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1. Introduction

The parallel transport map is a natural fibration defined over a homogeneous
space N . More precisely, it is defined as a submersion ΦN : V → N from an infinite
dimensional Hilbertable space V onto N and becomes a principal fiber bundle whose
structure group is a path group. For a submanifold M of N its inverse image M̂
under ΦN is a submanifold of V . Thus, one can obtain examples of submanifolds in
V . Furthermore, the parallel transport map is a useful tool to reduce a problem of
a submanifold M in N to a problem of the submanifold M̂ in the flat space V .

The parallel transport map was originally introduced by R. S. Palais and C.-L.
Terng [9, 11] in the case that N is a connected compact Lie group with a bi-invariant
Riemannian metric. Later, C.-L. Terng and G. Thorbergsson [12] studied it when
N is a compact Riemannian symmetric space and showed that it is a Riemannian
submersion. Afterward, N. Koike [4] studied it when N is a Riemannian symmetric
space of non-compact type and showed that it becomes a pseudo-Riemannian sub-
mersion. Recently, the author [7] studied it when N is a symmetric space with the
canonical connection (i.e. N is an affine symmetric space) and showed that it is an
affine submersion with horizontal distribution in the sense of Abe and Hasegawa [1].

The main purpose of the present paper is to generalize the author’s previous re-
sult to the case that N is a reductive homogeneous space. Although the canonical
connection is still defined for a reductive homogeneous space, it is no longer torsion-
free, which implies that the previous result does not hold when N is a reductive
homogeneous space with the canonical connection. Thus we consider another affine
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connection on N , namely the natural torsion-free connection [8, 3]. The canon-
ical connection and the natural torsion-free connection share the same geodesics.
Those connections coincide when N is a symmetric space. By equipping N with
the natural torsion-free connection, we generalize the previous result to the case of
reductive homogeneous spaces (Theorem 3.3). Moreover we consider its relation to
weakly reflective submanifolds and generalize some results obtained in the author’s
previous papers (cf. Section 4). To do these, we start with reviewing invariant affine
connections on reductive homogeneous spaces.

2. Invariant affine connections on reductive homogeneous spaces

In this section, we give a brief survey on invariant affine connections on reduc-
tive homogeneous spaces. We essentially follow the paper of Nomizu [8] where a
simple and direct formulation is given. We also refer to Kobayashi-Nomizu [3] for a
formulation based on the theory of connections on principal fiber bundles.

Let G be a connected Lie group and K a closed subgroup of G. Denote by e the
identity element. The coset manifold N := G/K is called a homogeneous space. The
projection π : G → N becomes a principal K-bundle. Denote by g and k the Lie
algebras of G and K respectively. G/K is called reductive if there exists an Ad(K)-
invariant subspace p of g satisfying g = k ⊕ p. Note that p is isomorphic to TeKN
and the representation Ad : K → GL(p) is equivalent to the isotropy representation
K → GL(TeKN). When we speak of a reductive homogeneous space, we always fix
such a decomposition g = k ⊕ p. For X ∈ g we denote by Xk and Xp the k- and
p-components respectively.

Let N = G/K be a reductive homogeneous space with decomposition g = k⊕ p.
The following lemma is elementary and not explicitly stated in [8]. However this is
useful in understanding the formulation.

Lemma 2.1. There exists a local trivialization φ : π−1(U) → U × K around eK
such that Ũ := φ−1(U × {e}) is equal to expW for an open neighborhood W of 0 in
p.

Proof. By the inverse function theorem there exists an open neighborhood W of
0 ∈ p such that π : expW → π(expW ) =: U is a diffeomorphism. This defines the
local smooth section of π : G→ N which defines the desired local trivialization. �

Fix the above local trivialization. Then π : Ũ → U is a diffeomorphism. For each
X ∈ p the vector field X# on U is defined by X#

aK := dπ(Xa) where a ∈ Ũ . Then

X#
aK = dLa(X

#
eK) (2.1)

for a ∈ Ũ . Here La denotes the left translation on G/K by a. The following fact is
essentially shown in [8, p. 42] (where X# is written as X∗).

Lemma 2.2 (Nomizu [8]). For each k ∈ K there exists a neighborhood Ũ1 of e ∈ Ũ
satisfying kŨ1k

−1 ⊂ Ũ . Moreover,

(i) Lk(U1) ⊂ U where U1 := π(Ũ1),
(ii) dLk(X

#) = (Ad(k)X)# holds on Lk(U1) for any X ∈ p.

In fact, since Ad(k)−1p ⊂ p we can take an open neighborhood W1 of 0 ∈ p sat-
isfying 0 ∈ W1 ⊂ W ∩ Ad(k)−1W . Then Ũ1 := expW1 is the desired neighborhood.
Then (i) is obvious and (ii) can be proven by use of (2.1).
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For a vector bundle E over a reductive homogeneous space N = G/K we denote
by Γ(E) the set of all smooth sections of E. Γ(TN) is also denoted by X(N). An
affine connection ∇ : Γ(TN)→ Γ(TN ⊗ T ∗N) on N is called G-invariant if

∇dLa(v)dLa(Z) = dLa(∇vZ)

for Z ∈ Γ(TN), v ∈ TN and a ∈ G. A bilinear map α : p × p → p is called
Ad(K)-invariant if

α(Ad(k)X,Ad(k)Y ) = Ad(k)α(X, Y )

for X, Y ∈ p and k ∈ K. Such an α is also called a connection function.

Proposition 2.3 (Nomizu [8]). Let G/K be a reductive homogeneous space with
decomposition g = k⊕ p. Then there exists a one-to-one correspondence between the
set of all G-invariant affine connections on G/K and the set of all Ad(K)-invariant
bilinear maps p× p→ p. The correspondence is given by

∇X#
eK
Y # = α(X, Y ). (2.2)

In fact, by taking a basis Y1, · · · , Yn of p we can express each Z ∈ X(U) as

Z =
∑n

i=1 ϕiY
#
i where ϕi ∈ C∞(U). Then the Leibniz rule shows

∇X#
eK
Z =

n∑
i=1

(ϕi(eK)∇X#
eK
Y #
i + (X#

eKϕi)(Y
#
i )eK), (2.3)

which implies that ∇ is uniquely determined by α. The G-invariance of ∇ is equiv-
alent to the Ad(K)-invariance of α, which can be seen by using Lemma 2.2 (ii).

For X ∈ p we denote by X∗ the fundamental vector field on G/K, namely

X∗aK :=
d

dt

∣∣∣∣
t=0

(exp tX)aK.

Since X∗eK = X#
eK and [X∗, Y #

i ]eK = 0 it follows from (2.3) that:

Corollary 2.4. ∇X∗
eK
Z = [X∗, Z]eK + α(X,ZeK) for X ∈ p and Z ∈ X(G/K).

Let ∇ be an affine connection on a reductive homogeneous space N = G/K with
connection function α. Then:

(i) ∇ is called the canonical connection (or the canonical connection of the
second kind) if α(X, Y ) = 0 for any X, Y ∈ p.

(ii) ∇ is called the natural torsion-free connection (or the canonical connection
of the first kind) if α(X, Y ) = 1

2
[X, Y ]p for X, Y ∈ p.

In both cases, γ(t) := π(exp tX) is a geodesic through eK where X ∈ p. In the case
(i), the parallel translation of v ∈ TeKN along γ is equal to dLγ(t)(v). In the case
(ii), the torsion tensor vanishes. When G/K is a symmetric space, (i) and (ii) are
equivalent.

Let G be a connected Lie group. Denote by ∆G the diagonal of G × G. Then
ρ : (G×G)/∆G→ G, (a, b) 7→ ab−1 is an isomorphism between symmetric spaces.

Corollary 2.5. The canonical connection ∇G of G ∼= (G × G)/∆G is given by
(∇G

XZ)e = 1
2
[X+XR, Z]e where X ∈ g and Z ∈ X(G). Here XR is the right invariant

vector field satisfying XR
e = Xe. In particular ∇G

XY = 1
2
[X, Y ] for X, Y ∈ g.
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Proof. The decomposition associated to (G×G)/∆G is given by g⊕g = ∆g⊕(∆g)⊥

where (∆g)⊥ := {(X,−X) | X ∈ g}. With respect to the (G × G)-action on G
defined by (b, c) ·a := bac−1 we have (X,−X)∗a = d

dt

∣∣
t=0

exp t(X,−X) ·a = Xa+XR
a .

In particular (X,−X)∗e = 2Xe. Since ρ is equivariant with respect to the (G× G)-
actions, we have 2(∇XZ)e = (∇(X,−X)∗Z)e ∼= (∇(X,−X)∗Z)(e,e) = [(X,−X)∗, Z](e,e) ∼=
[X +XR, Z]e by Corollary 2.4. �

From Corollary 2.5 we see that the canonical connection of G ∼= (G× G)/∆G is
the same as the natural torsion-free connection of G ∼= G/{e}.

3. The parallel transport map

In this section we study the parallel transport map over a reductive homogeneous
space. We assume basic facts about affine immersions and affine submersions for-
mulated in [7, Section 3]. We also refer to [7, Section 6] and its references for the
parallel transport map over a Lie group.

Let G be a connected Lie group with Lie algebra g. Denote by G := H1([0, 1], G)
the Hilbert Lie group of Sobolev H1-maps from [0, 1] to G and by Vg := L2([0, 1], g)
the Hilbertable space of all L2-maps from [0, 1] to g. The adjoint representation
Ad : G → GL(g) induces the representation G → GL(Vg) which is still denoted by
Ad. Write lg and rg for the left and right translations by g ∈ G respectively. Denote
by g′ the weak derivative of g. The affine action of G on Vg is defined by

g ∗ u := Ad(g)u− dr−1
g (g′) (3.1)

where g ∈ G and u ∈ Vg. This action is transitive. For a submanifold U of G×G,

P (G,U) := {g ∈ G | (g(0), g(1)) ∈ U}
is a submanifold of G. If U is a Lie subgroup of G×G, then P (G,U) is a Lie subgroup
of G and acts on Vg by (3.1). If U = {e} × G or G × {e}, then the P (G,U)-action
on Vg is simply transitive.

The parallel transport map Φ : Vg → G over G is a submersion defined by Φ(u) :=
gu(1) where gu ∈ G is the unique solution to the ordinary differential equation

dl−1
g (g′) = u, g(0) = e.

By definition we have Φ(X̂) = expX where X̂ denotes the constant path with value
X ∈ g. Consider the (G×G)-action on G defined by (b, c) · a := bac−1. Then

Φ(g ∗ u) = (g(0), g(1)) · Φ(u) (3.2)

where g ∈ G and u ∈ Vg. Moreover, for a Lie subgroup U of G×G,

P (G,U) ∗ u = Φ−1(U · Φ(u)). (3.3)

Furthermore Φ becomes a principal P (G, {e} × {e})-bundle.
The differential of Φ : Vg → G at 0̂ ∈ Vg is given by

(dΦ)0̂(X) =

∫ 1

0

X(t)dt (3.4)

where X ∈ Vg ∼= T0̂Vg. Denote by ĝ the space of constant paths with values in g
and by Fu the fiber of Φ through u ∈ Vg. From (3.4) we have

T0̂Vg = ĝ⊕ T0̂(F0̂).
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From (3.2) we know that g∗ maps fibers of Φ to fibers of Φ. Thus

Tg∗0̂Vg = Ad(g)ĝ⊕ Tg∗0̂(Fg∗0̂)

for any g ∈ G. Therefore the horizontal distribution HΦ of Φ is defined by

HΦ(g ∗ 0̂) := Ad(g)ĝ.

We denote by D the flat connection on Vg and by ∇G the canonical connection
on G ∼= (G×G)/∆G. The following fact was shown ([7, Theorem 6.6]):

Theorem 3.1 ([7]). Let G be a connected Lie group. Then the parallel transport
map Φ : (Vg, D)→ (G,∇G) is an affine submersion with horizontal distribution HΦ.
Moreover the fundamental tensor AΦ restricted to HΦ ×HΦ is alternating.

Let G/K be a homogeneous space. Then the parallel transport map ΦG/K over
G/K is defined as the composition

ΦG/K := π ◦ Φ : Vg → G→ G/K.

Note that if K = {e} then ΦG/K = Φ. Note also that Φ(G×G)/∆G is naturally

identified with Φ (cf. [6]). By definition we have ΦG/K(X̂) = (expX)K for X ∈ g.
Consider the G-action on G/K defined by b · aK := (ba)K. By (3.2) we have

ΦG/K(g ∗ u) = g(0) · ΦG/K(u) (3.5)

where g ∈ P (G,G×K) and u ∈ Vg. Moreover, by (3.3) we have

P (G,H ×K) ∗ u = Φ−1
G/K(H · ΦG/K(u)) (3.6)

where H is a Lie subgroup of G. Furthermore the following fact holds. This is stated
in [7, Proposition 7.3] without proof. For convenience we give its proof here.

Proposition 3.2 ([7]). ΦG/K becomes a principal P (G, {e} ×K)-bundle.

Proof. The map P (G, {e}×G)→ Vg, g 7→ dl−1
g (g′) is diffeomorphism [7, Lemma 6.2].

Under this identification we have ΦG/K(g) = g(1)K. Moreover the P (G, {e} × G)-
action on Vg is identified with the P (G, {e} × G)-action on itself by h · g := gh−1.
Take a subspace p of g satisfying g = k ⊕ p. (p need not be Ad(K)-invariant.) By
the inverse function theorem there exist open neighborhoods W of 0 ∈ p and U of
eK ∈ G/K such that the map W → U , X 7→ (expX)K is a diffeomorphism. For
each g ∈ P (G, {e} × π−1(U)) we define Xg ∈ W by g(1)K = (expXg)K. Then

P (G, {e} × π−1(U))→ U × P (G, {e} ×K), g 7→ (g(1)K, g(t)−1 exp tXg)

is an equivariant diffeomorphism. This proves the proposition. �

Let G/K be a reductive homogeneous space with decomposition g = k ⊕ p. By
(3.4), the differential of the parallel transport map ΦG/K at 0̂ ∈ Vg is given by

(dΦG/K)0̂(X) =

∫ 1

0

X(t)pdt. (3.7)

where X ∈ Vg ∼= T0̂Vg. Denote by p̂ the space of constant paths with values in p
and by Fu the fiber of ΦG/K through u ∈ Vg. From (3.7) we have

T0̂Vg = p̂⊕ T0̂(F0̂).
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From (3.5) we know that g∗ maps fibers of ΦG/K to fibers of ΦG/K . Thus

Tg∗0̂Vg = Ad(g)p̂⊕ Tg∗0̂(Fg∗0̂)

where g ∈ P (G,G×K). Since p is invariant under Ad(K) the horizontal distribution
HΦG/K of ΦG/K is well-defined by

HΦG/K (g ∗ 0̂) := Ad(g)p̂

where g ∈ P (G,G×K).
The following theorem generalizes Theorem 7.4 of [7] in the case of affine sym-

metric spaces and contains Theorem 3.1 as the case K = {e}.

Theorem 3.3. Let G/K be a reductive homogeneous space with decomposition g =
k⊕p and with natural torsion-free connection ∇G/K. Then the parallel transport map
ΦG/K : (Vg, D)→ (G/K,∇G/K) is an affine submersion with horizontal distribution
HΦG/K . Moreover the fundamental tensor AΦG/K restricted to HΦG/K × HΦG/K is
alternating.

To prove Theorem 3.3 we show the following lemma, which generalizes Proposition
7.5 of [7]. Here la denotes the left translation by a ∈ G.

Lemma 3.4. Let (G/K,∇G/K) be as in Theorem 3.3 and ∇G the canonical con-
nection of G ∼= (G × G)/∆G. Then π : (G,∇G) → (G/K,∇G/K) is an affine
submersion with horizontal distribution Hπ(a) := dla(p). Moreover the fundamental
tensor Aπ restricted to Hπ ×Hπ is alternating.

Proof. It is clear that the following diagram commutes:

(G,∇G)
la−−−→ (G,∇G)

π

y π

y
(G/K,∇G/K)

La−−−→ (G/K,∇G/K).

(3.8)

Note that la and La are affine transformations and Hπ is invariant under la. Thus,
to show that π : (G,∇G) → (G/K,∇G/K) is an affine submersion with horizontal
distribution Hπ, we have only to show

(∇G
Xe
Z̄)H = (∇G/K

X∗
eK
Z) (3.9)

for X ∈ p and Z ∈ X(G/K). Here Z̄ denotes the horizontal lift of Z and the
superscript H in the left term denotes the projection onto Hπ(e) = p.

Fix the local trivialization given in Lemma 2.1. Take a basis {Yi}ni=1 of p and

write Z|U =
∑n

i=1 ϕiY
#
i where ϕi ∈ C∞(U). By (2.3) we have

∇G/K

X#
eK

(Z|U) =
n∑
i=1

(
1

2
ϕi(eK)[X, Yi]p + (X#

eKϕi)(Y
#
i )eK

)
. (3.10)

Denote by Wi the horizontal lift of Y #
i . Note that Wi and Yi are equal on Ũ , but

not necessarily equal on the whole π−1(U). We have Z̄|π−1(U) =
∑n

i=1(ϕi ◦π)Wi. By
the Leibniz rule we have

∇G
Xe

(Z̄|π−1(U)) =
n∑
i=1

(
ϕi(eK)∇G

Xe
Wi + (X#

eKϕi)(Yi)e

)
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Denote by ι : Ũ → G the inclusion map. Then

∇G
Xe
Wi = ∇ι∗TG

Xe
(ι∗Wi) = ∇ι∗TG

Xe
(ι∗Yi) = ∇G

Xe
Yi =

1

2
[X, Yi]e

by Corollary 2.5. Here ι∗ denotes the pullback. Thus (3.9) follows.
By Corollary 2.5 the fundamental tensor Aπ is given by Aπ(X, Y ) = 1

2
[X, Y ]k

where X, Y ∈ p. Thus Aπ restricted to Hπ ×Hπ is alternating. �

Remark 3.5. In [10, p. 3] it is stated that for a G-invariant affine connection∇G/K on
a reductive homogeneous space G/K there exists a left invariant affine connection
∇G on G such that π : (G,∇G) → (G/K,∇G/K) is an affine submersion with
horizontal distribution Hπ. This statement is true. However the argument is not
accurate: In lines 2–3 of [10, p. 3] it is claimed that Ã is the horizontal lift of A∗.
This is not true. In fact, A∗ cannot be defined globally in general. It is still not true
locally: if the restriction of Ã to K is the horizontal lift of A∗(eK), then (dπ)k(Ã(k))
is independent of k ∈ K, which implies that the isotropy representation is trivial.

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. From (3.5) the diagram

(Vg, D)
g∗−−−→ (Vg, D)

ΦG/K

y ΦG/K

y
(G/K,∇G/K)

Lg(0)−−−→ (G/K,∇G/K)

commutes for any g ∈ P (G,G × {e}). Note that g∗ and Lg(0) are affine transfor-
mations and HΦG/K is invariant under g∗. Thus, to show that ΦG/K is an affine
submersion with horizontal distribution HΦG/K we have only to show

(DX̂Ẑ)H = (∇G/K
X∗

eK
Z )̂ (3.11)

for X ∈ p and Z ∈ X(G/K). Here Ẑ denotes the horizontal lift of Z and the
superscript H in the left term denotes the projection onto HΦG/K (0̂) = p̂.

From (3.2) we have the commutative diagram for any g ∈ P (G,G× {e}):

(Vg, D)
g∗−−−→ (Vg, D)

Φ

y Φ

y
(G,∇G)

lg(0)−−−→ (G,∇G).

The horizontal distributionsHΦ andHπ are invariant under g∗ and lg(0) respectively.

This implies Ẑ = (Z̄ )̃ where the tilde denotes the horizontal lift with respect to Φ.
Thus, by Theorem 3.1 and Lemma 3.4 we have

(DX̂Ẑ)H = (∇G
Xe
Z̄ )̃p = (∇G/K

X∗
eK
Z )̂

which proves (3.11). Since T0̂(F0̂) = T0̂(F0̂)⊕ k̂ and Φ is an affine submersion with
horizontal distribution HΦ we have

AΦG/K (X̂, Ŷ ) = AΦ(X̂, Ŷ )⊕Aπ(X, Y )

for X, Y ∈ p. Hence Theorem 3.1 and Lemma 3.4 imply that AΦG/K restricted to
HΦG/K ×HΦG/K is alternating. This completes the proof. �
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4. Weakly reflective submanifolds

In this section we consider the relation between weakly reflective submanifolds
and the parallel transport map over a reductive homogeneous space.

Recall that a submanifold M of an affine manifold (N,∇N) with transversal bun-
dle W is called weakly reflective [2, 7] if for each (p, ξ) ∈ W there exists an affine
transformation of (N,∇N) satisfying

ν(M) = M, ν(p) = p, dν(W) =W , dν(ξ) = −ξ.
Such a ν is called a weak reflection of M with respect to (p, ξ). If we can choose
every ν from a particular group S, then M is said to be S-weakly reflective.

Owing to Theorem 3.3, we can use the general result on the Fredholm property of
affine immersions lifted by some affine submersion [7, Proposition 1.2]. In particular,
it turns out that each fiber of the parallel transport map ΦG/K is an affine Fredholm
submanifold of (Vg, D) of Fredholm index 0. On the other hand, it was shown that
each fiber of ΦG/K is a weakly reflective submanifold [7, Theorem 1.3]. Combining
these results, we get the following result which generalizes Corollary 1.4 of [7].

Theorem 4.1. Let G/K be a reductive homogeneous space with decomposition g =
k ⊕ p. Then each fiber of the parallel transport map ΦG/K : Vg → G/K is a weakly
reflective Fredholm submanifold of (Vg, D) of Fredholm index 0 where its transversal
bundle is defined by the restriction of HΦG/K to it.

In [7] a characterization of weakly reflective submanifolds in affine symmetric
spaces was shown [7, Theorem 8.6]. Since its proof depends on the structure of a
symmetric space, it cannot be generalized easily to the case of reductive homoge-
neous spaces. Nevertheless, we can extend it as follows:

Proposition 4.2. Let G/K be a reductive homogeneous space with decomposition
g = k⊕p and with natural torsion-free connection ∇G/K. Let M be a submanifold of
(G/K,∇G/K) with transversal bundle W. Denote by W̄ (resp. Ŵ ) the horizontal lift
of W with respect to π (resp. ΦG/K). Then the following conditions are equivalent
for any normal subgroup S of G:

(i) M is an S-weakly reflective submanifold of (G/K,∇G/K) with transversal
bundle W.

(ii) π−1(M) is an (S×SeK)-weakly reflective submanifold of (G,∇G) with transver-
sal bundle W̄, where SeK := S ∩K.

(iii) Φ−1
G/K(M) is a P (S, S×SeK)-weakly reflective Fredholm submanifold of (Vg, D)

of Fredholm index 0 with transversal bundle Ŵ.

Remark 4.3. In the above proposition, S must be contained in G and thus in the
identity component of the affine transformation group of (G/K,∇G/K). Hence the
proposition does not characterize all the weakly reflective submanifolds in G/K,
unlike in [7, Theorem 8.6]. However, we do not have to assume that G/K is a
symmetric space or the pair (G,K) is effective, unlike in [7, Theorem 8.6].

In Proposition 4.2 the Fredholm property of (iii) is a consequence of Theorem 3.3
together with [7, Proposition 1.2]. The equivalence of weakly reflective properties
can be proven almost similarly to the case of [7, Theorem 8.6]. The only difference
lies in the argument to show that the lifted weak reflection leaves the horizontal
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distribution invariant: In the proof of [7, Theorem 8.6] this was shown by using the
structure of symmetric spaces [7, Lemma 8.10]. In the case of Proposition 4.2 it
follows easily from the condition S ⊂ G.

Finally we remark that Proposition 4.2 generalizes some results in the author’s
previous paper [5] in the Riemannian case. Let G be a connected compact Lie
group with a bi-invariant Riemannian metric ρ. Denote by 〈·, ·〉ρ the corresponding
Ad(G)-invariant inner product on g and by 〈·, ·〉ρL2 the L2-inner product on Vg. Then
Φ : (Vg, 〈·, ·〉ρL2) → (G, ρ) is a Riemannian submersion [12, Theorem 4.5]. Let K be
a closed subgroup of G with Lie algebra k. Denote by p the orthogonal complement
of k in g. Restricting 〈·, ·〉ρ to p we equip G/K with the G-invariant Riemannian
metric ρG/K . Then (G/K, ρG/K) is a compact normal homogeneous space. The
Levi-Civita connection coincides with the natural torsion-free connection [3, p. 203].
Since π : (G, ρ)→ (G/K, ρG/K) is a Riemannian submersion, ΦG/K : (Vg, 〈·, ·〉ρL2)→
(G/K, ρG/K) is also a Riemannian submersion. From Proposition 4.2 we get:

Corollary 4.4. Let M be a submanifold of a compact normal homogeneous space
(G/K, ρG/K). Then the following conditions are equivalent for any normal subgroup
S of G:

(i) M is an S-weakly reflective submanifold of (G/K, ρG/K),
(ii) π−1(M) is an (S × SeK)-weakly reflective submanifold of (G, ρ),
(iii) Φ−1

G/K(M) is a P (S, S×SeK)-weakly reflective PF submanifold of (Vg, 〈·, ·〉ρL2).

Considering the case G = S we have:

Corollary 4.5 ([5, Theorem 6 (ii)]). Let M be a submanifold of a compact normal
homogeneous space (G/K, ρG/K). Then the following conditions are equivalent:

(i) M is a G-weakly reflective submanifold of (G/K, ρG/K),
(ii) π−1(M) is a (G×K)-weakly reflective submanifold of (G, ρ),

(iii) Φ−1
G/K(M) is a P (G,G×K)-weakly reflective PF submanifold of (Vg, 〈·, ·〉ρL2).

Consider the group case G ∼= (G×G)/∆G. By using the canonical isomorphism
between path spaces [6] we see that Corollary 4.5 implies:

Corollary 4.6 ([5, Theorem 6 (i)]). Let M be a submanifold of a connected compact
Lie group G with a bi-invariant Riemannian metric ρ. Then the following conditions
are equivalent:

(i) M is a (G×G)-weakly reflective submanifold of (G, ρ),
(ii) Φ−1(M) is a G-weakly reflective PF submanifold of (Vg, 〈·, ·〉ρL2).
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