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Abstract. Pseudo H-type Lie algebras are a special class of 2-step nilpotent metric
Lie algebras, intimately related to Clifford algebras Clr,s. In this work, we propose
the classification method for integral orthonormal structures of pseudo H-type Lie
algebras for full range of positive parameters (r, s) ∈ Z2. The existence of integral
orthonormal structures gives rise to the integral discrete uniform subgroups or lat-
tices of the pseudo H-type Lie groups. We apply the developed method for the full
classification of the integral orthonormal structures for 0 < r + s ≤ 16, and minimal
admissible Clifford modules. The cases 0 < r + s ≤ 16 form a core for further exten-
sions by making use of the Atiyah-Bott periodicity and the reducibility of admissible
Clifford modules.
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1. Introduction

Two-step nilpotent Lie algebras attracted the attention of G. Métivier [M8́0] in an
attempt to describe hypoelliptic operators in a non-Euclidean setting. The condition of
hypo-ellipticity required the adjoint map on the Lie algebra with the value on the centre
to be surjective. This type of Lie algebras was studied under different names and for
different purposes, for instance, in [Ebe94, LT99, MS04, OW10, GMKMV18]. A. Ka-
plan [Kap80] showed that if the adjoint map is an isometry, then the sub-Laplacian
on two-step nilpotent Lie groups, admits a fundamental solution, reminiscent of that
in Euclidean space. His result extended a theorem obtained by G. Folland on the
Heisenberg group [Fol73]. Therefore, the class of these Lie algebras received the name
H(eisenberg)-type Lie algebras. The H-type Lie algebras are in a bijective relation to
Clifford algebras Clr,0, generated by the Euclidean space Rr [Rei01a]. The definition
of H-type Lie algebras related to Clifford algebras Clr,s, s > 0, generated by pseudo
Euclidean spaces Rr,s was extended by P. Ciatti [Cia00] and received the name pseudo
H-type Lie algebras, see also [GMKM13]. The pseudo H-type Lie algebras, which will
be denoted by nr,s is a fruitful source for studies of Damek-Ricci spaces [BTV95], Iwa-
sawa decomposition of symmetric spaces [CDKR98], Riemannian nilmanifolds [Kap81],
rigidity problems [Rei01b], properties of PDE on Lie groups [CS12, MR92, BFM20] and
many others topics in geometry, analysis, and geometric measure theory. The classifi-
cation of the pseudo H-type Lie algebras was completed in [FM17, FM19].

Our work is motivated by the study of uniform discrete subgroups on nilpotent
Lie groups, which are crucial for the study of homogeneous spaces, compact nilman-
ifolds, and spectral problems. The existence of a uniform subgroup is guaranteed
by a presence of a rational structure on the associated Lie algebra by seminal work
of A. I. Malčev [Mc49]. The existence of rational structures on pseudo H-type Lie
algebras was proved in [CD02, Ebe03, FM14]. A complete classification of rational
structures in the class of pseudo H-type Lie algebras exists only on the Heisenberg
algebra (related to the Clifford algebra Cl1,0) [GW86]. Some progress in the study of
lattices can be found in [CP08].
In the present work, we describe the set of invariant integral structures, which are

at the core of rational structures of the Lie algebras. An invariant integral structure is
a span over Z of an orthonormal basis, constructed as an action of a subgroup G(Br,s)
of the invertible elements Pin(r, s) in the Clifford algebra Clr,s on a suitably chosen
normal vector v ∈ V in the Clifford module V , see Section 3. As a result, the basis of
the Clifford module V is invariant under the action of G(Br,s) and the non-vanishing
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structure constants of the H-type Lie algebra are equal to ±1. We emphasize that
invariant integral structures are particular cases of integral structures (having struc-
ture constants 0,±1) that are included in a general class of rational structures on a
Lie algebra (having rational structure constants). Two invariant integral structures are

isomorphic, if and only if the isotropy subgroups S(1)
v ⊂ Clr,s and S(2)

v ⊂ Clr,s of v ∈ V
belongs to the same equivalence class, see Definition 3.21 and Section 5. The isomor-
phism of invariant integral structures of the Lie algebras leads to the isomorphism of
uniform discrete subgroups on the corresponding Lie groups, which is always extended
to an automorphism of ambient pseudo H-type Lie groups, see [Rag72].
We apply the classification algorithm to isotropy groups Sv for parameters 0 <

r + s ≤ 16 in Section 4. We note that the range 0 < r + s ≤ 16 corresponds to
the first and the second period in r of pseudo H-type Lie groups originated from the
Atiyah-Bott periodicity of Clifford algebras. The reader can notice that the second
period r ∈ {9, . . . , 16} contains more non-equivalent subgroups with phenomena, such
as disconnectedness, that can not appear in the first period r ∈ {3, . . . , 8} due to the
lack of dimension of the center of the Lie algebra. The forthcoming paper will be
dedicated to the study of new features in the increasing of the parameters r, s and the
study of the periodicity. Despite this, the theorems and the characterizations proved
in Sections 3 and 5 have general character and are valid for arbitrary parameters (r, s).

2. Preliminaries

In this section we remind some classical objects and introduce the main ones of our
interest.

2.1. Clifford algebras. We denote by Rr,s the pseudo Euclidean space, that is the
vector space Rr+s endowed with the non-degenerate symmetric bilinear form

⟨x, y⟩r,s =
r∑

k=1

xkyk −
r+s∑

k=r+1

xkyk.

Let Clr,s be a Clifford algebra over R generated by Rr,s. Remind that Clr,s is a quotient
of the tensor algebra

T (U) := R⊕ Rr,s ⊕
( 2
⊗ Rr,s

)
⊕
( 3
⊗ Rr,s

)
⊕
( 4
⊗ Rr,s

)
⊕ . . .

by a two sided ideal Ir,s generated by elements of the form

x⊗ x+ ⟨x, x⟩r,s1, x ∈ Rr+s,

and 1 is the identity element of the Clifford algebra Clr,s. Consider a representation of
Clr,s on a real vector space V

J : Clr,s → End(V ).

We call V the Clr,s-module, or simply module if we do not want to specify the signature
(r, s), and will denote by Jzv the action of z ∈ Rr,s on v ∈ V . Assume also that the
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module V is equipped with a non-degenerate symmetric bilinear form ⟨. , .⟩V satisfying
the condition

(2.1) ⟨Jzu, v⟩V + ⟨u, Jzv⟩V = 0 for any z ∈ Rr,s and u, v ∈ V.

We call such a module V = (V, ⟨. , .⟩V ) an admissible module of the Clifford algebra
Clr,s. We write Vmin = (Vmin, ⟨. , .⟩V ) or simply Vmin for an admissible Clr,s-module of
the minimal dimension and call it a minimal admissible module. The reader can find
more about analogous constructions of 2 step nilpotent Lie algebras, not related to
representation of Clifford algebras in [Ebe04].
We emphasise the difference between an irreducible Clifford module and a minimal

admissible module. Not all irreducible modules can be equipped with a non-degenerate
bilinear symmetric form, satisfying (2.1). For instance, lack of dimension of an irre-
ducible module can make any bilinear symmetric form degenerate. An admissible
module V of Clr,s has an even dimension dim(V ) = 2n = N . It is isometric to Rn,n

if s > 0 and it is isometric to R±N,0 if s = 0, see [Cia00, Theorem 3.1] and [FM17,
Proposition 1]. Any admissible Clr,s-module can be decomposed into an orthogonal
direct sum of minimal admissible modules [FM19, Proposition 2.3 (2)].

2.2. Pseudo H-type Lie algebras and Lie groups.

Definition 2.1. Let (V, ⟨. , .⟩V ) be an admissible module of a Clifford algebra Clr,s with
the representation map J . Define the Lie bracket on V × Rr,s by

(2.2) ⟨Jzu, v⟩V = ⟨z, [u, v]⟩r,s, z ∈ Rr,s, u, v ∈ V.

The pseudo H-type Lie algebra nr,s(V ) = (V ⊕ Rr,s, [. , .]) is a Lie algebra whose non-
vanishing Lie bracket is defined in (2.2).

Note that the Lie algebra nr,s(V ) is 2-step nilpotent where Rr,s is the centre. Prop-
erty (2.1) and the representation property J2

z v = −⟨z, z⟩r,sv for v ∈ V imply

(2.3) ⟨Jzu, Jzv⟩r,s = ⟨z, z⟩r,s⟨u, v⟩V , ⟨Jzu, Jwu⟩r,s = ⟨z, w⟩r,s⟨u, u⟩V .

The connected simply connected Lie group Nr,s(V ) of the Lie algebra nr,s(V ) is called
the pseudo H-type Lie group. The exponential map exp: nr,s(V ) → Nr,s(V ) ∼= V ×Rr,s

is a global analytic diffeomorphism [CG90, Theorem 1.2.1]. It allows to induce the
coordinates on the Lie group from the Lie algebra by means of Backer-Campbell-
Hausdroff formula. Points g ∈ Nr,s(V ) are considered as vectors g = u⊕z ∈ V ⊕Rr,s =
nr,s(V ). The group product ∗ on Nr,s(V ) is given by

∗ : Nr,s(V )× Nr,s(V ) → Nr,s(V ),

(u1, z1) ∗ (u2, z2) =
(
u1 + u2, z1 + z2 +

1

2
[u1, u2]

)
.
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2.3. Automorphisms of pseudo H-type Lie algebras. Since automorphisms of a
Lie algebra define the automorphisms of its connected simply connected Lie group, we
consider only the automorphisms of Lie algebras. The complete description of the group
of automorphisms of pseudo H-type Lie algebras can be found in [Rie82, Saa96, FM21],
see also [AS14].
The automorphisms of pseudo H-type Lie algebras are generated by the following

ones:
[1] The dilations δλ(u, z) = (λu, λ2z).
[2] Let A : V → V be a nonsingular linear map and C ∈ O(r, s) an orthogonal

transformation of Rr,s. Then the map A⊕C is a pseudo H-type Lie algebra automor-
phism, if and only if

(2.4) Aτ ◦ Jz ◦ A = JCτ (z), z ∈ Rr,s,

where Aτ , Cτ are transpose maps defined as

⟨Aτu, v⟩V = ⟨u,Av⟩V , ⟨Cτz, w⟩r,s = ⟨z, Cw⟩r,s.
[3] Let B : V → Rr,s be a linear map, then (v, z) 7→

(
v, z+Bv

)
is an automorphism.

Remark 2.1. If A ⊕ C is a pseudo H-type Lie algebra automorphism, then not only
A−1 ⊕ C−1, but Aτ ⊕ C−1 is also a pseudo H-type Lie algebra automorphism.

2.4. Rational structures, uniform discrete subgroups, lattices. We refer to
works [Rag72, CG90] for the details discussed in this section.

Definition 2.2. A Lie algebra gQ over rational numbers Q is called the rational struc-
ture of a real Lie algebra g if g is isomorphic to gQ ⊗ R.

A real Lie algebra g has a rational structure if and only if there is a basis for g such
that the structure constants of the Lie algebra are rational numbers.

Definition 2.3. Let G be a Lie group. A subgroup Γ is called uniform subgroup if Γ
is discrete and G/Γ is a compact space.

Definition 2.4. Let G be a Lie group with a measure µ. A subgroup Λ is called lattice
if µ(G/Λ) < ∞.

Let G be a nilpotent Lie group and µ the Haar measure on it. Then a discrete
subgroup Γ is lattice if and only if it is a uniform subgroup, i.e µ(G/Γ) < ∞ implies
that G/Γ is compact. From now on we will not distinguish the lattices and uniform
subgroups. A result from [Mc49] can be formulated as follows.

• If Γ is a uniform subgroup of G, then g has a rational structure gQ such that
gQ = span Q{log (Γ)}.

• If g has a rational structure gQ, then G has a uniform subgroup Γ such that
log(Γ) ⊆ gQ.

Theorem 2.5. [Rag72] Let Γi ⊂ Gi, i = 1, 2, be uniform subgroups of simply connected
nilpotent Lie groups Gi. An isomorphism φ : Γ1 → Γ2 of discrete subgroups, can be
extended to the smooth isomorphism φ̃ : G1 → G2 of the Lie groups.
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3. Invariant bases and groups of positive involutions

3.1. Definition of invariant integral structure and uniform subgroups. From
now on we will consider only minimal admissible modules of Clifford algebras Clr,s,
denoting them either by V r,s or simply by V . Let nr,s(V ) = (V ⊕Rr,s, [. , .]) be a pseudo
H-type Lie algebra with Br,s a basis for Rr,s and B(V ) a basis for V . We write the
structure constants clij for nr,s(V ) with respect to bases B(V ) and Br,s by

(3.1) [vi, vj] =
r+s∑
l=1

clijzl.

Definition 3.1. A basis {B(V ), Br,s} for nr,s(V ) is called integral if the structure
constants clij in (3.1) take the values in {−1, 0, 1}.

We want to study a special class of integral bases of nr,s(V ). To describe it, we fix
an orthonormal basis Br,s = {z1, . . . , zr, zr+1, . . . , zr+s} of Rr,s, where

(3.2)

{
z1, . . . , zr are positive, i.e., ⟨zi, zi⟩r,s = 1, i = 1, . . . , r,

zr+1, . . . , zr+s are negative, i.e., ⟨zi, zi⟩r,s = −1, j = r + 1, . . . , r + s.

Consider a finite subgroup G(Br,s) of the Pin group in Clr,s defined by

G(Br,s) =
{

±1, ±z1, . . . , ±zr+s, . . . , ±zi1 · · · zik |
1 ≤ i1 < · · · < ik ≤ r + s, k = 2, . . . , r + s

}
.

Thus the generators of the group G(Br,s) are {−1, Br,s}. Elements σ ∈ G(Br,s) satisfy
the properties: either σ2 = 1 or σ2 = −1.

We proceed to the construction of bases B(V r,s) for the minimal admissible module
V r,s. In Table 1 the reader finds dimensions of V r,s for 0 ≤ r, s ≤ 8, which is extended
by periodicity. We marked by red colour the Clifford algebras, where the minimal
admissible modules differ from the irreducible modules. With the subscript ×2 we
indicated the presence of two non-equivalent minimal admissible modules.

Table 1. Dimensions of minimal admissible modules

8 16 32 64 64×2 128 128 128 128×2 256

7 16 32 64 64 128 128 128 128 256

6 16 16×2 32 32 64 64×2 128 128 256

5 16 16 16 16 32 64 128 128 256

4 8 8 8 8×2 16 32 64 64×2 128

3 8 8 8 8 16 32 64 64 128

2 4 4×2 8 8 16 16×2 32 32 64

1 2 4 8 8 16 16 16 16 32

0 1 2 4 4×2 8 8 8 8×2 16

s/r 0 1 2 3 4 5 6 7 8

(1) If a minimal admissible module V r,s is irreducible, then the set

(3.3) Ov = G(Br,s).v := {Jσv | σ ∈ G(Br,s)}
contains a basis B(V r,s) for any non-zero vector v ∈ V r,s.
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(2) If a minimal admissible module V r,s is reducible, then set (3.3) contains a basis
B(V r,s) for any non-zero and non-null vector v ∈ V r,s.
Thus, V r,s = span R{Ov} = span R{B(V r,s)} for a non-null vector v ̸= 0. If v ∈ V r,s

is a null vector, then the orbit Ov depends on the choice of v, but even in this case,
one can make a special choice of a null vector v ∈ V r,s, that generates an entire orbit
Ov including B(V r,s). From the other side if V r,s = V r,s

1 ⊕ V r,s
2 is a decomposition of

a minimal admissible module on irreducible modules, then the bilinear form ⟨. , .⟩V r,s

vanishes identically on V r,s
i , i = 1, 2. In this case only the union

∪2
i=1

{
Jσvi | σ ∈

G(Br,s)
}

contains a basis B(V r,s), where one needs to choose two non-zero vectors
vi ∈ V r,s

i .
Based on the latter discussions we restrict ourselves at bases B(V r,s) consisting of

non-null vectors and make the following definition.

Definition 3.2. Fix an orthonormal basis Br,s of Rr,s. An orthonormal basis B(V r,s)
of a minimal admissible module V r,s is called invariant basis if it is invariant under the
action of G(Br,s); that is for any vi ∈ B(V r,s) and zj ∈ Br,s, there exists vk ∈ B(V r,s)
such that Jzjvi = vk or Jzjvi = −vk.

According to Definition 3.2 the maps Jzj , zj ∈ Br,s act on an invariant basis B(V r,s)
by permutations up to the sign ±.

Remark 3.1. We emphasise that Definition 3.2 requires bases B(V r,s) to be both
orthonormal and invariant.

Example A. Consider the Heisenberg Lie algebra n1,0(V ) with the normalized basis
B1,0 = {z} for the centre and V 1,0 ∼= R2,0. Set v1 ∈ V 1,0, v2 = Jzv1, and

u1 = Av1, u2 = Av2,

where A is an orthogonal transformation of V 1,0. Then the basis (V 1,0) = {u1, u2} is
orthonormal. It is invariant under the action of G(B1,0) if and only if Jz commutes
with A. Thus a basis B(V 1,0) can be orthonormal, but not invariant.
Example B. Consider the Lie algebra n0,3(V ) with an orthonormal basis B0,3 =

{z1, z2, z3} for the centre and a minimal admissible module V 0,3 ∼= R4,4 of the Clifford
algebra Cl 0,3. We take v ∈ V 0,3, such that ⟨v, v⟩V 0,3 = 1. The eight vectors

(3.4) v, Jz1v, Jz2v, Jz3v, Jz1Jz2v, Jz1Jz3v, Jz2Jz3v, Jz1Jz2Jz3v

are linearly independent, have square of the norm equal to ±1, and invariant under the
action of G(B0,3). Nevertheless, the value ⟨v, Jz1Jz2Jz3v⟩V 0,3 depends on the choise of
v ∈ V , see [FM14, Lemmas 2.8, 2.9]. The basis B(V 0,3) is invariant, but not necessary
orthonormal.

Proposition 3.3. Let B(V r,s) be an invariant basis. Then it is an integral basis.

Proof. We claim that for any v ∈ V r,s with ⟨v, v⟩V r,s ̸= 0 we have:

(3.5) Jziv = ±Jzjv, =⇒ zi = zj.
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Indeed, (3.5) implies JziJzjv = ±v and therefore
(
JziJzj

)2
v = v. Assume by con-

trary that zi ̸= zj. Suppose first that both zi and zj are positive or negative. Then(
JziJzj

)2
= −J2

zi
J2
zj
= −Id, which is a contradiction. From the other side, if zi and zj

are opposite, then

⟨±v,±v⟩V r,s = ⟨JziJzjv, JziJzjv⟩V r,s = ⟨zi, zi⟩r,s⟨zj, zj⟩r,s⟨v, v⟩V r,s = −⟨v, v⟩V r,s

by (2.3), and v must be a null vector, which is again a contradiction.
Assume now that B(V r,s) is an invariant basis for V r,s and that Jzℓvi = ±vk for

vi, vk ∈ B(V r,s). Then, by definition of the Lie bracket (2.2), we obtain

⟨zℓ, [vi, vj]⟩r,s = ⟨Jzℓvi, vj⟩V r,s = ⟨±vk, vj⟩V r,s = ±δkj.

If k = j, then the orthonormality of Br,s and ⟨zℓ, [vi, vj]⟩r,s = ±1 imply that [vi, vj] =
±zℓ, and the structure constants in (3.1) are such that cℓij = ±1. If k ̸= j then

cℓij = 0. □

The definition of an invariant basis leads to the definition of an invariant integral
structure on pseudo H-type Lie algebras and (invariant) integral uniform subgroup on
the respective pseudo H-type Lie groups.

Definition 3.4. Let Br,s = {zk}r+s
k=1 be an orthonormal basis for Rr,s and B(V r,s) =

{vi}Ni=1 an invariant basis for a minimal admissible module V r,s. An invariant integral
structure on the pseudo H-type Lie algebra nr,s(V ) is the vector space over Z given by

span Z{B(V r,s)} ⊕ span Z{Br,s} =
{ N∑

i=1

nivi ⊕
r+s∑
k=1

mkzk

∣∣∣ ni,mk ∈ Z
}
.

An (invariant) integral uniform subgroup on the pseudo H-type Lie group Nr,s(V ) =
{(v, z) | v ∈ V r,s, z ∈ Rr,s} is given by the coordinates(( N∑

i=1

nivi | ni ∈ Z
)
,
(1
2

r+s∑
k=1

mkzk | mk ∈ Z
))

.

The main goal of the present work is the classification of invariant integral struc-
tures on pseudo H-type Lie algebras that give rise to a classification of integral uniform
subgroups on the corresponding pseudo H-type Lie groups. Note that invariant inte-
gral structures is a subclass of integral (not necessary invariant and/or orthonormal)
structures on pseudo H-type Lie algebras. In the present work we make a first step
and classify only invariant integral structures. Classification of general integral struc-
tures and more general rational structures is postponed for the future works. In the
article [GW86] the authors made a classification of rational uniform subgroups on the
Heisenberg groups, where the starting point was a unique invariant integral basis of
the Heisenberg algebra. Thus, in an essence, we make a first step towards the full clas-
sification of rational structures on two step nilpotent Lie algebras related to Clifford
algebras.



INTEGRAL STRUCTURES 9

3.2. Subgroups S ⊂ G(Br,s) of positive involutions. In the present section we
study subgroups S of G(Br,s) ⊂ Clr,s which will be a core for the construction of
invariant bases B(V r,s). Some of the properties of S can be learned from the definition
of the subgroups S, but some of them became clear by considering their action on
minimal admissible modules V r,s. The representation map J : S → End(V r,s) is not
injective only for r − s = 3 mod 4. In most of the proofs, we will concentrate on the
module, where the map J : S → End(V r,s) is injective.

Proofs for another non-equivalent module follow after a light modification of argu-
ments.

Recall that the group Pin(r, s) consists of elements of the Clifford algebra Clr,s of
the form

(3.6) σ = xi1 · · ·xik , ⟨xij , xij⟩r,s = ±1.

The subgroup Spin(r, s) ⊂ Pin(r, s) is generated by the even number of elements
in (3.6). Thus the group G(Br,s) is a finite subgroup of Pin(r, s).

Definition 3.5. We denote by S a subgroup of G(Br,s) satisfying the conditions

(S1) −1 /∈ S;
(S2) p ∈ Pin(r, 0)× Spin(0, s);
(S3) p2 = 1.

Elements p ∈ S are called positive involutions.

The name positive involution refers to the action of p ∈ S on V r,s: if ⟨v, v⟩V r,s > 0(
⟨v, v⟩V r,s < 0

)
then ⟨Jpv, Jpv⟩V r,s > 0

(
⟨Jpv, Jpv⟩V r,s < 0

)
. We denote by Sr,s (or just

S), the set of all subgroups of G(Br,s) satisfying Definition 3.5. This set is a partially
ordered set with respect to the inclusion relation among subsets.

Remark 3.2. The groups S ∈ Sr,s are necessarily commutative.

Example 3.1. Consider G(B4,0). Then the example of possible subgroups S are

S1 = {1, z1z2z3}, S2 = {1, z1z2z4}, S3 = {1, z1z3z4}, S4 = {1,−z1z2z4}
and

S5 = {1, z1z2z3z4}.
The first four groups are isomorphic under the action of the orthogonal group O(4). A
map C ∈ O(4) permutes the basis vectors {zi}, i = 1, 2, 3, 4 or change their sign. All
five groups are isomorphic as abelian groups of order 2. However, the roles of the first
four and the last one are different in construction of an invariant basis for B(V 4,0).

To avoid the ambiguity occurring with the very similar groups S2 and S4, we define
a bigger group.

Definition 3.6. Let S be a group satisfying Definition 3.5. We denote by Ŝ ⊂ G(Br,s)
the extended group

Ŝ = S ∪ {−σ : σ ∈ S}.
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In Example 3.1 S2,S4 are subgroups of G(B4,0), where we fix the basis {z1, z2, z3, z4}.
The subgroups S2,S4 are different, nevertheless

Ŝ4 = Ŝ2 = {±1,±z1z2z4}.

3.3. Generators for S.

Definition 3.7. We denote by PI = { pi }ℓi=1, where ℓ = #[PI] is the cardinality of
the set PI, a subset in G(Br,s) satisfying the conditions:

(PI1) 1 /∈ PI, pipj = pjpi for i ̸= j, and pi ∈ PI satisfy (S2) − (S3) in Defini-
tion 3.5 for all i = 1, . . . , ℓ.

(PI2) The vectors

(3.7) {1, p1, . . . , pℓ, pi1 · · · pik | 1 ≤ i1 < . . . < ik ≤ ℓ, k = 2, . . . , ℓ}
are linearly independent in the vector space Cl r,s.

Proposition 3.8. Condition (PI2) is equivalent to the condition

(PI2)′ non of the products pi1 · · · pik , 1 ≤ i1 < · · · < ik ≤ ℓ, k = 1, . . . , ℓ, is equal to
±1.

Proof. The elements

(3.8) {ϵ01, ϵi1,...,ikzi1 · · · zik} ⊂ Clr,s,

form a basis for Clr,s. Here 1 ≤ i1 < · · · < ik ≤ r + s, k = 1, . . . , r + s, where ϵ0 and
ϵi1,...,ik are equal to 1 or −1.

It is obvious that (PI2) implies (PI2)′. Assume that condition (PI2)′ is fulfild for a
collection C. Then the collection C is a subfamily of linearly independent basis vectors
from (3.8), and therefore they are linearly independent. □

As an example of a set PI we present the minimal length positive involutions, which
can be classified in the following types:

(3.9)

T1


p = zi1zi2zi3zi4 , where all zik are positive basis vectors;

p = zi1zi2zi3zi4 , where all zik are negative basis vectors;

p = zi1zi2zi3zi4 , where two zik are positive and two zil
are negative basis vectors;

T2


q = zi1zi2zi3 , where all zik are positive basis vectors;

q = zi1zi2zi3 , where one zik is positive and two zil
are negative basis vectors.

An easy combinatorial computation shows that generally positive involutions can
contain either 3 mod 4 or 4 mod 4 basis vectors. This observation inspires us to
make a more general definition.

Definition 3.9. A positive involution containing 4 mod 4 basis vectors is called a
type T1 involution. A positive involution containing 3 mod 4 basis vectors is called a
type T2 involution.
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Notation 3.1. For an element σ = ± zi1 · · · zik ∈ G(Br,s), we denote by b(σ) =
{zi1 , . . . , zik} the set of the vectors in the product σ, and by |b(σ)| the number of the
vectors in b(σ). Analogously, b+(σ)

(
b−(σ)

)
is the set of positive (negative) vectors in

σ and |b+(σ)| (|b−(σ)|) is the cardinality of the respective sets.

Proposition 3.10. The following properties can be easily verified.

(A) Two type T1 involutions p1 and p2 commute if the number |b(p1)∩b(p2)| is even.
The product p1p2 is an involution of type T1.

(B) A type T1 involution p and a type T2 involution q commute if the number |b(p)∩
b(q)| is even. The product pq is an involution of type T2.

(C) Two type T2 involutions q1 and q2 commute if the number |b(q1)∩ b(q2)| is odd.
The product q1q2 is an involution of type T1.

Proof. The proof is based on the Clifford algebra property

z1z2 + z2z1 = −2⟨z1, z2⟩r,s1, z1, z2 ∈ Rr,s,

which for orthogonal vectors z1 and z2 leads to z1z2 = −z2z1. □

Notation 3.2. We denote by PIr,s the collection of sets PI satisfying Definition 3.7.
The set PIr,s is partially ordered by the inclusion relation similar to Sr,s. If PI ∈ PIr,s,
then we denote by S(PI) a group generated by the set PI.

Proposition 3.11. (1) Let PI ∈ PI. Then

(3.10) S(PI) = {1, p1, . . . , pℓ, . . . , pi1 · · · pik | 1 ≤ i1 < · · · < ik ≤ ℓ = #[PI]

is a group of order #[S(PI) ] = 2ℓ in G(Br,s) and S(PI) ∈ S.
(2) Conversely, let S ∈ S. Then there is a (non unique) set PI ∈ PI such that

S(PI) = S.
(3) Let ε = (ε1, . . . , εℓ) be a tuple consisting of ±1, and PI = {pi}ℓi=1 ∈ PIr,s. Then

ε · PI = {ε1p1, . . . , εℓpℓ} ∈ PIr,s and Ŝ(PI) = ̂S(ε · PI).

Proof. Set in (3.7) is linearly independent and coincides with S(PI) in (3.10), therefore
#[S(PI)] = 2ℓ. If p is in the set (3.7), then −p is not in the set (3.7), which implies
that −1 /∈ S(PI). Any p ∈ S(PI) is a positive involution by definition of the set PI.
We showed (1).

The second property will be proved by induction arguments with respect to the order
of the group S. Let S ∈ Sr,s be given. Assume p1 ∈ S and if there are no elements in
S other than 1, p1, then we can put PI = {p1} and S(PI) = S.
Assume now that there is a set PI ′ = {p1, . . . , pℓ}ℓ≥2 satisfying Definition 3.7. If

S(PI ′) = {1, p1, . . . , pℓ, . . . , pi1 · · · pik | 1 ≤ i1 < · · · < ik ≤ ℓ, k = 1, . . . , ℓ},

is a proper subset of S, then there is a positive involution q ∈ S such that q ̸∈ S(PI ′),
and q ̸= ±1. Consider the set of commuting involutions

S(PI ′) · q = {q, p1q, . . . , pℓq, . . . , pi1 · · · pikq | 1 ≤ i1 < · · · < ik ≤ ℓ, k = 1, . . . , ℓ}.
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If pi1 · · · pim = pj1 · · · pjm′q, then q ∈ S(PI ′), as a product of involutions pj1 · · · pjm′ and
pi1 · · · pim from S(PI ′). Thus non of the elements in S(PI ′) can be written in the form
pj1 · · · pjm′q for pj1 · · · pjm′ ∈ S(PI ′). If

pi1 · · · pik ̸= pj1 · · · pjk′ for pi1 · · · pik , pj1 · · · pjk′ ∈ S(PI ′),

then pi1 · · · pikq ̸= pj1 · · · pjk′q. So the set PI ′′ = PI ′ ∪ {q} satisfies Definition 3.7.
Continuing the procedure, we find in finitely many steps a set PI satisfying Defini-

tion 3.7 such that S(PI) = S.
The proof of the last assertion is easily follows from Definition 3.7. □

3.4. Relation of S and an isotropy subgroup Sv. Now we relate groups S of
positive involutions with the isotropy subgroups Sv for v ∈ V r,s and show that they
are in a close relation.

Proposition 3.12. Let v ∈ V r,s be a non-null vector and let Sv denote the isotropy
subgroup in G(Br,s) of the vector v:

Sv = {σ ∈ G(Br,s) | Jσv = v}.
Then Sv satisfies Definition 3.5.

Proof. Let us assume that V r,s is the Clifford module, where the volume for acts as
identity. Then it is clear that −1 /∈ Sv. To check the second property we take σ ∈
Sv ⊂ G(Br,s) and assume by contrary that σ is a product containing an odd number
of negative basis vectors from Br,s. Then for v ∈ V r,s with ⟨v, v⟩V r,s > 0 we obtain

0 < ⟨v, v⟩V r,s = ⟨Jσv, Jσv⟩V r,s < 0

by (2.3), which is a contradiction. Similar argument is applied for a vector v ∈ V r,s

with ⟨v, v⟩V r,s < 0. Hence σ ∈ Pin(r, 0)× Spin(0, s).
The square of every element in G(Br,s) equal either 1 or −1. If σ ∈ Sv, then

J2
σ = IdV r,s . Hence σ2 = 1.
If r− s = 3 mod 4 and Sv includes the volume form ω which acts as minus identity

on V r,s, then we change ω to −ω and the proof will follow. □
The relation of an arbitrary S to an isotropy group Sv for some v ∈ V r,s is given in

the following statement.

Proposition 3.13. Let S ∈ Sr,s and PI = {p1, . . . , pℓ} ∈ PIr,s be such that S(PI) = S.
Let E+1(pk) = {u ∈ V r,s | Jpku = u}. Then the intersection

∩ℓ
k=1E

+1(pk) contains a
non-null vector v. Moreover, the group S(PI) is the isotropy subgroup Sv of the vector
v, and #[S] = #[Sv] = 2#[PI].

Proof. Let r − s ̸= 3 mod 4 and let E+1(pk), E
−1(pk) be the eigenspaces of an in-

volution Jpk with eigenvalue 1 and −1, respectively. If one of the spaces E±1(pk) is
trivial, then the symmetric bi-linear form ⟨. , .⟩V r,s on the non-trivial subspace is non-
degenerate. If both of E±1(pk) are non-trivial spaces, then they are orthogonal with
respect to ⟨. , .⟩V r,s and the restriction of ⟨. , .⟩V r,s onto E±1(pk) is non-degenerate too.
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Assume E+1(p1) ̸= {0}. Then the space E+1(p1) is invariant under the action of
the involution Jp2 . Therefore, E

+1(p1)
∩

E+1(p2) ̸= {0}. By repeating the procedures

we get that E =
∩ℓ

k=1 E+1(pk) ̸= {0} and the restriction of ⟨. , .⟩V r,s onto E is non-
degenerate. Thus there is a non-null vector v ∈ E such that Jpkv = v for all k = 1, . . . , ℓ.
Hence S(PI) = Sv.
If r − s = 3 mod 4, then without loss of generality we can assume that Jp1 acts as

−Id. We change p1 to −p1 to get E+1(p1) = {u ∈ V r,s | Jp1u = u} and continue the
proof as above. □

Corollary 3.14. Let S ∈ Sr,s, and let Sv = S be an isotropy subgroup of v as in
Proposition 3.13. The orbit Ov = G(Br,s).v, defined in (3.3), contains an invariant
basis B(V r,s) of the minimal admissible module V r,s. There is no canonical way to
prescribe the direction u or −u for a basis vector in B(V r,s). Therefore Ov is a set of
basis vectors counted with signes ±. Hence G(Br,s)/Sv

∼= G(Br,s).v and dim(V r,s) =
1
2
#[G(Br,s).v].

Proof. If the group Sv is an isotropy subgroup of an invariant basis, then

(3.11) #[Sv] ·#[G(Br,s).v] = 2r+s+1 = #[G(Br,s)].

Since the module is minimal admissible and the basis vectors are counted twice (with
± signs), we conclude #[G(Br,s).v] = 2 dim(V r,s). Therefore dim(V r,s) = 2r+s−ℓ, where
ℓ = #[PI] for S = S(PI). □

Notation 3.3. Let SM
r,s and PIMr,s be subsets of Sr,s, respectively PIr,s consisting of

maximal number of the involutions. Then PI ∈ PIMr,s if and only if S(PI) ∈ SM
r,s,

although the correspondence PI 7→ S(PI) is not injective. We denote by ℓ(r, s) the
maximal number of involutions in PIMr,s. The value ℓ(r, s) depends only on the signature

(r, s) and it satisfies 2ℓ(r,s) = 2r+s

dim(V r,s)
by Corollary 3.14.

Proposition 3.15. The number ℓ(r, s) has three periodicities:

ℓ(r + 8, s) = ℓ(r, s+ 8) = ℓ(r + 4, s+ 4) = ℓ(r, s) + 4

= ℓ(r, s) + ℓ(8, 0) = ℓ(r, s) + ℓ(0, 8) = ℓ(r, s) + ℓ(4, 4).

Proof. The number ℓ(r, s) is determined by 2ℓ(r,s) · dim(V r,s) = 2r+s. Hence,

2ℓ(r+8,s) · dim(V r+8,s) = 2r+8+s = 2r+s28 = 2ℓ(r,s) · dim(V r,s) · 28.

We know that dim(V r+8,s) = 24 dim(V r,s), see [FM17, Section 4.1]. Hence it holds
ℓ(r + 8, s) = ℓ(r, s) + 4.

Other equalities can be shown by the same arguments. □

Proposition 3.16.

ℓ(r, s) ≤ ℓ(r + s, 0), ℓ(r, s) ≤ ℓ(r + 1, s), ℓ(r, s) ≤ ℓ(r, s+ 1).(3.12)

Proof. The inequalities follow from the structure of involutions in (3.9). □
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The orbit Ov = G(Br,s).v gives the invariant basis for V r,s up to a sign. Since
the elements in G(Br,s) either commute or anti-commute with elements in Sv, we can
describe the construction of an invariant basis for a minimal admissible module V r,s.

Theorem 3.17. Let v ∈ V r,s be a unit vector from Proposition 3.13. There is a set
Σ ⊂ G(Br,s) such that the family {Jσv}σ∈Σ is an invariant basis of V r,s.

Proof. Let Sv ∈ SM
r,s. We fix a maximal set PIr,s = {pi}ℓ(r,s)i=1 such that S(PIr,s) = Sv

and write Eεi(pi) = {v ∈ V r,s | Jpiv = εiv}, where εi is either +1 or −1. We denote
ε = (ε1, . . . , εℓ(r,s)) and define

(3.13) E =

ℓ(r,s)∩
i=1

E+1(pi), Eε1,...,εℓ(r,s) =

ℓ(r,s)∩
i=1

Eεi(pi).

Before we continue the proof we note that dim(E) ∈ {1, 2, 4, 8}, and either dim(V r,s) =
dim(E)× 2ℓ(r,s) or dim(V r,s) = dim(E)× 2ℓ(r,s)−1. In the latter case, one involution Jpi
acts as Id or −Id on V r,s, which happens if r − s = 3 mod 4, see details in [FM21].
Thus

dim(E) = 2r+s−2ℓ(r,s) or dim(E) = 2r+s−2(ℓ(r,s)−1).

Let CG(Br,s)(S(PIr,s)) be the centralizer of S(PIr,s) in G(Br,s) and v ∈ E a unit

vector. Then we can find representatives {σi}dim(E)
i=1 ∈ CG(Br,s)

(
S(PIr,s)

)/ ̂S(PIr,s),

and {τj}2
ℓ(r,s)

j=1 ∈ G(Br,s)
/
CG(Br,s)

(
S(PIr,s)

)
such that

the vectors {Jσi
v}dim(E)

i=1 form an orthonormal basis for E,

the vectors {JτjJσi
v}dim(E)

i=1
2ℓ(r,s)

j=1 form an orthonormal basis for V r,s.

These {σi}dim(E)
i=1 and {τj}2

ℓ(r,s)

j=1 form the set Σ. □

Theorem 3.18. Fix the group S(PIr,s) and the representatives

{σi}dim(E)
i=1 ∈ CG(Br,s)

(
S(PIr,s)

)/ ̂S(PIr,s),

{τj}2
ℓ(r,s)

j=1 ∈ G(Br,s)
/
CG(Br,s)

(
S(PIr,s)

)
.

Assume that v1, v2 ∈ E generate two sets of invariant bases

Bvk(V
r,s) = {vk, Jσi

vk, Jτjvk, JτjJσi
vk}dim(E)

i=1
2ℓ(r,s)

j=1 , k = 1, 2,

as in Theorem 3.17. Then the invariant integral structures

(3.14)
span Z{Bv1(V

r,s)} ⊕ span Z{Br,s}

span Z{Bv2(V
r,s)} ⊕ span Z{Br,s}

are isomorphic.
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Proof. We define the correspondence A : Bv1(V
r,s) → Bv2(V

r,s) by

(3.15)
v1 7→ v2, Jσi

v1 7→ Jσi
v2,

Jτjv1 7→ Jτjv2, JτjJσi
v1 7→ JτjJσi

v2,

and extend it by linearity over Z. Then the map A⊕Id is an automorphism of invariant
integral structures (3.14). To show that A ⊕ Id is an isomoprhism, we denote the

basis vectors from Bv1(V
r,s) by {uα}dim(V r,s)

α=1 and the basis vectors from Bv2(V
r,s) by

{wα}dim(V r,s)
α=1 , where wα = Auα. Then we note that the bases Bv1(V

r,s) and Bv2(V
r,s)

are invariant, which means that for any uα ∈ Bv1(V
r,s) and any zk ∈ Br,s there is

uβ ∈ Bv1(V
r,s) such that

(3.16) Jzkuα = ±uβ = ±Jκv1, for some κ ∈ Σ = {σi, τj, τjσi}.
The correspondence (3.15) and (3.16) imply that for chosen uα ∈ Bv1(V

r,s) and zk ∈
Br,s we have

JzkAuα = Jzkwα = ±wβ = ±Jκv2 = ±AJκv1 = AJzkuα.

Note also that AτA = IdV r,s since it maps an othonormal basis to an orthonormal
basis. Then we have

⟨[Auα, Auβ], zk⟩r,s = ⟨JzkAuα, Auβ⟩V r,s = ⟨AJzkuα, Auβ⟩V r,s

= ⟨AτAJzkuα, uβ⟩V r,s = ⟨Jzkuα, uβ⟩V r,s(3.17)

= ⟨[uα, uβ], zk⟩r,s.
□

3.5. Equivalence of groups S. We define an equivalence relation between groups
S ⊂ G(Br,s) that will descend to the equivalence of their generating sets PIr,s. We also
introduce signatures to distinguish sets PIr,s for a fixed value (r, s). Different signatures
will lead to non-equivalent generating sets PIr,s and the groups S = S(PIr,s). Our aim
is to show that equivalent groups S ⊂ G(Br,s) lead to the isomorphic invariant integral
structures on the Lie algebras nr,s.

We recall Notation 3.1 and extend it to the sets PI.

Notation 3.4. Let PI ∈ PIr,s. We denote

b+(PI) = {zi | zi is a positive vector in some pi ∈ PI},
b−(PI) = {zi | zi is a negative vector in some pi ∈ PI}.

We set also |b+(PI)|, |b−(PI)| for the cardinality of the respective set, and |b(PI)| =
|b+(PI)|+ |b−(PI)|.

Definition 3.19. A set PI consisting only of the involutions of type T1 will be called
(T1)-type set. A set PI consisting of the involutions of type T1 and having at least one
involution of type T2 will be called (T2)-type set.

Proposition 3.20. Any (T2)-type set can be reduced to (T2)-type set containing at
most one involution of type T2 and the rest of involutions will be of type T1.
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Proof. The proof follows directly from Proposition 3.10. □
Notation 3.5. If C ∈ O(r, s), then we denote by the same letter C its natural extension
C : Cl ∗r,s → Cl ∗r,s to the action on the group of invertible elements Cl ∗r,s ⊂ Cl r,s.

Let Br,s be a basis as in (3.2). Let C ∈ O(r, s). Then C is a signed permutation
matrix for Br,s having only one nonzero component ” ± 1” in each column. We call
such a map (signed) re-ordering of Br,s. If σ = zi1 · · · zik ∈ G(Br,s), then C defines
an element C(σ) := C(zi1) · · ·C(zik) ∈ G(Br,s). Since a re-ordering matrix C maps
positive basis vectors to positive vectors and negative basis vectors to negative basis
vectors, it induces a map C : PIr,s → PIr,s. For the particular case (r, r) the map C can
be chosen also to map positive basis vectors to negative vectors and vice versa. The
changes for (r, r) will be discussed separately in a forthcoming paper.

Definition 3.21. We say that the groups S1 and S2 are equivalent, writing S1 ∼ S2,
if there is a map C ∈ O(r, s) such that its natural extention to Cl∗r,s ⊂ Cl r,s gives the

isomorphism between the extended groups Ŝ1 and Ŝ2; that is C(Ŝ1) = Ŝ2.

Definition 3.22. Let PI1 and PI2 be two sets of involutions. Then we say that PI1
and PI2 are equivalent, writing PI1 ∼ PI2, if S(PI1) is equivalent to S(PI2) in the
sense of Definition 3.21.

Example 3.2. Recall Example 3.1 and consider G(B4,0). Then PI1 = {z1z2z3} and
PI2 = {z1z2z4} are equivalent, nevertheless PI1 is not equivalent to PI5 = {z1z2z3z4}.
Example 3.3. In this example we present a construction of a sequence of subgroups
that will be important in Section 4. We call these subgroups standard. Let Br,s be an
orthonormal basis of Rr,s as in (3.2). We form a set of mutually different pairs

(3.18) πi,j = zizj, i < j, i, j ∈

{
{1, . . . , r} if r is even

{1, . . . , r − 1} if r is odd
,

(3.19) νk,l = zkzl, k < l, k, l ∈

{
{r + 1, . . . , s} if s is even

{r + 1, . . . , s− 1} if s is odd
,

and
b(πi1,j1) ∩ b(πi2,j2) = ∅, b(νk1,l1) ∩ b(νk2,l2) = ∅,

The cardinalities of the sets of pairs are

p = #{πi,j} =

{
r
2

if r is even
r−1
2

if r is odd
, n = #{νkl} =

{
s
2

if s is even
s−1
2

if s is odd
.

Now we form a set of involutions of type T1, which from now on will be denoted always
by pi. For any positive integers p̄ ∈ {1, . . . ,p} and n̄ ∈ {1, . . . ,n} we make a product
of pairs:

(3.20) πiα,jαπiβ ,jβ , πiα,jανkγ ,lγ , νkγ ,lγνkδ,lδ , α, β ∈ {1, . . . , p̄}, γ, δ ∈ {1, . . . , n̄}.
We denote by S p̄,n̄ the group generated by involutions (3.20).
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Proposition 3.23. In the notation above the groups S p̄,n̄ have the following properties.

(i) S p̄,n̄ is a subgroup of G(Br,s) for any p̄ ∈ {1, . . . ,p} and n̄ ∈ {1, . . . ,n};
(ii) S p̄−k1,n̄−k2 is a subgroup of S p̄,n̄ for any k1 = 0, 1, . . . , p̄ and k2 = 0, 1, . . . , n̄;
(ii) The standard groups S p̄,n̄ are equivalent for fixed (p̄, n̄) in the sense of Defini-

tion 3.21;
(iv) Any set PIr,s satisfying Definition 3.7 and such that Sp,n = S(PIr,s) will be

equivalent in the sense of Definition 3.22;
(v) Pairs πi,j and νk,l commute with all elements in Sp,n;
(vi) Let θ = zi1 · · · zip+n be a product such that each zit, t = 1, . . . ,p+n belongs only

to one pair from (3.18) or (3.19). Then θ commutes with all elements in Sp,n.

Proof. Properties (i)-(ii) are obvious. Statements (iii) and (iv) follows from the fact the
pairs can be chosen up to a sign permutation of the basis in Rr,s. Properties (v) and
(vi) are the consequence of the facts that pairs πi,j, νk,l, and the product θ will have
even number of common elements and that the number of vectors zi in any element of
the group Sp,n ⊂ G(Br,s) is also even. □
Example 3.4. Consider R6,3 with the basis B6,3 = {z1, . . . , z9}. The first six elements
of the basis are positive and the last three are negative. We can choose the pairs

(3.21) π1,2 = z1z2, π3,4 = z3z4, π5,6 = z5z6, ν78 = z7z8,

up to the sign permutation. They generate a group S3,1 ⊂ G(B6,3) of cardinality
#S3,1 = 8. A possible choice of (T1)-type set of involutions PI generating S3,1 is

(3.22) PI6,3 = {p1 = π1,2π3,4, p2 = π1,2π5,6, p3 = π1,2π7,8}.
Any pair from (3.21) will commute with involutions in (3.22) and therefore with all
elements in the group S3,1 ⊂ G(B6,3). Furthermore, θ = z1z3z5z7, which is chosen up
to a sign permutation, commutes with elements in the group S3,1 ⊂ G(B6,3) as well.
The pairs

π1,2, π3,4, π5,6 generates the subgroup S3,0 ⊂ S3,1.

Likewise the pairs

π1,2, π3,4, π7,8 generates the subgroup S2,1 ⊂ S3,1.

Each of the subgroups S3,0 and S2,1 is a representative in its class of equivalence.
Nevertheless, the groups S3,0 and S2,1 are not equivalent.

3.6. Connectivity of groups S. Here we introduce another tool of detecting non-
equivalent subgroups S ⊂ G(Br,s), that we call “connectedness” for S = S(PIr,s).

Definition 3.24. A group S ∈ Sr,s is called connected if there is no two subgroups
S(1),S(2) ⊂ S, such that S is isomorphic to S(1) × S(2) with b(S(1)) ∩ b(S(2)) = ∅. We
write in this case π0(S) = 1.

If a group S ∈ Sr,s admits the decomposition into subgroups S = S(1)× . . .×S(k) with
π0(S(i)) = 1 and b(S(i))∩ b(S(j)) = ∅ for any i ̸= j, then we say that S is disconnected,
has k connected components and we write π0(S) = k.
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Lemma 3.25. Let PI = {pi}ℓ(r,s)i=1 ∈ PIMr,s, and |b(PI)| = r + s. Assume that there is

zα ∈ G(Br,s) such that zα ∈
∩ℓ(r,s)

i=1 b(pi), and moreover, there is no σ ∈ S(PI) such
that b(σ) ⊂ b(pi) for any pi ∈ PI. Then π0(S(PI)) = 1.

Proof. Note that any product
∏2k+1

j pj of odd number contains zα. Let us assume that
S = S(1) × S(2) is a non-trivial decomposition.

If both subgroups include a product of odd number of involutions
∏2l+1

j pj, pj ∈ PI,

then zα ∈ b(S(1))
∩

b(S(2)). Therefore S should be connected.

Assume the subgroup S(1) consists of only even products η =
∏2k

j pj of involutions
in PI. We write one of these products in the form η = pi0 ·σ ∈ S(1), where pi0 is one of
the generators from the set PI and σ is a product of odd number of some involutions
in PI. It implies that σ ∈ S(2). By the assumption b(σ) ̸⊂ b(pi) for any pi ∈ PI, there
exists a basis vector zβ ∈ b(σ) such that zβ /∈ b(pi0). This implies that zβ ∈ b(pi0 · σ)
and therefore zβ ∈ b(σ)∩ b(pi0 · σ) ⊂ b(S(2))

∩
b(S(1)). This shows that the group S is

connected. □
Example 3.5. The standard subgroups Sp,0 ∈ Sr,0 constructed in Example 3.3 are
connected for any r ≥ 0.

Proposition 3.26. Let PI1, P I2 ∈ PIMr,s be two generating sets. If PI1 ∼ PI2, then
π0(PI1) = π0(PI2).

Proof. We write PI1 = {pk}ℓ(r,s)k=1 , PI2 = {qm}ℓ(r,s)m=1 and |b(PIj)| = t, j = 1, 2. By the
assumption there exists an orthogonal map C which performs the re-ordering of the

basis Br,s and such that C
( ̂S
(
{pk}ℓ(r,s)k=1

))
=

̂S
(
{qm}ℓ(r,s)m=1

)
. If

S(PI1) = S(1) × S(2) = S(1)(PI11)× S(2)(PI12),

with

PI11 = {pik}ak=1, |b({pik}ak=1)| = β,

and

PI12 = {pjk}
ℓ(r,s)
k=a+1, |b({pjk}

ℓ(r,s)
k=a+1)| = t− β,

then b({pik}ak=1) ∩ b({pjk}
ℓ(r,s)
k=a+1) = ∅. The re-ordering map C will map the disjoint

sets b({pik}ak=1) and b({pjk}
ℓ(r,s)
k=a+1) onto disjoint sets Z1 = {zi1 , . . . , ziβ} and Z2 =

{zjβ+1
, . . . , zit}. The set Z1 (with possible change of signs) will form the set PI21 =

{qik}ak=1 and the set Z2 (again with possible change of signs) will form the set PI22 =
{qjk}tk=a+1. Thus we obtain S(PI2) = S(PI21)× S(PI22). □

We describe how the Z2-graded product of Clifford algebras can lead to the construc-
tion of disconnected subgroups S ⊂ G(Br,s). Consider the following decompositions of
an orthonormal basis Br,s = {z1, . . . , zr, zr+1, . . . , zr+s}:

z1, . . . , zr1︸ ︷︷ ︸
positive

, zr+1, . . . , zr+s1︸ ︷︷ ︸
negative

, and zr1+1, . . . , zr︸ ︷︷ ︸
positive

, zr+s1+1, . . . , zr+s︸ ︷︷ ︸
negative

,
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for r1 ≤ r and s1 ≤ s. We put r2 = r−r1 and s2 = s−s1 and consider the decomposition
Rr,s ∼= Rr1,s1 ⊕ Rr2,s2 , where we assume r1 + s1 ≥ (r − r1) + (s − s1) = r2 + s2. This
decomposition leads to the isomorphism Clr1,s1⊗̂Clr2,s2

∼= Clr1+r2,s1+s2 = Clr,s, where ⊗̂
denotes the Z2-graded tensor product of Clifford algebras, see [LM89, Proposition 1.5].
For each of the Clifford algebras Clrk,sk , k = 1, 2, we consider the minimal admissible
modules V rk,sk and the corresponding sets PIrk,sk . For r = r1 + r2 and s = s1 + s2, we
have ℓ(r1, s1) ≤ ℓ(r, s). Let PIr1,s1 ∈ PIMr1,s1 and PIr2,s2 ∈ PIMr2,s2 satisfy

|b+(PIr1,s1)| = r1, |b−(PIr1,s1)| = s1,

|b+(PIr2,s2)| = r2, |b−(PIr2,s2)| = s2,

and PIr1,s1
∩
PIr2,s2 = ∅. We assume also that each set contains at most one type T2

involution qk ∈ PIrk,sk , k = 1, 2. Then by non-commutativity of q1 and q2 it is easy to
see the following properties:

If at least one of the sets PIr1,s1 or PIr2,s2 is (T1)-type set, then

PIr1,s1
∪

PIr2,s2 ∈ PIr,s.

This implies

(3.23) ℓ(r1, s1) + ℓ(r2, s2) ≤ ℓ(r, s).

If both PIr1,s1 and PIr2,s2 are (T2)-type sets, containing type T2 involutions
q1 ∈ PIr1,s1 and q2 ∈ PIr2,s2 , then(
PIr1,s1\{q1}

)∪
PIr2,s2 ∈ PIr,s and PIr1,s1

∪(
PIr2,s2\{q2}

)
∈ PIr,s.

This implies

(3.24) ℓ(r1, s1) + ℓ(r2, s2)− 1 ≤ ℓ(r, s).

One can state similar properties for any number of components in a decomposition
PI = ∪kPIrk,sk .

Remark 3.3. If the equalities in (3.23) or (3.24) hold, then non-connected subgroups
S(PIr1,s1) and S(PIr2,s2) can be constructed from lower dimensions and

S(PIr,s) = S(PIr1,s1)× S(PIr2,s2).

Particularly, if r ≤ 9 and s ∈ {0, 1}, then all the groups are connected. It follows by
showing that the inequalities (3.23) and (3.24) are always strict.

4. Construction of subgroups in SM
r,s, r ∈ {3, . . . , 16}, s ∈ {0, 1}

4.1. General method of the construction. In this section we apply the previous
theory for the classification of groups S ⊂ G(Br,s) and perform the exact construction
of non-equivalent subgroups for 0 ≤ r + s ≤ 16. We restrict ourself to 0 ≤ r + s ≤ 16
because we want to illustrate the main features that appear in classification without
diving into technical details. The classification for arbitrary S ⊂ G(Br,s) is postponed
for the forthcoming paper.
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We start from s = 0. We classify groups S ⊂ SM
r,0 according to parameters: π0(S),

|b(PIr,0)|, and the type (T1) or (T2) of the set PI generating the group S ∈ SM
r,s. We

use the standard groups and notations introduced in Example 3.3. For a standard group
we will add from none to two additional involutions, see Step 1 below for details. To
distinguish the groups, where all previous parameters coincide, we assign the following
information about (TI)-type sets, I = 1, 2:

(4.1)



(i) We use the signature (TI, π) if an additional involution
is related to product π1,2;

(ii) We use the signature (TI, θ) if an additional involution
is related to product θ;

(iii) We use the signature (TI, π, θ) if there are two additional
involutions, which are related to both products π1,2 and θ;

(iv) Finally we just write (TI) if there are no involutions,
except of standards;

For each set of involutions PIr,0 we write the signature

(4.2) (ℓ(r, 0), (T1, •, •), |b(PIr,0)|)

We summarise the results in Table 2. We list the set of generators PIr,0 for each
group. The group itself and the set of generators will be given up to a sign permutation.
The word unique is understood in the sense of equivalence relation of Definition 3.21
or Definition 3.22.

4.1.1. Main steps of the construction of S ∈ SM
r,0 for a fixed r > 0. We divide the

construction into three steps.
Step 1. We start from a group satisfying π0(S) = 1 and |b(PIr,0)| = r. First we

find standard subgroup Sp,0 ⊂ S and complement it (if necessary) by involutions to
reach the maximal number ℓ(r, 0) of involutions in PIr,0 generating S(PIr,0) ∈ SM

r,0.
The additional involutions will be formed by checking whether the product of π1,2

and/or θ by zr are involutions commuting with Sp,0. Then we consider a smaller
standard subgroup Sp−1,0 ⊂ Sp,0 and complement it by a careful choice of involutions
to reach the maximal number ℓ(r, 0) for S(PIr,0), checking whether the connectivity
π0(S(PIr,0)) = 1 is not violated. We can repeat the last step several times if the
condition π0(S(PIr,0)) = 1 still holds.

Step 2. We continue to look on π0(S) = 1 and |b(PIr,0)| = r − 1. In most cases it
will be a simple step back from (r, 0) to (r − 1, 0) as, for example, for reduction from
PI4,0 to PI3,0.

Step 3. Next we check π0(S) = 2 and S = S(1) × S(2). This step is reduced to
combinations of the previous 2 steps. If needs, we can proceed to higher number of
connected components.

The equivalence of the groups constructed in the previous three steps is summarised
in the following proposition.
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Proposition 4.1. Let S = S(PIr,0) ∈ SM
r,0, with |b(PIr,0)| = r and π0(S) = 1. Then,

the maximal standard subgroups Sp,0, included in a given group S ∈ SM
r,0, are equivalent

modulo reordering by induction arguments with respect to the dimension (r, 0), see also
Proposition 3.23, item (v).

Moreover, once we fix a standard group Sp,0 with its generators of the form (3.20),
the maximally complemented sets PIr,0 obtained by adding involutions as in Step 1, will
be equivalent in the sense of Definition 3.22 if they have the same signature described
in (4.1) and π0(S(PIr,0)) = 1.

Lemma 4.2. If r = 3 + 8k, 5 + 8k, 6 + 8k, 7 + 8k for k ≥ 0, then sets PIr,0 ∈ PIMr,0
satisfying π0(S(PIr,0)) = 1 and |b(PIr,0)| = r are always of (T2)-type.

Proof. We start from r = 3+8k. For the case r = 3 there is only one type T2 involution.
Let k ≥ 1 and assume, by contrary, that there is a (T1)-type set PIr,0 ∈ PIMr,0. We have

ℓ(r, 0) = ℓ(3 + 8k, 0) = 1 + 4k. The standard subgroup Sp,0 ⊂ S(PIr,0), p = 1 + 4k,
does not contain zr, since r is odd. Let p1, . . . , p4k will be involutions generating Sp,0,
then zr ∈ b(p1+4k). It implies

{p1, . . . , p4k, zr · p1+4k} ∈ PIMr−1,0.

This contradicts to ℓ(r − 1, 0) = ℓ(2 + 8k, 0) = ℓ(3 + 8k, 0)− 1 = ℓ(r, 0)− 1.
The arguments for the cases r = 5 + 8k, and r = 7 + 8k are similar to the case

r = 3 + 8k.
Let r = 6 + 8k. We assume that there is a (T1)-type set PIr,0 ∈ PIMr,0. We have

ℓ(r, 0) = ℓ(6 + 8k, 0) = 3 + 4k. The standard subgroup Sp,0 ⊂ S(PIr,0), p = 3 + 4k,
contains zr. Let p1, . . . , p2+4k be involutions generating Sp,0, where we can assume that
zr ∈ b(p2+4k) and p3+4k ∈ PI6+8k,0 is the last type T1 involution.

(1) If zr /∈ b(p3+4k), then

{p1, . . . , p1+4k, zr · p2+4k, p3+4k} ∈ PIMr−1,0.

This contradicts to ℓ(r − 1, 0) = ℓ(5 + 8k, 0) = ℓ(6 + 8k, 0)− 1 = ℓ(r, 0)− 1.
(2) If zr ∈ b(p3+4k), then we replace p3+4k ∈ PIr,0 by another type T1 involution

p̃3+4k = p2+4kp3+4k ∈ P̃ Ir,0. In this case zr /∈ b(p̂3+4k) and the situation is
reduced to the previous step (1). Note that the group S(PIr,0) is equivalent

S(P̃ Ir,0).

We also note that for r = 3 + 8k and r = 7 + 8k the volume forms Ωr =
∏r

i=1 zi
which are type T2 involutions can be included to PIr,0. It justifies the (T2)-type set of
PIs in cases r = 3 + 8k and r = 7 + 8k. □

4.2. Construction of connected groups S ∈ SM
r,0 for r ∈ {3, . . . , 16}. In Table 2

we collect the nonisomorphic connected groups S ∈ SM
r,0 for r ∈ {3, . . . , 16}; that is

π0(S) = 1. Note that if there is a group S ∈ SM
r,0 with signature

S = (ℓ(r, 0), (Tk, •, •), |b(PIr,0)|),
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where

ℓ(r, 0) = ℓ(r − 1, 0), |b(PIr,0)| = r − 1, k = 1, 2,

then

S = (ℓ(r − 1, 0), (Tk, •, •), r − 1) ∈ SM
r−1,0,

as for instance in Table 2 for r = 4, 8, 9 and some others values of r.

Notation 4.1. We write θi,j to indicate that product in θ starts from zi and ends with

zj containing all zk for odd k between i and j. We have |b(θi,j)| =
j−i
2

+ 1.

Table 2. Connected groups in SM
r,0 for r = 3, . . . , 16

r Signatures PIr,0

12

S(1)
12 =

(
5, (T1, π), 12

)
S(2)
12 =

(
5, (T2, θ), 12

)
S(3)
12 =

(
5, (T2, π), 11

)
= S11

S(1)
12 =



p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

S(2)
12 =



p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

q = θ1,9π11,12

11 S11 =
(
5, (T2, π), 11

) p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

q = π1,2z11

10

S(1)
10 =

(
4, (T1, π), 10

)
S(2)
10 = S(1)

9

S(3)
10 = S(2)

9 = S(1)
8

S(4)
10 = S(3)

9 = S(2)
8 = S7

S(1)
10 =


p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

9

S(1)
9 =

(
4, (T2, π), 9

)
S(2)
9 = S(1)

8

S(3)
9 = S(2)

8 = S7

S(1)
9 =


p1 = π1,2z3z4

p2 = π1,2z5z6

p3 = π1,2z7z8

q = π1,2z9

8

S(1)
8 =

(
4, (T1, θ), 8

)
S(2)
8 = S7

S(1)
8 =


p1 = π1,2z3z4

p2 = π1,2z5z6

p3 = π1,2z7z8

p4 = θ1,7

7 S7 =
(
4, (T2, π, θ), 7

) p1 = π1,2z3z4
p2 = π1,2z5z6
p3 = θ1,5z7
q = π1,2z7

6 S6 =
(
3, (T2, θ), 6

) p1 = π1,2z3z4
p2 = π1,2z5z6
q = θ1,5

5 S5 =
(
2, (T2, θ), 5

) p = π1,2z3z4
q = θ1,5 = z1z3z5

4
S(1)
4 =

(
1, (T1), 4

)
S(2)
4 =

(
1, (T2, π), 3

)
= S3

p = π1,2z3z4
q = π1,2z3

3 S3 =
(
1, (T2, π), 3

)
q = π1,2z3

r Signatures PIr,0

16

S(1)
16 =

(
8, (T1, θ), 16

)
S(2)
16 = S15

S(1)
16 =



p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = π1,2π13,14

p7 = π1,2π15,16

p8 = θ1,13z15

15 S15 =
(
8, (T2, π), 15

)
p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = π1,2π13,14

p7 = θ1,13z15
q = π1,2z15

14

S(1)
14 =

(
7, (T2, θ), 14

)
S(2)
14 =

(
7, (T2, π, θ), 14

)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = π1,2π13,14

q = θ1,13
p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

p6 = θ1,11π13,14

q = π1,2z14

13

S(1)
13 =

(
6, (T2, π), 13

)

S(2)
13 =

(
6, (T2, θ), 13

)

S(3)
13 =

(
6, (T2, π, θ), 13

)

p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

q = π1,2z13
p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = π1,2π11,12

q = θ1,13
p1 = π1,2π3,4

p2 = π1,2π5,6

p3 = π1,2π7,8

p4 = π1,2π9,10

p5 = θ1,9z11z12z13
q = π1,2z12

We explain construction only for r = 7, since it is the most illustrative.



INTEGRAL STRUCTURES 23

The standard subgroup S3,0 ⊂ S is generated by two involutions

(4.3) p1 = π1,2π3,4, p2 = π1,2π5,6.

We need to add two involutions since ℓ(7, 0) = 4, at least one of which must contain z7.
We observe that the products π1,2z7 and θ1,5z7 = z1z3z5z7 are both involutions com-
muting with generators (4.3) and with each other. We append them both to reach
ℓ(7, 0) = 4. The reductions to |b(PI7,0)| = 6 is not possible due to ℓ(6, 0) < ℓ(7, 0).

4.3. Constructions of disconnected groups S ∈ SM
r,0 for r ∈ {10, . . . , 16}. We

show in Table 3 the disconnected groups with π0(Sr,0) = 2 for r ∈ {10, . . . , 16}.
We explain in detailes only the case for r = 11. To construct the disconnected

subgroup S(1)
11 = S(2)

(1) × S(2)
(2) corresponding to the Z2-graded tensor product of the

Clifford algebras Cl11,0 ∼= Cl8,0⊗̂Cl3,0 we start from the standard subgroup S4,0
(1) ⊂ S(1)

(1)

generated by

(4.4) p1 = π1,2π3,4, p2 = π1,2π5,6, p3 = π1,2π7,8.

and add type T1 involution θ1,7 = z1z3z5z7. The group S(1)
(1) has the folowing signature

(4, (T1, θ), 8). Then the signature of S(2)
(1) = {1, π9,10z11} is (1, (T2, π), 3).

To obtain S(2)
11 = S(2)

(1) × S(2)
(2) corresponding to the Z2-graded tensor product of the

Clifford algebras Cl11,0 ∼= Cl7,0⊗̂Cl4,0 we consider standard subgroup S3,0
(1) ⊂ S(2)

(1) gener-

ated by (4.3) and add type T1 involution θ1,7 and type T2 involution π1,2z7. The group

S(2)
(1) obtain the signature (4, (T2, π, θ), 7). Then S(2)

(2) = {1, π8,9π10,11} has the signature

(1, (T1), 4).

Table 3. Disconnected groups in SM
r,0 for r = 10, . . . , 16

r Signatures PI

12

S(1)
12 =

(
4, (T1, θ), 8

)
×
(
1, (T1), 4

)
S(2)
12 =

(
3, (T1, θ), 7

)
×
(
2, (T2, π), 5

)
S(3)
12 =

(
3, (T2, θ), 6

)
×
(
2, (T1), 6

)
S(4)
12 = S(1)

11

S(5)
12 = S(2)

11

S(1)
12 =


(p1)1 = π1,2π3,4 (p1)2 = π9,10π11,12

(p2)1 = π1,2π5,6

(p3)1 = π1,2π7,8

(p4)1 = θ1,7

S(2)
12 =


(p1)1 = π1,2π3,4 (p1)2 = π8,9π10,11

(p2)1 = π1,2π5,6 (q)2 = π8,9z12

(p3)1 = θ1,7

S(3)
12 =


(p1)1 = π1,2π3,4 (p1)2 = π7,8π9,10

(p2)1 = π1,2π5,6 (p1)2 = π7,8π11,12

(q)1 = θ1,5

11

S(1)
11 =

(
4, (T1, θ), 8

)
×
(
1, (T2, π), 3

)
S(2)
11 =

(
4, (T2, π, θ), 7

)
×
(
1, (T1), 4

)

(p1)(1) = π1,2π3,4, (q)(2) = π9,10z11
(p2)(1) = π1,2π5,6,
(p3)(1) = π1,2π7,8,
(p4)(1) = θ1,7,
(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6,
(p3)(1) = θ1,7,
(q)(1) = π1,2z7,

10

S(1)
10 =

(
3, (T1, θ), 7

)
×
(
1, (T2, π), 3

)
S(2)
10 =

(
3, (T2, θ), 6

)
×
(
1, (T1), 4

)
(p1)(1) = π1,2π3,4, (q)(2) = π8,9z10
(p2)(1) = π1,2π5,6,
(p3)(1) = θ1,7,
(p1)(1) = π1,2π3,4, (p1)(2) = π7,8π9,10

(p2)(1) = π1,2π5,6,
(q)(1) = θ1,5,

r Signatures PI

16

S(1)
16 =

(
4, (T1, θ), 8

)
×
(
4, (T1, θ), 8

)
S(2)
16 = S15

S(1)
16 =


(p1)1 = π1,2π3,4, (p1)2 = π9,10π11,12

(p2)1 = π1,2π5,6, (p2)2 = π9,10π13,14

(p3)1 = π1,2π7,8, (p3)2 = π9,10π15,16

(p4)1 = θ1,7, (p4)2 = θ9,15

15 S15 =
(
4, (T1, θ), 8

)
×
(
4, (T2, π, θ), 7

) (p1)(1) = π1,2π3,4, (p1)(2) = π9,10π11,12

(p2)(1) = π1,2π5,6, (p2)(2) = π9,10π13,14

(p3)(1) = π1,2π7,8, (p3)(2) = θ9,15
(p4)(1) = θ1,7, (q)(2) = π9,10z15

14

S(1)
14 =

(
4, (T1, θ), 8

)
×
(
3, (T2, θ), 6

)
S(2)
14 =

(
4, (T2, π, θ), 7

)
×
(
3, (T1, θ), 7

)

(p1)(1) = π1,2π3,4, (p1)(2) = π9,10π11,12

(p2)(1) = π1,2π5,6, (p2)(2) = π9,10π13,14

(p3)(1) = π1,2π7,8, (q)(2) = θ9,13
(p4)(1) = θ1,7,
(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6, (p2)(2) = π8,9π12,13

(p3)(1) = θ1,7, (p3)(2) = θ9,13z14
(q4)(1) = π1,2z7,

13

S(1)
13 =

(
4, (T1, θ), 8

)
×
(
2, (T2, π), 5

)
S(2)
13 =

(
4, (T2, π, θ), 7

)
×
(
2, (T1), 6

)
S(3)
13 =

(
3, (T1, θ), 7

)
×
(
3, (T2, θ), 6

)

(p1)(1) = π1,2π3,4, (p1)(2) = π9,10π11,12,
(p2)(1) = π1,2π5,6, (q)(2) = π9,10z13
(p3)(1) = π1,2π7,8,
(p4)(1) = θ1,7,
(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6, (p2)(2) = π8,9π12,13

(p3)(1) = θ1,7,
(q)(1) = π1,2z7,
(p1)(1) = π1,2π3,4, (p1)(2) = π8,9π10,11

(p2)(1) = π1,2π5,6, (p2)(2) = π8,9π12,13

(p3)(1) = θ1,7, (q)(2) = z8z10z12
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Proposition 4.3. Table 2 and Table 3 are the same for H-type Lie algebras nr,1,
r ∈ {3, . . . , 16}.

Proof. For s = 1, the negative basis vector plays no role in forming the involutions, see
Definition 3.5. □

Table 4. Number of non-equivalent groups

r 1 2 3 4 5 6 7 8
π0(S) = 1 0 0 1 2 1 1 1 2
π0(S) = 2 0 0 0 0 0 0 0 0

r 9 10 11 12 13 14 15 16
π0(S) = 1 3 4 1 3 3 2 1 2
π0(S) = 2 0 2 2 5 3 2 1 2

4.4. Construction of connected groups S ∈ SM
r,s for 0 < r + s < 16. We show in

Table 6 the possible maximal sets PI ∈ PIMr,s with π0(PIr,s) = 1 for some for r+s ≤ 16.

The different sets of involutions are determined based on the data of PIMr+s,0 by a
recurrent procedure. Note that |b(PIr,s)| = |b+(PIr,s)| + |b−(PIr,s)| ≤ r + s because
some of the basis vectors zj are not used when s ≥ 0, as for instance the (T2)-type set
in PIM4,0 consists only of product of three vectors zj. We use the signature

ℓ(r, s), Type (T1 or T2), (|b+(PI)|, |b−(PI)|)
to indicate the non-equivalent sets of involutions PIMr,s in Table 6.
The values ℓ(r, s) of the maximal number of involutions for r + s ≤ 16 are collected

in Table 5.

Table 5. The value ℓ(r, s) for r + s ≤ 16

16 8
15 7 7
14 6 7 7
13 5 6 7 8
12 5 6 7 8 8
11 4 5 6 7 7 7
10 4 5 5 6 6 7 7
9 4 4 4 5 5 6 7 8
8 4 4 4 5 5 6 7 8 8
7 3 3 3 4 4 5 6 7 7 7
6 2 3 3 4 4 5 5 6 6 7 7
5 1 2 3 4 4 4 4 5 5 6 7 8
4 1 2 3 4 4 4 4 5 5 6 7 8 8
3 0 1 2 3 3 3 3 4 4 5 6 7 7 7
2 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
1 0 0 0 1 1 2 3 4 4 4 4 5 5 6 7 8
0 0 0 0 1 1 2 3 4 4 4 4 5 5 6 7 8 8

s/r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

We mentioned here the facts that allow us to complete Tables 6 and 7.

(F1) ℓ(r + s, 0) ≥ ℓ(r, s) ≥ ℓ(r + s, 0)− 1, see Table 5.
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(F2) Assume that r ≥ 2, s ≥ 0, and ℓ(r, s) = ℓ(r − 1, s). There is a (T1)-type
set PI ∈ PIMr,s, if and only if there is a (T2)-type set PI ′ ∈ PIMr−1,s. Through

the natural inclusion Clr−1,s ⊂ Clr,s, we can regard PI ′ ∈ PIMr,s. For instance

the (T1)-type set of involutions PI4,0 = {z1z2z3z4} ∈ PIM4,0 exists if and only if

exists the (T2)-type set PI ′ = {z1z2z3} ∈ PIM3,0.
(F3) If p = zi1 · · · zia ∈ PIr,0 is an involution, where zik , k = 1, . . . , a, are all positive

basis vectors, then p′ = zi1 · · · zilz∗il+1
· · · z∗ik ∈ PIr′,s′ , r

′+ s′ = r is an involution
where we replaced the even number of positive basis vectors zil+1

, . . . , zik by
negative basis vectors z∗il+1

, . . . , z∗ik , see (3.9).

To complete Tables 6 and 7 we do the following steps

(S1) We determine the cases (r, 0) for all r > 0. This was done in Table 2.
(S2) For any given (r, 0), we determine all the equivalence classes of PIr′,s′ with

r′ + s′ = r successively for r = 3, 4, . . . as follows.
(S3) Let us assume that (r′, s′) with r′ + s′ = r are such that the all equivalent sets

of PIr′−1,s′ and PIr′,s′−1 are already determined. There are possible cases which
define the rest of the steps:

(4.5) ℓ(r′, s′) ≥ ℓ(r′ − 1, s′),

(4.6) ℓ(r′, s′) ≥ ℓ(r′, s′ − 1),

(4.7) ℓ(r′, s′) ≤ ℓ(r, 0).

(S4) If ℓ(r′, s′) > ℓ(r′ − 1, s′), then we do nothing. If ℓ(r′, s′) = ℓ(r′ − 1, s′), then we
include all classes of involutions PIr′−1,s′ to PIMr′,s′ . We check whether we can
add classes of involutions satisfying (F2).

(S5) If ℓ(r′, s′) > ℓ(r′, s′ − 1), then we do nothing. If ℓ(r′, s′) = ℓ(r′, s′ − 1), then
we include all classes of involutions PIr′,s′−1 to PIMr′,s′ . We remove the classes
of equivalence of involutions which coincide in steps (S4) and (S5). Note that
due to the induction the steps (S4) and (S5) allow us to include all the classes
of involutions PIr′′,s′′ ∈ PIMr′,s′ with r′′ + s′′ < r′ + s′ = r.

(S6) If ℓ(r′, s′) < ℓ(r, 0), then all the involutions were included in steps (S4) and
(S5). If ℓ(r′, s′) = ℓ(r, 0), then we check all PIr,0 ∈ PIMr,0 with r = r′ + s′,
whether we can apply property (F3) to the involutions p ∈ PIr,0.

4.5. Constructions of disconnected groups S ∈ SM
r,s for 0 < r + s < 16. Let

π0(PIr,s) = 2 for 10 ≤ r + s ≤ 16.
If ℓ(r, s) = ℓ(r+ s, 0), then the different sets of involutions are determined based on

the data of PIMr+s,0 with π0(PI) = 2. We apply the rules for connected sets to each
collection of involution in the disconnected set listed in Table 3 for r = 10, . . . 16. We
summarize the possible maximal sets PI ∈ PIMr,s in Tables 8 and 9.
If ℓ(r, s) < ℓ(r + s, 0) then we proceed as in steps (S4)-(S6) of Section 4.4 for each

connected subgroup S(1) in the direct product decomposition S = S(1) × S(2). We will
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Table 6. Connected groups for r + s ≤ 16. Part 1

16 8, T1, (0, 16)
15 7, T1, (0, 15) 7, T1, (0, 15)

7, T2, (1, 14)
14 6, T1, (0, 14)1 7, T2, (1, 14) 7, T1, (2, 14)

6, T1, (0, 14)2 7, T2, (1, 14)
7, T2, (2, 12)1

7, T2, (2, 12)2

13 5, T1, (0, 12) 6, T2, (1, 12)1 7, T2, (2, 12)1 8, T2, (3, 12)
6, T2, (1, 12)2 7, T2, (2, 12)2

12 5, T1, (0, 12) 6, T2, (1, 12)1 7, T2, (2, 12)1 8, T2, (3, 12) 8, T1, (4, 12)
6, T2, (1, 12)2 7, T2, (2, 12)2 8, T2, (3, 12)

11 4, T1, (0, 10) 5, T2, (1, 10) 6, T2, (2, 11)2 7, T2, (3, 11)2 7, T1, (4, 11)2 7, T1(4, 11)2

4, T1, (0, 8) 5, T2, (1, 11) 6, T2, (2, 11)3 7, T2, (3, 11)2 7, T2, (3, 11)2

7, T2(5, 10)
10 4, T1, (0, 10) 5, T2, (1, 10) 5, T1, (2, 10) 6, T2, (3, 10)1 6, T1, (4, 10)1 7, T2, (5, 10) 7, T1, (6, 10)

4, T1, (0, 8) 5, T2, (1, 10) 6, T2, (3, 10)3 6, T2, (3, 10)1 7, T2, (5, 10)
5, T2, (2, 10) 6, T1, (4, 10)3 7, T2, (6, 8)1

6, T2, (3, 10)3 7, T2, (6, 8)2

9 4, T2, (1, 8) 4, T1, (2, 8) 5, T2, (3, 8) 5, T1, (4, 8) 6, T2, (5, 8)1 7, T2, (6, 8)1 8, T2, (7, 8)
4, T2, (1, 8) 5, T2, (3, 8) 6, T2, (5, 8)2 7, T2, (6, 8)2

4, T1, (0, 8) 4, T1, (0, 8) 4, T1, (0, 8) 5, T2, (4, 8) 6, T2, (5, 8)3

8 4, T1, (0, 8) 4, T2, (1, 8) 4, T1, (2, 8) 5, T2, (3, 8) 5, T1, (4, 8) 6, T2, (5, 8)1 7, T2, (6, 8)1 8, T2, (7, 8) 8, T1, (8, 8)
4, T2, (1, 8) 5, T2, (3, 8) 6, T2, (5, 8)2 7, T2, (6, 8)2 8, T2, (7, 8)

4, T1, (0, 8) 4, T1, (0, 8) 5, T2, (4, 8) 6, T2, (5, 8)3

7 3, T1, (0, 7) 3, T1, (0, 7) 3, T1, (0, 7) 4, T2, (3, 6) 4, T1, (4, 6) 5, T2, (5, 6) 6, T2, (6, 7)1 7, T2, (7, 7)1 7, T1, (8, 7)1 7, T2, (9, 6)
3, T2, (1, 6) 3, T1, (2, 6) 4, T2, (3, 4) 4, T2, (3, 6) 5, T2, (5, 7) 6, T2, (6, 7)2 7, T2, (7, 7)1 7, T1, (8, 7)

3, T2, (1, 6) 4, T1, (4, 4) 6, T2, (6, 7)3 7, T2, (7, 7)
3, T2, (2, 4) 4, T2, (3, 4)

6 2, T1, (0, 6) 3, T2, (1, 6) 3, T1, (2, 6) 4, T2, (3, 6) 4, T1, (4, 6) 5, T2, (5, 6) 5, T1, (6, 6) 6, T2, (7, 6)1 6, T1, (8, 6)1 7, T2, (9, 6)
3, T2, (1, 6) 4, T2, (3, 4) 4, T2, (3, 6) 5, T2, (5, 6) 6, T2, (7, 6)2 6, T2, (7, 6)1

3, T2, (2, 4) 4, T1, (4, 4) 5, T2, (6, 6) 6, T2, (7, 6)3 6, T1, (8, 6)2

4, T2, (3, 4) 6, T2, (7, 6)2

4, T2, (4, 5) 6, T1, (8, 6)3

6, T2, (7, 6)3

5 1, T1, (0, 4) 2, T2, (1, 4) 3, T2, (2, 4) 4, T2, (3, 4) 4, T2, (4, 5) 4, T2, (5, 4) 4, T1, (6, 4) 5, T2, (7, 5) 5, T1, (8, 5) 6, T2, (9, 4)1

4, T1, (4, 4) 4, T1, (5, 5) 4, T2, (5, 4) 5, T2, (7, 4) 5, T2, (7, 5) 6, T2, (9, 4)2

4, T2, (3, 4) 4, T2, (4, 5) 4, T1, (5, 5) 5, T1, (8, 4) 6, T2, (9, 4)3

4, T1, (4, 4) 4, T2, (4, 5) 5, T2, (7, 4)
4, T2, (3, 4) 4, T1, (4, 4)

4, T2, (3, 4)
4 1, T1, (0, 4) 2, T2, (1, 4) 3, T2, (2, 4) 4, T2, (3, 4) 4, T1, (4, 4) 4, T2, (5, 4) 4, T1, (6, 4) 5, T2, (7, 4) 5, T1, (8, 4) 6, T2, (9, 4)1

4, T2, (3, 4) 4, T1, (4, 4) 4, T2, (5, 4) 5, T2, (7, 4) 6, T2, (9, 4)2

4, T2, (3, 4) 4, T1, (4, 4) 5, T2, (8, 4) 6, T2, (9, 4)3

4, T2, (3, 4)
3 ℓ = 0 1, T2, (1, 2) 2, T2, (2, 3) 3, T2, (3, 3) 3, T1, (4, 3) 3, T2, (5, 2) 3, T1, (6, 2) 4, T2, (7, 2) 4, T1, (8, 2) 5, T2, (9, 3)

3, T2, (3, 3) 3, T1, (4, 3) 3, T2, (5, 2) 4, T2, (7, 0) 4, T2, (7, 2) 5, T2, (9, 2)
3, T2, (3, 3) 3, T2, (6, 0) 4, T1, (8, 0)

3, T1, (4, 3) 4, T2, (7, 0)
3, T2, (3, 3)

2 ℓ = 0 1, T2, (1, 2) 1, T1, (2, 2) 2, T2, (3, 2) 2, T1, (4, 2) 3, T2, (5, 2) 3, T1, (6, 2) 4, T2, (7, 2) 4, T1, (8, 2) 5, T2, (9, 2)
1, T2, (1, 2) 2, T2, (3, 2) 3, T2, (5, 2) 4, T2, (7, 0) 4, T2, (7, 2)

3, T2, (6, 0) 4, T1, (8, 0)
4, T2, (7, 0)

1 ℓ = 0 ℓ = 0 ℓ = 0 1, T2, (3, 0) 1, T1, (4, 0) 2, T2, (5, 0) 3, T2, (6, 0) 4, T2, (7, 0) 4, T1, (8, 0) 4, T2, (9, 0)
1, T2, (3, 0) 4, T2, (7, 0) 4, T1, (8, 0)

4, T2, (7, 0)

0 ℓ = 0 ℓ = 0 ℓ = 0 1, T2, (3, 0) 1, T1, (4, 0) 2, T2, (5, 0) 3, T2, (6, 0) 4, T2, (7, 0) 4, T1, (8, 0) 4, T2, (9, 0)
1, T2, (3, 0) 4, T2, (7, 0) 4, T1, (8, 0)

4, T2, (7, 0)

s/r 0 1 2 3 4 5 6 7 8 9

not write this cases into Tables 8 and 9, since they can be easily obtained by applying
steps (S4)-(S6).
We explain in details the case r+ s = 10 to illustrate the procedure for the situation

ℓ(r, s) = ℓ(r + s, 0). In Table 3 there are two disconnected subgroups

S(1)
10 with the signature (3, (T1, θ), (7, 0))× (1, (T2, π), (3, 0)),

S(2)
10 with the signature (3, (T2, θ), (6, 0))× (1, T1, (4, 0)).
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Table 7. Connected groups for r + s ≤ 16. Part 2

6 7, T1, (10, 6)
7, T2, (9, 6)
7, T2, (10, 4)1

7, T2, (10, 4)2

5 7, T2, (10, 4)1 8, T2, (11, 4)
7, T2, (10, 4)2

4 7, T2, (10, 4)1 8, T2, (11, 4) 8, T1, (12, 4)
7, T2, (10, 4)2 8, T2, (11, 4)

3 6, T2, (10, 3)2 7, T1, (12, 3)2 7, T1, (12, 3)2 7, T2, (13, 3)2

6, T2, (10, 3)3 7, T2, (11, 3)2 7, T2, (11, 3)2

7, T2, (13, 2)
2 5, T1, (10, 2) 6, T2, (11, 2)1 6, T2, (11, 2)1 7, T2, (13, 2) 7, T1, (14, 2)

5, T2, (9, 2) 6, T2, (11, 2)2 6, T1, (12, 2)1 7, T2, (13, 2)
5, T2, (10, 2) 6, T2, (11, 2)3 7, T2, (14, 0)1

6, T1, (12, 2)3 7, T2, (14, 0)2

1 4, T1, (10, 0) 5, T2, (11, 0) 5, T1, (12, 0) 6, T2, (13, 0)1 7, T2, (14, 0)1 8, T2, (15, 0) 8, T1, (16, 0)
4, T2, (9, 0) 5, T2, (11, 0) 6, T2, (13, 0)2 7, T2, (14, 0)2 8, T2, (15, 0)
4, T1, (8, 0) 5, T2, (12, 0) 6, T2, (13, 0)3

4, T2, (7, 0)
0 4, T1, (10, 0) 5, T2, (11, 0) 5, T1, (12, 0) 6, T2, (13, 0)1 7, T2, (14, 0)1 8, T2, (15, 0) 8, T1, (16, 0)

4, T2, (9, 0) 5, T2, (11, 0) 6, T2, (13, 0)2 7, T2, (14, 0)2 8, T2, (15, 0)
4, T1, (8, 0) 5, T2, (12, 0) 6, T2, (13, 0)3

4, T2, (7, 0)

s/r 10 11 12 13 14 15 16

Consider the case S(1)
10 . We analyse Tables 6 and 7 and find all possible (T1)-type

sets of involutions having the signature

(3, T1, (r, s)) with r + s = 7.

We obtain

(4.8)
(3, T1, (7, 0)) which comes from (3, T2, (6, 0)) by using property (F2)
(3, T1, (3, 4)) which comes from (3, T2, (2, 4)) by using property (F2)
(3, T1, (4, 3)) and (3, T1, (0, 7)) listed in Tables 6 and 7.

Next, we find all possible (T2)-type sets of involutions having the signature

(1, T2, (r, s)) with r + s = 3.

They are the following

(4.9) (1, T2, (3, 0)) and (1, T2, (1, 2)).

At the end we make all possible products of two groups of involutions, where the first
one belongs to (4.8) and the second one belongs to (4.9). For instance, we obtain the
disconnected subgroups in PIMr,s with r + s = 10:

S(1)
10 =

(3, T1, (7, 0))
×(1, T2, (3, 0))

∈ PIM10,0, S(1)6,4 =
(3, T1, (3, 4))
×(1, T2, (3, 0))

∈ PIM6,4, . . .

These disconnected groups and all others are listed in Tables 8 and 9.
We do analogous calculations for the disconnected group S(2)10 ∈ PIM10,0 and write

the results in Tables 8 and 9.
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Table 8. π0(PIr,s) = 2, r + s ≤ 16, Part 1

16 S(1)
0,16 =

(4, T1, (0, 8))
×(4, T1, (0, 8))

15
14
13

12 S(1)
0,12 =

(4, T1, (0, 8))
×(1, T1, (0, 4))

S(1)
1,12 =

(4, T1, (0, 8))
×(2, T2, (2, 3))

S(1)
2,12 =

(4, T1, (0, 8))
×(3, T2, (2, 4))

S3,12 =
(4, T1, (0, 8))
×(4, T2, (3, 4))

S(1)
4,12 =

(4, T1, (4, 4))
×(2, T1, (0, 8))

S(1)
4,12 = S3,12

11 S(1)
1,11 =

(3, T1, (0, 7))
×(2, T2, (1, 4))

S(1)
2,11 =

(4, T1, (0, 8))
×(2, T2, (2, 3))

S(3)
2,11 =

(3, T1, (0, 7))
×(3, T2, (2, 4))

S(1)
3,11 =

(4, T1, (0, 8))
×(3, T2, (3, 3))

S(2)
3,11 =

(2, T2, (3, 4))
×(3, T1, (0, 7))

10 S(1)
1,10 =

(4, T1, (0, 8))
×(1, T2, (1, 2))

S(1)
2,10 =

(4, T1, (0, 8))
×(1, T1, (2, 2))

S(2)
2,10 =

(3, T1, (0, 7))
×(2, T2, (2, 3))

S(3)
2,10 =

(3, T2, (2, 4))
×(2, T1, (0, 6))

S(4)
2,10 = S(1)

1,10

S(1)
3,10 =

(4, T1, (0, 8))
×(2, T2, (3, 2))

S(1)
3,10 =

(4, T2, (3, 4))
×(2, T1, (0, 6))

S(1)
3,10 =

(3, T1, (0, 7))
×(3, T2, (3, 3))

9 S(1)
1,9 =

(3, T1, (0, 7))
×(1, T2, (1, 2))

S(2)
3,9 =

(3, T1, (0, 7))
×(2, T2, (3, 2))

S(3)
3,9 =

(3, T2, (3, 3))
×(2, T1, (0, 6))

8 S(2)
2,8 =

(3, T2, (2, 4))
×(1, T1, (0, 4))

S(1)
3,8 =

(4, T1, (0, 8))
×(1, T2, (3, 0))

S(2)
3,8 =

(4, T2, (3, 4))
×(1, T1, (0, 4))

S(1)
4,8 =

(4, T1, (4, 4))
×(1, T1, (0, 4))

S(1)
4,8 =

(4, T1, (0, 8))
×(1, T1, (4, 0))

S(2)
4,8 =

(3, T1, (3, 4))
×(2, T2, (1, 4))

S(3)
4,8 =

(3, T2, (2, 4))
×(2, T1, (2, 4))

S(4)
4,8 = S(1)

3,8

S(5)
4,8 = S(2)

3,8

S(1)
5,8 =

(4, T1, (4, 4))
×(2, T2, (1, 4))

S(1)
5,8 =

(4, T1, (0, 8))
×(2, T2, (5, 0))

S(2)
5,8 =

(4, T2, (3, 4))
×(2, T1, (2, 4))

S(3)
5,8 =

(3, T1, (3, 4))
×(3, T2, (2, 4))

S(1)
6,8 =

(4, T1, (4, 4))
×(3, T2, (2, 4))

S(1)
6,8 =

(4, T1, (0, 8))
×(3, T2, (6, 0))

S(2)
6,8 =

(2, T2, (3, 4))
×(3, T1, (3, 4))

S(1)
7,8 =

(4, T1, (4, 4))
×(4, T2, (3, 4))

S(2)
7,8 =

(4, T1, (0, 8))
×(4, T2, (7, 0))

S(1)
8,8 =

(4, T1, (8, 0))
×(2, T1, (0, 8))

S(2)
8,8 = S(1)

7,8

S(2)
8,8 = S(2)

7,8

7
S(1)
3,7 =

(3, T1, (0, 7))
×(1, T2, (3, 0))

S(2)
3,7 =

(3, T2, (3, 3))
×(1, T1, (0, 4))

S(2)
5,7 =

(3, T1, (4, 3))
×(2, T2, (1, 4))

S(2)
5,7 =

(3, T1, (3, 4))
×(2, T2, (2, 3))

S(2)
5,7 =

(3, T1, (0, 7))
×(2, T2, (5, 0))

S(3)
5,7 =

(3, T2, (3, 3))
×(2, T1, (2, 4))

S(3)
5,7 =

(3, T2, (2, 4))
×(2, T1, (3, 3))

S(1)
6,7 =

(4, T1, (4, 4))
×(2, T2, (2, 3))

S(2)
6,7 =

(4, T2, (3, 4))
×(2, T1, (3, 3))

S(3)
6,7 =

(3, T1, (4, 3))
×(3, T2, (2, 4))

S(3)
6,7 =

(3, T1, (3, 4))
×(3, T2, (3, 3))

S(3)
6,7 =

(3, T1, (0, 7))
×(3, T2, (6, 0))

S(1)
7,7 =

(4, T1, (4, 4))
×(3, T2, (3, 3))

S(2)
7,7 =

(2, T2, (7, 0))
×(3, T1, (0, 7))

S(2)
7,7 =

(2, T2, (3, 4))
×(3, T1, (4, 2))

6
S(1)
4,6 =

(3, T1, (3, 4))
×(1, T2, (1, 2))

S(2)
4,6 =

(3, T2, (2, 4))
×(1, T1, (2, 2))

S(1)
5,6 =

(4, T1, (4, 4))
×(1, T2, (1, 2))

S(2)
5,6 =

(4, T2, (3, 4))
×(1, T1, (2, 2))

S(1)
6,6 =

(4, T1, (4, 4))
×(1, T1, (2, 2))

S(2)
6,6 =

(3, T1, (4, 3))
×(2, T2, (2, 3))

S(2)
6,6 =

(3, T1, (3, 4))
×(2, T2, (3, 2))

S(3)
6,6 =

(3, T2, (6, 0))
×(2, T1, (0, 6))

S(3)
6,6 =

(3, T2, (3, 3))
×(2, T1, (3, 3))

S(3)
6,6 =

(3, T2, (2, 4))
×(2, T1, (4, 2))

S(4)
6,6 = S(1)

5,6

S(5)
6,6 = S(2)

5,6

S(1)
7,6 =

(4, T1, (4, 4))
×(2, T2, (3, 2))

S(2)
7,6 =

(4, T2, (7, 0))
×(2, T1, (0, 6))

S(2)
7,6 =

(4, T2, (3, 4))
×(2, T1, (4, 2))

S(3)
7,6 =

(3, T1, (4, 3))
×(3, T2, (3, 3))

5
S(1)
5,5 =

(3, T1, (4, 3))
×(1, T2, (1, 2))

S(2)
5,5 =

(3, T2, (3, 3))
×(1, T1, (2, 2))

S(1)
7,5 =

(3, T1, (4, 3))
×(2, T2, (3, 2))

S(2)
7,5 =

(3, T2, (3, 3))
×(2, T1, (4, 2))

4

S(1)
6,4 =

(3, T1, (3, 4))
×(1, T2, (3, 0))

S(2)
6,4 =

(3, T2, (6, 0))
×(1, T1, (0, 4))

S(2)
6,4 =

(3, T2, (2, 4))
×(1, T1, (4, 0))

S(1)
7,4 =

(4, T1, (4, 4))
×(1, T2, (3, 0))

S(2)
7,4 =

(4, T2, (7, 0))
×(1, T1, (0, 4))

S(2)
7,4 =

(4, T2, (3, 4))
×(1, T1, (4, 0))

S(1)
8,4 =

(4, T1, (8, 0))
×(1, T1, (0, 4))

S(1)
8,4 =

(4, T1, (4, 4))
×(1, T1, (4, 0))

S(2)
8,4 =

(3, T1, (7, 0))
×(2, T2, (1, 4))

S(2)
8,4 =

(3, T1, (3, 4))
×(2, T2, (5, 0))

S(3)
8,4 =

(3, T2, (6, 0))
×(2, T1, (2, 4))

S(3)
8,4 =

(3, T2, (2, 4))
×(2, T1, (6, 0))

S(2)
8,4 = S(1)

7,4

S(3)
8,4 = S(2)

7,4

S(3)
8,4 = S(2)

7,4

3
S(1)
7,3 =

(3, T1, (4, 3))
×(1, T2, (3, 0))

S(2)
7,3 =

(3, T2, (3, 3))
×(1, T1, (4, 0))

2
S(1)
8,2 =

(3, T1, (7, 0))
×(1, T2, (1, 2))

S(2)
8,2 =

(3, T2, (6, 0))
×(1, T1, (2, 2))

1
0

s/r 0 1 2 3 4 5 6 7 8
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Table 9. π0(PIr,s) = 2, r + s ≤ 16, Part 2

4

S(1)
9,4 =

(4, T1, (8, 0))
×(2, T2, (1, 4))

S(1)
9,4 =

(4, T1, (4, 4))
×(2, T2, (5, 0))

S(2)
9,4 =

(4, T2, (7, 0))
×(2, T1, (2, 4))

S(2)
9,4 =

(4, T2, (3, 4))
×(2, T1, (6, 0))

S(3)
9,4 =

(3, T1, (7, 0))
×(3, T2, (2, 4))

S(3)
9,4 =

(3, T1, (3, 4))
×(3, T2, (6, 0))

S(1)
10,4 =

(4, T1, (8, 0))
×(3, T2, (2, 4))

S(1)
10,4 =

(4, T1, (4, 4))
×(3, T2, (6, 0))

S(2)
10,4 =

(2, T2, (7, 0))
×(3, T1, (3, 4))

S(2)
10,4 =

(2, T2, (3, 4))
×(3, T1, (7, 0))

S(1)
11,4 =

(4, T1, (8, 0))
×(4, T2, (3, 4))

S(2)
11,4 =

(4, T1, (4, 4))
×(4, T2, (7, 0))

S(1)
12,4 =

(4, T1, (8, 0))
×(4, T1, (4, 4))

S(2)
12,4 = S(1)

11,4

S(2)
12,4 = S(2)

11,4

3

S(2)
9,3 =

(3, T1, (7, 0))
×(2, T2, (2, 3))

S(2)
9,3 =

(3, T1, (4, 3))
×(2, T2, (5, 0))

S(3)
9,3 =

(3, T2, (6, 0))
×(2, T1, (3, 3))

S(3)
9,3 =

(3, T2, (3, 3))
×(2, T1, (6, 0))

S(1)
10,3 =

(4, T1, (8, 0))
×(2, T2, (2, 3))

S(2)
10,3 =

(4, T2, (7, 0))
×(2, T1, (3, 3))

S(3)
10,3 =

(3, T1, (7, 0))
×(3, T2, (3, 3))

S(3)
10,3 =

(3, T1, (4, 3))
×(3, T2, (6, 0))

S(1)
11,3 =

(4, T1, (8, 0))
×(3, T2, (3, 3))

S(2)
11,3 =

(2, T2, (7, 0))
×(3, T1, (4, 3))

2
S(1)
9,2 =

(4, T1, (8, 0))
×(1, T2, (1, 2))

S(2)
9,2 =

(4, T2, (7, 0))
×(1, T1, (2, 2))

S(1)
10,2 =

(4, T1, (8, 0))
×(1, T1, (2, 2))

S(2)
10,2 =

(3, T1, (7, 0))
×(2, T2, (3, 2))

S(3)
10,2 =

(3, T2, (6, 0))
×(2, T1, (4, 2))

S(4)
10,2 = S(1)

9,2

S(5)
10,2 = S(2)

9,2

S(1)
11,2 =

(4, T1, (8, 0))
×(2, T2, (3, 2))

S(2)
11,1 =

(2, T2, (7, 0))
×(2, T1, (4, 2))

1

0
S(1)
10 =

(3, T1, (7, 0))
×(1, T2, (3, 0))

S(2)
10 =

(3, T2, (6, 0))
×(1, T1, (4, 0))

S(1)
11 =

(4, T1, (8, 0))
×(1, T2, (3, 0))

S(2)
11 =

(4, T2, (7, 0))
×(1, T1, (4, 0))

S(1)
12 =

(4, T1, (8, 0))
×(1, T1, (4, 0))

S(2)
12 =

(3, T1, (7, 0))
×(2, T2, (5, 0))

S(3)
12 =

(3, T2, (6, 0))
×(2, T1, (6, 0))

S(4)
12 = S(1)

11

S(5)
12 = S(2)

11

S(1)
13 =

(4, T1, (8, 0))
×(2, T2, (5, 0))

S(2)
13 =

(4, T2, (7, 0))
×(2, T1, (6, 0))

S(3)
13 =

(3, T1, (7, 0))
×(3, T2, (6, 0))

S(1)
14 =

(4, T1, (8, 0))
×(3, T2, (6, 0))

S(2)
14 =

(4, T2, (7, 0))
×(3, T1, (7, 0))

S15 =
(4, T1, (8, 0))
×(4, T2, (7, 0))

S(1)
16 =

(4, T1, (8, 0))
×(4, T1, (8, 0))

S(2)
16 = S15

s/r 9 10 11 12 13 14 15 16

5. Isomorphism of invariant integral structures

Theorem 5.1. If

(5.1) (r, s) ∈ {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2)},
then for any orthonormal basis Br,s = {zj} and v ∈ V r,s, with ⟨v, v⟩V 1,0 = ±1 the
invariant orthonormal structures spanned by bases as in Table 10 are isomorphic.

Table 10. Invariant integral structures for (r, s) in Theorem 5.1

2 {v, Jz1v, Jz2v, Jz1Jz2v, z1, z2}
1 {v, Jz1v, z1} {v, Jz1v, Jz2v, Jz1Jz2v, z1, z2} {v, Jz1v, Jz2v, Jz1Jz2v, z1, z2}
0 v {v, Jz1v, z1} {v, Jz1v, Jz2v, Jz1Jz2v, z1, z2}
s/r 0 1 2

Proof. There are only trivial groups S ⊂ SM
r,s for (r, s) as in (5.1) since there are no

involutions. The proof of uniqueness is literally repeats the proof of Theorem 3.18. □
We fix an orthonormal basis Br,s = {z1, . . . , zr+s} and a group S = S(PIr,s). Recall

the construction of an invariant basis Bv(V
r,s) on the minimal admissible module V r,s

from Theorem 3.17, which used the centraliser of the isotropy group S = S(PIr,s) = Sv

of a unit vector v ∈ V r,s. The invariant integral structure on the Lie algebra nr,s(V
r,s)

given by S will be denoted by

L(S) = span Z{Bv(V
r,s)} ⊕ span Z{Br,s}.
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Theorem 5.2. If two groups S1 and S2 are equivalent; that is there exists a map

C ∈ O(r, s) such that C(Ŝ1) = Ŝ2, then the invariant integral structures L(S1) and
L(S2) are isomorphic under a map A⊕C, where A : V r,s → V r,s is an orthogonal map
with respect to ⟨. , .⟩V r,s; that is AτA = IdV r,s.

Proof. The proof is a light generalisation of Theorem 3.18. Let S1 = S(PI1) and
S2 = S(PI2) be equivalent groups. It implies that there is C ∈ O(r, s) such that

C(Ŝ1) = Ŝ2 where we denoted by the same letter C the extention of the orthogonal
map to the group Cl∗r,s ⊂ Clr,s of invertible elements of the Clifford algebra Clr,s. Let

(5.2) Bv(V
r,s) =

{
v, Jσi

(v), Jτj(v), JτjJσi
(v) | σi, τj, σiτj ∈ Σ(S1)

}
be the invariant basis, constructed in Theorem 3.17 by making use the eigenspaces of
involutions from PI1. The set PI1 is equivalent to PI2 under C. We use the method
of Theorem 3.17 and obtain a basis

Bw(V
r,s) =

{
w, JC(σi)(w), JC(τj)(w), JC(τj)JC(σi)(w) |

C(σi), C(τj), C(σi)C(τj) ∈ Σ(S2)
}
,(5.3)

where S2
∼= S(PI2) ∼= S(C(PI1)) and the set PI2 was replaced by C(PI1). Note that

since C(Br,s) = Br,s we also have G(Br,s) = G
(
C(Br,s)

)
.

We construct a correspondence A : Bv(V
r,s) → Bw(V

r,s) by

v 7−→ w, Jσi
(v) 7−→ JC(σi)(w), Jτj(v) 7−→ JC(τj)(w),

Jτj(v)Jσi
(v) 7−→ JC(τj)(w)JC(σi)(w),

and C : zk 7−→ C(zk). The correspondence A⊕ C extended to a linear map over R or
Z is an orthogonal map on V r,s since it maps orthonormal basis (5.2) to orthonormal
basis (5.3). To show that the linear map A⊕C is an isomorphism of invariant integral
structures, we argue as in Theorem 3.18. By the invariance of the bases Bv(V

r,s) and
Bw(V

r,s) we have
JC(zk)Auα = ±JC(κ)w = ±AJκv = AJzkuα

for any uα ∈ Bv(V
r,s), zk ∈ Br,s, and for some κ ∈ Σ = {σi, τj, τjσi}. It implies

⟨[Auα, Auβ], C(zk)⟩r,s = ⟨JC(zk)Auα, Auβ⟩V r,s = ⟨AJzkuα, Auβ⟩V r,s

= ⟨AτAJzkuα, uβ⟩V r,s = ⟨Jzkuα, uβ⟩V r,s

= ⟨[uα, uβ], zk⟩r,s.
for any uα, uβ ∈ Bv(V

r,s) and zk ∈ Br,s. □
Theorem 5.3. Let S1,S2 ∈ SM and L(S1), L(S2) be the corresponding invariant
integral structures. If there is an isomorphism

(5.4) A⊕ C : L(S1) → L(S2)

with A : V r,s → V r,s such that AτA = IdV r,s, then S1 and S2 are equivalent in the sense
of Definition 3.21.
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Proof. Let

L(S1) = span Z{Bv(V
r,s)} ⊕ span Z{Br,s} = L1 ⊕ span Z{Br,s}

L(S2) = span Z{Bu(V
r,s)} ⊕ span Z{Br,s} = L2 ⊕ span Z{Br,s}

be the invariant integral srtuctures generated by the groups S1 and S2. Here we also
assume that S1 = Sv is the isotropy subgroup of a unit vector v ∈ V r,s and S2 = Su

is the isotropy subgroup of a unit vector u ∈ V r,s. Since A ⊕ C is an isomorphism,
we obtain A(L1) = L2. By noting that A−1(L2) = Aτ (L2) = L1, we deduce that
AτA(L1) = L1.
We denote by the same letter A⊕C ∈ Aut(nr,s) the automorphism of nr,s(V

r,s) which
restriction to L(S1) gives map (5.4). The properties AτA = IdV r,s and AτJC(z)A = Jz
imply AJzx = JC(z)Ax for x ∈ L1 and C ∈ O(r, s), the latter one being an orthogonal
transformation over Z as well. For v ∈ Bv(V

r,s) we find a basis vector uj ∈ Bu(V
r,s)

such that Av = uj. If there holds Av = −uj, then the proof is similar. By renumbering
the basis vectors {uj} we can assume that Av = u. We have for the stationary group
of Av

SAv = {σ̃ ∈ G
(
C(Br,s)

)
| Jσ̃Av = Av}

= {σ̃ ∈ G
(
C(Br,s)

)
| Jσ̃u = u} = Su(5.5)

Since σ̃ = C(zi1) . . . C(zik), and AJzx = JC(z)Ax, x ∈ L1 we have

Av = Jσ̃Av = JC(zi1 )
. . . JC(zik )

Av = AJzi1 . . . Jzik
v = AJσv.

This implies v = Jσv for any σ ∈ G(Br,s). Thus we conclude that if σ̃ ∈ SAv, for
σ̃ = C(zi1) . . . C(zik) ∈ G(C(Br,s)) then σ = zi1 . . . zik ∈ Sv. Thus the groups SAv and
Sv are equivalent. The equalities (5.5) shows that S2 = Su = SAv and S1 = Sv are
equivalent. □

Table 11 shows the classical groups A such that the map A ⊕ Id with A ∈ A is
the automorphism of H-type Lie algebras nr,s(V

r,s), see also [FM21, Table 3] for non-
minimal admissible modules. The groups Sp(n),O(n,C),U(n),O∗(n) are subgroups of
orthogonal transformations.

Table 11. Groups A

8 GL(1,R)
7 O(1, 1,R) U(1, 1) Sp(1, 1) Sp(1)× Sp(1)
6 O(2,C) O∗(2) GL(1,H) Sp(1)
5 O∗(4) O∗(2)×O∗(2) O∗(2) U(1)
4 GL(1,H) O∗(2) O(1,C) O(1,R) GL(1,R)
3 Sp(1, 1) U(1, 1) O(1, 1,R) O(1,R)×O(1,R) O(1, 1,R) U(1, 1) Sp(1, 1) Sp(1)× Sp(1)
2 Sp(2,C) Sp(2,R) GL(2,R) O(2,R) O(2,C) O∗(2) GL(1,H) Sp(1)
1 Sp(2,R) Sp(2,R)× Sp(2,R) Sp(4,R) U(2) O∗(4) O∗(2)×O∗(2) O∗(2) U(1)
0 Sp(2,R) Sp(2,C) Sp(1) GL(1,H) O∗(2) O(1,C) O(1,R) GL(1,R)

0 1 2 3 4 5 6 7 8
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Theorem 5.4. Let (r, s) be such that the groups A in Table 11 is a subgroup of or-
thogonal transformations. The groups S1,S2 ∈ SM

r,s are equivalent in sense of Defini-
tion (3.22), if and only if the corresponding invariant integral structures L(S1) and
L(S2) are isomorphic.

Proof. If (r, s) as in the statement of Theorem 5.4, then for an automorphism Ã ⊕ Id
of nr,s(V

r,s) we have Ãτ Ã = IdV r,s . It implies that the general automorphisms A ⊕ C
of nr,s(V

r,s) also satisfies AτA = IdV r,s , see [FM21, Section 3.2].
Thus if the invariant integral structures L(S1) and L(S2) are isomorphic, then they

will be isomorphic under a map A ⊕ C with AτA = IdV r,s . It implies that the group
S1 and S2 are equivalent by Theorem 5.3.
Conversely, if we assume now that the groups S1 and S2 are equivalent, then by

Theorem 5.2 the corresponding invariant integral structures will be isomorphic. □
Note that in the proof of Theorem 5.3 the crucial assumption was AτA = IdV r,s . The

following theorem shows that it is enough to find a subset E ⊂ V r,s, which is invariant
under the action AτA. It allows to prove the general theorem.

Theorem 5.5. The groups S1,S2 ∈ SM
r,s are equivalent in sense of Definition (3.22),

if and only if the corresponding invariant integral structures L(S1) and L(S2) are iso-
morphic.

Proof. If S1 is equivalent to S2, then the corresponding invariant integral structures
L(S1) and L(S2) are isomorphic by Theorem 5.2.

Suppose that invariant integral structures L(S1) and L(S2) are isomorphic. By
contrary we assume that the groups S1 = S(PI1) ∈ SM

r,s and S2 = S(PI2) ∈ SM
r,s are

not equivalent. Then there are q1 ∈ PI1 and q2 ∈ PI2 such that q1 · q2 = −q2 · q1. For if
q1 · p = p · q1 for all p ∈ PI2, then q1 ∈ PI2, which would contradict to the maximality
of S(PI2).

Without loss of generality we can assume that the groups S(PI1) and S(PI2) are
written in the standard form as in Example 3.3. Let k be a maximal number of type
T1 involutions pj satisfying pj ∈ PI1 ∩ PI2, j = 1, . . . k. Note that k < ℓ(r, s) since
S(PI1) and S(PI1) are not equivalent.

Let nr,s(V
r,s) be a pseudo H-type Lie algebra and

E = {x ∈ V r,s | Jpjx = x, pj ∈ PI1 ∩ PI2, j = 1, . . . , k}.
Since q1pj = pjq1 and q2pj = pjq2 the subspace E ⊂ V r,s is invariant under the action
of both Jq1 and Jq2 .

For an isomorphism A⊕ C : L(S1) → L(S2) we set

F = A(E) = {Ax ∈ V r,s | AJpjx = JC(pj)Ax = Ax, pj ∈ PI1 ∩ PI2, j = 1, . . . , k}.
The map C, extended to the Clifford algebra Clr,s, satisfies C(pj)C(q1) = C(q1)C(pj)
and C(pj)C(q2) = C(q2)C(pj), j = 1, . . . k. These imply that A(E) is invariant under
the action of JC(q1) and JC(q2) by the same arguments as for E. Thus the direct sum

(5.6) F = F+ ⊕ F−, F+ = {y ∈ F | JC(q2)y = y}, F− = {y ∈ F | JC(q2)y = y}
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is the orthogonal sum of non-trivial vector spaces.
Let x ∈ E and put Ax = y+(x) + y−(x), where y+(x) ∈ F+ and y−(x) ∈ F−. We

have for the type T1 involution q1 ∈ PI1 that

JC(q1)Ax = JC(q1)(y+(x) + y−(x)) = JC(q1)y+(x) + JC(q1)y−(x).

Since C(q1)C(q2) = −C(q2)C(q1) we obtain

JC(q1) : F+ → F−, and JC(q1)y+(x) ∈ F−, JC(q1)y−(x) ∈ F+,

and therefore y+(x) = JC(q1)y−(x) and y−(x) = JC(q1)y+(x) by the uniqueness of the
decomposition into a direct sum of vector spaces. We conclude

(5.7) JC(q1)Ax = y+(x) + JC(q1)y+(x).

Since pj are T1-type involutions, we obtain

AJpj = JC(pj)A, Jτ
pj

= Jpj , Jτ
C(pj)

= JC(pj), AτJC(pj) = JpjA
τ , j = 1, . . . , k

It implies AτA(E) = E. Let {vi} be an orthonormal basis of the space E, which is a
part of the invariant basis for V r,s defined by the S1 = S(PI1). The matrix components
aij of the operator AτA : E → E with respect to the basis {vi} have the form

aij = ⟨AτAvi, vj⟩V r,s = ⟨Avi, Avj⟩V r,s = ⟨C(q1), C(q1)⟩r,s⟨Avi, Avj⟩V r,s

= ⟨JC(q1)Avi, JC(q1)Avj⟩V r,s

= ⟨y+(vi) + JC(q1)(y+(vi)), y+(vj) + JC(q1)y+(vj)⟩V r,s

= 2⟨y+(vi), y+(vj)⟩V r,s ,

where we used (5.6) and (5.7). Hence the non-vanishing components of the matrix
AτA restricted to E are always even numbers, so that det AτA = 2dimE · k, k ∈ Z.
Let us look on the structure of the map AτA acting on the entire minimal admissible

module V r,s. The space V r,s is an orthogonal sum of subspacesWi of the form Jκi
(E) =

Wi with κi ∈ Σ from Theorem 3.17. Let x ∈ V r,s. We write

x = xE + x1 + . . .+ xm, xi ∈ Wi

and AτA|Wi
for the restriction of the map AτA on the set Wi. For any xi ∈ Wi there is

yE ∈ E such that Jκi
(yE) = xi. Choose i ∈ 1, . . . ,m and assume that κi is a product

of an even number of the basis vectors. Then we obtain

AτA|Wi
(xi) = AτA|Wi

Jκi
(yE) = Jκi

AτA|E(yE) = Jκi
AτA|EJ−1

κi
(xi).

Thus in this case AτA|Wi
= Jκi

AτA|EJ−1
κi

. If τi is a product of an odd number of the
basis vectors, then the isomorphism condition (2.4) for A⊕C implies AτAJκi

AτA = Jκi
.

This leads to

AτA|Wi
(xi) = AτA|Wi

Jκi
(yE) = Jκi

(AτA|E)−1(yE) = Jκi
(AτA|E)−1J−1

κi
(xi)

and therefore AτA|Wi
= Jκi

(AτA|E)−1J−1
κi

.
The elements of the matrix A of the isomorphism of the lattices L(S1) and L(S2)

are all integers. If all Wi are images Jκi
(E) with κi being a product of an even

number of the basis vectors, then it is clear that AτA /∈ SL(dimV r,s,Z). If there is
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Wi = Jκi
(E) with κi being a product of an odd number of the basis vectors, then

detAτA|Wi
= 1

2dimE ·k which contradicts to the fact that the terms of the matrix AτA
are all integers. □
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