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Abstract

It is shown that a surface-link of ribbon surface-knot components is a ribbon surface-
link if and only if it is a surface-link producing a ribbon surface-link by surgery along
a self-trivial 1-handle system. This corrects an earlier statement. This result makes
a corrected proof for the claim that every surface-link of trivial surface-knot compo-
nents with at most one aspheric component is a ribbon surface-link. For non-ribbon
surface-links of trivial components with at least two aspheric components constructed
in a previous note, it adds the new property that non-ribbonability continues through
surgery along any self-trivial 1-handle system.
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1. Introduction

Let F be a (possibly disconnected) closed surface. An F-link in the 4-sphere S4 is the
image of a smooth embedding F → S4. When F is connected, it is also called an F-knot.
An F-link or F-knot for an F is called a surface-link or surface-knot in S4, respectively. If
F consists of some copies of the 2-sphere S2, then it is also called an S2-link and an S2-knot
for F = S2. A trivial surface-link is a surface-link F which bounds disjoint handlebodies
smoothly embedded in S4. A 1-handle system on a surface-link F in S4 is a system h of
disjoint 1-handles hj (j = 1, 2, . . . , s) on F in S4. Let F (h) be the surface-link obtained
from F by surgery along h. A 1-handle system h on a surface-link F is a self 1-handle
system on F if the number of connected components of the union F ∪ h is equal to the
number of connected components of F . A self 1-handle system h on a surface-link F is a
self-trivial 1-handle system on F if every 1-handle hj in h is a trivial 1-handle on the attached
connected component of F in S4. For a disconnected surface-link F , note that a self-trivial
1-handle system on F need not be a trivial 1-handle system on F . A ribbon surface-link is a
surface-link F = O(h) obtained from a trivial S2-link O by surgery along a 1-handle system
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h on O, [5], [11]. A semi-unknotted multi-punctured handlebody system or simply a SUPH
system for a surface-link F in S4 is a multi-punctured handlebody system W (smoothly
embedded) in S4 such that ∂W = F ∪ O for a trivial S2-link O in S4. A typical SUPH
system W is constructed from a ribbon surface-link defined from a trivial S2-link O and a
1-handle system h as the union O × [0, 1] ∪ h for a normal collar O × [0, 1] of O in S4 with
O × 0 = O and the 1-handle system h attaching to O = O × 0. For a SUPH system W
with ∂W = F ∪ O, there is a proper arc system α in W spanning O such that a regular
neighborhood N(O ∪α) of the union O ∪α in W is diffeomorphic to the closed complement
cl(W \ c(F × [0, 1])) of a boundary collar c(F × [0, 1]) of F in W . This pair (O,α) is called
a sphere-chord system of the SUPH system W . By replacing α with a 1-handle system h
attaching to O with core arc system α, the surface-link F is a ribbon surface-link defined by
O and h. In other words, to give a SUPH system W with ∂W = F ∪O is the same as to say
that the surface-link F is a ribbon surface-link with sphere system O. A 1-handle system h
of 1-handles hj (j = 1, 2, . . . , s) on a surface-link F of r(≥ 2) components is a fusion 1-handle
system if the number of connected components of the union F ∪ h has just r − s connected
components, where the inequality s ≤ r − 1 must hold. As it is explained at the end of this
section, an earlier claimed characterization of when a surface-link F of ribbon surface-knot
components is a ribbon surface-link is not true in general, [9, Theorem 1.4]. The following
theorem gives a new characterization.

Theorem 1.1. Let F be a surface-link in S4 of ribbon surface-knot components Fi (i =
1, 2, . . . , r). Then the following statements on (1)-(3) on F are mutually equivalent.

(1) F is a ribbon surface-link.

(2) The surface-link obtained from F (h) by surgery along every 1-handle system h is a ribbon
surface-link.

(3) The surface-link F (h) obtained from F by surgery along a self-trivial 1-handle system h

on F is a ribbon surface-link.

It will be explained elsewhere how a certain surface-link F can be determined to be a
ribbon surface-link by the ribbonness of the surface-knot F (h) obtained from F by applying
a certain fusion h, [10]. There exist many non-ribbon surface-links F such that the surface-
link F (h) for a self 1-handle system h on F is a ribbon surface-link. The following lemma is
implicitely used in the proofs of [9, Theorem 1.4] and [8, Theorem 1] although the full proof
is given in this paper for convenience.

Lemma 1.2. For every surface-link F in S4 with at most one aspheric component, there is
a self 1-handle system h on F such that the surface-link F (h) is a ribbon surface-link.

On the other hand, there exist non-ribbon surface-links F with at least two aspheric
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components such that the surface-link F (h) obtained from F by surgery along any self-
trivial 1-handle system h on F is a non-ribbon surface-link (see Theorem 1.4 later). The
following corollary to Theorem 1.1 and Lemma 1.2 can be viewed as providing a corrected
proof of [8, Theorem 1].1

Corollary 1.3. Every surface-link F of trivial surface-knot components with at most one
aspheric component is a ribbon surface-link.

Proof of Corollary 1.3. Every self 1-handle on every surface-link F of trivial surface-
knot components is a self-trivial 1-handle on F , [3]. Thus, if F has at most one aspheric
component, then there is a self 1-handle system h on F such that the surface-link F (h) is
a ribbon surface-link by Lemma 1.2. Hence there is a self-trivial 1-handle system h on F
such that the surface-link F (h) is a ribbon surface-link. By Theorem 1.1, F is a ribbon
surface-link. This completes the proof of Corollary 1.3.

The following result slightly strengthens an earlier result, [8, Theorem 2].

Theorem 1.4. Let F be any closed oriented disconnected surface with at least two aspheric
components. Then there are pairs (K,K ′) of F-links K,K ′ in S4 both of trivial components
with the same fundamental groups up to meridian-preserving isomorphisms such that K is
a ribbon surface-link and K ′ is a non-ribbon surface-link. Further, there exists a canonical
correspondence between the self-trivial 1-handle systems on K and the self-trivial 1-handle
systems on K ′ so that every self-trivial 1-handle surgery transforms a pair (K,K ′) into a
pair (L,L′) of a ribbon F′-link L and a non-ribbon F′-link L′ with the same fundamental
group up to meridian-preserving isomorphisms for a closed oriented surface F′.

The continuation of non-ribbonability from K ′ to L′ in Theorem 1.4 explains why non-
ribbonability continues through surgery along every self 1-handle system. A non-ribbon
surface-link K ′ of two components in Theorem 1.4 has the free abelian fundamental group of
rank 2. Then by van Kampen theorem, the surface-knot K ′(h) obtained from K ′ by surgery
along any fusion 1-handle h on K ′ has the infinite cyclic fundamental group, so that K ′(h)
is a trivial surface-knot in S4 by smooth unknotting result of a surface-knot, [6, 7]. This
example shows that there is a non-ribbon surface-link F of ribbon surface-knot components
such that the surface-knot obtained from F by surgery along any fusion is a ribbon surface-
knot. This means that the condition that the surface-knot obtained from F by fusion is
a ribbon surface-knot does not characterize that F is a ribbon surface-link, although this
condition is claimed to characterize the ribbonness of F , [9, Theorem 1.4].

because

1The result for an S2-link of trivial components is contrary to a previously believed result, [12].
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2. Proofs of Theorem 1.1, Lemma 1.2 and Theorem 1.4

The proof of Theorem 1.1 is done as follows.

Proof of Theorem 1.1. The assertions (1) → (2) and (2) → (3) are obvious by definitions.
The assertion (3) → (1) is shown as follows. For a surface-link F in S4 of ribbon surface-knot
components Fi (i = 1, 2, . . . , r), assume that F (h) is a ribbon surface-link for a system h of
self-trivial 1-handles hj (j = 1, 2, . . . , s) on F . Assume that the 1-handle h1 attaches to F1.
Let h′ = h \ {h1}. Then h′ is a self-trivial 1-handle system on F and h1 is a self-trivial
1-handle on the surface-link F (h′). If it is shown that the ribbonness of F (h1) implies the
ribbonness of F , then the ribbonness of F (h) implies the ribbonness of F (h′) by replacing
F with F (h′). By inductive argument, the assertion (3) → (1) is obtained. Thus, it sufficies
to show that if F (h1) is a ribbon surface-link, then the surface-link F is a ribbon surface-
link. Assume that F (h1) is a ribbon surface-link. Since h1 is a trivial 1-handle on F1, the
ribbon surface-knot F1(h1) admits an O2-handle pair (D × I,D′ × I) where the core disk
D of D × I is a transverse disk of the 1-handle h1 and the interior of the core disk D′ of
D′ × I may transversely meet the ribbon surface-link F ′ = F \ F1 with finite points. Let
W1(h1) ∪W ′ be a SUPH system for F (h1) where W1(h1) is a SUPH system for F1(h1) with
∂W1(h1) = F (h1) ∪ O(h1) and W ′ is a SUPH system for F ′ with ∂W ′ = F ′ ∪ O′. Let W1

be a SUPH system for the ribbon surface-knot F1 with ∂W1 = F1 ∪O1. Since h1 is a trivial
1-handle on F1, the union W1∪h1 with the 1-handle h1 trivially attached to F1 is considered
as a SUPH system for a surface-knot G1 equivalent toF1(h1) with ∂(W1 ∪ h1) = G1 ∪ O1.
Equivalent ribbon surface-links are faithfully equivalent and they are moved into each other
by the moves M0, M1, M2, [5]. This means that after replacing multi-punctured manifolds
of W1(h1) and W1 with W1(h1) and W1, respectively, there is an orientation-preserving
diffeomorphism f of S4 sending W1(h1) to W1 ∪ h1. Then G = G1 ∪ f(F ′) = fF (h1) is a
ribbon surface-link. Since the 1-handle h1 is trivially attached to W1, there is an O2-handle
pair (E × I, E ′ × I) for G1 such that the core disk E of E × I is a transverse disk of the
1-handle h1 and the core disk E ′ of E ′×I has E ′∩(W1∪h1) = ∂E ′. By Uniqueness of an O2-
handle pair in the soft sense, there is an orientation-preserving diffeomorphism g of S4 such
that gG1 = G1 and (gfD× I, gfD′× I) = (E× I, E ′× I), [9]. Let (O′, α′) be a sphere-chord
system for F ′ in W ′. Then (gf(O′), gf(α′)) is a sphere-chord system for gf(F ′) in gf(W ′).
By general position, the arc system gf(α′) is deformed into an arc system gf(α′)∗ disjoint
from the interior of the core disk E ′ of E ′ × I by an isotopy of gf(α′) keeping the boundary
point system fixed. On the other hand, the sphere system gf(O′) may transversely meet the
interior of E ′ with finite points, but which is also deformed to a sphere system gf(O′)∗ disjoint
from the interior of E ′ by Finger Move Canceling, [7]. Let gf(F ′)∗ be a ribbon surface-link
given by the sphere-chord system (gf(O′)∗, gf(α′)∗). The surface-link G∗ = G1 ∪ gf(F ′)∗ is
still a ribbon surface-link because there is a SUPH system g(W1 ∪ h1) for G1 disjoint from
the sphere-chord system (gf(O′)∗, gf(α′)∗). The O2-handle pair (E × I, E ′ × I) for G1 is an
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O2-handle pair for the ribbon surface-link G∗. It is known that the ribbonness of G∗ implies
the ribbonness of the surgery surface-link G∗(E × I, E ′ × I), [9]. The surgery surface-link
G∗(E × I, E ′ × I) is equivalent to the surgery surface-link G∗(E × I), [6]. By construction,
G∗(E×I) is equivalent to the surface-link G(E×I) = gfF (h1)(gfD×I), which is equivalent
to F (h1)(D × I) = F , for D is a transverse disk of the 1-handle h1. Thus, the surface-link
F is a ribbon surface-link. This completes the proof of Theorem 1.1.

The proof of Lemma 1.2 is done as follows.

Proof of Lemma 1.2. Let F be a surface-link in S4 of a possibly non-sphere surface-knot
component K and the remaining S2-link L = F \ K. Since the second homology class
[K] = 0 in H2(S

4 \L;Z) = 0, there is a compact connected oriented 3-manifold VK smoothly
embedded in S4 with ∂VK = K and VK ∩ L = ∅. Let hK be a 1-handle system on K
in VK such that the closed complement V (K) = cl(VK \ hK) is a handlebody given by a
decomposition into a 3-ball B(K) and an attaching 1-handle system h(K). The surface-knot
K(hK) obtained fromK by surgery along h is a trivial surface-knot bounding the handlebody
V (K). Let S be any S2-knot component in L, which bounds a compact connected oriented
3-manifold VS smoothly embedded in S4 such that VS ∩ (L \ S) = ∅. The 3-ball B(K) and
the 1-handle system h(K) are deformed in S4 so that VS ∩ B(K) = ∅ and the 1-handle
system h(K) transversely meets VS with transversal disks in the interior of VS. Then there
is a 1-handle system hS on S in VS such that the closed complement V (S) = cl(VS \ hS)
is a handlebody given by a decomposition into a 3-ball B(S) and an attaching 1-handle
system h(S) such that the transversal disks of h(K) in the interior of VS are in the interior
of B(S). Then the surface-link K(hK) ∪ S(hS) is a ribbon surface-link. Then the 1-handle
systems hK and hS are made disjoint. Next, let T be any S2-knot component in L\S, which
bounds a compact connected oriented 3-manifold VT smoothly embedded in S4 such that
VT ∩ (L\ (S∪T )) = ∅. The 3-balls B(K), B(S) and the 1-handle systems h(K) and h(S) are
deformed in S4 so that VT ∩ (B(K) ∪ B(S)) = ∅ and the 1-handle systems h(K) and h(S)
transversely meet VT with transversal disks in the interior of VT . Then there is a 1-handle
system hT on T in VT such that the closed complement V (T ) = cl(VT \ hT ) is a handlebody
given by a decomposition into a 3-ball B(T ) and an attaching 1-handle system h(T ) such
that the transversal disks of h(K) and h(S) in the interior of VT are in the interior of B(T ).
Then the surface-link K(hK) ∪ S(hS) ∪ T (hS) is a ribbon surface-link given by the trivial
S2-link ∂B(K) ∪ ∂B(S) ∪ ∂B(T ) and the 1-handle system h(K) ∪ h(S) ∪ h(T ). Then the
1-handle systems hK , hS and hT are made disjoint. By continuing this process, it is shown
that there is a 1-handle system h̄ on F such that the surface-link F (h̄) obtained from F by
surgery along h̄ is a ribbon surface link. This completes the proof of Lemma 1.2.

Before proving Theorem 1.4, some explanations of the null-homotopic Gauss sum invari-
ant of a surface-link are made, [4]. For a surface-link F in S4, let ∆(F ;Z2) be the subgroup
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of H1(F ;Z2) of an element represented a loop ℓ in F which bounds an immersed disk d in
S4 with d ∩ F = ℓ. Let ξ : ∆(F ;Z2) → Z2 be the function defined by ξ([ℓ]) to be the
Z2-self-trivial -intersection number Int(d, d) mod 2 in S4 with respect to the framing of the
surface F , which defines a possibly singular Z2-quadratic function

ξ(x+ y) = ξ(x) + ξ(y) + x · y (x, y ∈ ∆(F ;Z2),

where x · y denotes the z2-intersection number of x and y in F and called the null-homotopic
quadratic function of the surface-link F . The null-homotopic Gauss sum of F is the Gauss
sum GS0(F ) of ξ defined by

GS0(F ) =
∑

x∈∆(F ;Z2)

exp(2π
√
−1

ξ(x)

2
).

This number GS0(F ) is an invariant of a surface-link F and calculable, [4]. In particular, it
is known that if F is a ribbon surface-link of total genus g, then GS0(F ) = 2g. The following
result in the case that F has at least two aspheric components is obtained by using this
invariant GS0(F ) which strengthens an earlier result, [8, Theorem 2].

Proof of Theorem 1.4. Let k ∪ k′ be a non-splittable link in the interior of a 3-ball B such
that k and k′ are trivial knots. For the boundary 2-sphere S = ∂B and the disk D2 with
the boundary circle S1, let K be the torus-link of the torus-components T = k × S1 and
T ′ = k′ × S1 in the 4-sphere S4 with S4 = B × S1 ∪ S ×D2, which is a ribbon torus-link in
S4, [5]. In particular, GS0(K) = 22. Since k and k′ are trivial knots in B, the torus-knots
T and T ′ are trivial torus-knots in S4 by construction. Since k ∪ k′ is non-splittable in B,
there is a simple loop t(k) in T coming from the longitude of k in B such that t(k) does
not bound any disk not meeting T ′ in S4, meaning that there is a simple loop c in T unique
up to isotopies of T which bounds a disk d in S4 not meeting T ′, where c and d are given
by c = p × S1 and d = a × S1 ∪ q ×D2 for a simple arc a in B joining a point p of k to a
point q in S with a ∩ (k ∪ k′) = {p} and a ∩ S = {q}. Regard the 3-ball B as the product
B = B1 × [0, 1] for a disk B1. Let τ1 is a diffeomorphism of the solid torus B1 × S1 given by
one full-twist rounding the meridian disk B1 one time along the S1-direction, and τ = τ1× 1
the product diffeomorphism of (B1 ×S1)× [0, 1] = B×S1. Let ∂τ be the diffeomorphism of
the boundary S × S1 of B × S1 obtained from τ by restricting to the boundary, and the 4-
manifold M obtained from B×S1 and S×D2 by pasting the boundaries ∂(B×S1) = S×S1

and ∂(S ×D2) = S × S1 by the diffeomorphism ∂τ . Since the diffeomorphism ∂τ of S × S1

extends to the diffeomorphism τ of B × S1, the 4-manifold M is diffeomorphic to S4. Let
KM = TM∪T ′

M be the torus-link in the 4-sphereM arising fromK = T∪T ′ in B×S1. There is
a meridian-preserving isomorphism π1(S

4 \K, x) → π1(M \KM , x) by van Kampen theorem.
The loop t(k) in TM does not bound any disk not meeting T ′

M in M , so that the loop c in TM

is a unique simple loop up to isotopies of TM which bounds a disk dM = a× S1 ∪D2
M in M
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not meeting T ′
M , where D2

M denotes a proper disk in S×D2 bounded by the loop ∂τ(q×S1).
An important observation is that the self-trivial -intersection number Int(dM , dM) in M with
respect to the surface-framing on KM is ±1. This means that the loop c in TM is a non-spin
loop. Similarly, there is a unique non-spin loop c′ in T ′

M which bounds a disk d′M with the
self-trivial -intersection number Int(d′M , d′M) = ±1 with respect to the surface-framing on
KM . Then it is calculated that GS0(KM) = 0 and the torus-link KM in M is not any ribbon
torus-link, [4]. Let (S4, K ′) = (M,KM). If F consists of two tori, then the pair (K,K ′) forms
a desired pair. If F is any surface of two aspheric components, then a desired F-link pair
is obtained from the pair (K,K ′) by taking connected sums of some trivial surface-knots,
because every stabilization of a ribbon surface-link is a ribbon surface-link and every stable-
ribbon surface-link is a ribbon surface-link, [8]. If F has some other surface F1 in addition
to a surface F0 of two aspheric components, then a desired F-link pair is obtained from a
desired F0-link pair by adding the trivial F1-link as a split sum. Thus, a desired F-link
pair (K,K ′) is obtained. In particular, if F has total genus g ≤ 2, then GS0(K) = 2g and
GS0(K

′) = 2g−2. Let A be a 4-ball in S4 such that A∩L = A∩K ′ is a trivial disk system in
A with one disk component from one component of K and of K ′. The self-trivial 1-handle
system h used for every surgery of K in S4 is deformed into A, so that h is also considered
as a self-trivial 1-handle system used for a surgery of K ′ in S4. Thus, the surface-links L
and L′ obtained from K and K ′ by surgery along the same self-trivial 1-handle system h
in A are F′-links for the same surface F′ induced from F by the surgery along h. By van
Kampen theorem, the fundamental groups of the F′-links L and L′ are the same group up to
meridian-preserving isomorphisms. The null-homotopic Gauss sum invariant is independent
of choices of a self-trivial 1-handle by calculations, [4]. Thus, if the self-trivial 1-handle
system h consists of s self-trivial 1-handles, then L is a ribbon F′-link of total genus g + s
with GS0(K) = 2g+s and L′ is a non-ribbon F′-link with GS0(K

′) = 2g−2+s. This completes
the proof of Theorem 1.4.

Note that the non-ribbon surface-link L′ of two components starting from the Hopf link
k ∪ k′ in the interior of a 3-ball B has the free abelian fundamental group of rank 2. The
diffeomorphism ∂τ of S × S1 in the proof of Theorem 1.4 coincides with Gluck’s non-spin
diffeomorphism of S2 × S1, [2]. The torus-link (M,TM) called a turned torus-link of a link
k ∪ k′ in B is an analogy of a turned torus-knot of a knot in B, [1].
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