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Abstract. We investigate the geodesic orbit property of pseudo-Riemannian nilman-
ifolds, specifically those known in the literature as pseudo H-type Lie groups – i.e.,
2-step nilpotent Lie groups of Heisenberg type equipped with a left invariant pseudo-
Riemannian metric. The study of homogeneous geodesics on Riemannian H-type Lie
groups was completed by C. Riehm in 1984. In this work, we extend these results to the
pseudo-Riemannian H-type Lie groups and provide a complete characterization of the
geodesic orbit property for the case where the underlying Lie algebras are constructed
from the admissible Clifford modules of minimal dimension.
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1. Introduction and main results

A Riemannian manifold (M, g) is called a manifold with homogeneous geodesics or a
geodesic orbit manifold (shortly, GO-manifold) if any geodesic γ of M is an orbit of
a 1-parameter subgroup of the full isometry group of (M, g). A Riemannian manifold
(M = G/H, g), where H is a compact subgroup of a Lie group G and g is a G-invariant
Riemannian metric, is called a geodesic orbit space (shortly, GO-space) if any geodesic
γ of M is an orbit of a 1-parameter subgroup of the group G. Hence, a Riemannian
manifold (M, g) is a geodesic orbit Riemannian manifold, if it is a geodesic orbit space
with respect to its full connected isometry group. This terminology was introduced in
[39] by O. Kowalski and L. Vanhecke, who initiated a systematic study of such spaces.
In the same paper, O. Kowalski and L. Vanhecke classified all geodesic orbit Riemannian
manifolds of dimension ≤ 6.

We refer to [39], [2], [18], [45], and [9] for expositions on general properties of geodesic
orbit Riemannian manifolds and historical surveys. One can find many interesting results
about geodesic orbit Riemannian spaces and its subclasses in [32, 57, 54, 33, 11, 12, 46, 44],
and in the references therein. It should be noted that symmetric spaces, weakly symmetric
spaces, naturally reductive homogeneous spaces, normal homogeneous spaces, generalized
normal homogeneous spaces (but not only) are subclasses of the class of geodesic orbit
Riemannian spaces.

This paper is devoted to the study of one special and important class of geodesic orbit
pseudo-Riemannian spaces, namely, pseudo H-type nilpotent Lie groups. On the other
hand, many of the results obtained below can also be used for more general classes of
geodesic orbit pseudo-Riemannian nilmanifolds.

Some important results on geodesic orbit pseudo-Riemannian spaces were obtained
in [19, 20, 21, 5, 6, 56, 14, 43, 13]. Here we recall some important results related to
homogeneous geodesic of pseudo-Riemannian manifolds. We note that weakly symmet-
ric pseudo-Riemannian spaces and naturally reductive homogeneous pseudo-Riemannian
spaces are important subclasses of geodesic orbit pseudo-Riemannian spaces [48, 56].

Definition 1. A pseudo-Riemannian homogeneous reductive manifold (G/H, g) is called
geodesic orbit (GO) if a geodesic through the point eH with the initial vector ξ is an orbit
of some 1-parameter isometry group of (G/H, g) for any initial vector.

We recall the following useful criterion for the property to be a geodesic orbit pseudo-
Riemannian manifold.

Proposition 1 (Geodesic Lemma [19]). Let (M = G/H, g) be a homogeneous reductive
pseudo-Riemannian manifold, with the corresponding reductive decomposition g = h⊕m.
ThenM is a G-geodesic orbit space if and only if, for any T ∈ m, there exist P = P (T ) ∈ h
and k = k(T ) ∈ R such that if Q ∈ m then

〈[T + P,Q]m, T 〉 = k 〈T,Q〉, (1)
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where 〈·, ·〉 denotes the inner product on m defined by g, and the subscript m in (1) means
taking the m-component in g = h ⊕ m. Note that k(T ) = 0 unless T is a null vector (it
suffices to substitute Q = T in (1)).

We recall also the following definition

Definition 2. Let (M = G/H, g) be a homogeneous reductive pseudo-Riemannian man-
ifold. Then M is said to be a naturally reductive if there is a reductive decomposition
g = h⊕m such that

〈[T,Q]m, R〉 = 〈Q, [T,R]m〉 (2)

for the corresponding scalar product and any T,Q,R ∈ m.

All naturally reductive H-type Lie groups, endowed with left invariant Riemannian
metrics were classified by A. Kaplan in [36]. In the same paper, the first examples of
geodesic orbit but not naturally reductive Riemannian manifolds were obtained: these
are H-type groups with 2-dimensional center (a minimal dimension of such groups is 6).
The complete classification of geodesic orbit H-type groups with left invariant Riemannian
metrics was obtained by C. Riehm in [50]:

Theorem 1 ([50]). Let N be H-type group (supplied with a left invariant Riemannian
metric) with the H-type algebra n = z⊕ v, m = dim(z), n = dim(v). Then N is geodesic
orbit if and only if one of the following three conditions holds:

1) m = 1, 2, 3 and n is any possible;
2) m = 5, 6 and n = 8;
3) m = 7, n = 8, 16, 24 and v is an isotypic Clifford module (in this case it is equiv-

alent to the following property: if Z1, Z2, . . . , Z7 is an orthonormal basis of z, the linear
transformation X 7→ JZ1JZ2 · · · JZ7(X) of v is either Id or − Id).

Moreover, N is naturally reductive if and only if m = 1 or m = 3.

Our main result is as follows.

Theorem 2. Let Nr,s be an H-type group, where (r, s), s ≥ 1, is the signature of the left
invariants pseudo-Riemannian metric restricted to the centre of the group. Let nr,s = z⊕v
be the Lie algebra of Nr,s, where z is the centre and v is a minimal admissible module for
the Clifford algebra Cl(Rr,s). Then the following four assertions hold:

1) Nr,s is naturally reductive (hence, geodesic orbit) if and only if (r, s) ∈ {(0, 1), (1, 2)};
2) If Nr,s is geodesic orbit but not naturally reductive, then (r, s) = (3, 4);
3) N3,4 is a geodesic orbit pseudo-Riemannian manifold;
4) Nr,s with (r, s) /∈ {(0, 1), (1, 2), (3, 4)} is not geodesic orbit pseudo-Riemannian man-

ifold.

It is clear that the last assertion of this theorem easily follows from the three first
assertions.

The paper is organized as follows. In Section 2, we recall some important results
on pseudo-Riemannian geodesic orbit metrics on nilpotent Lie groups. The main role
here is played by the notion of the transitive normalizer condition, which Riemannian
version was used by C. Gordon in order to study geodesic orbit Riemannian metric on
nilpotent Lie groups. In Section 3, we recall some important properties of pseudo H-
type nilpotent Lie groups, their isometry groups and automorphism groups. In Section
4, we check the geodesic orbit property for pseudo-Riemannian H-type groups with small
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dimension of the center. More exactly, the groups N0,1, N1,1, N0,2, N1,2, N2,1, and N0,3

are studied, after which the classification of naturally reductive pseudo H-type nilpotent
Lie groups is obtained (see Proposition 7). Section 5 is devoted to the description of some
important properties of geodesic orbit pseudo-Riemannian manifolds. As in the case
of Riemannian manifolds, it is proved that any geodesically complete totally geodesic
submanifold of a given geodesic orbit pseudo-Riemannian manifold is geodesic orbit itself
(Theorem 4). This result is further refined for the case of two-step nilpotent pseudo-
Riemannian groups (Theorem 5 and Corollary 3). In Section 6, we obtain some general
results on the geodesic orbit property for pseudo H-type Riemannian manifolds, that
allow us to consistently check all pseudo-Riemannian H-type manifolds, except N3,4, for
the property to be geodesic orbit. Finally, in Section 7, we prove that the 15-dimensional
pseudo H-type nilmanifold N3,4 is geodesic orbit (Theorem 14).

2. Auxiliary results

Here we recall some important results related to 2-step nilpotent groups supplied by
left-invariant pseudo-Riemannian metrics and their isometry groups. We call such groups
2-step pseudo-Riemannian nilmanifolds. Finally, we formulate some useful statements
about 2-step pseudo-Riemannian nilmanifolds that are geodesic orbit.

Let (N, g) be a 2-step pseudo-Riemannian nilmanifold with the Lie algebra n and 〈· , ·〉
the scalar product (a symmetric nondegenerate bilinear form) generating the pseudo-
Riemannian left invariant metric g. If the center z of n is non-degenerate with respect
to 〈· , ·〉, then we write n = z ⊕ v, where v = z⊥ relative to 〈· , ·〉. In this case, v is also
non-degenerate, see [40, Lemma 2.60].
Whenever (N, g) is connected simply connected, we do not distinguish between the

group of automorphisms of the nilmanifold (N, g) and of its Lie algebra n = z⊕ v. Note
that each skew-symmetric derivation of n leaves each of v and z invariant. For any Z ∈ z,
we consider the operator

JZ : v → v, such that 〈JZ(X), Y 〉 = 〈[X,Y ], Z〉, X, Y ∈ v. (3)

The map JZ is skew-symmetric and JZ(Y ) = (ad Y )′(Z), where (ad Y )′ is adjoint to ad Y
with respect to 〈· , ·〉. The map J : Z → so(v, 〈· , ·〉v), sending Z 7→ JZ is linear. We denote
V = J(z) the linear subspace in so(v, 〈· , ·〉v). The group of isometries of the nilmanifold
(N, g) is given by

H = {(φ, ψ) ∈ O(z, 〈· , ·〉z)×O(v, 〈· , ·〉v) |ψJZψ−1 = Jφ(Z), Z ∈ z}, (4)

while its Lie algebra is

h = Der(n)∩so(n, 〈· , ·〉) = {D = (C,A) ∈ so(z, 〈· , ·〉z)×so(v, 〈· , ·〉v) | [A, JZ ] = JC(Z), Z ∈ z}.
(5)

The next result is well known, see e.g. Corollary 3.5 in [10] or Proposition 2.3 in [48].

Proposition 2. Let (N, g) be a pseudo-Riemannian nilmanifold with non-degenerate cen-
ter. Then the connected isometry group of (N, g) is N ⋊ H, where N is the set of left
translations by elements of N and the isotropy subgroup H is given by the isometric au-
tomorphisms (4) with Lie algebra h as in (5).



GEODESIC ORBIT PSEUDO-RIEMANNIAN NILMANIFOLDS 5

In this case, the isotropy group of (N, g) at the identity element e is exactly H with
the embedding a ∈ H 7→ (e, a) ∈ N ⋊H.

Applying Proposition 1 we note the following. If a nilmanifold (N, g) is geodesic orbit,
then for any X ∈ v and any Z ∈ z, such that X + Z is not a null vector, there exists
D ∈ h such that

〈[X + Z +D, X̃ + Z̃], X + Z〉 = 0

for all X̃ ∈ v and all Z̃ ∈ z. It is easy to see that

[X + Z +D, X̃ + Z̃] = [X, X̃] + [D, X̃] + [D, Z̃],

where [D, X̃] ∈ v and [X, X̃] + [D, Z̃] ∈ z. Hence,

0 = 〈[D, X̃], X〉+ 〈[X, X̃] + [D, Z̃], Z〉 = −〈X̃, [D,X]〉+ 〈JZX, X̃〉 − 〈Z̃, [D,Z]〉.

Since X̃ ∈ v and Z̃ ∈ z are arbitrary, then

[D,X] = JZX, [D,Z] = 0. (6)

Note, that [D,Z] = 0 implies [D, JZ ] = 0 according to (5). If X +Z is a null vector, then

we can approach it by non-null vectors of the type X̃ + Z, where X̃ ∈ v. Therefore, (6)
is valid also for null vectors, see also Proposition 5.

On the other hand, equalities (6) imply Proposition 1 for all X ∈ v and Z ∈ z. These
observations allow us to rewrite Proposition 1 for 2-step nilpotent pseudo-Riemannian
groups in the spirit of work [32], where this idea was used for Riemannian metrics on
nilpotent Lie groups.

Proposition 3. In the above notations, (N, g) is a geodesic orbit pseudo-Riemannian
nilmanifold if and only if for any Z ∈ z and X ∈ v there is D ∈ h such that [D,Z] =
D(Z) = 0, [D,X] = D(X) = JZ(X).

Consider an action ρ of the isotropy algebra h in (5) on so(v, 〈· , ·〉v); that is ρ : h →
so(v, 〈· , ·〉v). We may reformulate the condition of Proposition 3 as follows. We know
that V = J(z) is a linear subspace in so(v, 〈· , ·〉v). Further, for every D ∈ h and Z ∈ z we
get J[D,Z] = [ρ(D), JZ ] (it easy follows from the condition on D to be a skew-symmetric
derivation), hence, the subspace V = J(z) is normalized by the subalgebra N := ρ(h) in
so(v, 〈· , ·〉v) by the fact that

[ρ(D), JZ ] = J[D,Z] ∈ V.

The equality J[D,Z] = [ρ(D), JZ ] implies that the representation ρ : h → so(v, 〈· , ·〉v) is
faithful (otherwise, some non-trivial D ∈ h acts trivially both on v and on z, hence, on n).
Moreover, any element of the normalizer N of V = J(z) in so(v, 〈· , ·〉v) can be considered
as an image of some element D ∈ h under the map ρ : h → so(v, 〈· , ·〉v), which follows
from (5). Therefore, we have the following statement.

Corollary 1. If (N, g) is a geodesic orbit pseudo-Riemannian nilmanifold, then the Lie
algebra h is isomorphic to the normalizer N of V = J(z) in so(v, 〈· , ·〉v) under the repre-
sentation ρ : h → so(v, 〈· , ·〉v).

Therefore, if (N, g) is a geodesic orbit pseudo-Riemannian nilmanifold, then we have
a Lie subalgebra N ⊂ so(v, 〈· , ·〉v) and an ad(N)-invariant module V in so(v, 〈· , ·〉v)),
such that for every X ∈ v and W ∈ V there is B ∈ N with the following properties:
[B,W ] = 0 and B(X) = W (X).
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Remark 1. Let h be as in (5) and V = J(z). Then every element of h is determined
by a skew-symmetric operator A ∈ so(v, 〈· , ·〉v) with the property [A,V] ⊂ V (i.e., A is
from the normalizer of V in so(v, 〈· , ·〉v)). In this case the operator C ∈ so(z, 〈· , ·〉z) can
be recovered from the equality JC(Z) = [A, JZ ] for all Z ∈ z.

A special case of geodesic orbit pseudo-Riemannian spaces are naturally reductive ho-
mogeneous pseudo-Riemannian spaces (Definition 2), see also [48] and references therein.
The naturally reductive Riemannian homogeneous spaces are generalizations of normal
homogeneous Riemannian spaces and symmetric spaces, see, e.g., [17], [38], [31], [1], [52],
[53]. It should be noted that a complement m in the definition of naturally reductive
(pseudo) Riemannian manifold is not unique in general. For instance, any invariant
Riemannian metric on the Ledger–Obata space (F × F × F )/ diag(F ), where F is any
simple compact Lie group, is naturally reductive with respect a suitable reductive com-
plement [42]. The following result gives us a useful criterion of a 2-step Lie group with
pseudo-Riemannian left-invariant metric to be naturally reductive.
Theorem 3. [48, Theorem 3.2] Let (N, g) denote a 2-step pseudo-Riemannian nilmani-
fold with a non-degenerate center. Assume that the map J : z → so(v) is injective, see (3).
Then the metric is naturally reductive with respect to G = N ⋊H (see Proposition 2), if
and only if

(i) V = J(z) is a Lie subalgebra of so(v) and
(ii) [J(Z1), J(Z2)] = J

(
τZ1(Z2)

)
where τZ1 ∈ so(z) for any Z1 ∈ z.

Since the map J is supposed to be injective, the map τ can be easily recovered from
(ii).

3. Pseudo H-type nilpotent Lie groups

Let (N, g) be a 2-step pseudo-Riemannian nilmanifold and n = z⊕ v be its Lie algebra
endowed with a scalar product 〈. , .〉 making the center non-degenerate. We identify
(z, 〈. , .〉z) with the pseudo Euclidean vector space Rr,s = (Rr+s, 〈. , .〉r,s), where

〈Z,W 〉r,s =
r∑

i=1

ziwi −
s∑

j=1

zr+j wr+j, Z,W ∈ Rr+s.

If the linear operator J : z → so(v) is defined by

〈JZ(X), Y 〉v = 〈[X,Y ], Z〉r,s, X, Y ∈ v, Z ∈ z = Rr,s, (7)

and satisfies J2
Z(X) = −〈Z,Z〉r,sX for any Z ∈ Rr,s and all X ∈ v, then n = nr,s is called

the pseudo H(eisenberg)-type Lie algebra. It is easy to check that this definition implies

〈JZ(X), JW (X)〉v = 〈Z,W 〉r,s〈X,X〉v. (8)

We denote by Nr,s the connected simply connected Lie group, whose Lie algebra is the
pseudo H-type Lie algebra nr,s. The H-type Lie algebras Nr,0 with a positive definite
scalar product were introduced in [34] and with an arbitrary indefinite scalar product
in [15], see also [29].
These Lie algebras are related to the representations of the Clifford algebras in the

following way. Let J : Cl(Rr,s) → End(v) be a representation of the Clifford algebra
Cl(Rr,s) generated by the pseudo Euclidean vector space Rr,s. If there is a scalar product
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〈· , ·〉v on the representation space v (Clifford module) such that the linear map JZ is
skew-symmetric for any Z ∈ Rr,s; that is

〈JZ(X), Y 〉v = −〈X, JZ(Y )〉v, Z ∈ Rr,s, X, Y ∈ v,

then we get a pseudo H-type Lie algebra with the commutators defined in (7), see details
in [35, 15, 37, 30, 24, 25, 26, 27]. The scalar product 〈· , ·〉v in this case is called admissible
and v is called admissible (Clifford) module.

It is important that, see e.g. [15], or [27, Propososition 2.2.2]) the signature of the
scalar product space (v, 〈· , ·〉v) is neutral and (v, 〈· , ·〉v) is isometric to Rl,l for some l ∈ N
if s > 0, whereas the corresponding signature is either (l, 0) or (0, l) for some l ∈ 2N if
s = 0.

We use the symbol t for the transposition according to the standard Euclidean product
on v = R2l. On the other hand, we use the symbol τ for the transposition according to
scalar product 〈· , ·〉l,l on v = Rl,l or 〈· , ·〉r,s on z = Rr,s. In particular, for any operator
A on v, we get 〈A(X), Y 〉 = 〈X,Aτ (Y )〉, X,Y ∈ v, and Jτ

Z = −JZ for any Z ∈ z. If
η = diag(Idl,− Idl), then J

τ
Z = ηJ t

Zη and Aτ = ηAtη.

Thus we use the identification V = J(z) ⊂ so(v) = so(l, l). Recall that dimV =
dim z = r + s. In the next proposition we collect some useful results.

Proposition 4. Let nr,s be a pseudo H-type Lie algebra, N and Z the normalizer and the
centralizer of V = J(z) in so(l, l). Then we have the following properties:

1. [V,V] and L := [V,V] +V are Lie subalgebras in so(l, l);

2. the Lie algebra [V,V] is isomorphic to so(r, s);

3. [V,V] ⊂ N and dimN ≥ (r + s)(r + s− 1)/2;

4.
(
L, [V,V]

)
is a symmetric pair, i.e., V is a Lie triple system;

5. the Lie algebra L is commutative if (r, s) ∈ {(1, 0), (0, 1)}, it is simple if
(r, s) 6∈ {(1, 0), (0, 1), (3, 0), (1, 2)}, and it is semisimple if (r, s) ∈ {(3, 0), (1, 2)};

6. N = [V,V]⊕ Z (a direct sum of Lie algebras).

Proof. We give an outline of the proof. For every pair of orthogonal vectors Z ′, Z ′′ ∈ z,
the map ΦZ′,Z′′ , defined by

ΦZ′,Z′′(X + Z) = JZ′JZ′′(X) + 2〈Z ′, Z〉Z ′′ − 2〈Z ′′, Z〉Z ′, Z ∈ z, X ∈ v, (9)

is a skew-symmetric derivation of (nr,s, 〈· , ·〉), see e.g. Lemma 2.2 in [16] or [49]. Since
[JZ′ , JZ′′ ] = 2JZ′JZ′′ , then [V,V] ⊂ N, due to the fact that ΦZ′,Z′′ and, hence, [JZ′ , JZ′′ ]
is in the isotropy Lie algebra h, see (5) and Proposition 2. Moreover, [V,V] is a Lie
subalgebra in N, that is isomorphic to so(r, s). Indeed, by Lemma 5.1 in [4], we can
choose an orthonormal basis Zi, i = 1, . . . , r + s, for z = Rr,s, such that V = J(z) =
J(Rr,s) ⊂ so(l, l) has a basis of the following type: {JZi

}, i = 1, . . . , r+s, while {JZj
JZk

},
j, k = 1, . . . , r+s, j < k, constitute a basis in [V,V] ⊂ N. Therefore, [V,V] is isomorphic
to so(r, s), then dimN ≥ dim[V,V] = dim so(r, s) = (r+ s)(r+ s−1)/2. This result also
follows from [27, Proposition 3.2.4].

One can easily check that [[V,V],V] ⊂ V, which means that [V,V] ⊂ N. Moreover,
L = [V,V] +V is a Lie algebra and V is a Lie triple system (see Proposition 5.2 in [4]).

Finally, the Lie algebra L is commutative and 1-dimensional if (r, s) ∈ {(1, 0), (0, 1)}, it
is simple if (r, s) 6∈ {(1, 0), (0, 1), (3, 0), (1, 2)}, and it is semisimple if (r, s) ∈ {(3, 0), (1, 2)}
by Theorem 5.1 in [4].
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It is known that each B ∈ N (i.e., each skew-symmetric derivation of z) decomposes as
a sum B0+B1, where B0 ∈ Z and B1 ∈ [V,V], see detail in [16, Corollary 2.6]. Therefore,
N = [V,V] ⊕ Z. On the level of automorphism groups, similar results were obtained in
[27, Subsection 3.2].
It should be noted that the intersection of V and [V,V] can be nontrivial. We have

the following result.

Lemma 1 (see e.g. Lemma 6 in [8]). Suppose that K := V ∩ [V,V] is non-trivial. Then
K is an ideal in L = V+ [V,V]. If, in addition, L is simple, then K = V = [V,V] = L.

Proof. We see that

[K,V] ⊂ [V,V], [K,V] ⊂ [[V,V],V] ⊂ V,

[K, [V,V]] ⊂ [V, [V,V]] ⊂ V, [K, [V,V]] ⊂ [[V,V], [V,V]] ⊂ [V,V].

Therefore,

[K,V] ⊂ V ∩ [V,V] = K, [K, [V,V]] ⊂ V ∩ [V,V] = K, [K,L] ⊂ K,

hence, K is an ideal of L.
Note that the constant k = k(T ) in Proposition 1 can be different from zero for pseudo-

Riemannian manifolds, see [5], where it is shown that k depends on the reparametrization
of a homogeneous geodesic and it could be k(T ) 6= 0 for a null initial velocity T of such
a geodesic. We show that such a reparametrization in case of pseudo H-type Lie groups
Nr,s is a multiplication by a non-vanishing real constant, that is, it is a linear rescaling,
which implies that k = 0.
Recall that the isometry group of the pseudo H-type Lie group Nr,s with a given left

invariant pseudo Riemannian metric is identified with the group G = Nr,s ⋊H, where H
is defined in (4) and its Lie algebra h is given by (5).

Proposition 5. Let γ : l 7→ γ(l) ∈ Nr,s(∼= G/H), be a geodesic passing through the
identity element e = [H] ∈ Nr,s, which is homogeneous with respect to the isometry group
G ∼= Nr,s ⋊ H; that is there exists a one parameter subgroup {ϕ(t)} of G, such that
γ(l(t)) = ϕ(t) · e, for a diffeomorphism l : R → I, l(0) = 0. Then l(t) = t.

Proof. The Lie algebra of the pseudo H-type Lie group Nr,s is nr,s = z ⊕ v ∼= Rr,s ⊕
Rn,n, where v is a minimal admissible module of the Clifford algebra Cl(Rr,s). We use
coordinates of the first kind for

Nr,s 3 (v, w) = expN(vZ + wX) for Z ∈ z, X ∈ v,

that is, in this case we identify the group and its Lie algebra as sets. Then v =
(v1, . . . , vr+s), w = (w1, . . . , w2n).

Without loss of generality, we can consider a geodesic γ : I → G/H = Nr,s, I =
(−a, a) ⊂ R,
γ(l) = (z(l), x(l)) = (z1(l), . . . , zr+s(l), x1(l), . . . , x2n(l)) γ(0) = e, γ̇(0) = (ż(0), ẋ(0)), l ∈ I.

Then

z(l) = lż(0) +
1

2

∫ l

0

[x(s), ẋ(s)] ds, x(l) =

∫ l

0

expH(sJż(0)) · ẋ(0) ds, (10)

where Jż(0) is the Clifford multiplication by the element ż(0) ∈ z, Jż(0) : v → v (see [6]).
Assume that γ is a homogeneous geodesic for a one-parameter subgroup ϕ of isometry
group G = Nr,s ⋊H. We write ϕ(t) = (v(t), w(t), c(t), a(t)), where we use the coordinate
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representation (v(t), w(t)) ∈ Nr,s and (c(t), a(t)) ∈ H for t ∈ R. Then there is D =
(C,A) ∈ h, such that coordinates of ϕ(t) have the form

w(t) =

∫ t

0

expH(sA)ẇ(0) ds, v(t) =

∫ t

0

expH(sC)v̇(0) +
1

2
[(w(s), ẇ(s)] ds, (11)

c(t) = expH(tC), a(t) = expH(tA). (12)

Let assume a geodesic γ(l) in (10) is homogeneous under a rescaling l = l(t) through a
diffeomorphism R 3 t 7→ l(t) ∈ R, then D = (C,A) ∈ h are such that

[Jz, A] = JCτ (z), z ∈ z, C(ż(0)) = 0, A(ẋ(0)) = Jż(0)(ẋ(0)),

and the orbit through e ∈ Nr,s is expressed as

z(l(t)) = l(t)ż(0) +
1

2

∫ l(t)

0

[x(s), ẋ(s)] ds (13)

=

∫ t

0

expH(sC)ż(0) +
1

2
[w(s), ẇ(s)] ds = v(t)

and

x(l(t)) =

∫ l

0

expH(sJż(0))ẋ(0) ds =

∫ t

0

expH(sA)ẋ(0) ds = w(t). (14)

By differentiating equation (13), we obtain

l̇(t)ż(0) = expH(tC) · ż(0), l̈(t)ż(0) = expH(tC) · C(ż(0)) = 0.

If ż(0) 6= 0, then we obtain that l̈(t) = 0, and l(t) = ct, c ∈ R \ {0}. In fact c = 1, since

l̇(0)ż(0) = cż(0) = ż(0).

If ż(0) = 0, then we may assume ẋ(0) 6= 0, since we are considering non-trivial initial
conditions. Then by differentiating equation (14) we can deduce

0 = Jż(0)(ẋ(0)) = A(ẋ(0)).

Then (10) and (11) imply

x(l(t)) = l(t)ẋ(0) = tẋ(0).

Therefore again l(t) = t. Thus, we see, that for any initial velocity γ̇(0) = (ẋ(0), ż(0)) 6= 0
the reparametrization l(t) of a homogeneous geodesic is the trivial one; that is l(t) = t.

Corollary 2. In the notation of Proposition 1 for a pseudo H-type Lie group Nr,s, for
any T ∈ nr,s there is P = P (T ) ∈ h such that

〈[T + P,Q]nr,s , T 〉 = 0 (15)

for any Q ∈ nr,s.

Proof. We write X = T + P , nr,s = z ⊕ v. The general form of the geodesic lemma
states that there is k ∈ R such that,

〈[X,Q], T 〉 = k(l−1(t)) 〈T,Q〉
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holds, where k is related to the reparametrization l(t). A geodesic γ is homogeneous, if
and only if the left invariant vector field X∗ defined by X satisfies the equation

∇X∗(X
∗) = −k(l−1(t))X∗, k(l−1(t)) = − l̈(t)

l̇(t)
is constant (16)

where ∇ is the Levi-Civita connection on Nr,s, see [5].
Since we showed that l(t) = t in Proposition 5 we deduce k(l−1(t)) = 0.

3.1. Integral basis, periodicity, and the automorphism groups of the H-type
Lie algebras. The pseudo H-type Lie algebras are closely related to Clifford algebras
Cl(Rr,s) and their representation spaces v. Now we describe a convenient basis for pseudo
H-type Lie algebras. We fix an orthonormal basis Br,s = {Z1, . . . , Zr, Zr+1, . . . , Zr+s} for
Rr,s, where{

Z1, . . . , Zr are positive, i.e., 〈Zi, Zi〉r,s = 1, i = 1, . . . , r,

Zr+1, . . . , Zr+s are negative, i.e., 〈Zi, Zi〉r,s = −1, j = r + 1, . . . , r + s.
(17)

Consider a finite subgroup G(Br,s) of the Pin group in Cl(Rr,s) generated by the basis
Br,s:

G(Br,s) =
{
± 1, ±Zi1 · · ·Zik | 1 ≤ i1 < · · · < ik ≤ r + s, k = 1, . . . , r + s

}
.

In the present work we will consider only minimal admissible modules, which are pairs
(v, 〈· , ·〉v) of the representation space v of minimal dimension, where an (non-degenerate)
admissible scalar product can be constructed. The construction of admissible scalar prod-
ucts and their description can be found in [15] and [26, Section 2].

Definition 3. Fix an orthonormal basis Br,s of Rr,s. An orthonormal basis B(v) of a
minimal admissible module v is called invariant basis if it is invariant under the action
of G(Br,s); that is for any Xi ∈ B(v) and Zj ∈ Br,s, there exists Xk ∈ B(v) such that
JZj

(Xi) = ±Xk.

According to Definition 3 the maps JZj
, Zj ∈ Br,s act on an invariant basis B(v)

by permutations up to the sign ±. To construct an invariant basis for v we consider a
maximal subgroup S of G(Br,s) consisting of elements p ∈ G(Br,s) satisfying

P1. p2 = 1 ∈ Cl(Rr,s);
P2. if 〈X,X〉v > 0

(
〈X,X〉v < 0

)
then 〈Jp(X), Jp(X)〉v > 0

(
〈Jp(X), Jp(X)〉v < 0

)
.

Elements p ∈ S are called positive involutions. We denote the generating set for the
maximal subgroup S by PI and number of elements in PI by ℓ = ℓ(r, s). The set of
generators is not unique. As an example of a set PI for the purpose of the present work
we list the minimal length positive involutions, which can be classified in the following
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types.

type T1


p = Zi1Zi2Zi3Zi4 , where all Zik are positive basis vectors;

p = Zi1Zi2Zi3Zi4 , where all Zik are negative basis vectors;

p = Zi1Zi2Zi3Zi4 , where two Zik are positive and two Zil

are negative basis vectors;

type T2


q = Zi1Zi2Zi3 , where all Zik are positive basis vectors;

q = Zi1Zi2Zi3 , where one Zik is positive and two Zil

are negative basis vectors.

(18)

Here we always assume that ik 6= im for k 6= m. A combinatorial computation shows that
generally positive involutions can contain either 3 mod 4 or 4 mod 4 basis vectors, [28].

Proposition 6. [28, Section 3] Let S, PI = {p1, . . . , pℓ} and E+1(pk) = {X ∈ v |
Jpk(X) = X} be given. Then the intersection E+1

r,s =
⋂ℓ

k=1E
+1(pk) over pk ∈ S contains

a non-null vector v. Moreover, there is a set Σ ⊂ G(Br,s) such that the family {Jσv}σ∈Σ,
‖v‖2 = 1, is an orthogonal invariant basis for v.

Consider the following example of pseudoH-type Lie algebras nµ,ν , (µ, ν) ∈ {(8, 0), (0, 8), (4, 4)}
with the minimal admissible module vµ,ν . Let us choose the orthonormal basis Bµ,ν =
{ζk}8k=1 on the center of nµ,ν such that

〈ζk, ζk〉8,0 = −〈ζk, ζk〉0,8 = 1, k = 1, . . . , 8,
〈ζk, ζk〉4,4 = −〈ζk+4, ζk+4〉4,4 = 1, k = 1, . . . , 4.

(19)

The set PIµ,ν generating the maximal subgroup S ⊂ G(Bµ,ν) of positive involutions
consists of four elements and it is given by

p1 = ζ1ζ2ζ3ζ4, p2 = ζ1ζ2ζ5ζ6, p3 = ζ1ζ2ζ7ζ8, p4 = ζ1ζ3ζ5ζ7.

The dimension of minimal admissible modules vµ,ν equals 16 and the modules are
decomposed into 16 one dimensional common eigenspaces of four involutions pk, k =
1, 2, 3, 4 under the action of the representation maps Jpk . We denote

E+1
µ,ν = {X ∈ vµ,ν : Jpk(X) = X, k = 1, 2, 3, 4}.

Let v ∈ E+1
µ,ν be such that 〈v, v〉vµ,ν = 1. Then other common eigenspaces are spanned by

Jζi(v), i = 1, . . . , 8, and Jζ1Jζj(v), j = 2, . . . , 8. Hence we have

vµ,ν = E+1
µ,ν

8⊕
i=1

Jζi(E
+1
µ,ν)

8⊕
j=2

Jζ1Jζj(E
+1
µ,ν). (20)

The basis

v1 = v, v2 = Jζ1v, v3 = Jζ2v, v4 = Jζ3v,
v5 = Jζ4v, v6 = Jζ5v, v7 = Jζ6v, v8 = Jζ7v,
v9 = Jζ8v, v10 = Jζ1Jζ2v, v11 = Jζ1Jζ3v, v12 = Jζ1Jζ4v,
v13 = Jζ1Jζ5v, v14 = Jζ1Jζ6v, v15 = Jζ1Jζ7v, v16 = Jζ1Jζ8v.

(21)

is an orthonormal invariant basis for vµ,ν . The set Σ mentioned in Proposition 6 is the
following

Σ = {ζk, k = 1, . . . , 8, ζ1ζi, i = 2, . . . , 8}.
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It is well known that the Clifford algebras Cl(Rr,s) admit the Atiyah–Boot periodic-
ity [3]:

Cl(Rr+8,s) = Cl(Rr,s)⊗ Cl(R8,0), Cl(Rr,s+8) = Cl(Rr,s)⊗ Cl(R0,8).

Cl(Rr+4,s+4) = Cl(Rr,s)⊗ Cl(R4,4).

This periodicity has the following affect on the structure of the H-type Lie algebras. Let
vr,s be a minimal admissible module in nr,s = vr,s ⊕ z and ℓ(r, s) the number of positive
involutions in the generating set for the maximal subgroup S ⊂ G(Br,s). Then

dim(vr+µ,s+ν) = 16 dim(vr,s), (µ, ν) ∈ {(8, 0), (0, 8), (4, 4)},

ℓ(r + µ, s+ ν) = ℓ(r, s) + ℓ(µ, ν) = ℓ(r, s) + 4.

The tensor product

vr,s ⊗ vµ,ν = (vr,s ⊗ E+1
µ,ν)

8⊕
i=1

(
vr,s ⊗ Jζi(E

+1
µ,ν)

) 8⊕
j=2

(
vr,s ⊗ Jζ1Jζj(E

+1
µ,ν)

)
(22)

is a minimal admissible module vr+µ,s+ν of the Clifford algebra Cl(Rr+µ,s+ν).
Conversely, if vr+µ,s+ν is a minimal admissible module of Cl(Rr+µ,s+ν), then the common

1-eigenspace E+1 ⊂ vr+µ,s+ν of the involutions Jpk , k = 1, 2, 3, 4 from the example above
can be considered as a minimal admissible module vr,s of the algebra Cl(Rr,s). The action
of the Clifford algebra Cl(Rr,s) on E+1 is the restricted action of Cl(Rr+µ,s+ν) obtained
by the natural inclusion Cl(Rr,s) ⊂ Cl(Rr+µ,s+ν).

The group of automorphisms and the isometries of the H-type Lie algebras also has
periodic structure, see [49, 51, 27].

4. The groups Nr,s with 1 ≤ r + s ≤ 3

For a given pseudo H-type group Nr,s, 1 ≤ r+ s ≤ 3, we check whether Nr,s is geodesic
orbit or not. For this goal we apply Propositions 3 to the corresponding Lie algebra
nr,s = z ⊕ v. We choose an orthonormal basis Z1, Z2, . . . , Zr+s for z and compute the
operators JZk

, 1 ≤ k ≤ r + s, which constitute the basis for V = J(z) ⊂ so(l, l). Then
the products JZk

JZl
, 1 ≤ k < l ≤ r + s, form a basis for the subalgebra [V,V]. We find

also a basis for the centralizer Z of V in so(l, l) and obtain the base for the normalizer
N = [V,V]⊕ Z of V in so(l, l). After this auxiliary computation we check the transitive
normalizer condition for V, i.e. for any X ∈ v and any Z ∈ V, we are looking for B ∈ N
such that [B,Z] = 0 and B(X) = Z(X).

Note that up to similarity and the action of the isotropy subgroup, we have only three
classes in the center z of n. They are represented by some Z1 (a positive vector with
〈Z1, Z1〉 > 0), Z2 (a negative vector with 〈Z2, Z2〉 < 0), and Z3 (a null vector 〈Z3, Z3〉 = 0).

Indeed, the group O(r, s) with the Lie algebra so(r, s), that is a linear span of the
operators [JZi

, JZj
], 1 ≤ i < j ≤ r + s, acts naturally by automorphisms on the center

z. It is well known that O(r, s) acts transitively on every hyperquadric Q(r) = {Z ∈
z | 〈Z,Z〉r,s = ρ} with ρ 6= 0, see e.g. P. 239 in [47] or Theorem 2.4.4 in [55].

Let z = zp ⊕ zn be an orthogonal decomposition, where the restriction of the scalar
product on zp and zn are positive and negative definite, respectively. Let us suppose
that Z,Z ∈ z and 〈Z,Z〉r,s = 〈Z,Z〉r,s = 0. If 〈Z|zp , Z|zp〉r,s = 〈Z|zp , Z|zp〉r,s = ρ 6= 0

or, equivalently, 〈Z|zn , Z|zn〉r,s = 〈Z|zn , Z|zn〉r,s = −ρ 6= 0, where Z|zp and Z|zp are the
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components of vector Z in zp and zn, then it easy to see there there is Q ∈ O(r) ·O(s) ⊂
O(r, s) such that Q(Z|zp) = Z|zp and Q(Z|zn) = Z|zn .

Hence, up to a similarity, it suffices to consider only one point in every of the following
hyperquadrics: Q(1), Q(−1), Q(0) (non-trivial in the last case).

Suppose that we fix Z ∈ V, then we need not to check all X ∈ v. Indeed, if Q ∈
exp(N) (or, more generally, Q is an isometric automorphism of the Lie algebra n) such
that [Q,Z] = 0, then the equality B(X) = Z(X) is equivalent to the following one:
QBQ−1(QX) = QZQ−1(QX) = Z(QX). Note that [B,Z] = 0 implies [QBQ−1, Z] = 0,
therefore, we can find B ∈ N such that [B,Z] = 0 and B(X) = Z(X) if and only if we

can find B̃ ∈ N such that [B,Z] = 0 and B(QX) = Z(QX).
Consider a Lie subalgebra NZ = {B ∈ N | [B,Z] = 0} of N. Any orbit Orb in v under

the action of NZ consists of equivalent elements in the sense that if X1, X2 ∈ Orb, then
there is B1 ∈ N such that [B1, Z] = 0 and B1(X1) = Z(X1) if and only if there is B2 ∈ N
such that [B2, Z] = 0 and B2(X2) = Z(X2).

In what follows, we omit all classical cases with the signature (r, 0).

4.1. H-type nilmanifold N0,1. We denote by N0,1 the H-type nilmanifold with the Lie
algebra isometric to R0,1 ⊕ Rn,n. This will be the only example of H-type Lie algebra
having the module (v, 〈. , .〉n,n) ∼= Rn,n which is not minimal dimensional, but rather the
direct sum of nminimal dimensional modules isometric to R1,1. We choose an orthonormal
basis {X1, . . . Xn, Y1 . . . , Yn, Z} satisfying

〈Xi, Xi〉n,n = −〈Yi, Yi〉n,n = 1, 〈Z,Z〉0,1 = −1.

Then

JZ =

(
0 Idn

Idn 0

)
∈ so(n, n), J2

Z = −〈Z,Z〉1,0 Id2n = Id2n .

It is clear that JZ spans the one dimensional subspace V = J(z) ⊂ so(n, n). The space
V is an abelian subalgebra of so(n, n) and

[J(Z1), J(Z2)] = [J(aZ), J(bZ)] = ab[J(Z), J(Z)] = 0 = J
(
τZ1(Z2)

)
, a, b ∈ R, a 6= 0, b 6= 0,

for the operator so(z) 3 τZ1 ≡ 0 for any Z1 ∈ z. Therefore, we get naturally reductive
(see Theorem 3), hence, geodesic orbit nilmanifold.

4.2. H-type nilmanifold N1,1. The H-type nilmanifold N1,1 is the H-type group of
dimension 6 with the Lie algebra isometric to R1,1 ⊕ R2,2 and satisfying

[X1, X2] = [X3, X4] = Z1, [X1, X3] = [X2, X4] = −Z2

with respect to an orthonormal basis {X1, . . . , X4, Z1, Z2} such that

〈Xk, Xk〉2,2 = −〈Xi, Xi〉2,2 = 1, k = 1, 2, i = 3, 4, 〈Z1, Z1〉1,1 = −〈Z2, Z2〉1,1 = 1.

The maps

Jz1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , JZ2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0
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span a 2-dimensional subspace V ⊂ so(2, 2). We calculate

[aJZ1+bJZ2 , cJZ1+dJZ2 ] = (ad−bc)[JZ1 , JZ2 ] = (ad−bc)


0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

 /∈ span{JZ1 , JZ2}.

Thus the vector space V is not a Lie subalgebra of so(2, 2) and therefore N1,1 is not a
naturally reductive pseudo-Riemannian nilmanifold. It is easy to check that the normalizer
N = Z⊕ [V,V] consists of matrices of the following type:

0 −b3 b2 2a− b1
b3 0 2a+ b1 b2
b2 2a+ b1 0 b3

2a− b1 b2 −b3 0

 , a, b1, b2, b3 ∈ R.

Here, the variable a corresponds to [V,V], whereas b1, b2, b3 parameterize Z.
Let us consider Y = X1 + X2 + X3 + X4 ∈ v and Z = JZ1 ∈ V. Assume that N1,1

is geodesic orbit. Then there is B ∈ N such that [B,Z] = 0 and B(Y ) = Z(Y ). The
first condition implies a = 0. The second condition is equivalent to the linear system of
equations: 

2 −1 1 −1
2 1 1 1
2 1 1 1
2 −1 1 −1




a
b1
b2
b3

 =


−1
1

−1
1

 .

Since the system has no solution (it suffices to compare the second and the third equations
in the system), N1,1 is not geodesic orbit.

4.3. H-type nilmanifold N0,2. The H-type nilmanifold N0,2 is the H-type group of
dimension 6 whose Lie algebra is isometric R0,2×R2,2 and has the commutation relations

[X1, X3] = [X2, X4] = −Z1, [X1, X4] = −[X2, X3] = −Z2

with respect to an orthonormal basis {X1, . . . , X4, Z1, Z2} such that

〈Xk, Xk〉2,2 = −〈Xi, Xi〉2,2 = 1, k = 1, 2, i = 3, 4, 〈Z1, Z1〉0,2 = 〈Z2,2 〉0,2 = −1.

We calculate

JZ1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ∈ so(2, 2) and JZ2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ∈ so(2, 2),

[aJZ1 + bJZ2 , cJZ1 + dJZ2 ] = (ad− bc)


0 −2 0 0
2 0 0 0
0 0 0 2
0 0 −2 0

 /∈ span{JZ1 , JZ2}.
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Thus N0,2 is not a naturally reductive manifold. The normalizer N = Z⊕ [V,V] consists
of: 

0 −2a+ b3 −b2 b1
2a− b3 0 b1 b2
−b2 b1 0 2a+ b3
b1 b2 −2a− b3 0

 , a, b1, b2, b3 ∈ R.

Here, the variable a corresponds to [V,V], whereas b1, b2, b3 parameterize Z.
Assume N0,2 is geodesic orbit and pick up Y = y1X1 + y2X2 + y3X3 + y4X4 ∈ v.

Moreover, without loss of generality, we take Z = JZ1 ∈ V. The condition [B,Z] = 0 for
some X ∈ B implies a = 0. Then the condition B(Y ) = Z(Y ) is equivalent to the linear
system of equations: 

y2 −y1 y4
y1 y2 −y3
y4 −y3 y2
y3 y4 −y1


 b1

b2
b3

 =


y1
y2
y3
y4

 .

If y21 + y22 6= y23 + y24, then we obtain the following solution of this system:

b1 = 2
y1y2 − y3y4

y21 + y22 − y23 − y24
, b2 = −y

2
1 − y22 − y23 + y24
y21 + y22 − y23 − y24

, b3 = −2
y1y4 − y2y3

y21 + y22 − y23 − y24
.

On the other hand, if (y1, y2, y3, y4) = (3, 4, 5, 0), then we obtain the following system:
4 −3 0
3 4 −5
0 −5 4
5 0 −3


 b1

b2
b3

 =


3
4
5
0

 ,

that have no solution (the rank of the basic matrix of the system is 2, and the rank of
the extended matrix of the system is 3). Hence N0,2 is not geodesic orbit.

4.4. H-type nilmanifold N1,2. The H-type nilmanifold N1,2 is the H-type group of
dimension 7, the Lie algebra is isometric to R1,2×R2,2 and has non-vanishing commutation
relations

[X1, X2] = −[X3, X4] = Z1, [X1, X3] = −[X2, X4] = Z2, [X1, X4] = [X2, X3] = Z3

in an orthonormal basis satisfying

〈Xk, Xk〉2,2 = −〈Xi, Xi〉2,2 = 1, k = 1, 2, i = 3, 4,

〈Z1, Z1〉1,2 = −〈Z2, Z2〉1,2 = −〈Z3, Z3〉1,2 = 1.

Then, in this basis we obtain the matrix representations

JZ1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , JZ2 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , JZ3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

Due to the commutation relations

[JZ1 , JZ2 ] = 2JZ3 , [JZ1 , JZ3 ] = −2JZ2 , [JZ2 , JZ3 ] = −2JZ1 ,
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we conclude that V = span{JZ1 , JZ2 , JZ3} ⊂ so(2, 2) is a Lie subalgebra by Theo-
rem 3. Moreover, the operators τZi

∈ so(z) for i, j = 1, 2, 3 (recall that [J(Zi), J(Zj)] =
J
(
τZi

(Zj)
)
, are given by:

τZ1 = 2

0 0 0
0 0 −1
0 1 0

 , τZ2 = 2

 0 0 −1
0 0 0
−1 0 0

 , τZ3 = 2

0 1 0
1 0 0
0 0 0

 .

We conclude that H-type nilmanifold N1,2 is naturally reductive, hence, geodesic orbit.

4.5. H-type nilmanifold N2,1. The H-type nilmanifold N2,1 is the H-type group of
dimension 11 with a Lie algebra n2,1 = z ⊕ v isometric to R2,1 × R4,4. We define an
orthonormal basis {V1, . . . , V8, Z1, Z2, Z3} by taking v ∈ R4,4 with ‖v‖2 = 1 and setting

V1 = v, V2 = JZ1v, V3 = JZ2v, V4 = JZ1JZ2v,
V5 = JZ3v, V6 = JZ1JZ3v, V7 = JZ2JZ3v, V8 = JZ1JZ2JZ3v.

Writing the operators

JZ1 =


0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0

 , JZ2 =


0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0

 , JZ3 =


0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0


and calculating their commutators, we see that V = span{JZ1 , JZ2 , JZ3} ⊂ so(4, 4) is not
a Lie subalgebra of so(4, 4) and, therefore, N2,1 is not a naturally reductive manifold.

The normalizer N = Z⊕ [V,V] consists of matrices of the following type:

0 b6 −b5 −2a1 + b4 b3 2a2 + b2 2a3 − b1 0
−b6 0 −2a1 + b4 −b5 2a2 − b2 b3 0 2a3 − b1
b5 2a1 − b4 0 −b6 2a3 + b1 0 b3 −2a2 − b2

2a1 + b4 b5 b6 0 0 2a3 + b1 −2a2 + b2 b3
b3 2a2 − b2 2a3 + b1 0 0 −b6 b5 −2a1 − b4

2a2 + b2 b3 0 2a3 + b1 b6 0 −2a1 + b4 2b5
2a3 − b1 0 b3 −2a2 + b2 −b5 2a1 − b4 0 b6

0 2a3 − b1 −2a2 − b2 b3 2a1 + b4 −b5 −b6 0


,

Here, the variables a1, a2, a3 correspond to [V,V], whereas b1, b2, b3, b4, b5, b6 parameterize
Z.

Assume that N2,1 is geodesic orbit and choose Y = V1 + V5 ∈ v and Z = JZ1 ∈ V. If
B ∈ N then [B,Z] = 0 implies a1 = a2 = 0. The second condition B(Y ) = Z(Y ) gives

(b3,−b2 − b6, b1 + b5 + 2a3, b4, b2, b2 + b6,−b1 − b5 + 2a3, b4)
t = (0, 1, 0, 0, 0, 1, 0, 0, 0)t,

which leads to a contradiction: it suffices to compare the second and and the sixth entries
in these columns. Therefore, N2,1 is not geodesic orbit.

4.6. H-type nilmanifold N0,3. The H-type Lie algebra n0,3 isometric to R0,3×R4,4 and
has the following non-vanishing commutation relations

[V1, V5] = [V2, V6] = [V3, V7] = [V4, V8] = Z1, [V1, V6] = −[V2, V5] = −[V3, V8] = [V4, V7] = Z2,

[V1, V7] = [V2, V8] = −[V3, V5] = [V4, V6] = Z3.
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It implies that the matrices

JZ1 =


0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 , JZ2 =


0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0

 , JZ3 =


0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


form the basis of the space V ⊂ so(4, 4). Calculating their commutators, we show that V
is not a Lie subalgebra of so(4, 4), and therefore N0,3 is not a naturally reductive manifold.
The normalizer N = Z⊕ [V,V] consists of matrices of the following type:

0 −2a1 + b6 −2a2 − b5 −2a3 + b4 b3 −b2 b1 0
2a1 − b6 0 2a3 + b4 −2a2 + b5 −b2 −b3 0 b1
2a2 + b5 −2a3 − b4 0 2a1 + b6 b1 0 −b3 b2
2a3 − b4 2a2 − b5 −2a1 − b6 0 0 b1 b2 b3

b3 −b2 b1 0 0 2a1 + b6 2a2 − b5 −2a3 + b4
−b2 −b3 0 b1 −2a1 − b6 0 2a3 + b4 2a2 + b5
b1 0 −b3 b2 −2a2 + b5 −2a3 − b4 0 −2a1 + b6
0 b1 b2 b3 2a3 − b4 −2a2 − b5 2a1 − b6 0


,

where the variables a1, a2, a3 correspond to [V,V], and b1, b2, b3, b4, b5, b6 parameterize Z.
Assuming that N0,3 is geodesic orbit, and taking Y =

∑8
i=1 yiVi ∈ v and a Z ∈ V we

obtain that for an arbitrary B ∈ N the condition [B,Z] = 0 implies a1 = a2 = 0. Now, we
choose (y1, y2, y3, y4, y5, y6, y7, y8) = (3, 4, 0, 0, 5, 0, 0, 0) and the condition B(Y ) = Z(Y )
(assuming a1 = a2 = 0) is equivalent to the linear system of equations:

0 3 0 0 0 5 0
0 0 5 0 0 0 3

−6 0 0 0 3 4 0
10 4 0 0 −5 0 0
8 −5 0 0 4 −3 0
0 0 −4 3 0 0 0
0 0 −3 −4 0 0 −5
0 0 0 5 0 0 4





a3
b1
b2
b3
b4
b5
b6


=



0
0
0
0
0
3
4
5


,

that does not have solutions (the rank of the basic matrix of the system is 5, and the rank
of the extended matrix of the system is 6). Therefore, N0,3 is not geodesic orbit.

Remark 2. We note that there are shorter arguments to prove that N2,1 and N0,3 are
not geodesic orbit. One can use Corollary 3 and the ideas of Section 5 to check that N1,1

is a totally geodesic submanifold in N2,1 as well as N0,2 is a totally geodesic submanifold
in N0,3. Recall that N1,1 and N0,2 are not geodesic orbit by the above considerations.
Nevertheless, we decided to show the details of working with these pseudo H-type groups
to prepare readers for a more sophisticated study of the H-type group N3,4 in Section 7.

4.7. On naturally reductive pseudo H-type nilpotent Lie group. The above ex-
amples allow us to obtain a complete classification of naturally reductive pseudo H-type
nilmanifolds Nr,s.

Proposition 7. An H-type nilmanifolds Nr,s naturally reductive if and only if
(r, s) ∈ {(1, 0), (0, 1), (3, 0), (1, 2)}.
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Proof. We know that N1,0, N0,1, N3,0, and N1,2 are naturally reductive (see Theorem 1
and Section 4).
Now, suppose that Nr,s is naturally reductive and r + s > 1 (if r + s = 1, then it

is isometric to N1,0 or to N0,1). Then the linear space V = J(z) is a Lie subalgebra in
L = V + [V,V]. Since [V, [V,V]] ⊂ V, then V is an ideal in L. Therefore, either L is
not simple, or V = [V,V] is a simple Lie algebra. If (r, s) 6∈ {(1, 0), (0, 1), (3, 0), (1, 2)},
then L is simple by Proposition 4 and V = [V,V] by Lemma 1.

Since dim(V) = r+ s and dim([V,V]) = (r+ s)(r+ s− 1)/2 (see Proposition 4), then
r + s = 3. Now, it suffices to note that N2,1 and N0,3 are not geodesic orbit, hence, are
not naturally reductive.
It will be proved in Section 7, that the pseudo H-type nilmanifold N3,4 is geodesic orbit,

although it is not naturally reductive.

5. On totally geodesic submanifolds of geodesic orbit
pseudo-Riemannian manifolds

In this section we consider the relation between the geodesic orbit submanifolds and
totally geodesic submanifolds and apply this to pseudo H-type Lie groups. P. Eberlein [22,
23] studied totally geodesic subalgebras and totally geodesic subgroups in nonsingular 2-
step nilpotent Lie groups endowed with left-invariant Riemannian metrics. The pseudo H-
type Lie algebras are examples of nonsingular 2-step nilpotent Lie algebras. It was proved
in [7, Theorem 11] that every closed totally geodesic submanifold of a GO Riemannian
manifold is GO itself. Let us consider a version of this result for pseudo-Riemannian
manifolds. Note that any GO pseudo-Riemannian manifold is geodesically complete.

Theorem 4. Every geodesically complete totally geodesic submanifold of a GO pseudo-
Riemannian manifold is geodesic orbit itself.

Proof. Let N be a geodesically complete totally geodesic submanifold of a GO pseudo-
Riemannian manifold M (which is also geodesically complete). Let U 6= 0 be a tangent
vector at some point x ∈ N . It is enough to prove that there is a Killing vector field Y
on N with the following properties:

1) the value Y (x) = U(x);
2) x is a critical point of ‖Y ‖2 on N .
Indeed, in this case a geodesic passing through x to the direction U is an orbit of an one-

dimensional isometry group generated by the Killing field Y (this one-parameter group
is correctly defined because of the geodesic completeness of N), see e.g. [47, Exercise 10,
page 259].

It is known that a point z ∈M is a critical point of the square of the length of a Killing
vector field Z onM if and only if the integral curve of Z through the point z is a geodesic
in M , see e.g. [47, Exercises 9 and 10, page 259]. Since M is a GO manifold, there is
a Killing vector field X on M , such that X(x) = U(x) with x being a critical point of

‖X‖2. Now we define Y to be the tangent component X̃ of the Killing vector field X

to N . According to Exercise 7 in [47, page 259]), X̃ is a Killing vector field on N , and,

moreover, X̃(x) = X(x).

Now we need to prove only that x is a critical point of ‖X̃‖2 on N . Let Z = X − X̃
be the normal component of the vector field X on the manifold N . It is clear that

‖X̃‖2 = ‖X‖2−‖Z‖2 onM . The point x is a zero point for ‖Z‖2, therefore, x is a critical



GEODESIC ORBIT PSEUDO-RIEMANNIAN NILMANIFOLDS 19

point of ‖Z‖2 on N . Consequently, x is a critical point for both functions: ‖X‖2 and ‖Z‖2
on the manifold N . But in this case x is a critical point for ‖X̃‖2, since X̃(x) = U(x) 6= 0.
Theorem is proved.

Theorem 5. Let (N, g) be a 2-step pseudo-Riemannian nilmanifold with a non degenerate
centre. Let us consider non-degenerate subspaces z1 ⊂ z and v1 ⊂ v and the corresponding
orthogonal decompositions z = z1⊕z2 and v = v1⊕v2. Then the following assertions hold:

1) If JZ(v1) ⊂ v2 for any Z ∈ z2, then n1 := z1 ⊕ v1 is a Lie subalgebra of n.
2) If JZ(v1) ⊂ v2 for any Z ∈ z2 and JZ(v1) ⊂ v1 for any Z ∈ z1, then the Lie subalgebra

n1 (with the induced scalar product) generates a totally geodesic submanifold (N1, g1) of
(N, g).

Proof. The first assertion is almost obvious. Indeed, [z1, n1] ⊂ [z, n] = 0 and we have
〈[X,Y ], Z〉 = 〈JZ(X), Y 〉 = 0 for all X,Y ∈ v1 and any Z ∈ z2 by the condition in 1).
Hence, [n1, n1] = [v1, v1] ⊂ z1 ⊂ n1, that proves 1).

Let us show the second assertion. If ∇ is the Levi-Civita connection on (N, g), then
we need to prove that ∇XY ∈ n1 for all X,Y ∈ n1 (X,Y are identified with left-invariant
vector fields). Recall the Koszul formula

2〈∇XY,W 〉 = 〈[X,Y ],W 〉+ 〈[W,X], Y 〉+ 〈X, [W,Y ]〉, X, Y,W ∈ n.

If U = Z1 +X1 and V = Z2 +X2, with Z1, Z2 ∈ z, X1, X2 ∈ v, then

2∇UV = [X1, X2]− JZ2(X1)− JZ1(X2),

see details, e.g. [23, page 813].
Now, if Z1, Z2 ∈ z1, X1, X2 ∈ v1, then [X1, X2] ∈ n1 by 1) and JZ2(X1), JZ1(X2) ∈ v1

by the condition of 2). Therefore, ∇UV ∈ n1 for all U, V ∈ n1. This implies 2).

Theorems 4 and 5 will be useful for us in the following reformulation.

Corollary 3. Let N be a 2-step pseudo H-type Lie group with the Lie algebra n. Let
n1 ⊂ n be a subalgebra which generates a totally geodesic submanifold N1 of N . If N1 is
not a geodesic orbit manifold, then N is neither a geodesic orbit manifold.

6. The groups Nr,s with r + s > 3, (r, s) 6= (3, 4)

6.1. Pseudo H-type Lie groups Nr,s with r+s = 0 mod 4. We extend a result of [36]
to the pseudo H-type Lie algebras nr,s.

Lemma 2. Let D ∈ h be a skew-symmetric derivation of a pseudo H-type Lie algebra
nr,s, r + s = 0 mod 4, see (5). If we write D = (C,A), then A satisfies

A

r+s∏
i=1

JZi
=

r+s∏
i=1

JZi
A for r + s = 0 mod 4

and any orthonormal basis {Z1, . . . , Zr+s} as in (17).

Proof. Note that if D = (C,A) is a skew-symmetric derivation as in (5), then

A
r+s∏
i=1

JZi
=

r+s∏
i=1

JZi
A−

r+s∏
i=1

JZ1 . . . JC(Zi) . . . JZr+s .

Thus we need to show that the last product on the right hand side vanishes.
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Let r+ s = 2 and let D = (C,A) be as in (5). Assume that {Z1, Z2} is an orthonormal
basis for z and consider 3 possibilities.

If ‖Z1‖2 = ‖Z2‖2 = ±1 then any skew-symmetric map C is given by ±a
(

0 1
−1 0

)
,

a ∈ R. It implies

AJZ1JZ2 = JZ1JZ2A− JC(Z1)JZ2 − JZ1JC(Z2)

= JZ1JZ2A− a
(
∓ J2

Z1
± J2

Z2

)
= JZ1JZ2A− a

(
Id− Id

)
.

If ‖Z1‖2 = −‖Z2‖2 = 1 then any skew-symmetric map C is given by a

(
0 1
1 0

)
, a ∈ R,

and analogous calculations show AJZ1JZ2 = JZ1JZ2A.
We perform now the proof by induction of the dimension of the center. Let write a

matrix C = {cij} ⊂ so(r, s) with r + s = 4. Then we will obtain

A

4∏
i=1

JZi
=

4∏
i=1

JZi
A

+
(
c12J

2
Z2

+ c21J
2
Z1

)
JZ3JZ4 −

(
c13J

2
Z3

+ c31J
2
Z1

)
JZ2JZ4 +

(
c14J

2
Z4

+ c41J
2
Z1

)
JZ2JZ3

+
(
c23J

2
Z3

+ c32J
2
Z2

)
JZ1JZ4 −

(
c24J

2
Z4

+ c42J
2
Z2

)
JZ1JZ3 +

(
c34J

2
Z4

+ c43J
2
Z3

)
JZ1JZ2

=
4∏

i=1

JZi
A,

since cijJ
2
Zj

+ cjiJ
2
Zi

= 0 due to the skew symmetry in so(r, s). By the induction of this
arguments we obtain for any r + s = 4k, k = 1, 2, . . .

4k∏
i=1

JZ1 . . . JC(Zi) . . . JZ4k
=

∑
i<j

(−1)j−i+1
(
cijJ

2
Zj

+ cjiJ
2
Zi

)
JZ1 . . . ĴZi

. . . ĴZj
. . . JZ4k

= 0,

where ĴZi
denotes the omitted term in the product and C = {cij} ∈ so(r, s), r + s = 0

mod 4.

Proposition 8. [41, Proposition 3.3] The volume element ω =
∏r+s

i=1 Zi in Cl(Rr,s) has
the following basic properties. Let n = r + s. Then

ω2 = (−1)
n(n+1)

2
+s. (23)

In particular, if n = r + s is odd, then Zω = ωZ for all Z ∈ Rr,s, and if n = r + s is
even, then Zω = −ωZ for all Z ∈ Rr,s. Formula (23) can be also written as

ω2 =

{
(−1)s if r + s = 0 or 3 mod 4,

(−1)s+1 if r + s = 1 or 2 mod 4.
(24)

Theorem 6. If r + s = 0 mod 4, s = 0 mod 2, then the pseudo H-type Lie group Nr,s

is not a geodesic orbit nilmanifold.

Proof. Let Z1, . . . , Zr+s be an orthonormal basis of the centre as in (17) of the pseudo
H-type Lie algebra nr,s = z⊕v. Consider the volume form ω =

∏r+s
i=1 Zi in Cl(Rr,s). Then
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ω2 = 1 by Proposition 8 since n(n+1)
2

+ s is even. Then operator Jω : v → v decomposes
the module v into the eigenspaces of ω:

v = v+ ⊕ v−.

Moreover, since Aω = ωA by Lemma 2, any A in D = (C,A) will leave the spaces v±

invariant.
Take any X ∈ v+ and Z ∈ z as initial vector of a geodesic in the group Nr,s (we can

assume that Z = Z1). Note that since n = r + s is even we have JZ1ω = −ωJZ1 by
Proposition 8. It implies that

JZ1 : v
+ → v−. (25)

Thus if a skew-symmetric derivation D = (C,A) exists, then it should leave the spaces
v± invariant. This contradicts to the behavior of the restriction of D = (C,A) to the set
x = span{X, JZ1X,Z1} by (25).

Corollary 4. The pseudo H-type Lie groups Nµ,ν, (µ, ν) ∈ {(8, 0), (0, 8), (4, 4)} are not
geodesic orbit.

Remark 3. In the proof of Theorem 6 we implicitly used that for any non-null vector
Z ∈ z the map JZ = (0, A) is a skew-symmetric derivation acting on the space x =
spanR{X, JZX,Z} for any X ∈ v. Note also that for ‖X‖2 = ‖Z‖2 = 1 the space x is
isometric to the Heisenberg algebra n1,0, and for ‖X‖2 = ±1, ‖Z‖2 = −1 the space x is
isometric to the pseudo H-type algebra n0,1.

Before we proceed to show that Nr,s is not geodesic orbit for r + s = 0 mod 4, s = 1
mod 2 we formulate a generalization of [50, Theorem 6] for the pseudoH-type Lie algebras.
Let us write h = hr,s in (5) as

hr,s = (hr,s)1 ⊕ (hr,s)0,

where
(hr,s)0 = {D0 = (0, A), [A, JZj

] = 0, j = 1, . . . , r + s}
is the Lie algebra of automorphisms of nr,s acting as identity on the center, and

(hr,s)1 = {D1 = (C,A), AJZ − JZA = JCτ (Z)}.
According to formula (9) for an orthonormal basis {Z1, . . . , Zr+s} for z we have that a
corresponding skew-symmetric derivation D1 = (C,A) ∈ (hr,s)1 can be written as

A(X) = JZi
JZj

(X), C(Z) = 2(〈Zi, Z〉r,sZj − 〈Zj, Z〉r,sZi) = adZiZj
Z = [ZiZj, Z].

Let Z0 ∈ z be a non-null vector and z0 = span{Z0}⊥ be the orthogonal complement in z.
We also write Cl(Rr′,s′) = Cl(z0), r

′ + s′ = r+ s− 1 for the Clifford algebra generated by
the space (z0, 〈· , ·〉r,s)|z0 and acting on the module v.

Lemma 3. Any extension of the skew-symmetric derivation (0, JZ0) to a skew-symmetric
derivation D = (C,A) ∈ hr,s must belong to

hr,s = (hr′,s′)1 + (hr,s)0, r′ + s′ = r + s− 1.

Proof. Let us assume that D = (C,A) ∈ hr,s is an extension of (0, JZ0). Then
C(Z0) = 0. Any D ∈ (hr,s)0 will satisfy it. Let Z0, Z1, . . . , Zr+s−1 be an orthonormal basis
of zr,s. We write zr′,s′ = span{Z1, . . . , Zr+s−1} then the set

{ZkZl, 0 < k < l ≤ r + s− 1}
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form a basis of so(zr′,s′) and D1 = D1(ZkZl) = (C,A) generated by ZkZl satisfies

A(X) = JZk
JZl

(X), C(Z0) =

{
0 if 0 < k < l ≤ r + s− 1

2‖Z0‖2Zl if 0 = k < l ≤ r + s− 1.

Thus D1(ZkZl) = (C,A) ∈ (Dr′,s′)1 and C(Z0) = 0.

Theorem 7. If r + s = 0 mod 4, s = 1 mod 2, then the pseudo H-type Lie group Nr,s

is not geodesic orbit manifold.

Proof. Let us write s = s′ + 1 and consider the last vector Zr+s, ‖Zr+s‖2 = −1 in the
orthonormal basis {Z1, . . . , Zr+s} for zr,s. Note that ω2 = 1, where ω =

∏r+s
i=1 Zi by (24).

The module vr,s of Cl(Rr,s) is decomposed into the direct sum of two subspaces

vr,s = v+r,s′ +⊕v−r,s′ ,

that are the eigenspaces of the volume form ω. The spaces v±r,s′ are the non-equivalent

modules of Cl(Rr,s′) = Cl(z⊥r,s), where z⊥r,s is the orthogonal complement of span{Zr,s} in

zr,s. Due to JZr+sω = −ωJzr+s , the map JZr+s : v
+
r,s′ → v−r,s′ is an isomorphism of vectors

spaces.
If D = (0, A) ∈ (hr,s)0, then

[A, JZi
] = 0 =⇒ Aω = ωA

by Lemma 2 and therefore A must preserve the spaces v±r,s′ . If D = (C,A) ∈ (hr,s′)1,

then A also leaves spaces v±r,s′ invariant since v±r,s′ are submodules of the Clifford algebra

Cl(Rr,s′) = Cl(z⊥r,s).
The extension D = (0, A) of (0, JZr+s) acting on the x = span{X, JZr+s(X), Zr+s},

X ∈ v+r,s′ must belong to (hr,s′)1 + (hr,s)0 by Lemma 3. By the above arguments A

should preserve the submodule v+r,s′ . But this contradicts to the fact that the restriction

A|x = JZr+s of A to x has the property JZr+s(X) ∈ v−r,s′ .

6.2. The geodesic orbit property and the periodicity property. As another illus-
tration of Theorem 5 and Corollary 3 and the structure of admissible modules under the
periodicity property, we show the following theorem.

Theorem 8. If a pseudo H-type Lie group Nr,s is not geodesic orbit, then Nr+µ,s+ν with
(µ, ν) ∈ {(8, 0), (0, 8), (4, 4)} is neither geodesic orbit.

Proof. Consider a pseudo H-type Lie algebra nr+µ,s+ν with the minimal admissible
module vr+µ,s+ν = vr,s ⊗ vµ,ν , the scalar product

〈· , ·〉vr+µ,s+ν = 〈· , ·〉vr,s · 〈· , ·〉vµ,ν ,

and the basis {ui ⊗ vk, i = 1, . . . , dim(vr,s), k = 1, . . . , 16}. Here {ui}dim(vr,s)
i=1 is an

orthonormal invariant basis for vr,s generated by a vector u ∈ E+1
r,s with 〈u, u〉vr,s = 1, see

Proposition 6. Analogously, {vk}16k=1 is the orthonormal invariant basis for vµ,ν from (21)
generated by a unit vector v ∈ E+1

µ,ν . The orthonormal basis

Z1, . . . , Zr+s, ζ1, . . . , ζµ+ν (26)

for Rr+µ,s+ν is the union of the basis (17) for Rr,s and the basis (19) for Rµ,ν . The basis (26)
acts on vr+µ,s+ν = vr,s ⊗ vµ,ν by

J̃Zl
= JZl

⊗ Id, l = 1, . . . , dim vr,s, J̃ζm = Id⊗Jζm , m = 1, . . . , 16.
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The commutators in nr+µ,s+ν satisfy the following relations

[ui ⊗ vk, uj ⊗ vk]vr+µ,s+ν = [ui, uj]vr,s‖vk‖2, i, j = 1, . . . , dim vr,s, (27)

for any k = 1, . . . , 16. Indeed, let Z ∈ Rr,s, then

〈Z, [ui ⊗ vk, uj ⊗ vk]vr+µ,s+ν 〉r+µ,s+ν = 〈J̃Z(ui ⊗ vk), uj ⊗ vk〉vr+µ,s+ν

= 〈JZ(ui)⊗ vk, uj ⊗ vk〉vr+µ,s+ν

= 〈JZ(ui), uj〉vr,s · 〈vk, vk〉vµ,ν
= 〈Z, [ui, uj]vr,s〉r,s‖vk‖2.

since 〈Z, •〉r+µ,s+ν = 〈Z, •〉r,s for any Z ∈ Rr,s. Analogously

[uk ⊗ vi, uk ⊗ vj]vr+µ,s+ν = [vi, vj]vµ,ν‖uk‖2 i, j = 1, . . . , 16, (28)

and any k = 1, . . . , dim vr,s.

We denote

Rr,s = z1 = span{Z1, . . . , Zr+s}, Rµ,ν = z2 = span{ζ1, . . . , ζµ+ν},
Equality (27) and Theorem 5 show that the pseudo H-type Lie algebra nr,s = vr,s ⊕ Rr,s

is a subalgebra of nr+µ,s+ν = vr+µ,s+ν ⊕ Rr+µ,s+ν . We have 16 such subalgebras, which
have the form

vr,s ⊗ span{vk} ⊕ Rr,s, vk ∈ vµ,ν , k = 1, . . . , 16.

Analogously, (28) implies that there are m = dim(vr,s) subalgebras isomorphic to nµ,ν
inside the Lie algebra nr+µ,s+ν = vr+µ,s+ν⊕Rr+µ,s+ν . Analogously to the above, they have
the form

span{uk} ⊗ vµ,ν ⊕ Rµ,ν , uk ∈ vr,s, k = 1, . . . , dim(vr,s).

Now, we want to apply Corollary 3. We set

v1 = vr,s ⊗ E+1
µ,ν , v2 =

8⊕
j=1

(
vr,s ⊗ JζjE

+1
µ,ν

) 8⊕
j=2

(
vr,s ⊗ Jζ1JζjE

+1
µ,ν

)
.

Under this notation we obtain from (27) for v1 = v ∈ E+1
µ,ν

vr+µ,s+ν = v1 ⊕ v2, n1 = v1 ⊕ z1 ∼= nr,s

and moreover

JZi
(v1) ⊂ v1 for all Zi ∈ z1, Jζj(v1) ⊂ v2 for all ζj ∈ z2.

This implies that the pseudo H-type Lie algebra n1 ∼= nr,s generates a totally geodesic
subgroup Nr,s in Nr+µ,s+ν . By the hypothesis of the theorem Nr,s is not geodesic orbit
and Corollary 3 implies that Nr+µ,s+ν is neither geodesic orbit.

Theorem 9. Pseudo H-type Lie groups Nr,s with max{r, s} ≥ 8 and min{r, s} ≥ 4 are
not geodesic orbit.

Proof. Let Nr′,s′ be a pseudo H-type Lie group with max{r, s} ≥ 8 and min{r, s} ≥ 4.
Then write r′ = r + µ, s′ = s + ν for some (µ, ν) ∈ {(8, 0), (0, 8), (4, 4)}. Arguing as in
the proof of Theorem 8, we show that for

Rr,s = z1 = span{Z1, . . . , Zr+s}, Rµ,ν = z2 = span{ζ1, . . . , ζµ+ν},
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and

v1 = span{u} ⊗ vµ,ν , v2 = vr,s ⊗ E+1
µ,ν ,

where u ∈ E+1
r,s with 〈u, u〉vr,s = 1, the Lie algebra

n2 = v2 ⊕ z2 ∼= nµ,ν

is a subalgebra of nr+µ,s+ν . Moreover

JZi
(v2) ⊂ v2 for all Zi ∈ z1, Jζj(v2) ⊂ v1 for all ζj ∈ z2.

It implies that the pseudo H-type Lie algebra n2 ∼= nµ,ν generates a totally geodesic
subgroup Nµ,ν in Nr+µ,s+ν . By Corollary 4 the group Nµ,ν is not geodesic orbit and
Corollary 3 implies that Nr+µ,s+ν is neither geodesic orbit.

6.3. Pseudo H-type groups Nr,s, for (r, 1), r ≥ 3 and (0, s), s > 0.

Theorem 10. The pseudo H-type Lie groups N0,s with s ≥ 4 are not geodesic orbit.

Proof. Let {Zi}si=1 be an orthonormal basis of the center R0,s. Consider a positive
involution p = Z1Z2Z3Z4 and a vector X ∈ v, 〈X,X〉v = 1 such that Jp(X) = X.

Assume that a geodesic defined by an initial vector (X,Z1) ∈ n0,s is homogeneous.
Then there is D = (C,A) ∈ h such that

A(X) = JZ1(X), C(z1) = 0, [A, JZ ] = JC(Z), Z ∈ R0,s.

Then we obtain

JZ1(X) = A(X) = A(Jp(X)) (29)

= JpA(X)− JZ1JC(Z2)JZ3JZ4(X)− JZ1JZ2JC(Z3)JZ4(X)− JZ1JZ2JZ3JC(Z4)(X)

= −JZ1(X)− JZ1JC(Z2)JZ3JZ4(X)− JZ1JZ2JC(Z3)JZ4(X)− JZ1JZ2JZ3JC(Z4)(X),

where in the last step we used

JpA(X) = JpJZ1(X) = −JZ1Jp(X) = −JZ1(X). (30)

Hence 2JZ1(X) = Y with

Y = −JZ1JC(Z2)JZ3JZ4(X)− JZ1JZ2JC(Z3)JZ4(X)− JZ1JZ2JZ3JC(Z4)(X).

From one side Y satisfies 〈Y, Y 〉 > 0 by (8). From the other side 〈2JZ1(X), 2JZ1(X)〉 = −4,
which is a contradiction.

Theorem 11. The pseudo H-type Lie groups Nr,1, r ≥ 2, are not geodesic orbit.

Proof. Fix a basis {Zi}r+1
i as in (17). Let S be a maximal subgroup of G(Br,1) of

positive involutions and let PIr,1 be its generating set. Note that PIr,1 = PIr,0 by the
structure of involutions, see (18), which says that none of positive involutions in PIr,1
contains the basis vector Zr+1. We assume that the set PIr,1 contains an involution
q = Zi1 . . . JZia

of Type 2 as was defined in (18). This assumption always can be achieved
by removing one of the basis vectors or multiplying some of the involutions.

Let us choose a geodesic γ(t) = (z(t), x(t)) with an initial vector (Zr+1, X) such that
〈X,X〉v = 1, and Jq(X) = X and assume that the geodesic is homogeneous. Then there
is D = (C,A) ∈ h such that

A(X) = JZr+1(X), C(Zr+1) = 0, [A, JZ ] = JCτ (Z), Z ∈ Rr,0.
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The condition C(Zr+1) = 0 implies that C has vanishing last column. Now as in (29) of
Theorem 10 we have an equality

JZr+1(X) = A(X) = A(Jq(X)) = JqA(X)− Jq̇(X) = −JZr+1(X)− Jq̇(X)

with

q̇ = C(Zi1) · · ·Zia + Zi1C(Zi2) · · ·Zia + . . .+ Zi1Zi2 · · ·C(Zia).

In the last equality we used JqJZr+1(X) = −JZr+1Jq(X) since q contains odd number of
basis vectors and does not contain Zr+1. The rest of calculations as in (30).

2JZr+1(X) = −Jq̇(X).

Note that q̇ does not include Zr+1 because C(Zi) =
∑r

j=1 cijZj since cij = 0 for j = r+1.

Therefore 〈Jq̇(X), Jq̇(X)〉v ≥ 0 by (8). From the other side 〈2JZr+1(X), 2JZr+1(X)〉v = −4,
which is a contradiction.
We summarize the results of Sections 4, 5 and 6 and show in Table 1 the cases of pseudo

H-type Lie groups Nr,s that need to be studied.

Table 1. Pseudo H-type Lie groups need to be studied

7 N2,7 N3,7

6 N1,6 N3,6

5 N1,5 N2,5

4 N1,4 N2,4 N3,4

3 N2,3 N3,3 N4,3 N6,3 N7,3

2 N3,2 N4,2 N5,2 N7,2

1
0

s/r 0 1 2 3 4 5 6 7

6.4. Relation between nr,s, nr+1,s, and nr,s+1. In this section we present some of the
arguments based on the structure of the generating set for the maximal group of positive
involutions, which allows us to find out which of the groups in Table 1 are not geodesic
orbit.

Let ℓ(r, s) be the number of the mutually commuting positive involutions in the gen-
erating set PIr,s of the maximal group of positive involutions S. Recall that the number
ℓ(r, s) is periodic with the three periods (8, 0), (4, 4) and (0, 8), that is,

ℓ(r + 8, s) = ℓ(r, s+ 8) = ℓ(r + 4, s+ 4) = ℓ(r, s) + 4.

Table 2 shows the values ℓ(r, s) which are interesting for us. In general there are two
cases of the dimensions of minimal admissible modules vr,s according to the relations of
the values ℓ(r, s), ℓ(r + 1, s) and ℓ(r, s+ 1):

ℓ(r, s) ≤ ℓ(r + 1, s) ≤ ℓ(r, s) + 1 and ℓ(r, s) ≤ ℓ(r, s+ 1) ≤ ℓ(r, s) + 1.
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Table 2. The value ℓ(r, s) for r + s ≤ 16

7 3 3 3 4
6 2 3 3 4
5 1 2 3 4
4 1 2 3 4
3 0 1 2 3 3 3 3 4
2 0 1 1 2 2 3 3 4
1 0 0 0 1 1 2 3 4
0 0 0 0 1 1 2 3 4

s/r 0 1 2 3 4 5 6 7

Then

[1] ℓ(r, s) = ℓ(r + 1, s) implies dim vr+1,s = 2dim vr,s,

[2] ℓ(r, s) + 1 = ℓ(r + 1, s) implies dim vr+1,s = dim vr,s,

[3] ℓ(r, s) = ℓ(r, s+ 1) implies dim vr,s+1 = 2dim vr,s,

[4] ℓ(r, s) + 1 = ℓ(r, s+ 1) implies dim vr,s+1 = dim vr,s.

In cases [1] and [3] a module vr,s is a submodule of vr+1,s (vr,s+1), which is not true for
cases [2] and [4]. This can be shown as follows.

We fix a set PIr,s, construct an orthonormal basis {Xi}dim vr,s
i=1 for vr,s as in Proposition 6

generated by a vector v, 〈v, v〉vr,s = 1 which is 1-eigen vector for all the involutions in
PIr,s. We restrict the proof to the case nr,s+1, since for nr+1,s the arguments are similar.
The set vr,s = span{Xi, i = 1, . . . , dim vr,s} is a subset of vr,s+1 and a module under
the action of Cl(Rr,s). The map JZr+s+1 is an orthogonal transformation on vr,s+1 and
therefore JZr+s+1(vr,s) ⊂ vr,s+1 and moreover JZr+s+1(vr,s) is a minimal admissible module
for Cl(Rr,s). Thus

vr,s+1 = vr,s ⊕ JZr+s+1(vr,s)

is an orthogonal decomposition in two minimal admissible modules for Cl(Rr,s). The set
{Xi, JZr+s+1(Xi), i = 1, . . . , dim(vr,s)} is an orthonormal basis for vr,s+1.

Theorem 12. In the above notation in cases [1] and [3] the pseudo H-type Lie groups
Nr,s are totally geodesic submanifolds of Nr+1,s and Nr,s+1, respectively.

Proof. We write for nr,s+1

Rr,s = z1 = span{Z1, . . . , Zr+s}, z2 = span{Zr+s+1},

and

v1 = vr,s v2 = JZr+s+1(vr,s).

Then we obtain that

JZk
(v1) ⊂ v1, for any Zk ∈ z1

since v1 is a submodule of Cl(Rr,s). We also have

JZr+s+1(v1) ⊂ v2.

Applying Theorem 5 and Corollary 3 we finish the proof.
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Corollary 5. The pseudo H-type Lie groups

N2,7, N3,6, N3,7 N6,3, N7,2, N7,3

are not geodesic orbit

Proof. Applying Theorem 12 to the groups in Table 1 and using Table 2 we finish the
proof. For instance since N7,1 is not geodesic orbit and

ℓ(7, 1) = ℓ(7, 2) = ℓ(7, 3).

We conclude that N7,2 and N7,3 are not geodesic orbit.

Remark 4. One can show the following. In the cases [2] and [4], the module vr+1,s (or
vr,s+1) is also a minimal admissible module of the Clifford algebra Cl(Rr,s). In these cases
the natural inclusion map

nr,s(vr,s) = nr,s(vr+1,s) ⊂ nr+1,s(vr+1,s)

is not a Lie algebra homomorphism

Theorem 13. The pseudo H-type Lie groups Nr,s for

(r, s) ∈ {(1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (3, 2), (3, 3), (4, 2), (4, 3), (5, 2)}
are not geodesic orbit.

Proof. We start from pseudo H-type Lie groups N1,4 and N3,2.
We choose an orthonormal basis for centers as in (17) and the generating set {p1, p2}

for the maximal group of positive involutions, where

p1 = Z1Z2Z3, p2 = Z2Z3Z4Z5.

Let v ∈ {X ∈ v : Jp1(X) = Jp2(X) = X}, ‖v‖2 = 1. We construct an orthonormal
invariant basis for v:

X1 = v, X2 = JZ2(v), X3 = JZ4(v), X4 = JZ2JZ4(v),
X5 = JZ1(v), X6 = JZ3(v), X7 = JZ5(v), X8 = JZ3JZ4(v).

We denote
z1 = span{Z2, Z4}, z2 = span{Z1, Z3, Z5}, z = z1 ⊕ z2,

v1 = span{X1, . . . X4}, v2 = span{X5, . . . , X8}, v = v1 ⊕ v2.

It is obvious that JZk
(v1) ⊂ v1 for k = 1, 4. If (r, s) = (1, 4), then the pseudo H-type Lie

algebra z1⊕ v1 is isomorphic to n0,2. If (r, s) = (3, 2), then the pseudo H-type Lie algebra
z1 ⊕ v1 is isomorphic to n1,1.

To show that JZk
(v1) ⊂ v2 for k = 2, 3, 5 we observe that p1p2 = −Z1Z4Z5 and

JZ1Z4Z5(v) = −v. Then it is easy to see the following

JZ1(X1) = ±X5, JZ1(X2) = ±X6, JZ1(X3) = ±X7, JZ1(X4) = ±X8,
JZ3(X1) = ±X6, JZ3(X2) = ±X5, JZ3(X3) = ±X8, JZ3(X4) = ±X7,
JZ5(X1) = ±X7, JZ5(X2) = ±X8, JZ5(X3) = ±X5, JZ5(X4) = ±X6.

Theorem 5 and Corollary 3 imply that pseudo H-type Lie groups N1,4 and N3,2 are not
geodesic orbit.

Consider pseudo H-type Lie groups N1,6 and N5,2.
We choose an orthonormal basis for the center as in (17) and the generating set

{p1, p2, p3} for the maximal group of positive involutions, where

p1 = Z1Z2Z3, p2 = Z2Z3Z4Z5, p2 = Z2Z3Z6Z7.
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Let v ∈ {X ∈ v : Jp1(X) = Jp2(X) = Jp3(X) = X}, ‖v‖2 = 1. We construct an
orthonormal invariant basis for v:

X1 = v, X2 = JZ2(v), X3 = JZ4(v), X4 = JZ2JZ4(v),
X5 = JZ1(v), X6 = JZ3(v), X7 = JZ5(v), X8 = JZ3JZ4(v),
X9 = JZ6(v), X10 = JZ7(v), X11 = JZ2JZ6(v), X12 = JZ2JZ7(v),
X13 = JZ4JZ6(v), X14 = JZ4JZ7(v), X15 = JZ2JZ4JZ6(v), X6 = JZ2JZ4JZ7(v).

We denote

z1 = span{Z2, Z4}, z2 = span{Z1, Z3, Z5, Z6, Z7}, z1,6 = z1 ⊕ z2

v1 = span{X1, . . . X4}, v2 = span{X5, . . . , X16}, v1,6 = v1 ⊕ v2

As in the previous case we show that if (r, s) = (1, 6), then z1 ⊕ v1 is isomorphic to n0,2
and if (r, s) = (5, 2), then z1 ⊕ v1 is isomorphic to n1,1. Theorem 5 and Corollary 3 imply
that the groups N1,6 and N5,2 are not geodesic orbit.
Pseudo H-type Lie group N2,3. We choose an orthonormal basis for the center as in (17)

and the generating set PI2,3 = {p1, p2} for the maximal group of positive involutions,
where

p1 = Z1Z4Z5, p2 = Z1Z2Z3Z4.

Let v ∈ {X ∈ v2,3 : Jp1(X) = Jp2(X) = X}, ‖v‖2 = 1. We construct an orthonormal
invariant basis as in the case N3,2. All other calculations are analogous to the case N3,2.

Pseudo H-type Lie groups N2,4 and N3,3. We choose an orthonormal basis for the center
as in (17) and the generating set {p1, p2, p3} for the maximal group of positive involutions,
where

p1 = Z1Z4Z5, p2 = Z1Z2Z3Z4, p3 = Z1Z2Z5Z5

Let v ∈ {X ∈ v : Jp1(X) = Jp2(X) = Jp3(X) = X}, ‖v‖2 = 1. We construct an
orthonormal invariant basis for v:

X1 = v, X2 = JZ5(v), X3 = JZ6(v), X4 = JZ5JZ6(v),
X5 = JZ1(v), X6 = JZ2(v), X7 = JZ3(v), X8 = JZ4(v).

We denote

z1 = span{Z5, Z6}, z2 = span{Z1, Z2, Z3, Z4}, z = z1 ⊕ z2,

v1 = span{X1, . . . X4}, v2 = span{X5, . . . , X8}, v = v1 ⊕ v2.

It is obvious that JZk
(v1) ⊂ v1 for k = 5, 6. The pseudo H-type Lie algebra z1 ⊕ v1 is

isomorphic to n0,2. To show that JZk
(v1) ⊂ v2 for k = 1, 2, 3, 4 one can check the following

JZ1(X1) = ±X5, JZ1(X2) = ±X8, JZ1(X3) = ±X7, JZ1(X4) = ±X6,
JZ2(X1) = ±X6, JZ2(X2) = ±X7, JZ2(X3) = ±X8, JZ2(X4) = ±X5,
JZ3(X1) = ±X7, JZ3(X2) = ±X6, JZ3(X3) = ±X5, JZ3(X4) = ±X8,
JZ4(X1) = ±X8, JZ4(X2) = ±X5, JZ4(X3) = ±X6, JZ4(X4) = ±X7.

Theorem 5 and Corollary 3 imply that pseudo H-type Lie groups N2,4 and N3,3 are not
geodesic orbit.

To finish the proof we apply Theorem 12 to the cases

ℓ(1, 4) = ℓ(1, 5), ℓ(3, 2) = ℓ(4, 2), ℓ(2, 4) = ℓ(2, 5), ℓ(3, 3) = ℓ(4, 3).
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7. Pseudo H-type nilmanifold N3,4

It is known that the Clifford algebra Cl(R3,4) has two non-equivalent minimal admissible
8-dimensional modules. Moreover, the corresponding 15-dimensional pseudo H-type Lie
algebras are isomorphic and isometric, see [25, Theorem 12]. Therefore, it sufficient to
check only one such pseudo H-type nilmanifold N3,4.
The pseudo H-type nilmanifold N3,4 has dimension 15, and the corresponding left

invariant metric is generated by the scalar product 〈· , ·〉3,4 + 〈· , ·〉4,4 on the Lie algebra
n3,4 = R3,4 ⊕ R4,4. We define the orthonormal basis {V1, . . . , V8, Z1, . . . , Z7} by taking
v ∈ R4,4 with ‖v‖2 = 1 and setting ‖Z1‖2 = ‖Z2‖2 = ‖Z3‖2 = 1, ‖Z4‖2 = ‖Z5‖2 =
‖Z6‖2 = ‖Z7‖2 = −1. We use involutions pi, i = 1, 2, 3, 4, where

Jp1(v) = JZ1Z2Z4Z5(v) = v, Jp2(v) = JZ1Z2Z6Z7(v) = v,
Jp3(v) = JZ1Z3Z5Z7(v) = v, Jp4(v) = JZ1Z2Z3(v) = v,

(31)

with

J2
Z1

= J2
Z2

= J2
Z3

= − Id, J2
Z4

= J2
Z5

= J2
Z6

= J2
Z7

= Id .

Note that

JZ1(v) = −JZ2JZ3(v) = JZ4JZ7(v) = JZ5JZ6(v),
JZ2(v) = JZ1JZ3(v) = JZ4JZ6(v) = −JZ5JZ7(v),
JZ3(v) = −JZ1JZ2(v) = JZ4JZ5(v) = JZ6JZ7(v),
JZ4(v) = JZ1JZ7(v) = JZ2JZ6(v) = JZ3JZ5(v),
JZ5(v) = −JZ2JZ7(v) = −JZ3JZ4(v) = JZ1JZ6(v),
JZ6(v) = −JZ1JZ5(v) = −JZ2JZ4(v) = JZ3JZ7(v),
JZ7(v) = −JZ1JZ4(v) = JZ2JZ5(v) = −JZ3JZ6(v).

We construct a basis for v by setting V1 = v and Vi = JZi−1
(v).

Then we have

〈Vk, Vk〉4,4 = −〈Vl, Vl〉4,4 = 1, k = 1, . . . , 4, l = 5, . . . , 8,

and the operators JZk
, k = 1, . . . , 8 with respect to this basis take the form

JZ1 =


0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0

 , JZ2 =


0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0

 , JZ3 =


0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0

 ,

JZ4 =


0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

 , JZ5 =


0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
0 0 0 0 −1 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0

 , JZ6 =


0 0 0 0 0 0 1 0
0 0 0 0 0 −1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0

 ,

JZ7 =


0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
1 0 0 0 0 0 0 0

 .

(32)
The operators JZk

, k = 1, . . . , 7, span a 7-dimensional subspace in V ⊂ so(4, 4), nev-
ertheless the vector space V is not a Lie subalgebra of so(4, 4). Hence, N3,4 is not a
naturally reductive manifold.
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Table 3. Commutators in n3,4

V1 V2 V3 V4 V5 V6 V7 V8
V1 0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

V2 −Z1 0 −Z3 Z2 −Z7 −Z6 Z5 Z4

V3 −Z2 Z3 0 −Z1 −Z6 Z7 Z4 −Z5

V4 −Z3 −Z2 Z1 0 −Z5 Z4 −Z7 Z6

V5 −Z4 Z7 Z6 Z5 0 Z3 Z2 Z1

V6 −Z5 Z6 −Z7 −Z4 −Z3 0 Z1 −Z2

V7 −Z6 −Z5 −Z4 Z7 −Z2 −Z1 0 Z3

V8 −Z7 −Z4 Z5 −Z6 −Z1 Z2 −Z3 0

The direct computations shows that the centralizer Z of V in the isotropy subalgebra
is trivial. Hence, the normalizer N = Z ⊕ [V,V] of V is the linear span of all matrices
of the following type: Jik := [JZi

, JZk
], 1 ≤ i ≤ k ≤ 7. In particular, dimN = 21 and

any operator B ∈ N has the form B =
∑

i,k xikJik for some xik ∈ R, 1 ≤ i < k ≤ 7. An
explicit form of the operator B is as follows:

2


0 x23−x47−x56 −x13−x46+x57 x12−x45−x67 x17+x26+x35 x16−x27−x34 −x15−x24+x37 −x14+x25−x36

−x23+x47+x56 0 −x12−x45−x67 −x13+x46−x57 x14+x25−x36 x15−x24+x37 x16+x27+x34 x17−x26−x35
x13+x46−x57 x12+x45+x67 0 −x23−x47−x56 −x15+x24+x37 x14+x25+x36 −x17+x26−x35 x16+x27−x34
−x12+x45+x67 x13−x46+x57 x23+x47+x56 0 x16−x27+x34 −x17−x26+x35 −x14+x25+x36 x15+x24+x37
x17+x26+x35 x14+x25−x36 −x15+x24+x37 x16−x27+x34 0 x12+x45−x67 −x13+x46+x57 x23+x47−x56
x16−x27−x34 x15−x24+x37 x14+x25+x36 −x17−x26+x35 −x12−x45+x67 0 x23−x47+x56 x13+x46+x57
−x15−x24+x37 x16+x27+x34 −x17+x26−x35 −x14+x25+x36 x13−x46−x57 −x23+x47−x56 0 x12−x45+x67
−x14+x25−x36 x17−x26−x35 x16+x27−x34 x15+x24+x37 −x23−x47+x56 −x13−x46−x57 −x12+x45−x67 0



Remark 5. Recall that the matrices JZi
, i = 1, . . . , 7, as well as B are skew-symmetric

with respect the inner product 〈· , ·〉4,4. Therefore, if A is one of such matrices and
Y ∈ v = R4,4, then the vector Y = A(Y ) is such that

〈Y, Y 〉4,4 = y1y1 + y2y2 + y3y3 + y4y4 − y5y5 − y6y6 − y7y7 − y8y8 = 0.

This implies that for a given Y , the linear space L(Y ) for L = V⊕ [V,V] has dimension
≤ 7.

The following result is useful for various computations.

Lemma 4. If a matrix Lie group G with the Lie algebra g ⊂ gl(m,R) preserves the value∑
ij cijyiyj for some fixed Y = (y1, . . . , ym), where cij ∈ R, then for any matrix A ∈ g we

have
∑

ij cij

(
(A(Y ))iyj +(A(Y ))jyi

)
= 0, where A(Y ) is the image of Y under the action

of A.

Proof. For any Q ∈ G and any Y ∈ Rm we have
∑

ij cij(Q(Y ))i(Q(Y ))j =
∑

ij cijyiyj,

where G(Y ) is the image of Y under the action of the matrix G. If Q = exp(tA) =
Id+tA+ o(t) when t→ 0 for some A ∈ g, then∑

ij

cij(Q(Y ))i(Q(Y ))j =
∑
ij

cij(Y + tA(Y ))i(Y + tA(Y ))j + o(t)

=
∑
ij

cijyiyj + t
∑
ij

cij

(
A(Y )iyj + A(Y )jyi

)
+ o(t)
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when t→ 0, that proves the lemma.

If N3,4 is geodesic orbit, then for any Y ∈ v and any Z ∈ V, there is some B ∈ N
such that [B,Z] = 0 and B(Y ) = Z(Y ). We aim to find such matrix B. Without loss of
generality we may take

Y = (y1, y2, y3, y4, y5, y6, y7, y8) = y1V1+y2V2+y3V3+y4V4+y5V5+y6V6+y7V7+y8V8 ∈ v
(33)

for any given yi ∈ R, i = 1, . . . , 8.

Theorem 14. For any Z ∈ V and for any Y ∈ R4,4, it is possible to find B ∈ N = [V,V]
such that [B,Z] = 0 and B(Y ) = Z(Y ). Hence, N3,4 is geodesic orbit pseudo nilmanifold.

Remark 6. In particular, N3,4 is the first example of pseudo H-type geodesic orbit
manifolds that is not naturally reductive. Moreover, it is the first pseudo H-type geodesic
orbit manifold such that the space V satisfies the strong transitive normalizer condition;
that is for every Y ∈ v = Rl,l and every Z ∈ V = J(z) there is some B ∈ [V,V] such
that [B,Z]so(l,l) = 0 and B(Y ) = Z(Y ).

The proof of Theorem 14 is based on Propositions 9, 10, and 6.
We also use the fact that we have only three classes in the center of n3,4, up to similarity

and the action of the isotropy subgroup. They are represented by Z1 (positive vector),
Z4 (negative vector), and Z1 + Z4 (null vector).
Indeed, the group O(3, 4) with the Lie algebra so(3, 4), that is a linear span of the

operators [JZi
, JZj

], 1 ≤ i < j ≤ 7, acts naturally by automorphisms on the center z. It is
well known that O(3, 4) acts transitively on every hyperquadric Q(r) = {z ∈ z | 〈z, z〉3,4 =
r} with r 6= 0, see e.g. [47, page 239 ] or [55, Theorem 2.4.4 ].
Now, let us suppose that z, z ∈ z and 〈z, z〉3,4 = 〈z, z〉3,4 = 0. If 〈zp, zp〉3,4 = 〈zp, zp〉3,4 =

ρ 6= 0 or, equivalently, 〈zn, zn〉3,4 = 〈zn, zn〉3,4 = −ρ 6= 0, where the subscripts p and n
mean the components of vectors in span(Z1, Z2, Z3) and span(Z4, Z5, Z6, Z7) respectively.
Then it easy to see that there is Q ∈ O(3) · O(4) ⊂ O(3, 4) such that Q(zp) = zp and
Q(zn) = zn.

Hence, up to a similarity, it suffices to consider only one point in every of the following
hyperquadrics: Q(1), Q(−1), Q(0) (non-trivial in the last case). For instance, we can
take Z satisfying one of the following possibilities:

Z = JZ1 ∈ V, Z = JZ4 ∈ V, Z = JZ1 + JZ4 = JZ1+Z4 ∈ V,

which corresponds to positive, negative or zero length of Z.

Remark 7. It would be interesting to find shorter and more conceptual proof of Theo-
rem 14. In our proof we have used some standard results on Lie algebras, on represen-
tations of Lie groups, as well as classical results in the linear algebra and properties of
polynomial ideals.

It is clear that for trivial Y (i.e. yi = 0 for all i = 1, . . . , 8) and Z as above, we can
take the trivial (zero) operator B in order to get equalities B(Y ) = Z(Y ) and [B,Z] = 0.
In what follows, it suffices to check only non-trivial Y .

7.1. The case Z = JZ1. The first condition [B,Z] = 0 implies x12 = x13 = x14 = x15 =
x16 = x17 = 0. Let us consider the condition B(Y ) = Z(Y ) for a non-trivial B. Let us
assume in addition that x23 = x24 = x25 = x26 = x27 = x34 = x35 = x36 = x37 = 0. Then
we get the following explicit solutions
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If y21 + y22 + y23 + y24 6= 0 and y25 + y26 + y27 + y28 = 0, then we can take x56 = x57 = x67 = 0
and

x45 = − y1y3 − y2y4
y21 + y22 + y23 + y24

, x46 =
y1y4 + y2y3

y21 + y22 + y23 + y24
, x47 =

y21 + y22 − y23 − y24
2(y21 + y22 + y23 + y24)

.

If y25 + y26 + y27 + y28 6= 0 and y21 + y22 + y23 + y24 = 0, then we can take x56 = x57 = x67 = 0
and

x45 = − y5y7 − y6y8
y25 + y26 + y27 + y28

, x46 =
y5y6 + y7y8

y25 + y26 + y27 + y28
, x47 =

y25 − y26 − y27 + y28
2(y25 + y26 + y27 + y28)

.

Finally, if y21 + y22 + y23 + y24 6= 0 and y25 + y26 + y27 + y28 6= 0, then we can take

x45 = −1

2

(
y1y3 − y2y4

y21 + y22 + y23 + y24
+

y5y7 − y6y8
y25 + y26 + y27 + y28

)
,

x46 =
1

2

(
y1y4 + y2y3

y21 + y22 + y23 + y24
+

y5y6 + y7y8
y25 + y26 + y27 + y28

)
,

x47 =
(y21 + y22)(y

2
5 + y28)− (y23 + y24)(y

2
6 + y27)

2(y21 + y22 + y23 + y24)(y
2
5 + y26 + y27 + y28)

,

x56 =
(y21 + y22)(y

2
6 + y27)− (y23 + y24)(y

2
5 + y28)

2(y21 + y22 + y23 + y24)(y
2
5 + y26 + y27 + y28)

,

x57 =
1

2

(
− y1y4 + y2y3
y21 + y22 + y23 + y24

+
y5y6 + y7y8

y25 + y26 + y27 + y28

)
,

x67 =
1

2

(
−y1y3 + y2y4

y21 + y22 + y23 + y24
+

y5y7 + y6y8
y25 + y26 + y27 + y28

)
.

Hence, we have the following result.

Proposition 9. For any Y ∈ R4,4, it is possible to find B ∈ N = [V,V] of V such that
[B,Z] = [B, JZ1 ] = 0 and B(Y ) = Z(Y ) = JZ1(Y ).

7.2. The case Z = JZ4. The first condition [B,Z] = 0 implies x14 = x24 = x34 = x45 =
x46 = x47 = 0. Let us consider a subalgebra N1 ⊂ N that is generated by the matrices of
the type [JZk

, JZl
], where k, l ∈ {1, 2, 3, 5, 6, 7}. It is clear that [JZ4 ,N1] = 0.

Let us consider the condition B(Y ) = Z(Y ). The above arguments show that we need
to consider only B ∈ N1. It is more convenient to consider the linear system 2B(Y ) =
Z(Y ) = JZ4(Y ) which allows to find B = {xij}. Since JZ4(Y ) = (y5, y8, y7, y6, y1, y4, y3, y2),
then we have a system of linear equations with respect to the variables

x12, x13, x15, x16, x17, x23, x25, x26, x27, x35, x36, x37, x56, x57, x67

with the following extended matrix (the last column is the column of free terms of our
system of linear equations):

ME :=



−y6 y7 y3 −y4 −y1 −y8 −y2 −y1 y4 −y1 y2 −y3 y8 −y7 y6 −y1
y7 y6 −y4 −y3 −y2 y5 −y1 y2 −y3 y2 y1 −y4 −y5 y6 y7 −y2
−y8 −y5 y1 −y2 y3 y6 −y4 −y3 −y2 y3 −y4 −y1 y6 y5 −y8 −y3
y5 −y8 −y2 −y1 y4 −y7 −y3 y4 y1 −y4 −y3 −y2 −y7 −y8 −y5 −y4
−y4 y3 y7 −y6 −y5 −y2 −y8 −y5 y6 −y5 y8 −y7 y2 −y3 y4 −y5
y1 −y2 −y8 −y5 y6 −y3 −y7 y6 y5 −y6 −y7 −y8 −y3 −y2 −y1 −y6
−y2 −y1 y5 −y8 y7 y4 −y6 −y7 −y8 y7 −y6 −y5 y4 y1 −y2 −y7
y3 y4 −y6 −y7 −y8 y1 −y5 y8 −y7 y8 y5 −y6 −y1 y4 y3 −y8

 .
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By the Kronecker–Capelli theorem, this system has a solution if and only if the rank
of ME coincides with the rank of the matrix M , which is obtained from ME by deleting
the last column (the column of free terms).

It is easy to see that the product of the vector (−y5,−y8,−y7,−y6, y1, y4, y3, y2) andME
is a vector with 16 zero entries. Hence, rank(ME) ≤ 7 (see also Remark 5). Therefore,

if rank(M) = 7, then the system 2B(Y ) = JZ4(Y ) has a solution. By symbol M
[j1,j2,...,js]
[i1,i2,...,is]

,

we denote the minor of M which is determined by the rows with the numbers i1, i2, . . . , is
and columns with the numbers j1, j2, . . . , js. It is easy to check that

M
[9,10,11,12,13,14,15]
[1,2,3,4,6,7,8] = y1 · (y21 + y22 − y23 − y24 − y25 + y26 + y27 − y28)×

×
(
(y21 + y22 + y23 + y24 − y25 − y26 − y27 − y28)

2 + 4(y1y6 − y2y7 + y3y8 − y4y5)
2
)
.

Hence, for almost all Y ∈ v, we obtain M
[1,2,3,4,6,7,8]
[1,2,3,4,6,7,8] 6= 0 and rank(M) = rank(ME) = 7,

that implies that we have a solution of the corresponding system.
It is possible to compute all other minors of M of order 7. For example,

M
[1,3,7,8,10,11,15]
[1,2,3,4,6,7,8] = −8y1 · (y1y3 + y2y4 − y5y7 − y6y8)×(

(y21 + y22 + y25 + y28)(y3y7 + y4y6)− (y23 + y24 + y26 + y27)(y1y5 + y2y8)
)
.

The set of Y ∈ v with the property rank(M) < 7 is the zero set of several polynomials,
hence, it determines a polynomial ideals. It is interesting to describe this ideal completely.

More precisely, let M(7) be the set of all minors of size 7 of the matrix M (any such
minor is a 7-form in coordinates of Y ). There are 8 · C7

15 = 51480 minors of size 7 of the
matrix M . Now, let us consider the following set:

ZM(7) =
{
Y ∈ R8 | f(Y ) = 0 for any f ∈M(7)

}
.

If Y 6∈ ZM(7), then there is a minor f of size 7 of the matrix M such that f(y) 6= 0.
Therefore, rank(M) = 7, hence, the corresponding linear system for the vector Y has a
solution. If Y ∈ ZM(7) then rank(M) ≤ 6, but this does not mean that the corresponding
linear system has no solution! But all possible “bad” vectors Y are in the set ZM(7). Note
that ZM(7) is a closed subset of zero measure in R8. Moreover, ZM(7) is an algebraic
set. On the other hand, this approach demands a lot of computations. Hence, we are
going to apply some other ideas.

Let us show that we may assume (without loss of generality) that y1 = 〈Y, V1〉4,4 6=
0. Indeed, if y1 = 0, then there is yi 6= 0 for some i = 2, . . . , 8. We can choose
a matrix of the type Q = exp(A), where A ∈ N1 such that 〈QY, V1〉4,4 6= 0. In-
deed, if i ∈ {2, 3, 4, 5, 6, 7, 8}, then we can take Q = exp

(
t[JZk

, JZl
]
)
such that (k, l) ∈

{(2, 3), (1, 3), (1, 2), (1, 7), (1, 6), (1, 5), (2, 5)} for respective i, and t is a small positive
number. For instance, 〈QY, V1〉4,4 = cos(2t)y1 + sin(2t)y2 if Q = exp

(
t[JZ2 , JZ3 ]

)
and

〈QY, V1〉4,4 = cosh(2t)y1 + sinh(2t)y5 =
e2t+e−2t

2
y1 +

e2t−e−2t

2
y5 if Q = exp(t[JZ1 , JZ7 ]).

Recall that k 6= 4 and l 6= 4 in the above pairs. In particular, [JZ3 , [JZk
, JZl

]] =
[JZ4 , Q] = 0 for all these pairs (k, l) and QJZ4Q

−1 = JZ4 . The equality B(Y ) = JZ4(Y )
is equivalent to QBQ−1(QY ) = QJZ4Q

−1(QY ) = JZ4(QY ). Since [QBQ−1, JZ4 ] = 0 if
[B, JZ4 ] = 0, we can find a suitable B ∈ N for the pair (JZ4 , Y ) if and only if we can find

a suitable B̃ ∈ N for the pair (JZ4 , QY ), where Q ∈ N such that [Q, JZ4 ] = 0.
In what follows, we assume that y1 6= 0 (by the above arguments).
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Lemma 5. If a vector Y = (y1, y2, y3, y4, y5, y6, y7, y8) satisfies the equalities Ui = 0,
i = 1, . . . , 8, where

U1 = y1y8 − y2y5 − y3y6 + y4y7,

U2 = y1y7 + y2y6 − y3y5 − y4y8,

U3 = y1y4 + y2y3 − y5y6 − y7y8,

U4 = y1y4 − y2y3 − y5y6 + y7y8,

U5 = y1y3 − y2y4 − y5y7 + y6y8, (34)

U6 = y1y2 + y3y4 − y5y8 − y6y7,

U7 = y21 + y22 − y23 − y24 − y25 + y26 + y27 − y28,

U8 = y21 − y22 + y23 − y24 − y25 + y26 − y27 + y28,

then one of the following two cases holds:

1) Y = (y1, y2, y3, y4, y1, y4, y3, y2), 2) Y = (y1, y2, y3, y4,−y1,−y4,−y3,−y2),

for any y1, y2, y3, y4 ∈ R. In particular, in both cases we have y21 + y
2
2 + y

2
3 + y

2
4 − y25 − y26 −

y27 − y28 = 1 and y1y6 − y2y7 + y3y8 − y4y5 = 0.

Proof. The polynomials Ui, i = 1, . . . , 8, generates an ideal I. Now, if we compute the
elimination ideal I1 from I with respect to the variables y1, y2, y3, y4, y5, y6, y7 (it can be
done, say, by Maple), then we get that I1 has two component:

S1 = {(y1, y2, y3, y4, y5, y6, y7) | y1 = y5, y2 = y8, y3 = y7, y4 = y6},
S2 = {(y1, y2, y3, y4, y5, y6, y7) | y1 = −y5, y2 = −y8, y3 = −y7, y4 = −y6}.

This proves the lemma.

Lemma 6. If rank(M) < 7, then y21 + y22 + y23 + y24 = y25 + y26 + y27 + y28 and y1y6 + y3y8 =
y2y7 + y4y5.

Proof. For i = 2, . . . , 9, we denote by D(i) the minor M
[i,10,11,12,13,14,15]
[1,2,4,5,6,7,8] . Then we get

the following equalities:

D(2) = −2y1 · U1 · U0, D(6) = −2y1 · U2 · U0,
D(3) = −y1 · U6 · U0, D(7) = 2y1 · U5 · U0,
D(4) = −2y1 · U8 · U0, D(8) = 2y1 · U3 · U0,
D(5) = 2y1 · U4 · U0, D(9) = y1 · U7 · U0,

where Ui, 1 ≤ i ≤ 8, are given in (34) and

U0 = (y21 + y22 + y23 + y24 − y25 − y26 − y27 − y28)
2 + 4(y1y6 − y2y7 + y3y8 − y4y5)

2.

If U0 = 0, then the assertion of the theorem follows.
Let us suppose that U0 6= 0. If Ui 6= 0 for some i = 1, . . . , 8, then rank(M) = 7. On the

other hand, U1 = U2 = U3 = U4 = U5 = U6 = U7 = U8 = 0 implies U0 = 0 by Lemma 5.
Hence, the lemma is proved.

Note that all matrices from exp(N) preserves the quadratic form y21 + y22 + y23 + y24 −
y25 − y26 − y27 − y28. On the other hand that, it is not true for the quadratic form y1y6 −
y2y7 + y3y8 − y4y5.
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Lemma 7. If the vector Y = (y1, y2, y3, y4, y5, y6, y7, y8) with y1 6= 0 is such that there is
no B ∈ N1 satisfying B(Y ) = JZ4(Y ), then Y has one of the following two forms:

1) Y = (y1, y2, y3, y4, y1, y4, y3, y2), 2) Y = (y1, y2, y3, y4,−y1,−y4,−y3,−y2),
where y1, y2, y3, y4 ∈ R.

Proof. Let us consider any Q ∈ exp(N1). If Q does not preserve the equality y1y6 −
y2y7 + y3y8 − y4y5 = 0, then the matrix M for the vector Y = Q(Y ) has rank 7 by
Lemma 6. Therefore, we have some B ∈ N1 such that B(Y ) = JZ4(Y ). Consequently,
B = Q−1BQ ∈ N1 satisfies B(Y ) = JZ4(Y ), that is impossible by the assumptions.
Hence, any Q ∈ exp(N1) preserves the equality y1y6 + y3y8 = y2y7 + y4y5 = 0.

By Lemma 4 we have

y1y6 + y1y6 + y3y8 + y3y8 − y2y7 − y2y7 − y4y5 − y4y5 = 0, (35)

where Y = A(Y ) and A is any matrix in N1. Taking various A = [JZk
, JZl

] for k, l ∈
{1, 2, 3, 5, 6, 7}, we obtain the equations Ui = 0, 1 ≤ i ≤ 8, where Ui are given in (34).
Now, it suffices to apply Lemma (5).

Proposition 10. For any Y ∈ R4,4, it is possible to find B ∈ N = [V,V] such that

[B,Z] = [B, JZ4 ] = 0 and B(Y ) = Z(Y ) = JZ4(Y ). (36)

Proof. Suppose that for some Y = (y1, y2, y3, y4, y5, y6, y7, y8) ∈ R8, there is no B ∈ N
satisfying (36). The discussion above shows that (without loss of generality) we may
assume that y1 6= 0. Lemma 7 implies that we have one of the following two possibility:

1) Y = (y1, y2, y3, y4, y1, y4, y3, y2), 2) Y = (y1, y2, y3, y4,−y1,−y4,−y3,−y2),
where y1, y2, y3, y4 ∈ R. We will find an explicit form of B ∈ N satisfying (36) for both
cases.

Let us start from the case 1).
If y1y3 − y2y4 6= 0, then we have the solution B with the following entries:

x12 = −y1y2 + y3y4
y1y3 − y2y4

, x13 = −y
2
1 − y22 − y23 + y24
2(y1y3 − y2y4)

, x15 = −y
2
1 + y22 + y23 + y24
2(y1y3 − y2y4)

,

and x16 = x17 = x23 = x25 = x26 = x27 = x35 = x36 = x37 = x56 = x57 = x67 = 0.
If y1y3 − y2y4 = 0 and y4 6= 0, then y3 = y2y4

y1
and we can take the matrix B with the

following entries:

x12 =
(y21 − y22)(y

2
1 − y24)

2y1y4(y21 + y22)
, x13 = −y2(y

2
1 − y24)

y4(y21 + y22)
, x15 = 0, x16 =

y21 + y24
2y1y4

,

and x17 = x23 = x25 = x26 = x27 = x35 = x36 = x37 = x56 = x57 = x67 = 0.
If y1y3 − y2y4 = 0 and y4 = 0, then y3 = 0. Therefore, we can take B with x17 = 1,

while xij = 0 for all pairs (i, j) 6= (1, 7). It is easy to verify using the extended matrix
ME (recall that y7 = y3 and y6 = y4, hence, y3 = y4 = y6 = y7 = 0).

Now we are going to consider the case 2).
If y1y4 + y2y3 6= 0, then we have the solution B with the following entries:

x12 = −y
2
1 − y22 + y23 − y24
2(y1y4 + y2y3)

, x13 =
y1y2 − y3y4
y1y4 + y2y3

, x15 = 0, x16 =
y21 + y22 + y23 + y24
2(y1y4 + y2y3)

,

and x17 = x23 = x25 = x26 = x27 = x35 = x36 = x37 = x56 = x57 = x67 = 0.
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If y1y4 + y2y3 = 0 and y4 6= 0, then y2 6= 0, y3 6= 0, y3 = −y2y4
y1

, and we can take B with

the following entries:

x12 = −y1(y
2
2 − y24)

y4(y21 + y22)
, x13 = −(y21 − y22)(y

2
2 − y24)

2y2y4(y21 + y22)
, x15 =

y22 + y24
2y2y4

,

and x16 = x17 = x23 = x25 = x26 = x27 = x35 = x36 = x37 = x56 = x57 = x67 = 0.
If y1y4 + y2y3 = 0 and y4 = 0, then y2y3 = 0. If y3 = 0, then we can take B with

x17 = 1, while xij = 0 for all pairs (i, j) 6= (1, 7). It is easy to verify using the extended
matrix ME (recall that y7 = −y3 and y6 = −y4, hence, y3 = y4 = y6 = y7 = 0).

Finally, if y4 = 0 and y2 = 0, then we can take B with x26 = 1, while xij = 0 for
all pairs (i, j) 6= (2, 6). It is easy to verify using the extended matrix ME (recall that
y8 = −y2 and y6 = −y4, hence, y2 = y4 = y6 = y8 = 0). The proposition is proved.

7.3. The case Z = JZ1 + JZ4. The condition [B,Z] = 0 implies x12 = −x24, x13 = x34,
x14 = 0, x15 = x45, x16 = x46, x17 = x47. For the condition B(Y ) = Z(Y ) we consider the
liner equation system 2B(Y ) = Z(Y ) = JZ1(Y ) + JZ4(Y ) (any solution of this system is
just one half of a solution of B(Y ) = Z(Y )). Since JZ1(Y )+JZ4(Y ) = (y5−y2, y1+y8, y4+
y7, y6− y3, y1+ y8, y4+ y7, y3− y6, y2− y5), then we have a system of linear equations with
respect to the following variables

x23, x25, x24, x26, x27, x34, x35, x36, x37, x45, x46, x47, x56, x57, x67

with the following extended matrices (the last column is the column of free terms of our
system of linear equations):

M̃E:=


y1 −y3+y6 −y5 y8 −y7 −y4−y7 y8 y5 −y6 y3−y6 −y4−y7 −y1−y8 −y1 y4 y3 −y1−y8
−y8 −y3+y6 −y2 −y1 y4 −y4−y7 −y1 y2 −y3 y3−y6 −y4−y7 −y1−y8 y8 −y7 y6 −y1−y8
−y2 y4+y7 −y8 −y5 y6 −y3+y6 −y5 y8 −y7 y4+y7 y3−y6 y2−y5 y2 −y3 y4 y2−y5
y5 −y4−y7 −y1 y2 −y3 y3−y6 y2 y1 −y4 −y4−y7 −y3+y6 −y2+y5 −y5 y6 y7 −y2+y5
−y3 −y1−y8 −y7 y6 y5 y2−y5 −y6 −y7 −y8 −y1−y8 y2−y5 −y3+y6 −y3 −y2 −y1 y3−y6
y6 y1+y8 −y4 −y3 −y2 −y2+y5 y3 −y4 −y1 y1+y8 −y2+y5 y3−y6 y6 y5 −y8 −y3+y6
−y7 y2−y5 −y3 y4 y1 y1+y8 −y4 −y3 −y2 −y2+y5 −y1−y8 y4+y7 −y7 −y8 −y5 −y4−y7
y4 y2−y5 −y6 −y7 −y8 y1+y8 y7 −y6 −y5 −y2+y5 −y1−y8 y4+y7 y4 y1 −y2 −y4−y7

 .

By the Kronecker–Capelli theorem, this system has a solution if and only if the rank

of M̃E coincides with the rank of the matrix M̃ , which is obtained from M̃E by deleting
the last column (the column of free terms). It is easy to see that the product of the vector

(−y2, y5,−y1, y8,−y4, y7, y6,−y3) and the matrix M̃E is a zero vector with 16 entries.

Hence, rank(M̃E) ≤ 7 (see also Remark 5). Therefore, if rank(M̃) = 7, then the system

2B(Y ) = JZ1(Y ) + JZ4(Y ) has a solution. By symbol M̃
[j1,j2,...,js]
[i1,i2,...,is]

, we denote the minor of

M̃ which is determined by the rows with the numbers i1, i2, . . . , is and columns with the
numbers j1, j2, . . . , js. It is easy to check that

M̃
[9,10,11,12,13,14,15]
[1,2,3,4,5,6,7] = 2y3 ·

(
(y1 + y8)(y4 + y7)− (y2 − y5)(y3 − y6)

)
×

×
(
(y1 + y8)

2 + (y2 − y5)
2 + (y3 − y6)

2 + (y4 + y7)
2
)2
.

Hence, for almost all Y ∈ v we have M̃
[9,10,11,12,13,14,15]
[1,2,3,4,5,6,7] 6= 0 and rank(M̃) = rank(M̃E) = 7,

that implies the existence of a solution of the corresponding system.
Moreover, we can change the above minor, removing any line instead of the 8th one,

and this new minor is distinct from the given one exactly in the first multiple (2y3 will
change to ±2yi according to the entries of the vector (−y2, y5,−y1, y8,−y4, y7, y6,−y3)).
Therefore, if (y1 + y8)(y4 + y7) 6= (y2 − y5)(y3 − y6), then rank(M̃) = rank(M̃E) = 7,
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hence, there is a solution of the corresponding linear system. Furthermore, the following
is true

Lemma 8. If (y1 + y8)
2 + (y2 − y5)

2 + (y3 − y6)
2 + (y4 + y7)

2 6= 0, then rank(M̃) = 7. If
(y1 + y8)

2 + (y2 − y5)
2 + (y3 − y6)

2 + (y4 + y7)
2 = 0, then the last column of the matrix

M̃E (the column of free terms) has only zero entries.

Proof. Suppose (without loss of generality) that y1 6= 0. Now, we suppose that

(y1 + y8)
2 + (y2 − y5)

2 + (y3 − y6)
2 + (y4 + y7)

2 6= 0. Let us prove that rank(M̃) = 7 in
this case.

For i = 1, . . . , 9, we denote by D(i) the minor M̃
[i,10,11,12,13,14,15]
[1,2,4,5,6,7,8] . Then we get the

following equalities:

D(3) = −y1 ·W1 ·
(
(y1 + y8)

2 + (y2 − y5)
2 + (y3 − y6)

2 + (y4 + y7)
2
)2
,

D(4) = 2y1 ·W3 ·
(
(y1 + y8)

2 + (y2 − y5)
2 + (y3 − y6)

2 + (y4 + y7)
2
)2
,

D(7) = 2y1 ·W4 ·
(
(y1 + y8)

2 + (y2 − y5)
2 + (y3 − y6)

2 + (y4 + y7)
2
)2
,

D(8) = y1 ·W2 ·
(
(y1 + y8)

2 + (y2 − y5)
2 + (y3 − y6)

2 + (y4 + y7)
2
)2
.

where

W1 = (y1 + y8)
2 − (y2 − y5)

2 − (y3 − y6)
2 + (y4 + y7)

2,

W2 = (y1 + y8)
2 − (y2 − y5)

2 + (y3 − y6)
2 − (y4 + y7)

2,

W3 = (y1 + y8)(y2 − y5)− (y3 − y6)(y4 + y7),

W4 = (y1 + y8)(y2 − y5) + (y3 − y6)(y4 + y7).

If Wi 6= 0 for any i = 1, . . . , 4, then rank(M̃) = 7. Let us suppose that W1 = W2 =
W3 = W4 = 0. ThenW1 = W2 = 0 implies (y1+y8)

2 = (y2−y5)2 and (y3−y6)2 = (y4+y7)
2.

From W3 = W4 = 0 we get (y1+y8)(y2−y5) = (y3−y6)(y4+y7) = 0. Therefore, we easily
obtain that (y1 + y8) = (y2 − y5) = (y3 − y6) = (y4 + y7) = 0 that is impossible by our

assumption. Hence, rank(M̃) = 7 if (y1 + y8)
2 + (y2 − y5)

2 + (y3 − y6)
2 + (y4 + y7)

2 6= 0.
The second assertion is obvious. The lemma is proved.

Corollary 6. The linear system with the extended matrix M̃E has a solution for any
Y ∈ R4,4. Hence, for any Y ∈ R4,4, it is possible to find B ∈ N = [V,V] such that
[B,Z] = [B, JZ1 + JZ4 ] = 0 and B(Y ) = Z(Y ) = JZ1(Y ) + JZ4(Y ).

Proof. If rank(M̃) = 7 then we get a solution due to rank(M̃E) = 7. If rank(M̃) < 7,

then the column of free terms of the matrix M̃E (the column of free terms) has only zero

entries by Lemma 8. This means rank(M̃) = rank(M̃E) and we also have a solution.

It is possible to compute all minors of the matrix M̃ of order 7. The set of Y with

the property rank(M̃) < 7 is the zero set of several polynomials, hence, it determines a
polynomial ideals. In this case, such a description follows from Lemma 8.
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