphism in S ′(Rn);

see [40, p. 251].

Definition 2.1. Let s > 0. Define the X-based Sobolev space W s
X(Rn) of order s to be

the set of all f ∈ X(Rn) for which (1 −∆)
s
2 f is represented by an element in X. Equip

W s
X(Rn) with the norm given by ‖f‖W s

X
:= ‖(1−∆)

s
2 f‖X for all f ∈W s

X(Rn).

Assume thatM is bounded on X and on X ′. Recall that the inverse operator (1−∆)−
s
2

of (1−∆)
s
2 has the convolution kernel K satisfying K ∈ L1(Rn) (see [42, Corollary 197]).

Hence the Bessel potential (1−∆)−
s
2 is bounded on X since we have a pointwise estimate

|(1−∆)−
s
2 f(x)| ≲Mf(x), x ∈ Rn, for all f ∈ X; see [42, Proposition 159]. Thus,W s

X(Rn)
is a Banach space. Note that this is a natural extension of Lp,s(w) considered in [19, 22] if
X = Lp(w) with 1 < p < ∞ and w ∈ Ap. By definition W 0

X(Rn) = X. Furthermore, if s
is a positive integer, by virtue of the boundedness of singular integral operators, which is
guaranteed by the boundedness ofM on X and X ′, the space W s

X concides with the space
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of all f ∈ X such that any weak partial derivative up to order s belong to X. Something
similar applies if we merely assume that Mloc is bounded on X and on X ′. In this case
we need to replace (1−∆)−

s
2 with (1− t0

2∆)−
s
2 with some 0 < t0 � 1.

Our definitions can be extended to domains. Let D be a bounded Lipschitz domain.
Let k ∈ N, 1 < p < ∞, and w ∈ Ap. Define Lp,k(D,w) to be the set of all f ∈ Lp(w) for
which ∂αf , the weak partial derivative of order α, belongs to Lp(w) for any multiindex α
with |α| ≤ k.

For a ball Banach function space X, we write X(D) to be the set of all f ∈ L1
loc(D) for

which Zf belongs to X. Let Z be the zero extension operator. The norm of f ∈ X(D) is
given by ‖f‖X(D) = ‖Zf‖X .

We write W k
X(D) for the set of all f ∈ L1

loc(D) for which ∂αf belongs to X(D) for any
multiindex α with |α| ≤ k.

Here is the organization of Section 2. Section 2.1 considers wavelet characterization.
Section 2.2 deals with vector-valued inequalities of the Hardy–Littlewood maximal oper-
ator. We refine a recent result in [47] in Section 2.3.

2.1. Wavelet characterization. Based on the fundamental wavelet theory (see [15, 35]
for example), we can choose compactly supported CK-functions

(2.1) ϕ and ψl (l = 1, 2, . . . , 2n − 1)

so that the following conditions are satisfied:

(1) For any J ∈ Z, the system{
ϕJ,k, ψ

l
j,k : k ∈ Zn, j ≥ J, l = 1, 2, . . . , 2n − 1

}
is an orthonormal basis of L2(Rn). Here, given a function F defined on Rn, we
write

Fj,k := 2
jn
2 F (2j · −k)

for j ∈ Z and k ∈ Zn.
(2) Denote by P⊥

0 the set of all integrable functions having 0 integral. We have

(2.2) ψl ∈ P⊥
0 (l = 1, 2, . . . , 2n − 1).

In addition, they are real-valued and compactly supported with

(2.3) supp(ϕ) = supp(ψl) = [0, 2N − 1]n

for some N ∈ N.
We also consider cubes Qj,k and Q∗

j,k defined by

Qj,k :=

n∏
m=1

[
2−jkm, 2

−j(km + 1)
]
, Q∗

j,k :=

n∏
m=1

[
2−jkm, 2

−j(km + 2N − 1)
]
,

where N ∈ N satisfies (2.3), and

(2.4) χj,k := 2
jn
2 χQj,k

, χ∗
j,k := 2

jn
2 χQ∗

j,k
.
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We note that the L2-inner product 〈f, φ〉 exists for the complex-valued functions f ∈
L1
loc(Rn) and φ ∈ Cc. Then, using the L2-inner product, we define two square functions

V f , Wsf by

V f := V φf :=

(∑
k∈Zn

|〈f, ϕJ,k〉χJ,k|2
) 1

2

,

Wsf :=Wψl

s f :=

2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

∣∣∣2js〈f, ψlj,k〉χj,k∣∣∣2
 1

2

.

Here, s ≥ 0 is a non-negative real number and J is a fixed integer. We abbreviate
Wf :=W0f .

The wavelet characterization of X can be obtained with ease.

Theorem 2.2. Let K > s > 0. Suppose that we have ϕ,ψl ∈ CK(Rn) as in (2.1). Assume
that (2.2) holds, that Mloc is bounded on X and on X ′. Then the following are equivalent
for any f ∈ X:

(1) V f +Wsf ∈ X.
(2) f ∈W s

X(Rn).
Furthermore, in this case ‖f‖W s

X
∼ ‖V f +Wsf‖X .

Proof. Let 0 < t0 � 1. Then we have

(2.5) ((1− t0
2∆)

s
2 f, V f +Wsf) ∈ Floc

and

(2.6) (V f +Wsf, (1− t0
2∆)

s
2 f) ∈ Floc

from [22, Theorem 4.6]. □

Despite the above observations, it is helpful to offer some words (2.5) and (2.6) when s
is an integer.

Remark 2.3. Let X = Lp(Rn). Relations (2.5) and (2.6) are essentially proved in the
books [15, 35].

Now let X = Lp(w) with w ∈ Ap. In this weighted setting, Lemarié-Rieusset [30] has
established the result for the case s = 0.

Further, consider X =W s,p(w) with w ∈ Ap and s ∈ {0, 1, 2, . . .}. The first author [19]
has extended the result to this broader context.

Therefore, we are in a position to apply Theorems 1.1 and 1.3 once again.

Letting s = 0, we derive the following corollary. It suffices to assume a priori that f is
locally integrable.

Corollary 2.4. Assume that Mloc is bounded on X and on X ′, or equivalently, each Rj

is bounded on X. Then the following are equivalent for any f ∈ L1
loc(Rn):

(1) V f +Wf ∈ X.
(2) f ∈ X.

Furthermore, in this case ‖f‖X ∼ ‖V f +Wf‖X .
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The proof is the same as Theorem 2.2, although we assume that f is merely locally
integrable.

It is interesting to compare Corollary 2.4 with the following result:

Theorem 2.5. Assume that Mloc is bounded on X and on X ′ and that X is separable.
Let f ∈ X. Then

(2.7) f =
∑
k∈Zn

〈f, ϕJ,k〉ϕJ,k +
2n−1∑
l=1

∞∑
j=J

∑
k∈Zn

〈f, ψlj,k〉ψlj,k

holds unconditionally in the topology of X.

See [26, Theorem 8] for the case of n = 1. Once we use Corollary 2.4, Theorem 2.5 is
easy to prove. In fact, since X is separable, it is straightforward to show that X has the
absolutely continuous norm. Corollary 2.4 ensures that equation (2.7) converges in X.

Let B denote the set of all Borel measurable sets. We define the set

S0 =


N∑
j=1

ajχEj : {a1, a2, . . . , aN} ⊂ C, {E1, E2, . . . , EN} ⊂ B

 .

Assume that M is bounded in both X and X ′.
It is important to mention the approach taken by Karlovich, who refined the results

in [21, Theorem 4.1], assuming that X is separable as we have mentioned. If either X
is separable or if L2(Rn) ∩ X is dense in X, then Karlovich [26] and the authors in [21]
proved unconditional convergence in (2.7), respectively. Among others, Karlovich used
the fact that S0 ∩X is dense in X assuming that X is separable. It is noteworthy that X
has absolutely continuous norm if X is separable.

Furthermore, in any of these cases the set

X =
{
ψlj,k : l = 1, 2, . . . , 2n − 1, j ≥ J, k ∈ Zn

}
∪ {ϕJ,k : k ∈ Zn}

is dense in X. In particular, this implies that X is dense in X. It is clear that X is
separable and that L2(Rn) ∩X are contained in X . This means that the assumptions in
[26, Theorem 8] and [21, Theorem 4.1] are equivalent.

2.2. Vector-valued maximal inequality. A similar technique can be used to obtain
the vector-valued inequality.

Example 2.6. Let r ∈ (1,∞]. Assume that Mloc is bounded on X and on X ′. Then
there exists a constant C > 0 such that

(2.8)

∥∥∥∥∥∥∥
 ∞∑
j=1

Mlocfj
r

 1
r

∥∥∥∥∥∥∥
X

≤ C

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |r
 1

r

∥∥∥∥∥∥∥
X

for all {fj}∞j=1 ⊂ X since
 ∞∑
j=1

Mlocfj
r

 1
r

,

 ∞∑
j=1

|fj |r
 1

r

 ∈ Floc
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for N(t) = αtβ where t � 1 and α, β are constants. This result recaptures [4, Theorem
3.1]. See [42, Theorem 303] for the case of M to find∥∥∥∥∥∥∥

 ∞∑
j=1

Mfj
r

 1
r

∥∥∥∥∥∥∥
Lp(w)

≤ α([w]Ap)
β

∥∥∥∥∥∥∥
 ∞∑
j=1

|fj |r
 1

r

∥∥∥∥∥∥∥
Lp(w)

for all {fj}∞j=1 ⊂ X. Estimate (2.8) corresponding to the vector-valued maximal inequality

for M obtained in [34, Theorem 2.1].

2.3. Extension operator. Let D be a bounded Lipshitz domain. Chua established that
there exists a bounded linear operator Λ : Lp,k(D,w) → Lp,k(w) independent of w such
that Λf |D = f for all f ∈ Lp,k(D,w). More precisely, letting Z the zero extension
operator, Chua essentially proved thatΛf,

∑
|α|≤k

|Z∂αf |

 ∈ F

with some suitable choice of N(·). See [6, Theorem 1.1]. Based on this fact, we investigate
the action of the extension operator Λ on X-based Sobolev spaces over D.

Example 2.7. Assume that M is bounded on X and on X ′, or equivalently, each Rj is

bounded on X. Let f ∈W k
X(D). Then f ∈ Lp,k(w,D) for some w ∈ A1. Thus, Λf makes

sense and ‖Λf‖X ∼
∑
|α|≤k

‖Z∂αf‖X .

We compare Example 2.7 with an existing result [47, Theorem 5.4].

Remark 2.8.

(1) A recent work [47, Theorem 5.4] requires that X
1
p is a ball Banach space for some

p > 1 and that M is bounded on (X
1
p )′. This assumption implies that M is

bounded on both X and X ′, since it implies that Rj is bounded on X.
(2) A recent work [47, Theorem 5.4] requires that X has the absolutely continuous

norm. According to Theorems 1.1 and 1.3, X need not have the absolutely con-
tinuous norm.

3. Examples of Banach lattices to which Theorems 1.1 and 1.3 are
applicable

We will exhibit examples of Banach lattices to which Theorems 1.1 and 1.3 are appli-
cable. We concentrate on wavelet characterization. However, it is worth mentioning that
we have a counterpart to vector-valued inequalities.

3.1. Weighted Lebesgue spaces. Let 1 < q < ∞ and w ∈ Aq. It is well known that
M and Rj , j = 1, 2, . . . , n, are bounded on Lq(w) [42, Theorems 290 and 306]. Thus,
Theorems 1.1 and 1.3 are applicable to Lq(w). If we merely assume that w ∈ Aq,loc, then
only Theorem 1.3 is applicable to Lq(w).

Consider a more concrete case. Let 1 < q < ∞ and v(x) = |x|α be a power weight of
order α ∈ R. According to [42, Theorem 283], v ∈ Aq if and only if −n < α < n(q − 1).
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This condition also applies to the weight W , defined by W (x) = max(1, |x|)α for x ∈ Rn.
Therefore, if −n < α < n(q − 1), Theorems 1.1 and 1.3 applicable to both Lq(v) and
Lq(W ).

3.2. Lorentz spaces. Let 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Then the Lorentz space Lp,q(Rn)
is the set of all f ∈ L0(Rn) for which the quasi-norm

‖f‖Lp,q :=

{ˆ ∞

0
(t

1
p f∗(t))q

dt

t

} 1
q

is finite. Here f∗ stands for the decreasing rearrangement of f . Remark that if 1 < p <∞,
then there exists a norm ‖ · ‖ on Lp,q(Rn) such that

‖f‖Lp,q ∼ ‖f‖
for all f ∈ Lp,q(Rn) [42, Corollary 39].

Furthermore, since the space Lp,q(Rn) can be obtained through the real interpolation
of the spaces Lp0(Rn) and Lp1(Rn) as shown in [2], the operators M and Rj (for j =
1, 2, . . . , n) are bounded on Lp,q(Rn) for 1 < p < ∞ and 1 ≤ q ≤ ∞. Consequently,
Theorems 1.1 and 1.3 can be applied to Lp,q(Rn).

To our knowledge, the wavelet characterization of the Lorentz spaces Lp,q(Rn) for 1 <
p <∞ and 1 ≤ q ≤ ∞ has been established by Soardi [45].

It is important to note that Lorentz spaces Lp,∞(Rn), also known as the weak Lebesgue
spaces WLp(Rn), are not separable. Therefore, in this case, we cannot apply Theorem
2.5 to obtain the unconditional convergence. However, according to Remark 1.4, for any
η ∈ (1, p) and any f ∈ WLp(Rn), there exists an A1-weight w (which is independent of f)
such that the convergence of the expansion in Theorem 2.5 occurs in Lη(w).

3.3. Herz spaces. For each k ∈ Z, we set Ck := B(2k) \ B(2k−1). Let p, q ∈ [1,∞] and
α ∈ R. We write χk = χCk

for each k ∈ Z. The non-homogeneous Herz space Kα,q
p (Rn)

consists of all f ∈ L0(Rn) for which

‖f‖Kα,q
p

:= ‖f‖Lp(B(1)) +

( ∞∑
k=1

(2kα‖fχk‖Lp)q

) 1
q

<∞

and the homogeneous Herz space K̇α,q
p (Rn) consists of all f ∈ L0(Rn) for which

‖f‖K̇α,q
p

:=

( ∞∑
k=−∞

(2kα‖fχk‖Lp)q

) 1
q

<∞.

Let α ∈ R, 1 < p <∞ and 1 ≤ q ≤ ∞ satisfy

(3.1) −n
p
< α < n− n

p
.

Then M and Rj are bounded on K̇α,q
p (Rn) and Kα,q

p (Rn) for all j = 1, 2, . . . , n. See

[31, 32, 33]. Thus, Theorems 1.1 and 1.3 are applicable to Kα,q
p (Rn) and K̇α,q

p (Rn). As
far as we know, there are some results [16, 25] on wavelet characterization of Herz spaces.

Since M is bounded on K̇α,q
p (Rn), Kα,q

p (Rn) and their preduals, it follows that many of

these results fall within the scope of Corollary 2.4. Remark that K̇α,∞
p (Rn) and Kα,∞

p (Rn)
are not separable. However, in view of Remark 1.4, we see that for any η ∈ (1, p) and
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f ∈ K̇α,∞
p (Rn) ∪Kα,∞

p (Rn) there exists an A1-weight w independent of f such that the
convergence of the expansion in Theorem 2.5 takes place in Lη(w).

3.4. Weighted Lebesgue spaces with variable exponents. Let w be a weight. The
Lebesgue space Lp(·)(w) with variable exponent consists of all f ∈ L0(Rn) for which

‖f‖Lp(·)(w) := inf

{
λ > 0 :

ˆ
Rn

(
|f(x)|
λ

)p(x)
w(x)dx ≤ 1

}
<∞.

We postulate some conditions on variable exponents. We use the following terminology:
we use the following standard notation on exponents:

Definition 3.1.

(1) Let r(·) be a variable exponent. We write

r− := essinfx∈Rnr(x), r+ := esssupx∈Rnr(x).

(2) The class P0 = P0(Rn) collects all the variable exponents r(·) : Rn → (0,∞) that
satisfy 0 < r− ≤ r+ <∞, while P = P(Rn) collects all the variable exponents r(·)
in P0 that satisfy r− > 1.

Definition 3.2. Let r(·) ∈ L0(Rn).
(1) The variable exponent r(·) satisfies the local log-Hölder continuity condition if

(3.2) |r(x)− r(y)| ≤ c∗
log(|x− y|−1)

for x, y ∈ Rn with |x− y| ≤ 1

2
.

(2) If (3.2) is satisfied only for y = 0, then r(·) is log-Hölder continuous at the origin.
The class LH0 = LH0(Rn) stands for the class of exponents which are log-Hölder
continuous at the origin.

(3) The exponent r(·) satisfies the log-Hölder-type decay condition at infinity if

(3.3) |r(x)− r∞| ≤ c∗

log(e+ |x|)
for x ∈ Rn.

The class LH∞ = LH∞(Rn) represents the class of exponents that satisfy (3.3).
(4) The class LH = LH(Rn) contains all exponents that satisfy (3.2) and (3.3).

Here c∗, c
∗ and r∞ are constants independent of x and y.

For a variable exponent r(·) satisfying 1 < r− ≤ r+ < ∞, write r′(·) = r(·)
r(·)−1 . We

employ the definition in [8].

Definition 3.3. Suppose p(·) ∈ P(Rn). A weight w is said to be an Ap(·)-weight if w
satisfies

sup
Q∈Q

1

|Q|

∥∥∥w 1
p(·)χQ

∥∥∥
Lp(·)

∥∥∥w− 1
p(·)χQ

∥∥∥
Lp′(·)

<∞.

The Muckenhoupt class Ap(·) adapted to p(·) consists of all Ap(·) weights.

Note that this definition extends the classical class Ap. In fact, when p(·) is a constant

function p, the two definitions coincide. It is known that M is bounded on Lp(·)(w) if
p(·) ∈ LH satisfies 1 < p− ≤ p+ <∞ and w ∈ Ap(·). Since this condition is symmetric; in

this case p′(·) ∈ LH, 1 < p′− ≤ p′+ < ∞ and w
− 1

p(·)−1 ∈ Ap′(·), Theorems 1.1 and 1.3 are

applicable to Lp(·)(w). This recaptures a result by [8, 9, 21].
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3.5. Herz spaces with variable exponents. Modelled on the previous section, it seems
useful to study Herz spaces with variable exponents. The first author [20] has established
a method of wavelet characterization applying the boundeness of sublinear operators and
norm estimates for characteristic functions with variable exponent. Recently more and
more papers have appeared in this direction. In this subsection we establish a new method
of wavelet characterization as an application of the extrapolation theorem.

We now set up some notation to recall the definition of Herz spaces with three variable
exponents established by the authors’ previous work in [24]. Let p(·), q(·) be variable

exponents. The space `q(·)(Lp(·)(w)) is the set of all sequences {fj}j∈Z in L0(Rn) such
that

‖{fj}j∈Z‖ℓq(·)(Lp(·)(w)) := inf
{
µ > 0 : ρℓq(·)(Lp(·)(w))({µ

−1fj}j∈Z) ≤ 1
}
<∞,

where

ρℓq(·)(Lp(·)(w))({µ
−1fj}j∈Z) :=

∞∑
j=−∞

‖ |µ−1fj |q(·) ‖Lp(·)/q(·)(w).

We sometimes consider the case where Z is replaced by N.
Now, we recall the definition of two-weighted Herz spaces with three variable exponents.

Definition 3.4. Let v, w be weights on Rn, p(·), q(·) ∈ P0(Rn) and α(·) ∈ L∞(Rn).
(1) The non-homogeneous two-weighted Herz space K

α(·),q(·)
p(·) (v, w) consists of all f ∈

L0(Rn) for which

‖f‖
K

α(·),q(·)
p(·) (v,w)

:= ‖fχB0‖Lp(·)(w) +
∥∥∥{[v(Bk)]α(·)/nfχCk

}∞

k=1

∥∥∥
ℓq(·)(Lp(·)(w))

is finite.
(2) The homogeneous two-weighted Herz space K̇

α(·),q(·)
p(·) (v, w) consists of all f ∈

L0(Rn) for which

‖f‖
K̇

α(·),q(·)
p(·) (v,w)

:=

∥∥∥∥{[v(Bk)]α(·)/nfχk}∞

k=−∞

∥∥∥∥
ℓq(·)(Lp(·)(w))

<∞.

(3) In the above, if v = w = 1, then we write K̇
α(·),q(·)
p(·) (Rn) instead of K̇

α(·),q(·)
p(·) (v, w)

and omit (v, w) in the norm ‖ ·‖
K̇

α(·),q(·)
p(·) (v,w)

. Analogously, we define K
α(·),q(·)
p(·) (Rn).

The space K̇
α(·),q(·)
p(·) (Rn) is called homogeneous (non-weighted) Herz spaces with

three variable exponents, while the space K
α(·),q(·)
p(·) (Rn) is called non-homogeneous

(non-weighted) Herz spaces with three variable exponents.

Let p(·) ∈ P(Rn) ∩ LH(Rn), q(·) ∈ P0(Rn) ∩ LH0(Rn) ∩ LH∞(Rn), α(·) ∈ L∞(Rn) ∩
LH0(Rn) ∩ LH∞(Rn), v ∈ Apv for some pv ∈ [1,∞), w ∈ Ap(·) . We know that there exist

constants C > 0 and δ ∈ (0, 1) such that

v(B)

v(E)
≤ C

(
|B|
|E|

)pv
,(3.4)

v(E)

v(B)
≤ C

(
|E|
|B|

)δ
(3.5)
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for all open balls B and all measurable sets E ⊂ B. See [12] for fundamental properties
of the Muckenhoupt weights. Among others, we refer to [12, (7.3)] and [12, Corollary 7.6]
for (3.4) and (3.5), respecitively. Define

(3.6) v− :=

{
δ if α− ≥ 0,

pv if α− < 0,
v+ :=

{
pv if α+ ≥ 0,

δ if α+ < 0.

In our earlier paper [23], the first and second authors established that there exist positive
constants δ1 = δ1(w, p(·)), δ2 = δ2(w, p(·)), δ3 = δ3(w, p(·)), δ4 = δ4(w, p(·)) ∈ (0, 1) and
C > 0 such that

(3.7)
‖χk‖Lp(·)(w)

‖χl‖Lp(·)(w)

∼
‖χk‖(Lp′(·)(w−p(·)/p′(·)))′

‖χl‖(Lp′(·)(w−p(·)/p′(·)))′
≤ C

(
|Ck|
|Cl|

)δ1
,

that

(3.8)
‖χk‖(Lp(·)(w))′

‖χl‖(Lp(·)(w))′
≤ C

(
|Ck|
|Cl|

)δ2
that

(3.9) χN×N(k, l)
‖χk‖Lp(·)(w)

‖χl‖Lp(·)(w)

≤ C

(
|Ck|
|Cl|

)δ3
,

and that

(3.10) χN×N(k, l)
‖χk‖(Lp(·)(w))′

‖χl‖(Lp(·)(w))′
≤ C

(
|Ck|
|Cl|

)δ4
for all k, l ∈ Z with k ≤ l. Finally, assume that α(·) satisfies

(3.11) −nδ1 < v−α−

and

(3.12) v+α+ < nδ2.

Then in [24] the authors showed that there exists a constant C > 0 such that

‖Rmf‖K̇α(·),q(·)
p(·) (v,w)

≤ C‖f‖
K̇

α(·),q(·)
p(·) (v,w)

for all f ∈ L∞
c (Rn) and m = 1, 2, . . . , n. We have an analogy to the non-homogeneous

space K
α(·),q(·)
p(·) (v, w) if we replace (3.11) and (3.12) by

(3.13) −nδ3 < v−α−

and

(3.14) v+α+ < nδ4.

Hence, Theorems 1.1 and 1.3 are applicable to K̇
α(·),q(·)
p(·) (v, w) and K

α(·),q(·)
p(·) (v, w) in this

case.
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3.6. Orlicz spaces. First, let us recall the notion of Young functions. A function Φ :
[0,∞) → [0,∞) is a Young function, if it satisfies the following conditions:

(1) Φ(0) = 0.
(2) Φ is continuous.
(3) Φ is convex. That is, Φ((1−θ)t1+θt2) ≤ (1−θ)Φ(t1)+θΦ(t2) for all t1, t2 ∈ [0,∞)

and 0 < θ < 1.

Next, we recall the definition of Orlicz spaces which a Young function Φ : [0,∞) → [0,∞)
generates. We define the Luxemburg–Nakano norm ‖ · ‖LΦ by

‖f‖LΦ := inf

({
λ ∈ (0,∞) :

ˆ
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
∪ {∞}

)
for f ∈ L0(Rn). The Orlicz space LΦ(Rn) over Rn is the set of all f ∈ L0(Rn) for which
‖f‖LΦ is finite.

In order that M is bounded on both LΦ(Rn) and on its Köthe dual, we recall the
following classes.

(1) A function ϕ : (0,∞) → [0,∞) or ϕ : [0,∞) → [0,∞) is a doubling function, if
there exists a constant C > 0, called a doubling constant, such that C−1ϕ(t) ≤
ϕ(s) ≤ Cϕ(t) for all t and s in the domain of ϕ satisfying s ≤ t ≤ 2s.

(2) Denote by ∆2 the set of all convex bijections Φ : [0,∞) → [0,∞) satisfying the
doubling condition; Φ(2r) ≲ Φ(r) for r > 0. The implicit constant is again called
a doubling constant. In this case Φ also satisfies the ∆2-condition.

(3) The set ∇2 is the set of all convex bijections Φ : [0,∞) → [0,∞) such that there
exists C > 1 such that Φ(2t) ≥ 2CΦ(t) for all t ≥ 0. In this case one says that Φ
satisfies the ∇2-condition.

If Φ ∈ ∆2 ∩ ∇2, then M is bounded on both LΦ(Rn) and on its Köthe dual. See [42,
Theorem 53] and [42, Example 71]. Thus, Theorems 1.1 and 1.3 are applicable to LΦ(Rn).
See [45] for wavelet characterization of Orlicz spaces.

3.7. Morrey spaces. Let 1 ≤ r ≤ r0 < ∞. For an Lrloc(Rn)-function f , its (classical)
Morrey norm is defined by

(3.15) ‖f‖Mr0
r

:= sup
x∈Rn,R>0

|B(x,R)|
1
r0

− 1
r

(ˆ
B(x,R)

|f(y)|rdy

) 1
r

.

The Morrey space Mr0
r (Rn) is the set of all f ∈ Lrloc(Rn) for which the norm ‖f‖Mr0

r
is

finite. This is a natural extension of Lr0(Rn) since Mr0
r0(R

n) and Lr0(Rn) are the same
with coincidence of norms.

Let 1 < r ≤ r0 < ∞. Then M and Rj , j = 1, 2, . . . , n, are bounded on Mr0
r (Rn). See

[5]. Thus, Theorems 1.1 and 1.3 are applicable to Mr0
r (Rn).

Let 1 < r < r0 < ∞. Remark that the Morrey space Mr0
r (Rn) is not separable but

that M is bounded on Mr0
r (Rn) [42, Theorem 382] and Mr0

r (Rn)′ [44]. Thus, in general
Morrey spaces do not fall within the scope of Theorem 2.5. Remark that Mr0

r (Rn) fails
to be reflexive [42, Example 148]. Although Lr0(Rn) is a subset of Mr0

r (Rn), it fails to be
dense [42, Theorem 20], it is still possible to obtain the characterization of Morrey spaces
in terms of wavelets as in [39].
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3.8. Besov–Bourgain–Morrey spaces. Let 1 ≤ q ≤ p < ∞ and r, τ ∈ [1,∞]. The
Besov-Bourgain–Morrey space BMp,τ

q,r (Rn) is defined to be the set of all the f ∈ Lqloc(R
n)

satisfying that

‖f‖BMp,τ
q,r (Rn) :=

∥∥∥∥∥∥∥

∥∥∥∥∥∥
|Qν,m|

1
p
− 1

q

[ˆ
Qν,m

|f(y)|qdy

] 1
q


m∈Zn

∥∥∥∥∥∥
ℓr(Zn

m)


ν∈Z

∥∥∥∥∥∥∥
ℓτ (Zν)

<∞.

Here the inner `r norm is taken with respect to m and the outer `τ norm is taken with
respect to ν. See [46] for more. The Bourgain–Morrey space Mp

q,r(Rn) is the Besov–
Bourgain–Morrey space BMp,r

q,r(Rn) [14]. If 1 < q < p < r < ∞ and 1 ≤ τ < ∞ or if
1 < q < p ≤ r < τ = ∞, then M and Rj , j = 1, 2, . . . , n, are bounded on BMp,τ

q,r (Rn).
Thus, Theorems 1.1 and 1.3 are applicable to BMp,τ

q,r (Rn).
Remark that Besov–Bourgain–Morrey spaces fall within the scope of Theorem 2.5 unlike

Morrey spaces.

4. Appendix–Proof of Theorem 1.3

Let ε > 0 and (f, g) ∈ Floc. It suffices to show that

(4.1) ‖f‖X ≤ C1‖g‖X + C2ε‖f‖X ,
where C1 > 0 depends on ε, while C2 > 0 is independent of ε and the pair (f, g).

In fact, for any r > 0, since (χB(r)χ[0,r](|f |)f, g) ∈ Floc, we have

‖χB(r)χ[0,r](|f |)f‖X ≤ C1‖g‖X + C2ε‖χB(r)χ[0,r](|f |)f‖X
once we establish (4.1). Note that χB(r)χ[0,r](|f |)f ∈ X, since L∞

c (Rn) ⊂ X. By taking

ε = 1
2C2

, we obtain

‖χB(r)χ[0,r](|f |)f‖X ≤ 2C1‖g‖X .
Letting r → ∞, we obtain the desired result. Thus, we may assume that f ∈ L∞

c (Rn).
We now prove (4.1). Since (f, g) ∈ Floc if and only if (|f |, |g|) ∈ Floc for any f, g ∈

L0(Rn), we may assume that f, g are non-negative from now on.
Furthermore, by adding a small constant multiple of

L :=

∞∑
l=0

1

(2‖Mloc‖X′→X′)l
M l

locχB(1)

to g, we may assume that g is positive everywhere. Finally, we may assume g ∈ X;
otherwise, the conclusion is trivial.

Define, for any measurable function k,

Rk(x) :=

∞∑
l=0

M l
lock(x)

(α‖Mloc‖X→X)l
, R′

k(x) :=

∞∑
l=0

M l
lock(x)

(α‖Mloc‖X′→X′)l
, x ∈ Rn,

where α ≥ 2 is a constant to be fixed later (see (4.13)).
We will use the inequality

(4.2) abp−1 ≤ Cεa
p + εbp (a, b, ε > 0),

where Cε > 0 depends only on ε and p.



16 MITSUO IZUKI, TAKAHIRO NOI AND YOSHIHIRO SAWANO

To estimate ‖f‖X , fix a non-negative function h ∈ X ′ with ‖h‖X′ < 1 to dualize. It
suffices to show that there exist constants C0 (independent of ε, f , g, and h) and Cε
(dependent on ε but not on f , g, or h) such that

(4.3)

ˆ
Rn

f(x)h(x)dx ≤ Cε‖g‖X + C0ε‖f‖X .

Indeed, since X = (X ′)′ as in [42] and f ∈ L∞
c (Rn) ⊂ X, this implies (4.1).

We may also assume that h is positive by adding a small constant multiple of L if
necessary. So from here on, assume f ∈ L∞

c (Rn) and g, h > 0.

Assuming f ≥ 0, we observe that Rg+f > 0 and R′
h > 0. Moreover, we have

[Rg+f ]A1,loc
≤ α‖Mloc‖X→X , [R′

h]A1,loc
≤ α‖Mloc‖X′→X′ .

Hence,

(4.4) [R1−p
g+fR

′
h]Ap,loc

≤ [Rg+f ]
p−1
A1,loc

[R1−p
g+fR

′
h]A1,loc

≲ 1,

with the implicit constant independent of f and g.
Since h ≤ R′

h, we getˆ
Rn

f(x)h(x)dx ≤
ˆ
Rn

f(x)R′
h(x)dx =

ˆ
Rn

f(x)Rg+f (x)
p−1 ·Rg+f (x)1−pR′

h(x)dx.(4.5)

Applying (4.2), we obtainˆ
Rn

f(x)Rg+f (x)
p−1Rg+f (x)

1−pR′
h(x)dx

≤ Cε

ˆ
Rn

f(x)pRg+f (x)
1−pR′

h(x)dx+ ε

ˆ
Rn

Rg+f (x)
pRg+f (x)

1−pR′
h(x)dx.(4.6)

We estimate the first term. Since (f, g) ∈ Floc, we haveˆ
Rn

f(x)pRg+f (x)
1−pR′

h(x)dx ≤ N
(
[R1−p

g+fR
′
h]Ap,loc

)p ˆ
Rn

g(x)pRg+f (x)
1−pR′

h(x)dx

≲
ˆ
Rn

g(x)pRg+f (x)
1−pR′

h(x)dx,(4.7)

by (4.4). Since Rg+f ≥ g, it follows that

(4.8)

ˆ
Rn

g(x)pRg+f (x)
1−pR′

h(x)dx ≤
ˆ
Rn

g(x)R′
h(x)dx.

Applying Hölder’s inequality and the boundedness of R′
h on X ′, we obtain

(4.9)

ˆ
Rn

g(x)R′
h(x)dx ≲ ‖g‖X‖R′

h‖X′ ≲ ‖g‖X‖h‖X′ ≲ ‖g‖X .

Putting together (4.7)–(4.9), we find

(4.10)

ˆ
Rn

f(x)pRg+f (x)
1−pR′

h(x)dx ≲ ‖g‖X .

We handle the second term using the inequality( ∞∑
l=1

al

)p
≤

∞∑
l=1

2plapl
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for non-negative sequences {al}∞l=1. Applying this to Rg+f , we getˆ
Rn

Rg+f (x)R
′
h(x)dx =

ˆ
Rn

Rg+f (x)
pRg+f (x)

1−pR′
h(x)dx

≤ 2p
∞∑
l=0

2pl

(α‖Mloc‖X→X)pl

ˆ
Rn

M l
loc[f + g](x)pRg+f (x)

1−pR′
h(x)dx.(4.11)

We abbreviate
W := R1−p

g+fR
′
h ∈ Ap,loc.

If we argue using the dyadic grids and using the idea of Lerner [28], we find a constant
β > 1 such that ˆ

Rn

MlocF (x)
pW (x) dx ≤ β[W ]p

′

Ap,loc

ˆ
Rn

|F (x)|pW (x) dx

for all measurable functions F . Applying this estimate iteratively, we obtainˆ
Rn

M l
loc[f + g](x)pW (x) dx ≤ (β[W ]p

′

Ap,loc
)l
ˆ
Rn

(f(x) + g(x))pW (x) dx.(4.12)

Assume

α >
2
(
β[W ]p

′

Ap,loc

)1/p
‖Mloc‖X→X

.

Then we have

(4.13)
∞∑
l=0

2pl
(
β[W ]p

′

Ap,loc

)l
(α‖Mloc‖X→X)

pl
<∞.

Since Rg+f ≥ f + g, it follows from (4.12) and related estimates thatˆ
Rn

Rg+f (x)
pRg+f (x)

1−pR′
h(x) dx ≲

ˆ
Rn

(f(x) + g(x))R′
h(x) dx ≲ ‖f‖X + ‖g‖X .(4.14)

Combining (4.6), (4.10), and (4.14), we obtain (4.3), and hence the desired estimate
(4.1) is proved. This completes the proof of Theorem 1.3.
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