Alternative proof of the ribbonness on classical link

Akio Kawauchi

Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

kawauchi@omu.ac.jp

ABSTRACT

Alternative proof is given for an earlier presented result that if a link in 3-space bounds a compact oriented proper surface (without closed component) in the upper half 4-space, then the link bounds a ribbon surface in the upper half 4-space which is a boundary-relative renewal embedding of the original surface.

Keywords: Ribbon surface, Slice link, Ribbon link. 2020 Mathematics Subject Classification: Primary 57K45; Secondary 57K40

1. Introduction

For a set A in the 3-space $\mathbf{R}^3 = \{(x, y, z) | -\infty < x, y, z < +\infty\}$ and an interval $J \subset \mathbf{R}$, let

$$AJ = \{ (x, y, z, t) | (x, y, z) \in A, t \in J \}.$$

The upper-half 4-space \mathbf{R}^4_+ is denoted by $\mathbf{R}^3[0, +\infty)$. Let k be a link in the 3-space \mathbf{R}^3 , which always bounds a compact oriented proper surface F embedded smoothly in the upper-half 4-space \mathbf{R}^4_+ , where $\mathbf{R}^3[0]$ is canonically identified with \mathbf{R}^3 . Two such surfaces F and F' in \mathbf{R}^4_+ are equivalent if there is an orientation-preserving

diffeomorphism f of \mathbf{R}^4_+ sending F to F', where f is called an *equivalence*. For a link k_0 in \mathbf{R}^3 , let **b** be a band system spanning k_0 , namely a system of finitely many disjoint oriented bands spanning the link k_0 in \mathbf{R}^3 . The pair (k_0, \mathbf{b}) is called a *banded link.* The surgery link of (k_0, \mathbf{b}) is the link obtained from k_0 by surgery along \mathbf{b} . Assume that the surgery link of a banded link (k_0, \mathbf{b}) is a trivial link $\boldsymbol{\kappa}$ in \mathbf{R}^3 . Then the band system **b** is considered as a band system β spanning κ . The pair (κ, β) is called a banded loop system with loop system κ and surgery link k_0 . Throughout the paper, the surgery link k_0 will be a union $k \cup \mathbf{o}$ of a link k in question and a trivial link \mathbf{o} called an *extra trivial link*. Here, it is assumed that there is a band sub-system \mathbf{b}_1 of the band system \mathbf{b} such that \mathbf{b}_1 connects to \mathbf{o} with just one band $b_1 \in \mathbf{b}_1$ for every component $o \in \mathbf{o}$ and every band $b \in \mathbf{b}_1^c = \mathbf{b} \setminus \mathbf{b}_1$ spans the link k. Let α_1 be the arc system of the attaching arc α_1 of every band $b_1 \in \mathbf{b}_1$ to $o \in \mathbf{o}$, and α_1^c the complementary arc system of α_1 in **o** consisting of every complementary arc $\alpha_1^c = cl(o \setminus \alpha_1)$. Any disk system **d** in \mathbf{R}^3 bounded by the extra trivial link **o** is called an *extra disk system*, which is fixed and the argument proceeds. Let δ be a disk system consisting of disjoint disks in \mathbf{R}^3 with $\partial \boldsymbol{\delta} = \boldsymbol{\kappa}$, which is called a *based* disk system for a loop system κ . A ribbon surface-link $cl(F_{-1}^1)$ in \mathbf{R}^4 is constructed from a banded loop system (κ, β) by taking the surgery of the trivial S²-link

$$O = \partial(\boldsymbol{\delta}[-1,1]) = \boldsymbol{\delta}[-1] \cup (\partial \boldsymbol{\delta})[-1,1] \cup \boldsymbol{\delta}[1]$$

along the 1-handle system $\boldsymbol{\beta}[-t,t]$ in \mathbf{R}^4 for any t with 0 < t < 1. The proper surface ucl $(F_0^1) = \operatorname{cl}(F_{-1}^1) \cap \mathbf{R}_+^4$ in \mathbf{R}_+^4 is called the *upper-closed realizing surface* of a banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ with surgery link k_0 . Note that choices of the based disk systems $\boldsymbol{\delta}$ are independent of the equivalences of ucl (F_0^1) and $\operatorname{cl}(F_{-1}^1)$ by Horibe-Yanagawa's lemma, [6]. The reason for dealing with a banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ rather than a banded link (k_0, \mathbf{b}) is because not only can a based disk system $\boldsymbol{\delta}$ be chosen freely, but it also makes a band deformation of the band system $\boldsymbol{\beta}$ easier. Actually, an isotopic deformation of $\boldsymbol{\beta}$ respecting the arc system $\boldsymbol{\alpha}_1$ and the loop system $\boldsymbol{\kappa}$ does not change the ribbon surface-link $\operatorname{cl}(F_{-1}^1)$ in \mathbf{R}^4 and the proper surface $\operatorname{ucl}(F_0^1)$ in \mathbf{R}_+^4 , up to equivalences.

Let $\operatorname{cl}(F_{-1}^1)_{\mathbf{d}}$ be the surface-link in \mathbf{R}^4 obtained from the ribbon surface-link $\operatorname{cl}(F_{-1}^1)$ by surgery along the 2-handle $\mathbf{d}[-\varepsilon,\varepsilon]$ on $\operatorname{cl}(F_{-1}^1)$ where $0 < \varepsilon < t < 1$. The proper surface $P(F_0^1) = \operatorname{cl}(F_{-1}^1)_{\mathbf{d}} \cap \mathbf{R}_+^4$ in \mathbf{R}_+^4 with $\partial P(F_0^1) = k$ is called a *proper* realizing surface of a banded loop system $(\boldsymbol{\kappa},\boldsymbol{\beta})$ with surgery link $k_0 = k \cup \mathbf{o}$. The following theorem is known, [6].

Normal form theorem. Every compact oriented proper surface F without closed component in the upper-half 4-space \mathbf{R}^4_+ with $\partial F = k$ in \mathbf{R}^3 is equivalent to a proper realizing surface $P(F_0^1)$ in \mathbf{R}^4_+ with $\partial P(F_0^1) = k$ of a banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ with surgery link $k_0 = k + \mathbf{o}$ which is a split sum of k and an extra trivial link \mathbf{o} .

The proper realizing surface $P(F_0^1)$ in \mathbf{R}_+^4 is called a *normal form* of the proper surface F in \mathbf{R}_+^4 . If the extra trivial link **o** is taken the empty link, namely $P(F_0^1) =$ $\mathrm{ucl}(F_0^1)$, then the proper surface F in \mathbf{R}_+^4 is called a *ribbon surface*. In the following example, it is observed that there are lots of compact oriented proper surfaces without closed component in \mathbf{R}_+^4 which are not equivalent to any ribbon surface in \mathbf{R}_+^4 .

Example. For every link k in \mathbb{R}^3 , let F' be any ribbon surface in \mathbb{R}^4_+ with $k = \partial F'$. For example, let F' be a proper surface in \mathbb{R}^4_+ obtained from a Seifert surface for k in \mathbb{R}^3 by an interior push into \mathbb{R}^4_+ . Take a connected sum F = F' # K of F' and a non-trivial S²-knot K in \mathbb{R}^4 with non-abelian fundamental group. Then $k = \partial F' = \partial F$. It is shown that F is not equivalent to any ribbon surface in \mathbb{R}^4_+ . The fundamental groups of k, F', F, K are denoted as follows.

$$\pi(k) = \pi_1(\mathbf{R}^3 \setminus k, x_0), \quad \pi(F') = \pi_1(\mathbf{R}^4 \setminus F', x_0),$$
$$\pi(F) = \pi_1(\mathbf{R}^4 \setminus F, x_0), \quad \pi(K) = \pi_1(S^4 \setminus K, x_0).$$

Let $\pi(k)^*, \pi(F')^*\pi(F)^*, \pi(K)^*$ be the kernels of the canonical epimorphisms from the groups $\pi(k), \pi(F'), \pi(F), \pi(K)$ to the infinite cyclic group sending every meridian element to the generator, respectively. It is a special feature of a ribbon surface F' that the canonical homomorphism $\pi(k) \to \pi(F')$ is an epimorphism, so that the induced homomorphism $\pi(k)^* \to \pi(F')^*$ is onto. On the other hand, the canonical homomorphism $\pi(k) \to \pi(F')^*$ is not onto, because the group $\pi(F)^*$ is the free product $\pi(F')^* * \pi(K)^*$ and $\pi(K)^* \neq 0$ and the image of the induced homomorphism $\pi(k)^* \to \pi(F')^*$. Thus, the proper surface F in \mathbf{R}^4_+ is not equivalent to any ribbon surface.

A compact oriented proper surface F' in \mathbf{R}^4_+ is a renewal embedding of a compact oriented proper surface F in \mathbf{R}^4_+ if there is an orientation-preserving surfacediffeomorphism $F' \to F$ keeping the boundary fixed. A renewal embedding F' of Fis boundary-relative if the link $k' = \partial F'$ in \mathbf{R}^3 is equivalent to the link $k = \partial F$ in \mathbf{R}^3 . The proof of the following theorem is given, [4]. In this paper, an alternative proof of this theorem is given from a viewpoint of deformations of a ribbon surface-link in \mathbf{R}^4 .

Classical ribbon theorem. Assume that a link k in the 3-space \mathbb{R}^3 bounds a compact oriented proper surface F without closed component in the upper-half 4-space \mathbb{R}^4_+ . Then the link k in \mathbb{R}^3 bounds a ribbon surface F' in \mathbb{R}^4_+ which is a boundary-relative renewal embedding of F.

A link k in \mathbb{R}^3 is a slice link in the strong sense if k bounds a proper disk system embedded smoothly in \mathbb{R}^4_+ . A link k in \mathbb{R}^3 is a ribbon link if k bounds a ribbon disk system in \mathbb{R}^4_+ . The following corollary is a special case of Classical ribbon theorem.

Corollary 1. Every slice link in the strong sense in \mathbb{R}^3 is a ribbon link.

Thus, Classical ribbon theorem solves *Slice-Ribbon Problem*, [1], [2]. The following corollary is obtained from Corollary 1.

Corollary 2. A link k in \mathbb{R}^3 is a ribbon link if a ribbon link is obtained from the split sum $k + \mathbf{o}$ of k and a trivial link \mathbf{o} by a band sum of k and every component of \mathbf{o} .

The proof of the classical ribbon theorem is done throughout the section 2. An idea of the proof is to consider the 2-handle pair system $(D \times I, D' \times I)$ on the ribbon surface-link $\operatorname{cl}(F_{-1}^1)$ with $k + \mathbf{o}$ as the middle-cross sectional link such that $P(F_0^1)$ is equivalent to a previously given surface F in \mathbf{R}_+^4 , where the 2-handle system $D \times I$ is constructed from the band system \mathbf{b}_1 and the 2-handle system $D' \times I$ is constructed from the extra disk system \mathbf{d} . The interior intersections of $(D \times I, D' \times I)$ will be eliminated and $(D \times I, D' \times I)$ becomes an O2-handle pair system on a new ribbon surface-link $\operatorname{cl}(F_{-1}^1)$ with $k + \mathbf{o}$ as the middle-cross sectional link obtained by sacrificing equivalences. Then $P(F_0^1)$ is a ribbon surface that is a boundary-relative renewal embedding of F, which will complete the proof.

2. Proof of Classical ribbon theorem

Throughout this section, the proof of the classical ribbon theorem is done. Let F be a compact oriented proper surface without closed component in \mathbf{R}^4_+ , and $\partial F = k$ a link in \mathbf{R}^3 . By the normal form theorem, there is a banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ with surgery link $k_0 = k + \mathbf{o}$ such that $P(F_0^1)$ is equivalent to F. The extra trivial link \mathbf{o} is uniquely specified by the banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$, which is the union of the arc system $\boldsymbol{\alpha}_1$ and the complementary arc system $\boldsymbol{\alpha}_1^c$, where the interior of $\boldsymbol{\alpha}_1$ transversely meets the interior of a based disk system $\boldsymbol{\delta}$ with finite points and is disjoint from the based loop system $\boldsymbol{\kappa}$ and $\boldsymbol{\alpha}_1^c$ belongs to the loop system $\boldsymbol{\kappa}$.

A renewal embedding of a banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ with surgery link $k_0 = k \cup \mathbf{o}$ is a banded loop system $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$ with surgery link $k'_0 = k' \cup \mathbf{o}$ such that there is a homeomorphism $\boldsymbol{\kappa} \cup \boldsymbol{\beta} \to \boldsymbol{\kappa}' \cup \boldsymbol{\beta}'$ with restrictios $\boldsymbol{\kappa} \to \boldsymbol{\kappa}'$ and $\boldsymbol{\beta} \to \boldsymbol{\beta}'$ orientationpreserved. The following observation is directly obtained by definition.

(2.1) If a banded loop system $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$ with surgery link $k' \cup \mathbf{o}$ is a renewal embedding of a banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ with surgery link $k \cup \mathbf{o}$, then the upper-closed realizing surface $\operatorname{ucl}(F_0^1)'$ constructed from $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$ is a renewal embedding of the upper-closed realizing surface $\operatorname{ucl}(F_0^1)$ constructed from $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ such that $\partial \operatorname{ucl}(F_0^1) = k \cup \mathbf{o}$ and $\partial \operatorname{ucl}(F_0^1)' = k' \cup \mathbf{o}$.

A transversal arc of a band spanning a link is a simple proper arc in the band which is parallel to an attaching arc. For a band $b \in \mathbf{b}$ transversely meeting the interior of an extra disk $d \in \mathbf{d}$, the *d*-arc system of *b* is the arc system d(b) of every transversal arc *a* of *b* in the interior of *d*. The **d**-arc system of a band system **b** is the collection $\mathbf{d}(\mathbf{b})$ of d(b) for every $d \in \mathbf{d}$ and every $b \in \mathbf{b}$. For a based disk $\delta \in \delta$, the δ -arc system of a band $\beta \in \boldsymbol{\beta}$ is the arc system $\delta(\beta)$ of every transversal arc *c* of β in the interior of δ . The δ -arc system of $\boldsymbol{\beta}$ is the collection $\delta(\boldsymbol{\beta})$ of $\delta(\beta)$ for every $\delta \in \delta$ and every $\beta \in \boldsymbol{\beta}$. A normal proper arc in the extra disk system **d** is a simple proper arc in **d** with the endpoints in the interior of the arc system α_1 . The following assertion is shown.

(2.2) By isotopic deformations in \mathbb{R}^3 , the banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ in \mathbb{R}^3 with surgery link $k_0 = k + \mathbf{o}$ is deformed so that a based disk system $\boldsymbol{\delta}$ transversely meets the extra disk system \mathbf{d} with interior simple arcs or normal proper arcs in \mathbf{d} except for the complementary arc system $\boldsymbol{\alpha}_1^c$.

Proof of (2.2). By transverse regularity, the intersection $d \cap \delta$ for every $d \in \mathbf{d}$ and every $\delta \in \boldsymbol{\delta}$ is made interior simple loops, interior simple arcs, clasp type simple arcs or simple proper arcs in \mathbf{d} except for the complementary arc system $\boldsymbol{\alpha}_1^c$. A simple loop is changed into a normal proper arc by a pushing out deformation to $\boldsymbol{\alpha}_1$, Fig. 1 (1). A clasp type simple arc is changed into a simple proper arc by moving out the interior point to $\boldsymbol{\alpha}_1$, Fig. 1 (2). A simple proper arc which is not normal is also changed into a normal proper arc by a pushing out deformation of the arc system of $\boldsymbol{\delta}$ meeting a boundary collar of $\boldsymbol{\alpha}_1^c$ in \mathbf{d} , Fig. 1 (3). Thus, a deformed based disk system $\boldsymbol{\delta}$ transversely meets \mathbf{d} with interior simple arcs or normal proper arcs in \mathbf{d} except for the complementary arc system $\boldsymbol{\alpha}_1^c$. This completes the proof of (2.2).

The following operation gives a standard renewal embedding of a banded loop system.

Band Move Operation. In the banded loop system (κ, β) with surgery link $k_0 =$

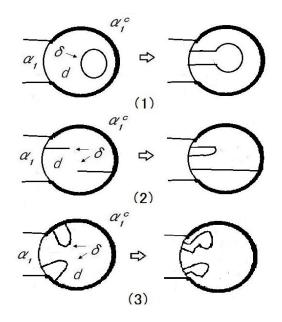


Figure 1: Changing the intersection of a based disk and an extra disk

 $k \cup \mathbf{o}$, assume that there is a transversal arc c of a band $\beta \in \boldsymbol{\beta}$ in the interior of an extra disk $d \in \mathbf{d}$ and there is a simple path ω in d from a point $p \in c$ to an interior point of the arc $\alpha_1^c = \partial d \cap \boldsymbol{\alpha}_1^c$ which avoids meeting $\boldsymbol{\beta}$ other than c. Let β' be a band obtained from β by sliding the arc c off the disk d along the path ω . Replace the banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ with the banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta}')$ obtained by replacing β with β' , Fig. 2.

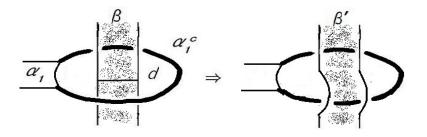


Figure 2: Band Move Operation

By this operation, the new banded loop system (κ, β') is a renewal embedding of

the original banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ and has as the surgery link a new union k'_0 of the same links k and \mathbf{o} , not necessarily the split sum $k + \mathbf{o}$, because the band system $\boldsymbol{\beta}'$ is isotopic to $\boldsymbol{\beta}$ if $\boldsymbol{\alpha}_1^c$ is forgotten. In the final stage of this paper, the surgery link k'_0 will have $k \cap \mathbf{d} = \emptyset$, so that k'_0 will be the split sum $k + \mathbf{o}$, because $\mathbf{o} = \partial \mathbf{d}$.

To achieve a situation where the Band Move Operation can be applied, the follwing concept is needed. A *splitting* of a banded loop system (κ, β) is a banded loop system (κ^*, β^*) such that a based disk system δ^* for κ^* is obtained from a based disk system δ for κ by splitting along a disjoint proper arc system γ in δ not meeting \mathbf{o} and β , and the band system β^* is obtained from the band system β by adding the band system β_{γ} thickening γ . This splitting operation comes from Fission-Fusion move of a banded loop system, [3]. After some splittings of a banded loop system, a situation where the Band Move Operation can be applied is realized by a replacement of the based disk system and an isotopic deformation of the band system.

The following assertion is used.

(2.3) If there is a splitting (κ^*, β^*) of a banded loop system (κ, β) with surgery knot k_0 a union of k and o such that κ^* does not meet the interior of the extra disk system d, then there is a renewal embedding (κ', β') of (κ, β) such that (κ', β') does not meet the interior of d and has the surgery knot $k'_0 = k + o$.

Proof of (2.3). Since κ^* does not meet the interior of **d**, there is a based disk system δ^* for κ^* not meeting the interior of **d**. The band system β^* transversely meets the interior of **d** with transverse arc system A. Let δ_1^* be the sub-system of δ^* containing the complementary arc system $\boldsymbol{\alpha}_1^c$ in the boundary, and $N(\boldsymbol{\alpha}_1^c)$ a boundary collar disk system of α_1^c in δ_1^* . The Band Move Operation means that the band system β^* is deformed so that the transverse arc system A moves from the interior of \mathbf{d} into the interior of $N(\boldsymbol{\alpha}_1^c)$. Then by changing the band system $\boldsymbol{\beta}_{\boldsymbol{\gamma}}$ back into the arc system $\boldsymbol{\gamma}$, the banded loop system $(\boldsymbol{\kappa}^*, \boldsymbol{\beta}^*)$ is changed back to a pair $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$, where the loop system κ' bounds an immersed disk system δ' obtained from the based disk system $\boldsymbol{\delta}$ by moving a transverse arc system of $\boldsymbol{\beta}_{\boldsymbol{\gamma}}$ into the interior of $N(\boldsymbol{\alpha}_1^c)$. The immersed disk system δ' is deformed into a disjoint disk system by repeatedly pulling the band in $oldsymbol{eta}_\gamma$ connecting to an outer most disk of $oldsymbol{\delta}^*$ or passing the outer most disk of $oldsymbol{\delta}^*$ through $N(\boldsymbol{\alpha}_1^c)$ in order to eliminate the nearest transverse arc of the band. This means that the loop system κ' is a trivial link and (κ', β') is a banded loop system. Thus, there is a renewal embedding (κ', β') of (κ, β) which does not meet the interior of **d**. The surgery knot k'_0 is necessarily the split sum $k + \mathbf{o}$ since $\partial \mathbf{d} = \mathbf{o}$. This completes the proof of (2.3).

By using (2.2) and (2.3), the following assertion is shown.

(2.4) There is a renewal embedding $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$ of every banded loop system $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ in \mathbf{R}^3 with surgery link $k_0 = k + \mathbf{o}$ such that $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$ does not meet the interior of \mathbf{d} and has the surgery knot $k'_0 = k + \mathbf{o}$.

Proof of (2.4). By (2.2), a based disk system $\boldsymbol{\delta}$ of $\boldsymbol{\kappa}$ transversely meets the extra disk system \mathbf{d} with interior simple arcs or normal proper arcs in \mathbf{d} except for the complementary arc system $\boldsymbol{\alpha}_1^c$. Let A be the interior arc system which is made disjoint from $\boldsymbol{\beta}$ by isotopic deformations of $\boldsymbol{\beta}$ respecting the arc system $\boldsymbol{\alpha}_1$ and the loop system $\boldsymbol{\kappa}$. By taking a splitting of $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ along A, it is considered that the based disk system $\boldsymbol{\delta}$ transversely meets \mathbf{d} only with normal proper arcs in \mathbf{d} except for $\boldsymbol{\alpha}_1^c$. Then $\boldsymbol{\kappa}$ does not meet the interior of the extra disk system \mathbf{d} . By (2.3), the proof of (2.4) is completed.

Let $(\boldsymbol{\kappa}, \boldsymbol{\beta})$ be a banded loop system a banded loop system with surgery link $k_0 = k + \mathbf{o}$ such that $P(F_0^1)$ is equivalent to F. By (2.4), there is a renewal embedding $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$ such that $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$ does not meet the interior of the extra disk system \mathbf{d} , and has the surgery link $k + \mathbf{o}$. Let \mathbf{b}' be the band system dual to the band system $\boldsymbol{\beta}'$, and \mathbf{b}'_1 the band sub-system of \mathbf{b}' such that \mathbf{b}'_1 connects to \mathbf{o} with just one band for every component of \mathbf{o} . Let $\mathbf{b}'_2 = \mathbf{b}' \setminus \mathbf{b}'_1$. Since \mathbf{b}'_1 does not meet the interior of \mathbf{d} , the surgery link of the banded link $(k + \mathbf{o}, \mathbf{b}'_1)$ is equivalent to the link k and the upper-closed realizing surface $ucl(F_0^1)'$ of the banded link (k, \mathbf{b}'_2) is equivalent to the proper realizing surface $P(F_0^1)'$ of $(\boldsymbol{\kappa}', \boldsymbol{\beta}')$ which is a ribbon surface in \mathbf{R}^4_+ and is a renewal embedding of the proper realizing surface $P(F_0^1)$ is equivalent to F in \mathbf{R}^4_+ and $ucl(F_0^1)'$ is a ribbon surface with $\partial ucl(F_0^1)' = \partial F = k$, there is a boundary-relative renewal embedding from $ucl(F_0^1)'$ to F. This completes the proof of the classical ribbon theorem.

Acknowledgements. The author thanks to a referee for suggesting the content for making easier content. This paper is motivated by T. Shibuya's comments pointing out insufficient explanation on Lemma 2.3 in [4] (Corollary 2 in this paper). This work was partly supported by JSPS KAKENHI Grant Number JP21H00978 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165.

references

- [1] R. H. Fox, Some problems in knot theory, Topology of 3-manifolds and related topics, (1962), 168-176, Prentice-hall, Inc., Engelwood Cliffs, N. J. USA.
- [2] R. H. Fox, Characterization of slices and ribbons, Osaka J. Math 10. (1973), 69-76.
- [3] A. Kawauchi, A chord diagram of a ribbon surface-link, Journal of Knot Theory and Its Ramifications 24 (2015), 1540002 (24 pages).
- [4] A. Kawauchi, Ribbonness on classical link. Journal of Mathematical Techniques and Computational Mathematics, 2 (8) (2023), 375-377, DOI:10.33140/JMTCM.
- [5] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, Topology and its Applications 301(2021), 107522 (16pages).
- [6] A. Kawauchi, T. Shibuya, S. Suzuki, Descriptions on surfaces in four-space I: Normal forms, Mathematics Seminar Notes, Kobe University, 10 (1982), 75-125; II: Singularities and cross-sectional links, Mathematics Seminar Notes, Kobe University 11 (1983), 31-69. Available from: https://sites.google.com/view/ kawauchiwriting