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ABSTRACT. In this paper, we extend several approximation theorems, originally formu-
lated in the context of the standard L? norm, to the more general framework of variable
exponent spaces. Our study is motivated by applications in neural networks, where func-
tion approximation plays a crucial role. In addition to these generalizations, we provide
alternative proofs for certain well-known results concerning the universal approxima-
tion property. In particular, we highlight spaces with variable exponents as illustrative
examples, demonstrating the broader applicability of our approach.
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1. INTRODUCTION

Neural networks serve as functional approzimators, particularly in the context of super-
vised learning, where the goal is to learn from a training dataset consisting of input-output
pairs. Given such a dataset, a neural network adjusts its internal weights to minimize the
discrepancy between the network’s output and the correct output. After training, the
performance of the neural network is evaluated using a separate test dataset to assess
its ability to generalize to unseen data. There are two commonly used cost functions,
depending on the nature of the task:

e Cross-entropy loss is typically employed for classification tasks, where the out-
put is a probability distribution over classes.

e Mean squared error (MSE), corresponding to the squared L? norm, is standard
in regression problems, where the outputs are continuous values.

The MSE cost function assumes that the errors follow a Gaussian distribution, a premise
well-supported by the classical central limit theorem. However, in many real-world appli-
cations, the error distribution may not conform to the Gaussian model and often includes
outliers. MSE is particularly sensitive to outliers due to its squaring of errors. This sensi-
tivity can lead to overfitting, where the neural network becomes overly tuned to the noise
or outliers in the training data. As a result, its performance on the test dataset may
deteriorate, indicating poor generalization.

Overfitting is a well-known problem in machine learning, and several solutions have
been proposed to mitigate it, including the use of alternative cost functions based on L!
and L> norms. The L' norm grows more slowly than the L? norm, making it less sensitive
to outliers. In the field of compressed sensing, the L' norm is known to yield unique and

sparse solutions to underdetermined linear systems [11].
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The L*° norm, which represents the maximum error, provides a means to control the
worst-case error in a training dataset. In H* control theory—which originated from func-
tional calculus at the intersection of complex and functional analysis—the L°° norm plays
a critical role in designing robust controllers by minimizing the maximum effect of pertur-
bations on system outputs [22].

Previous studies have established the universal approximation theorem for multilayer
neural networks under the LP norm, uniformly over the entire input space. However, real-
world applications often demand more nuanced error control. In some regions of the input
space, it may be desirable to suppress the influence of outliers, while in other regions,
controlling the maximum possible error is more important.

This motivates the extension of the universal approximation theorem to variable expo-
nent Lebesgue spaces, where the error norm can vary as a function of the input location.
Such generalizations would allow for greater flexibility in the design and analysis of neural
networks, enabling them to meet diverse performance criteria across different regions of
the input domain.

This paper presents a deeper analysis of existing results related to the universal approx-
imation property, aiming to extend and refine the theoretical framework surrounding this
concept. In particular, we introduce new perspectives and techniques that enhance our
understanding of the scope and limitations of universal approximation. As an application,
we examine variable exponent Lebesgue spaces, which have garnered significant attention
for their flexibility in modeling diverse real-world phenomena. By investigating the inter-
play between the universal approximation property and the structure of these spaces, we
offer new insights into their functional and approximation-theoretic characteristics. This
work builds upon and reinforces the results in [3].

We note that Cybenko [7] introduced a functional-analytic approach to approxima-
tion theorems based on the Hahn-Banach theorem and the Riesz representation theorem.
This approach was subsequently developed in the works of Hornik [13] and Park and
Sandberg [20].

In what follows, we employ the Hahn-Banach theorem in the following form [23, page
382, Theorem 15.72]:

Theorem 1.1. Let (V,||-||) be a complex normed space, and let (V*,||-||«) denote its dual
space. Suppose M 1is a proper linear subspace of V', and let vg € V. Write

d:= inf [jvg —ul| > 0.
ueM

Then there exists a bounded linear functional f :V — K such that
M Cker(f), f(w)=d, and ||f].=1.

Here and below, we use the following notation:

e Given a measurable set F, the characteristic function of E is denoted by xg.

e The space C.(R™) refers to the set of all continuous functions on R™ with compact
support.

e The space C°(R™) denotes the set of all infinitely differentiable functions on R™
with compact support.

Here we describe the remaining part of this paper. We state preliminary facts in Section
2. Section 3 collects our main results.
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2. PRELIMINARIES

In this section, we collect some preliminary facts. Section 2.1 introduces Lebesgue
spaces with variable exponents, and Section 2.2 reviews the duality result.

2.1. Lebesgue spaces with variable exponent. Let ;1 be a measure on R”, and let
p:R™ — [1,00] be a u-measurable function. We define the following sets:

(2.1) Qo ={z € R" : p(z) = 0},
(2.2) O ={x eR":p(x) =1},
(2.3) Q={xeR":1<p(r) < oo}

We now recall the definition of the modular.

Definition 2.1. Given a measurable function f, the modular is defined as
(2.4) PP = [ 1@ dute) + 1
Q1UQ

The variable exponent Lebesgue space LP() (du) consists of all measurable functions f such
that

(2.5) Pp)(f/A) < oo for some A > 0.
The norm in LPO)(dp) is given by

(2.6) £l o0 @y = nf {X > 02 py( (F/A) <1}
If 11 is the Lebesgue measure, we write LP() := LPO) (dp).

If the variable exponent p(-) equals to a constant p, then LP0) is the usual Lebesgue spae
LP. We present the Holder inequality in Lebesgue spaces with a variable exponent. Let
p: R™ — [1,00] be a measurable function. We write its essential infimum and supremum
of p(x) as follows:

(2.7) p— =essinfyepnp(z), py = esssup,epnp(z).
Furthermore, we denote by p/(-) the conjugate exponent, that is p(-) satisfies
(2.8) L—i— ! =1 (zeR").

p(z)  p'(z)

The following two lemmas present results concerning fundamental density and approx-
imation in variable exponent Lebesgue spaces LP()(dpu).

Lemma 2.2 (Corollary 2.73 in [5]). Let p(:) : R™ — [1, 00] be a measurable function such
that p < 0o. Then the space of compactly supported continuous functions C.(R™) is dense
in LPC)(dp).

Lemma 2.3 (Theorem 5.11 in [5]). Let ¢ € L'(R™) be such that

(2.9) ¢(z)dr = 1.
R"
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For o > 0, define

—n (T n
(2.10) bo(z) = 07 (U) , zER™
Suppose that p(-) : R® — [1,00) satisfies py < co. Then, for all f € LPO)(R™), we have
(2.11) lim ||¢o * f — fll o) = 0.
o—0+

Remark 2.4. Due to its role in (2.11), the system {¢s}o>0 is referred to as an approx-
imation of the identity or an approximate identity. The concept of an identity has been
studied in various function spaces (see [2, 17, 18, 21]). As an application, this framework
allows us to establish universal approximation theorems in these spaces.

2.2. Duality in Lebesgue spaces with variable exponent. We begin by recalling
Holder’s inequality.

Lemma 2.5 (Theorem 2.26 in [5]). Let p(-) : R™ — [1,00] be a measurable function. For
all f € LPO(dp) and g € Lp/(')(d,u), we have fg € L'(du) and

(2.12) 19l zraw < Kp) Il Leo> @ 191l 2o 3 (e

where
1 1

(2.13) Kpy=|———+1)IIxa.lze + X[z + X0 | 2o
b— b+

The dual space LP()(dp)* consists of all bounded and linear functionals on LPO) (dp).
In particular, for a given function g € L¥ () (dp), we define the functional

(2.14) Fy(f) = [ 1)o@ dnta),  for f & DO().

By virtue of Holder’s inequality (Lemma 2.5), it follows that F, € LPC)(du)*.
The following lemma presents further duality properties and the Riesz representation

theorem for Lebesgue spaces with variable exponent, as established in [5, Proposition 2.79
and Theorem 2.80].

Lemma 2.6. Let p(-) : R" — [1,00] be a measurable function. Then the following state-
ments hold:

(I) Let g be a measurable function. The following conditions are equivalent:
(i) F, € LPO(dp)*.
(i) g € LPO(dp).
Furthermore, in this case, there exists a constant C > 1, depending only on p(-),
such that

(2-15) C_1||9||Lp’(-)(du) < ||Fg||Lp(~)(d“)* < C||g||Lp/(<>(d“)-
(IT) The following conditions are equivalent:
(ili) p4+ < oo.
(iv) For all F e LPO)(dp)*, there exists a unique function g € LV’ O)(du) such that
F=F,
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3. MAIN RESULTS

We focus on two results concerning LP-approximation and extend them to the setting
of variable exponent spaces. One of our results also holds in Herz spaces.

Section 3.1 revisits a result by Hornik, Stinchcombe, and White. Section 3.2 examines
a result by Park and Sandberg in the framework of variable exponent Lebesgue spaces.
Section 3.3 deals with Herz spaces as an application of the results in Section 3.2. Finally,
Section 3.4 considers the modular inequality, where we show that this inequality fails for
variable exponents.

3.1. Hornik—Stinchcombe—White [14] (1989). Following [14], we introduce some def-
initions, notation, and concepts.

Definition 3.1 (Squashing Function). A function ¥ : R — [0,1] is called a squashing
function if it satisfies the following properties:

(1) W is non-decreasing,
(2) lim ¥(z) =1,
:ri)oo
(3) xEIElOO‘II(x) = 0.
Since squashing functions are non-decreasing, they are measurable.
The following lemma states a well-known property of squashing functions and some
generalized results are proved. For example, Cybenko [7, Lemma 1] has proved the lemma

for bounded and measurable sigmoidal functions. Hornik [13, Theorem 5] has proved it
for non-constant and bounded functions.

Lemma 3.2. Let ¥ be a squashing function. If a Borel signed measure i satisfies

(3.1) / U(w -z +b)du(z) =0
for allw € R™ and b € R, then = 0.

We provide an original proof using the following fact on the integrability of the Fourier
transform of bounded functions:

Lemma 3.3. [19, Theorem 2| Let f : (
that f(o0) = f'(00) = 0 and f(01), f/(0

Then
/R /R f(z)e*tdx

Proof of Lemma 3.2. Let n € C°(R) be such that ¥ * 7 is not zero. Then

Jim W (t) = / n(t)dt

0,00) — [0,00) be a differentiable function such
) € R, and assume that f is of bounded variation.

d¢ < oo.

and
tlg})lo U n(—t)=0.
Then
[0 v+ bdu() = o
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Set

<I>—77*\I/+77*\I/(—‘)—/Rn(t)dt.

Then
lim & (r) =0

T—00

foralll =0,1,... and
/ O(w -z + b)du(z) = 0.

In fact, if [ = 0, then this is trivial. Otherwise use

im n® — ) —
tlglolon « U(t) = /Rn (t)dt = 0.

Furthermore, since
U(b)u(R™) = lim O(w -z +b)du(x) =0,
w—0 Rn

we have

/n O(w-z+b)du(x) = /n n*(I)(wm—l—b)du(m)—i—/ n*x®(—w-x—b)du(z) —ku(R™) =0

n

where k := /n(t) dt. Thus, ® = F¥, for some ¥y € L}(R) \ {0}, since ® is an even

R
function due to Lemma 3.3. Then
/ O(a-x—0)du(x) = / / e~ ta ity () de dp(z).
n n R
If we write
D, (t) = / e T qu (),
then we have
F g @,](0) =0

for all @ € R. Thus, Wo(t)P,(t) = 0. Since we can replace ¥ (t) with W(bt) for all b > 0,
we have W (bt)®,(t) = 0 for all b > 0. Thus, ®,(¢) = 0 and hence p = 0. O

Given a squashing function ¥ we define the following class (V).

Definition 3.4. The set (V) consists of all functions f : R™ — R that can be expressed

in the form
N

fl@)=> w¥(a;-z+b;) (zeR"),
j=1
where N € N, w; € R, a; € R", and b; € R (j = 1,2,--- ,N). Here, a; - x denotes the
Euclidean inner product of a; € R" and z € R".

In the context of probability measures, Corollary 2.2 in [14] establishes foundational
results under fixed exponents. This corollary can be extended to accommodate variable
exponents.
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Theorem 3.5. Let p be a probability measure supported on a compact set K C R™. Let
p:R™ — [1,00) be a Borel-measurable function such that

(3.2) p+(K) = sup p(z) < oo.

Then, for a squashing function W, the set S(W) is dense in the variable exponent Lebesgue
space LPO) (p1).

In order to prove Theorem 3.5, we need the following two lemmas.

Lemma 3.6. Let p € C.(R) and let ¥ be a squashing function. Then for every e > 0 and
every compact set K C R, there exists a function g € X(¥) such that

sup [p*¥(z) —g(z)| <e.

Proof. Due to the translation invariance of X(¥), by decomposing p if necessary, we may
assume that supp(p) C [0, 1]. Then for all z € K, we can write

! 1o [k k
pxU(z) = /0 p(y)¥(z —y)dy = ngnooN;p <N) 14 <:C N> :
We aim to show that the convergence is uniform on K.
We estimate the error:

p*\p(m)—;ép@)\p(%]’;)‘
SkZ:/jl ’p(y)‘lf(:v—y)—p<N>‘1’($—§>‘dy
s]ﬁ/: o) =0 (3 )| 106 = )l ay

S0 O

o) M TURVIES IER T o RIS
= k=1" "N

k
Since p is uniformly continuous on [0, 1], the first sum satisfies
N Lk
N
> ﬁl p(y)
k=1" "~
as N — oo.

Now, let K = [A, B] for some integers A, B € Z by expanding K if necessary. For
x € [A, B], we estimate the second sum:
k
- (:c — N) ‘ dz.

O M EETRT | PR o

k
U (z— || dy.
(=)l

k
—p (N)] dy<  swp  Jo(w) — p(v)| = o(1),
u,ve[0,1]
lu—v|<N—T
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Let {zn}M_, be a partition of [A — 1, B] that refines {4,z — 1,z — %,...,2, B} and
has mesh at most N~!. Then

Zﬂl ’m(x—y)—w<x—§>'dy

M
< m — Am— N4 - inf v ’
DT n( wp - W(w)— nf <w>>

we [zm—l 7Zm]

which tends to 0 as N — oo (via Darboux sums).
Thus, the convergence is uniform on [A, B] due to Darboux’s theorem, and there exists
Ny € N such that

v 30 ()9 (- %)

sup <e€
z€[A,B] =1
Defining
No
1 k k
9(x) i= — — | U <:E — ) )
0=, 20 CILICE-
we obtain the desired function g € 3 (V). O

Lemma 3.7 ([14, Theorem 2.4]). Let B be the Borel o-algebra of R™, U be a squashing
function, and let v be a probability measure on (R™,B). Then (V) is uniformly dense
on compacta in C(R™). That is, for all compact subsets K C R"™, all f € C(R"™), and all
e > 0, there exists g € X(V) such that

sup |f(z) —g(z)] <e

reK
Proof. We provide an original proof once again. Due to the translation invariance of X(¥),
we may assume U(0) # 0. Let p € CZ°(R) be a non-zero, non-negative function supported
on a small interval, satisfying ||p||;1 = 1. Then, we note that p* ¥ is a squashing function
in C*°(R). Observe that from Lemma 3.6, it is sufficient to show that X(p= ¥) is uniformly
dense on compacta in C(R"™) to prove Lemma 3.7. To show this, let us show that X (p* V)
is dense in C(K) for any compact set K C R™.

Assume that a linear functional I : C'(K) — C annihilates X(p * V), that is,

I(f) =0 (f €X(px¥)).
Since I is represented by a measure p with bounded variation, it follows that
(3.3) / (p* W) (w - + b)du(z) = 0,
K

where w € R™ and b € R.
Since K is compact, differentiating (3.3) with respect to w gives

(3.4) /K 2(px )1 (w . 2 + b)dp(x) = 0,
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for all multi-indices «. Since p * ¥ is a squashing function, there exists b = b, such that
(p+ @)D (b) # 0. Setting b = b, and w = 0 in (3.4), we obtain

/K 22dpu(z) = 0.

Using the Taylor expansion of %@ it follows that

/ et dp(x) =0,
K

for all £ € R™. Thus, the Fourier transform of p vanishes, implying that u itself is
identically zero and that I(f) = 0 (f € C(K)). This togather with the Hahn—Banach
theorem shows that X(p * ¥) is dense in C(K). O

Proof of Theorem 3.5. Take f € LP()(du) arbitrary and let e > 0. By virtue of Lemma
2.3, we can take g € C.(R") so that

(3.5) 1f = 9l v (@) <
By Lemma 3.7, there exists h € £(¥) such that

N ™

| M

sup |g(z) — h(z)| <
TeEK

This inequality and the assumption that p is a probability measure with pu(K) =1 imply
that for any A > 0,

[ (e h<x>|>p(” an(a)

(s h<x>|>p<“> autay+ [ (1) h<m>|>”“) an(z)

<[ (5)" duto)

Taking \ = %, we obtain

/n (W)pm du(z) < /K (Qi\)p(x) dp(z) =1,

which leads us to

£
(3.6) lg = hllzecr @uy = A= 5
Combining (3.5) and (3.6), we conclude that [|f — Al pp0)(gp) < & O

3.2. Park—Sandberg [20] (1993). To describe the result of Park and Sandberg, we give
the following definition:

Definition 3.8. Let ¢ : R” — R be an integrable function, i.e., ¢ € L*(R"). We define
the set S as the collection of all functions f : R” — R that can be expressed in the form

N
(3.7) f@) =3 w;o <‘”” ;,ZJ) . zER"
j=1 I
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where N € N, 0; > 0, w; € R, and z; € R" for each j =1,2,..., N.
We extend the result of [20, Proposition 1] to the setting with a variable exponent.

Theorem 3.9. Let ¢ : R” — R be a function such that ¢ € L' N LPY) and satisfies

(3.8) ¢(x)dx = 1.
R’ﬂ

Suppose that p(-) : R™ — (1,00) satisfies
(3.9) 1 <p_ <pi<o0.
Then the set Sy is dense in LPC).

Proof. Assume, for contradiction, that S; € LP(). By the Hahn Banach theorem, there
exists T' € (LP())* such that

T(S1) = {0}, T(L*)#{o}.

By the Riesz representation theorem, there exists g € LP'0) such that

(3.10) T(f) = fla)g(z)dz, for all fe LPO).
Rn

Fix z € R" and ¢ > 0. Since T'(S1) = {0}, we have

(3.11) / o "¢ <:): ; Z) g(x)dz = 0.

Define the functions ;5 and qu\; by

)= ([ o) dy)lqs(—x),

-
bala) =079 (2).

Then, we obtain

312)  Goeo= ([ o) [ oo (*27) g =0
Since ¢ € L' and

Sx)de = 1,
]Rn

Lemma 2.3 implies that

(3.13) lim ‘
o—+0

o * g —
box g gHL

P

Combining (3.12) and (3.13), we deduce that g(z) = 0 for almost every x € R", implying
that T(f) = 0 for all f € LP(). This contradicts T(LP")) # {0}, completing the proof. [
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3.3. Approximation theorems in Herz spaces. The space L'(R") denotes the space
of all equivalence classes of measurable functions modulo null functions. Given r > 0, we
write B(r) = {x € R" : |z| < r}. For each k € Z, we set C := B(2¥)\ B(2"¥~1). We write
Xk = X, for each k € Z.

Definition 3.10. Let p,q € [1,00] and @ € R. The (non-homogeneous) Herz space
Kp%(R") consists of all f € LY(R™) for which

1Fllicga == I eoemay) + M2 N xwllze } e leaqy < oo

Let S be the Schwartz class. It is proved in [12] that S C K,*(R™). Moreover the
inclusion is dense, provided that p,q € [1,00). In order to obtain a density theorem in
Herz spaces we need the following approximation.

Lemma 3.11 (Theorem 3.6 in [21]). Let ¢ : R — R satisfy ¢ € S and / ¢(z)dxr = 1.
Suppose that p,q € [1,00) and o € R. Then we have that for all f € Kg,q(]ﬁ%)}
Jim 1¢o * f = fllggagn = 0.
We note that the dual space of K,*?(R") is given by
(3.14) (K29(R™)" = K, (R").
Applying Lemma 3.11 in the proof of Theorem 3.9, we obtain a density theorem in non-
homogeneous Herz spaces.

Theorem 3.12. Let ¢ : R” — R be a function satisfying ¢ € S(R™) and

(3.15) ¢(z)dx = 1.
R

Suppose that p,q € (1,00) and o € R. Then, the set Sy is dense in Kp'?(R").

3.4. A modular inequality in LP(). Thanks to Lemma 2.3, we can approximate each
function f € LP() using the convolution ¢, * f. In this section, we study the boundedness
of the operator

(3.16) Pok 1 f > Go x f
on LPC).

Given a measurable function f on R", we define the Hardy—Littlewood maximal operator
M by

(3.17) M (x) = sup — F(y)dy, @€ R™

r>0 T J|y—z|<r
The classical Hardy—Littlewood maximal theorem states that M is bounded on L? for
1 < p < o0. Moreover, M is also bounded on L) provided that the function p(-) satisfies
the following conditions:

1 1 C 1
318 - S 3 fOI‘ x_y S a0
(3.18) ) p<y>’ Tlogle—g)’ Tl TYlsg
1 1 C
3.19 — < , for > |x|.
(3.19) ’pm p<y>’ < logle a2 lal
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For details, we refer to [4, 6, 8, 9].
The boundedness of M on LP() implies the norm inequality

(3.20) IMfll o) < CNfll oy for all f e LPO),
Lerner [16] showed that if M satisfies the modular inequality

(3.21) {(Mf()Y@dz < C [ |f(z)P®dz for all f e LPO),
R™ R™

then p(-) must be a constant. Note that the norm inequality (3.20) and the modular
inequality (3.21) are equivalent if p(-) is a constant. This result highlights a fundamental
difference between constant and variable exponent Lebesgue spaces.

Suppose ¢ € L' and f]R" ¢(x)dz = 1. To study the modular inequality for the operator
¢s*, we introduce the following class of functions:

Definition 3.13. A function ® is called radial decreasing if it satisfies ®(x) > ®(y) > 0
for all z,y € R™ with |z| < |y|. The class RB consists of functions ¢ for which there exists
a radial decreasing function ® such that |¢(z)| < ®(z) for all z € R™, where ®(0) < oo
and ® € L.

Assuming ¢ € RB, it follows from [10, Proposition 2.7] that
(3.22) sup |¢s * f(x)| < CM f(x) for all z € R™.
o>0

Thus, if M is bounded on L), then ¢, is also bounded on LP() with an operator norm
independent of o. This leads to the following generalization of Lerner’s result.

Theorem 3.14. Let p(-) : R" — (1,00) be a measurable function. Suppose ¢ € L' N RB,
satisfying

L fRn ¢($) dm = 17

e $(0) >0,

e ¢ is continuous on R".

If the modular inequality
(3.2) [ ooss@p@as <c [ 17ape s,
R» R™

holds for all f € LPC) and all o > 0, then p(-) must be constant.

Proof. The proof follows arguments found in [1, 15]. Assuming the modular inequality
(3.23) holds for all f € LP() and all & > 0, we derive a contradiction under the assumption
that p(-) is not constant.

By the continuity of ¢ and the assumption ¢(0) > 0, there exists a constant Cy > 0 and
J > 1 such that

(3.24) $(z) > Cy, for |z] <277,

If p(-) is not constant, then p; > p_ holds. Define

1
€= g(p+—p_), E={zeR":py —e<p(x)}, F:={xeR":p_+e>p)}



DENSITY THEOREMS IN NEURAL NETWORK WITH VARIABLE EXPONENT 13

Note that ¢ > 0, |[E| > 0 and |F| > 0. By the Lebesgue differentiation theorem,
B
o Bnr) 0B
r=+0  |B(yo,7)|

for almost all yy € £ and

L Blao ) nFl
r——+0 |B(330,7“)|

for almost all g € F'. Choose r € (0, 2_j), yo € F and zg € F so that

Bly.r)NE| |1 |Blag,r)NF| 1
By, )] Bloor)| 2

Then |E N B(yo,r)| > 0 and |F N B(zg,r)| > 0 in particular. We additionally define

>1
9’

U:=FENB(yy,r), V:=FnNDB(xgr).

Assume that o > 27(|zg — yo| + 27). Then

1 —
¢a*XV($):n/¢<x y>dy200‘nv|, zeU.
o Jv o o

since
|z —y| < |z —yo| + |yo — xo| + |zo — y| < 2r + |yo — x|,

for every x € U and y € V.
Taking an arbitrary constant R > 1, we obtain

p(x)
Rp+s/ (CO|V|> d$§/ (COR“/Dp(x) dax
U U

O-n
p()
S/ (RC0|V\> de
U o"

< [ @)@y .

Applying inequality (3.23), we get
RP+—¢ / (002—n<a+1))” dz<C | (Ryv(2))’™ dz=C / RP@) dz < CRP-E|V|.
U Rn v

This contradicts the fact that p; —e > p_ + €. Hence, we conclude that py = p_, which
means that the variable exponent p(z) is constant. O
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