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Elementary proof of Funahashi’s theorem
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ABSTRACT. Funahashi established that the space of two-layer feedforward neural networks is dense in the space of
all continuous functions defined over compact sets in n-dimensional Euclidean space. The purpose of this short survey
is to reexamine the proof of Theorem 1 in Funahashi [3]. The Tietze extension theorem, whose proof is contained in
the appendix, will be used. This paper is based on harmonic analysis, real analysis, and Fourier analysis. However,
the audience in this paper is supposed to be researchers who do not specialize in these fields of mathematics. Some
fundamental facts that are used in this paper without proofs will be collected after we present some notation in this

paper.
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1. INTRODUCTION

The goal of this survey is to prove the following theorem due to Funahashi using theorems
on uniform convergence in harmonic analysis and real analysis:

Theorem 1.1 (Theorem 1 in Funahashi [3]). Let ¢(t) be a nonconstant, bounded, increasing, and
continuous function on R, and let K C R™ a compact set. Let ¢ > 0 and f(zx) be a continuous real-
valued function on K. Then there exist a natural number Ny and real constants cy, 0y, wi; (1 < k <
Ny, 1 < j < n)such that

(1.1) max ’f(a:) — f(x)‘ <e

zeK

holds, where
_ N1 n
f(z):chqZ) Zwijj—ek (x = (z1,29,...,2,) € R™).
k=1 j=1

Mathematically, Theorem 1.1 can be understood as a theorem on uniform approximation.
Uniform approximation is important when we consider the change of the limit and integration
over compact sets. It is also important in the field of numerical analysis.

We say that f(z) belongs to the space of two-layer feedforward neural networks generated
by ¢(t). In the branch of the neural network, ¢(t) is called (0-)sigmoidal.

The field of artificial neural networks (or neural networks in short) began in 1943 when Mc-
Culloch and Pitts demonstrated that a combination of neuron-like computational units could
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perform any logical operations [8]. Following this seminal work, in 1958, Rosenblatt formu-
lated a single-layer neural network called a perceptron inspired by information processing in
the central nervous system [11]. As a neuron emits an action potential when the sum of synap-
tic inputs exceeds the threshold, a perceptron performs a classification task by computing its
activation according to a weighted sum of multiple inputs. Two notable theoretical analyses
of the perceptron included the convergence theorem and the counting theorem; the former
guarantees that a perceptron can learn a decision boundary when a training set is linearly sep-
arable [10], and the latter estimates the number of training points that a perceptron can learn
[2]. Despite these conceptual and theoretical developments, interest in neural networks waned
in the 1970s after Minksy and Pepert suggested that a perceptron cannot perform nonlinear
operations as simple as exclusive or (XOR) [9]. A multilayer neural network could realize such
nonlinear functions, but no learning algorithms were known to train a multilayer neural net-
work.

The field of neural networks was revived in the early 1980s when the backpropagation algo-
rithm was invented to train multilayer neural networks [13]. Errors in the output units propa-
gate backward to hidden units, and the weights connected to hidden units are updated accord-
ing to the backpropagated errors. The backpropagation algorithm allows a multilayer network
to learn from any training set of non-linear relations. Introducing hidden units in a multilayer
network resulted in two significant consequences. First, the multilayer neural network can find
latent representations in hidden layers related to, but not the same as, network inputs and out-
puts. Such latent representations allow for abstraction and dimensional reduction of network
input. Second, a multilayer network with hidden layers approximates arbitrary continuous
mapping from input to output. The universal approximation theorem states that a multilayer
network composed of at least one hidden layer can approximate any continuous function if
the number of hidden units is large enough and the parameters (weights and thresholds) are
appropriately adjusted.

A future historian might call the 21st century the century of neural networks. Since the sem-
inal work of Krizhevsky et al. outperformed conventional image classification approaches in
the ImageNet classification competition [7], deep neural networks prevail in various practical
applications. Despite empirical success, the deep-network approach is counterintuitive from
the point of view of conventional machine learning [14]. Although deep neural networks have
billions or trillions of tunable weight parameters, the networks hardly overfit to training data
and can generalize well to test data not used for training. Also, we do not understand theoret-
ically the advantages of stacking many layers, so designing a deep neural network is still an
art of trial and error rather than science. The lack of theoretical understanding of deep neural
networks impedes a systematic and optimal network structure design for a given application.

This survey revisits Funahashi’s proof of the universal approximation theorem [3]. The
theorem justified the training of neural networks using arbitrary input-output mappings and
played a crucial role in developing neural networks in the 1980s. We think it is essential to
reexamine Funahashi’s proof for multilayer neural networks with a single hidden layer to gain
insight into how we can generalize the theorem to the case of deep neural networks. The the-
orem is also instrumental in guiding recent physiological experiments. A single neuron is not
like a perceptron of linear separation as previously hypothesized, but can operate as a multi-
layer neural network that takes advantage of the non-linearity of synaptic input in dendritic
trees [4, 1]. By depositing Funahashi’s theorem in an accessible way, this survey aims to medi-
ate a deeper understanding of deep neural networks and the brain.

Theorem 1.1 seems to cover bounded functions. However, if we use some linear combina-
tions, then Theorem 1.1 can cover more functions. Let ReLU(t) = max(0,t) be the rectified
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linear unit. Although ReLU(¢) is not a bounded function, the function ¢(¢t) = ReLU(¢t — 1) —
ReLU(¢) falls within the scope of Theorem 1.1. Therefore, the conclusion of Theorem 1.1 is true
even for the case of ¢(t) = ReLU(¢). The same applies to the function ¢(t) = ReLU(¢)*. In[5, 6],
the authors replaced the max-norm with Banach lattices and generalized the condition on ¢(t).
Going through a similar argument, one can generalize the results in [5, 6] to the n-dimensional
case.
Here we collect the notation and the preliminary facts in this paper.
(1) The set Ny consists of all nonnegative integers.
(2) Given z,w € R", we write the Euclidean inner product by z - w. We also write ||z| =
V.
(3) Given R > 0, we write B(R) = {x € R" : ||z| < R}.
(4) Let E C R™ be a measurable set. The characteristic function x g (z) is defined by

)1 (zeBE),
XE(I){O (¢ ¢ E).

Furthermore, |E| is the Lebesgue measure of E.
(5) Let E C R™ be a measurable set that satisfies |[E| > 0 and 1 < p < oco. The Lebesgue
space LP(E) consists of all measurable functions f(z) on E satisfying || f| rr(g) < 00,

where U
([ir@ra) " as<p<oo

ess.sup,eplf(z)] (P =o00).

If f(z) € LY(E), then we say that f(z) is integrable over E. If E = R", then we merely
say that f(z) is integrable.

(6) Let f(z) be a function defined in R™. The closure of the set {x € R™ : f(z) # 0} is said
to be the support of f(z) and denoted by suppf.

(7) The set C(R™) is the set of all continuous functions in R™. In addition, the set C.(R") is
the set of all f € C(R") satisfying that suppf is compact.

(8) The set C>°(R™) is the set of all infinitely differentiable functions on R™. In addition,
the set C2°(R™) is the set of all f € C°°(R™) whose support is compact.

(9) The Schwartz class S(R™) consists of all functions f € C°°(R") satisfying

> sup (1+ |z)7 [0° f(2)] < oo

a€Ng,jENg, al+j<N K

I1fllzee) =

for all N € Ny, where we write

N olal ¢
|a|—a1+a2+...+am 0 f(x)_ax?18x32-~-8x%"(x)

for o = (a1, aq,...,0p) € Nj.

(10) Given a complex number z, we can uniquely write z = x +14y, where z, y € R. We write
Re(z) = x with this in mind.

(11) Given a function f(x) on R”, we formally define the Fourier transform by

Flf)(w) = fw) = [ f@ede (weRn).
Then the inverse Fourier transform is defined by

FUf(x) = (2m)~" - fw)e® ¥ dw (z€R"™).
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Let f(z) € C*(R™). A fundamental result on Fourier analysis is that the convergence of the
limits
FNw = tim [ f@evdn, FUA@ = @n im [ fw)e d
R—o00 B(R) Resno B(R)

take places uniformly over w € R™ and that these operators satisfies

“HFA@) = f).

In the rest of this section, we recall a famous theorem in general topology, which plays a
vital role in proving the main theorem.

Theorem 1.2 (Tietze extension theorem). Let f : K — R be a continuous function defined over a
compact set K C R™. Then there exists g(x) € C.(R™) such that g(x) = f(x) on K.

We will give a self-contained proof of Theorem 1.2 as an appendix in Section 3. See [12] for
the proof of the theorem in general topological spaces.

2. PROOF OF THE MAIN THEOREM

The next lemma is used to get some information from the function ¢(t).

Lemma 2.1 (Lemma 1 in Funahashi [3]). Let ¢(t) be the same function as Theorem 1.1. Then there
exist constants 8, o > 0 such that ¢(t) € L'(R) and that ¢)(1) # 0, where

P(t) = o(t/0 + @) — $(t/6 — ).
In particular, 1 (t) is real-valued because ¢(t) is real-valued.

Proof. Let L, L’ > 0 be large numbers. Then

L/s+a L/5—a
1/) dt—5/ dsfé/ o(s)ds
L/

L’/5+a —L'/6—a

L/é+« —L'/é+a
:5/L " o(s) d575/ " ¢(s)ds € [0,40asup |¢|].

/o—« —L'/§—«

Thus, since L, L’ > 0 are arbitrary, ¢(t) is integrable.

It remains to show that ¢)(1) # 0 for some suitable choice of § > 0. If ¢»(1) = 0 for all § > 0,
then we would have F[¢(- + ) — ¢(- — )] = 0. Thus, ¢(t + @) = ¢(t — «). Putting u =t — «,
we have ¢(u) = ¢(u + 2a). This means that ¢(¢) is a periodic function with period 2«. From
the periodicity and the assumption that ¢(¢) is increasing, ¢(¢) is a constant on [0, 2. Again,
from the periodicity, ¢(t) is a constant on R. But this contradicts the assumption that ¢(t) is not
constant. g

Rougly speaking, the idea of Funahashi is to apply the Fourier inversion forumula to have
information on ¢(t). Since Theorem 1.1 is stated in discrete form, while the Fourier inversion
concerns the continuous representation, the integral over the whole space R". Therefore, we
need a tool that transforms continuous representations into discrete representations. Lemma
2.2 below serves this purpose.
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Lemma 2.2 (Lemma 2 in Funahashi [3]). Let A > 0, K C R™ be a compact set, and let h(w, ) be a
continuous function on [—A, A" x K. Define the functions H(x) and Hy(x) (N € N) on K by

H(x)= / h(w, x) dw,
[—A,A]"

24\" = 2%, A 2%ky A %, A
HN(m):<> > h(—A+ A+ 2 A+ a«)
0

N N’ N Y N
Then for all € > 0, there exists Ny € N such that max |H(z) — Hn(x)| < € forall N > N.
EAS

Proof. First, we abbreviate 1 = (1,1,...,1) € R to shorten the equations under calculation.
On the other hand, k € {1,2,..., N — 1}"” means that k = (k1, ko, ..., k,) with every integer
kj €{0,1,...,N —1} (j = 1,2,...,n). Thus we write

> -

ke{1,2,...,N—-1}" k1,k2,....kn=0

Then, for any k = (kq, k2,....k,) € {0,1,...,N — 1}",

2k A 2ko A 2k, A _ 24
(—A+N,—A+ e AT >——A1—|—Nk
and
2A\" = 2%, A 2k A 2%k, A
I (et _ ahia a2 _ n
HN(J:)—<N g h( A+ N A+ N A+ N ,x>

24\" 24
(2.2) = (N> > h (Al +5k x) .
ke{1,2,....,N—1}"

We estimate

|H(z) — Hy (2)|

24\" 2A
_ h(w,z)dw — [ =— h|—Al1+ —Kk, )
R CO NP S CEat oD

ke{1,2,...,N—1}n

By the uniform continuity of h(w, z), for any € > 0, there exists 6 > 0 such that

e

|h(w,z) — h(w', z)| < @A)

2A
for any w, w’ € R" satisfying |w —w’| < 6. We fix Ny € N such that N Vvn < §andlet N > Nj.
0

Then we have

2k A 2ko A

for each (kyi, ko, ..., k,) € {0,1,...,N —1}" and

wel] {A+ WA Q(ijrl)A]
j=1

2k, A 2A
)‘<N-\/ﬁ<6

N N
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So, we obtain

2A €
. —h|-A1+ —k
(2.3) ‘h(w,x) h( + N ,x) < GA)
for any
5 2k; A 2(k; +1)A
we]l;[l {—AJF N A N ,
where k = (ky1, ko, -+ ,ky). Foreach k = (k1,k2,...,kn) €{0,1,...,N — 1}", we put
i 2k; A 2(k; +1)A
k) = —A S A4 T
C(k) ]1;[1[ + AT }
Then, by (2.2) and (2.3), we see that
|H(z) — Hy(z)]

< ¥

ke{1,2,...,.N—1}n

/ h(w,z) dw — / h (—Al + %k, x) dw
o) o) N

/C(k) {h(w,x) —h <A1 + %k, x> } dw

k1,k2,....kn=0
<e
This completes the proof. O

Lemma 2.3. Assume that f(z) € L'(R") satisfies F[f](w) € L'*(R™). Forall 0 < A < oo and
all x € R™, we have I a(f)(x) = Ja(x), where Ino A(f)(x) and Ja(f)(z) are defined by (2.6) and
(2.7) below, respectively. In addition, both {Ja(f)(x)} a0 and {Is a(f)(x)}a>0 converge uniformly
in R™.

Proof. Let ¢(t) be a function as in Lemma 2.1. By the Lebesgue dominated convergence theo-
rem, we see that

A= o0

nm/_ V()™ X oo ar wwyan () dt = (1)

Thus, to prove that I, 4(f)(z) = Ja(f)(x) for all z € R™, it suffices to prove that

lim Flw)e ( [ r— dt) du
[—AA]™ —00

Al—o0

(2.4) = / Fw)e™ (1) dw.
[~A,A]"

Fix A > 0 for the time being. We remark that

(25) ‘f(w)eixﬂw (/_ w(t)e_itx[mwa’,m-erA’](t) dt) ’ <

F@)| ey
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and that ‘ f (w)’ 9]l 1 (r) is independent of A" and integrable on [-A, A]". Therefore, applying
the Lebesgue dominated convergence theorem again, we obtain (2.4). Furthermore, we show
that {J4(f)(x)}a>0 converges to F~! { f} () uniformly in R”. Since f(w) is integrable, we see
that

sup |71 [f] (@) = () (@)

z€R™

= (27)™" sup fw)e= (1= X[—a,47(w)) dw
rER™ R»

<@ [ [fw)] 0= xoane @) do

=0 (A— ).

This finishes the proof of the lemma. O
We now refer back to the proof of Theorem 1.1.

Proof of Theorem 1.1. Take e > 0 arbitrarily. Let ¢(¢) be the function defined by Lemma 2.1.

(I) First, suppose that f(z) € C°(R™). Here f(z) need not be supported on K. Let 0 < A <
ooand 0 < A" < co. We define

A’ 1 ) .
Tara(f)(z) = /[A Al ( Y(x-w—wy) ———— f(w)e™® dw()) dw

w0 Gn) i)
= o o T ([ o0 s ) e
6) Fea(F)@) = Jim Lua()(@),
and
@7) o =en [ fwe

So far, we know that I 4(f)(x) = Ja(f)(z) for all z € R” and A > 0 due to Lemma 2.3.
Because f € C°(R™) C S(R™), we see that

28) J@)=F 1 [f] @) = Jim Ja()(@) = lim Ta(@),

where the convergence in (2.8) takes place uniformly in R™. Thus, there exists Ay > 0 such that
forall A > Ay,

29) max |£(2) ~ oo.a (/) (@)] < 5.
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Below we take A > A arbitrarily. Now we approximate I, 4(f)(z) on K using I4 a(f)(x)
with A" < oo. We fixz € K and 0 < A’ < oo. Then we have

oo, a(f)(x) = Tar a(f)(2)]

f(w)‘ / [Y(x - w— wp)| dwy p dw
R\[—A’,A’]

B (27r)"17j;(1) \/[A7A]n f(w)‘ {/O:o ()] XR\[z-w— A", z-w+A’] (t) dt} dw.

1
<
e b /[AﬁAw

Because the set K is bounded, there exists R > 0 such that K C B(R). Let w € [—A, A]|". Then
we have |z - w| < ||z]| |w|| < R - v/nA and

R\[z-w—A" 2z w+ A
(—o0,z-w— AU (z-w+ A, 00)
(—o0,v/nRA— A") U (—v/nRA + A', )
J.

We remark that the set J is independent of « and w. Hence we obtain

(2m)" [$(1) | max | Loe.a(£)(@) = Lar.a (@)

<)
[7A}A]n

= /[_AA]H f(w)‘ dw - /_OO (1) X (t) dt.

(oo}

N

f(w)’ dw - ( max ]”/, [V ()] XR\ [0 w—A7 w47 () dt)

zeK,we[—AA

We note that Al/iin V() xs(t) = 0, [(t)] € L*(R) and [4(t)| xs(t) < [1(t)|. Therefore, by

oo

virtue of the Lebesgue dominated convergence theorem, we have Alim [(t)] xs(t)dt = 0.
00 oo

Namely there exists A} > 0 such that for all A" > Aj,

€
2.1 I — Ta —.
(2.10) max |foo, 4 (f)(2) = Lar,a(f)(2)] < 5
Combining (2.9) and (2.10) we obtain

(211) ma /() ~ Ly a()(x)] < 2¢.

(IT) Next, we consider the general case: f(z) is merely a continuous function defined over
K. We prove that a modified estimate of (2.11) is true. We take a real-valued extension g(z) €
C.(R™) of f(x). This is possible due to the Tietze extension theorem (Theorem 1.2). Let p(z) €
C&°(R™) be such that 0 < p(x) < xpq)(x) for all z € R™ and ||p|[z1(rn) = 1. Write pg(z) =

B~"p(B71z). Define the convolution pg * g(z) by pg * g(x) = / ps(x —y)g9(y) dy. We employ
Rﬂ.

the operation g(z) — pg * g(x), which is called the mollifier. Applying the mollifier to g(z), we
find 8 € (0,1) such that
€
||g — p/B *gHLoo(]Rn) < §
A geometric observation shows that suppg C supp(pg * g) and that supp(pg * g) is contained
in a fixed compact set L, the set of all points = whose distance from x does not exceed 1. Since
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pp*xg(x) € C(R™), we can apply (2.11) to the function pg*g(z). Thatis, there exist 0 < Ap < o0
and 0 < A < oo such that forall 4p < A < coand 4 < A’ < oo,

2
max |pg* g(x) — Lar,a(pp = g)(x)| < e
zEsupp(pp*g) 3

Recall that g(z) is an extension of f(z). Hence,

max |f(z) = Lar,a(pp * 9)(x)| = max lg(z) — Lar,a(pp * 9)(2)] .

Therefore, we get
max | () — Ly a(ps * 6)(2)|

< max |g(z) — Lar a(pp * g) ()]
TESUPPY

< max |g(z) — pg*g(z)| + max |pg*g(x) — Lar a(ps * g)()]
xrESUppg xreEsuppg

<llg—ps*gllpe@ny+ max |pgxg(x) — Laalpp * 9)(x)]
zE€supp(pp*g)

2.12) <e.

(I1IT) Finally, we prove the conclusion of the theorem applying (2.12). We note that f(x) is real-
valued but that T4/ 4(pg*g)(x) is complex-valued. This means that H(x) = Re (La/,4(ps * g)(z))
is a more suitable candicate of the approximation of f:

|f(2) = Lar,a(pp + 9)(2)| = [Re (f(2) — Lar,a(pp * g)(2))|
= [f(z) = H(z)|,
that is, max |f(z) — H(z)| < e. Meanwhile, applying Lemma 2.2 to H(z), there exists a natural
number Ny such that max |H(z) — Hn(f)(x)] < € holds for all N > Ny, where
e

Hy(f)(@) = (2&4)” kl,ka;;—oh <A + %, ~A+ %, A 2’?{‘[’4,95) ,
hw, ) = A Wl - w — wo)y(w, wo) du,
+(w,wo) = Re <Mﬂpa . g](w)eiwo> .
Hence we have
(2.13) max| f(z) — Hy(f)(2)] < 2¢

zeK

using the triangle inequality. At this moment, we could manage to find Hx (f)(z) which ap-
proximates f(z). However, Hy(f)(z) does not satisfy the requirement of the statement. So, we
apply Lemma 2.2 to Hy (f)(x) once again to construct the desired function f(x).
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This can be achieved as follows: Using the same notation as in Lemma 2.2, then

(%) mue

N-—-1
B 2k A 2ky A 2kn A
- h(—A+ Sl A LA m)
E1,k2,.. kn=0

- Z ) ’h<—A1+2J<f4k,a:)
A/
24 24
/ > ¥ <x (—Al + Nk) - w0> v (—Al + 5k wo) dwo.

~A'yef0,1,..,N-1}n

To approximate (2&4) Hn(f)(z) by a Riemann sum, abbreviate

94/ M—1 24 2mA’
S 0 (w (—Al + k) - (—A’ + ))
M m=0 kc{0,1,...,N—1}n N "

!/
Xy (—Al + %k, —A+ 2mA )

to Ra(f)(x), where M € N. Using Lemma 2.2, we can find M, € N such that for any M > My,
~ .

< 3e.

s (2];,4) () @) - Ru(H)(@)

Estimate (2.13) and the above inequality lead the estimate

214) ma | f(z) - (%)RRMW@

zeK

We prove that (i?) R (f)(z) is the desired function f(x). Note that Ry (f)(z) can be ex-
pressed as

Ry (f)(x)

m=0 ke{0,1,...,N—1}"

24 2mA’
X7y (—A1+Nk,—A’+ 7;\14 )

To deform this expression, we put

24 2mA’

Q(m, k) = <—A1+ A > € R

for every m, k. The set {Q(m,k) : m =0,1,....M — 1,k € {0,1,...,N — 1}"} consists of
N"™M vectors. Thus every Q(m, k) can be expressed as 2(m, k) = Q(¢) (¢ = 1,2,...,N"M).
Because 2(¢) € R"*!, we write

Q(é) = (Qé,lv Q€,27 ceey Q&n_t,_l).
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Then, by the definition of 1, we have

g g N'M
Ru(f)(x) = 77 > (2, —1) - Q(0) Y (2(0))
(=1
24/ N™"M n
=27 2 QO | D%~ Qs
=1 Jj=1
24’ N"M n ijgj Q -
=23 e | S - (B )
=1 j=1
24’ N"M n ijZJ QZ i1
20 e | B - (Bt o)
(=1 j=1
By rearranging the right-hand side, we can find real constants ¢, 6;, we;, £ = 1,2,...,2N" M,

j=1,2,...,nsuch that

n IN" M n
<2]<f4) R]M(f)(l‘) = Z cep (Z W Tj — 9@) (x = (33171;2, . ’xn) c Rn)

=1 j=1
. . . . . 24\" )

Since (2.14) is nothing but (1.1) with ¢ replaced by 3g, it follows that (N) Ry (f)(z) is the

desired function f(z). O

If a function f(z) is continuous in a compact set K, then we see that

1/2
iz = ([ @R ) < K17 ol 1o
K zeK
Thus we easily obtain the following corollary:
Corollary 2.1. In Theorem 1.1, one has

Hf - f] < |K|"/%.

L*(K)

3. APPENDIX-PROOF OF THE TIETZE EXTENSION THEOREM
Let ReLU(t) = max(0,t). We write
u(t) = ReLU(t 4+ 1) — 2ReLU(t) + ReLU(t — 1) (¢ € R).
Note that ;(¢) vanishes outside (—1,1) and that u(t) = 1 — |¢| for t € [—1,1]. We set

v(z) =v(ry,x2,...,T,) = Hu(xj),

Jj=1
so that

Z vz —k) =

kezZn
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Lemma 3.4. Let K C R” be a compact set and f(z) be a continuous function on K. Write M =
max | f(v)|. There exists a continuous function g(x) defined on R™ such that
ye

2
sup |f(z) - g(2)] < =M
zeK

and that
2
sup |g(y)| < 3 M.
yeRn

Proof. Since f(z) is continuous in the compact set K, f(x) is uniformly continuous in K. Thus,
we can find 6 > 0 such that |f(z) — f(y)| < M forall z,y € K such that |z — y| < 4. Set

2

h(z) = min <max (§M f(x)) , 3M) (z € K).

Note that
(3.15) h(z) =< f(z) (
2

3
Since f(z) is continuous in K, so h(x) is also continuous in K. By (3.15) and —M < f(z) < M,
it is easy to see that

Next, we prove
1
(3.16) |h(z) = h(y)| < §M

forall ,y € K such that |z — y| < é. Note that if h(z) = 2M, then

1 1 2
_EM < fly)—flz)< EM and §M < f(z)

yield

7 1 2 1
= M< —— )
12M 12M—|—3M7 12M+f(ac)<f(y)

This implies that (5 M < h(y) < 2M = h(z). Therefore, we have

1 1
- < —M < =M.
W) = h(y) £ M < 5

From the symmetry, we see that (3.16) holds when the case h(z) = 2M or h(y) = 2M.
To complete the proof of (3.16), it remains to consider the case

h(z) = max <§M f(x)) and h(y) = max <§M f(y)> .

Note that

1
max(a,b) = 5 (a+b+a—bl), [la| —[bl] < ]a—b]
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for a,b € R. Hence, we obtain

e) = )] < 51560 = )] + 5 || G0+ 31| = | + S
<3 M)~ )
S%M<%M.

Finally we construct g(x). Choose an integer A large enough so that 246 > 1. Denote by
U the set of all k € Z" such that {x € R® : 2 — A7'k € [-A71, A71|"} N K # . From the
definition of U, it follows that

Zu(Aac—k)zl (x € K).
keU
For each k € U, choose yx € {x ER":x— A"'ke [-A71, A7"} N K. We put
Zhyk (Az — k) (xzeR").
keU
Then g(z) vanishes outside the set {w € R" : w =y+2,y € K,z € [-A~!, A71]"} and satisfies
g@) = h@) =Y (h(yx) = h(z))v(Az — k) (¢ € K).
keU
This equality implies that
1
o) — h(a)| < M.
Since |f(z) — h(z)| < $M it follows that | f(z) — g(x)| < 2M. Furthermore, since |h(z)| < 2M
forall # € K, it follows that [g(z)| < 2M for all z € R™. Thus, the proof is complete. O
With Lemma 3.4 in mind, let us prove Theorem 1.2. Let M = max |f(z)|. Without loss of

generality, we can assume M = 1. We define the sequence of functions {gx(z)}72, as follows.
First, we choose g1 (z) as in Lemma 3.4. That is,

[f(z) —g1(z)| <= on K

Wl o

and |g1(z)| < 2 hold.
Then define I1(x) = f(z) — g1(z). Next apply Lemma 3.4 to the function /;(z) to have a
function g, (z) satisfying

00 - alo)] < Smaxl)l = (2) e x)
and .
(@)l < Gl = (3) (e R

Next, define l2(z) = f(z) — g1(z) — g2(x) and use Lemma 3.4 for the function ls(z). We repeat
this procedure to have the functions {gx(x)}72 ; and {lx(z)}72 satisfying

li(z) = f(z) = g1(x) = g2(2) — - — gu(x ng (x € K),
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k+1 9 9\ F+1
(3.17) 460 = g )] = |10 = 3 50(0)| < g maglin)] < (3)
and ‘
9 92 k+1
(318) (@)l < Smainl < (3) @em).

From (3.17) and (3.18), we learn that
9(z) =Y gr()
k=1

converges uniformly over x € R™ and that g(z) agrees with f(x) over K. Thus, the proof is
complete.
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