Revised note on surface-link of trivial components

Akio Kawauchi

Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan kawauchi@omu.ac.jp

Abstract

It is shown that a surface-link of ribbon surface-knot components is a ribbon surfacelink if and only if it is a surface-link producing a ribbon surface-link by surgery along a self-trivial 1-handle system. This corrects an earlier statement. This result makes a corrected proof for the claim that every surface-link of trivial surface-knot components with at most one aspheric component is a ribbon surface-link. For non-ribbon surface-links of trivial components with at least two aspheric components constructed in a previous note, it adds the new property that non-ribbonability continues through surgery along any self-trivial 1-handle system.

Keywords: Ribbon surface-link, Surgery, Self 1-handle, Self-trivial 1-handle. *Mathematics Subject Classification 2010*: Primary 57Q45; Secondary 57N13

1. Introduction

Let \mathbf{F} be a (possibly disconnected) closed surface. An \mathbf{F} -link in the 4-sphere S^4 is the image of a smooth embedding $\mathbf{F} \to S^4$. When \mathbf{F} is connected, it is also called an \mathbf{F} -knot. An \mathbf{F} -link or \mathbf{F} -knot for an \mathbf{F} is called a surface-link or surface-knot in S^4 , respectively. If \mathbf{F} consists of some copies of the 2-sphere S^2 , then it is also called an S^2 -link and an S^2 -knot for $\mathbf{F} = S^2$. A trivial surface-link is a surface-link F which bounds disjoint handlebodies smoothly embedded in S^4 . A 1-handle system on a surface-link F in S^4 is a system h of disjoint 1-handles h_j ($j = 1, 2, \ldots, s$) on F in S^4 . Let F(h) be the surface-link obtained from F by surgery along h. A 1-handle system h on a surface-link F is a self 1-handle system on F if the number of connected components of the union $F \cup h$ is equal to the number of connected components of F. A self 1-handle system h on a surface-link F is a self-trivial 1-handle system on F if every 1-handle h_j in h is a trivial 1-handle on the attached connected component of F in S^4 . For a disconnected surface-link F, note that a self-trivial 1-handle system on F need not be a trivial 1-handle system on F. A ribbon surface-link is a surface-link F = O(h) obtained from a trivial S^2 -link O by surgery along a 1-handle system h on O, [5], [11]. A semi-unknotted multi-punctured handlebody system or simply a SUPH system for a surface-link F in S^4 is a multi-punctured handlebody system W (smoothly embedded) in S^4 such that $\partial W = F \cup O$ for a trivial S^2 -link O in S^4 . A typical SUPH system W is constructed from a ribbon surface-link defined from a trivial S^2 -link O and a 1-handle system h as the union $O \times [0,1] \cup h$ for a normal collar $O \times [0,1]$ of O in S⁴ with $O \times 0 = O$ and the 1-handle system h attaching to $O = O \times 0$. For a SUPH system W with $\partial W = F \cup O$, there is a proper arc system α in W spanning O such that a regular neighborhood $N(O \cup \alpha)$ of the union $O \cup \alpha$ in W is diffeomorphic to the closed complement $cl(W \setminus c(F \times [0,1]))$ of a boundary collar $c(F \times [0,1])$ of F in W. This pair (O,α) is called a sphere-chord system of the SUPH system W. By replacing α with a 1-handle system h attaching to O with core arc system α , the surface-link F is a ribbon surface-link defined by O and h. In other words, to give a SUPH system W with $\partial W = F \cup O$ is the same as to say that the surface-link F is a ribbon surface-link with sphere system O. A 1-handle system hof 1-handles h_i (j = 1, 2, ..., s) on a surface-link F of $r \geq 2$ components is a fusion 1-handle system if the number of connected components of the union $F \cup h$ has just r - s connected components, where the inequality $s \leq r-1$ must hold. As it is explained at the end of this section, an earlier claimed characterization of when a surface-link F of ribbon surface-knot components is a ribbon surface-link is not true in general, [9, Theorem 1.4]. The following theorem gives a new characterization.

Theorem 1.1. Let F be a surface-link in S^4 of ribbon surface-knot components F_i (i = 1, 2, ..., r). Then the following statements on (1)-(3) on F are mutually equivalent.

(1) F is a ribbon surface-link.

(2) The surface-link obtained from F(h) by surgery along every 1-handle system h is a ribbon surface-link.

(3) The surface-link F(h) obtained from F by surgery along a self-trivial 1-handle system h on F is a ribbon surface-link.

It will be explained elsewhere how a certain surface-link F can be determined to be a ribbon surface-link by the ribbonness of the surface-knot F(h) obtained from F by applying a certain fusion h, [10]. There exist many non-ribbon surface-links F such that the surface-link F(h) for a self 1-handle system h on F is a ribbon surface-link. The following lemma is implicitely used in the proofs of [9, Theorem 1.4] and [8, Theorem 1] although the full proof is given in this paper for convenience.

Lemma 1.2. For every surface-link F in S^4 with at most one aspheric component, there is a self 1-handle system h on F such that the surface-link F(h) is a ribbon surface-link.

On the other hand, there exist non-ribbon surface-links F with at least two aspheric

components such that the surface-link F(h) obtained from F by surgery along any selftrivial 1-handle system h on F is a non-ribbon surface-link (see Theorem 1.4 later). The following corollary to Theorem 1.1 and Lemma 1.2 can be viewed as providing a corrected proof of [8, Theorem 1].¹

Corollary 1.3. Every surface-link F of trivial surface-knot components with at most one aspheric component is a ribbon surface-link.

Proof of Corollary 1.3. Every self 1-handle on every surface-link F of trivial surfaceknot components is a self-trivial 1-handle on F, [3]. Thus, if F has at most one aspheric component, then there is a self 1-handle system h on F such that the surface-link F(h) is a ribbon surface-link by Lemma 1.2. Hence there is a self-trivial 1-handle system h on Fsuch that the surface-link F(h) is a ribbon surface-link. By Theorem 1.1, F is a ribbon surface-link. This completes the proof of Corollary 1.3.

The following result slightly strengthens an earlier result, [8, Theorem 2].

Theorem 1.4. Let \mathbf{F} be any closed oriented disconnected surface with at least two aspheric components. Then there are pairs (K, K') of \mathbf{F} -links K, K' in S^4 both of trivial components with the same fundamental groups up to meridian-preserving isomorphisms such that K is a ribbon surface-link and K' is a non-ribbon surface-link. Further, there exists a canonical correspondence between the self-trivial 1-handle systems on K and the self-trivial 1-handle systems on K' so that every self-trivial 1-handle surgery transforms a pair (K, K') into a pair (L, L') of a ribbon $\mathbf{F'}$ -link L and a non-ribbon $\mathbf{F'}$ -link L' with the same fundamental group up to meridian-preserving isomorphisms for a closed oriented surface $\mathbf{F'}$.

The continuation of non-ribbonability from K' to L' in Theorem 1.4 explains why nonribbonability continues through surgery along every self 1-handle system. A non-ribbon surface-link K' of two components in Theorem 1.4 has the free abelian fundamental group of rank 2. Then by van Kampen theorem, the surface-knot K'(h) obtained from K' by surgery along any fusion 1-handle h on K' has the infinite cyclic fundamental group, so that K'(h)is a trivial surface-knot in S^4 by smooth unknotting result of a surface-knot, [6, 7]. This example shows that there is a non-ribbon surface-link F of ribbon surface-knot components such that the surface-knot obtained from F by surgery along any fusion is a ribbon surfaceknot. This means that the condition that the surface-knot obtained from F by fusion is a ribbon surface-knot does not characterize that F is a ribbon surface-link, although this condition is claimed to characterize the ribbonness of F, [9, Theorem 1.4].

because

¹The result for an S^2 -link of trivial components is contrary to a previously believed result, [12].

2. Proofs of Theorem 1.1, Lemma 1.2 and Theorem 1.4

The proof of Theorem 1.1 is done as follows.

Proof of Theorem 1.1. The assertions $(1) \rightarrow (2)$ and $(2) \rightarrow (3)$ are obvious by definitions. The assertion $(3) \rightarrow (1)$ is shown as follows. For a surface-link F in S^4 of ribbon surface-knot components F_i (i = 1, 2, ..., r), assume that F(h) is a ribbon surface-link for a system h of self-trivial 1-handles h_i (j = 1, 2, ..., s) on F. Assume that the 1-handle h_1 attaches to F_1 . Let $h' = h \setminus \{h_1\}$. Then h' is a self-trivial 1-handle system on F and h_1 is a self-trivial 1-handle on the surface-link F(h'). If it is shown that the ribbonness of $F(h_1)$ implies the ribbonness of F, then the ribbonness of F(h) implies the ribbonness of F(h') by replacing F with F(h'). By inductive argument, the assertion (3) \rightarrow (1) is obtained. Thus, it sufficies to show that if $F(h_1)$ is a ribbon surface-link, then the surface-link F is a ribbon surfacelink. Assume that $F(h_1)$ is a ribbon surface-link. Since h_1 is a trivial 1-handle on F_1 , the ribbon surface-knot $F_1(h_1)$ admits an O2-handle pair $(D \times I, D' \times I)$ where the core disk D of $D \times I$ is a transverse disk of the 1-handle h_1 and the interior of the core disk D' of $D' \times I$ may transversely meet the ribbon surface-link $F' = F \setminus F_1$ with finite points. Let $W_1(h_1) \cup W'$ be a SUPH system for $F(h_1)$ where $W_1(h_1)$ is a SUPH system for $F_1(h_1)$ with $\partial W_1(h_1) = F(h_1) \cup O(h_1)$ and W' is a SUPH system for F' with $\partial W' = F' \cup O'$. Let W_1 be a SUPH system for the ribbon surface-knot F_1 with $\partial W_1 = F_1 \cup O_1$. Since h_1 is a trivial 1-handle on F_1 , the union $W_1 \cup h_1$ with the 1-handle h_1 trivially attached to F_1 is considered as a SUPH system for a surface-knot G_1 equivalent to $F_1(h_1)$ with $\partial(W_1 \cup h_1) = G_1 \cup O_1$. Equivalent ribbon surface-links are faithfully equivalent and they are moved into each other by the moves M0, M1, M2, [5]. This means that after replacing multi-punctured manifolds of $W_1(h_1)$ and W_1 with $W_1(h_1)$ and W_1 , respectively, there is an orientation-preserving diffeomorphism f of S^4 sending $W_1(h_1)$ to $W_1 \cup h_1$. Then $G = G_1 \cup f(F') = fF(h_1)$ is a ribbon surface-link. Since the 1-handle h_1 is trivially attached to W_1 , there is an O2-handle pair $(E \times I, E' \times I)$ for G_1 such that the core disk E of $E \times I$ is a transverse disk of the 1-handle h_1 and the core disk E' of $E' \times I$ has $E' \cap (W_1 \cup h_1) = \partial E'$. By Uniqueness of an O2handle pair in the soft sense, there is an orientation-preserving diffeomorphism g of S^4 such that $gG_1 = G_1$ and $(gfD \times I, gfD' \times I) = (E \times I, E' \times I)$, [9]. Let (O', α') be a sphere-chord system for F' in W'. Then $(gf(O'), gf(\alpha'))$ is a sphere-chord system for gf(F') in gf(W'). By general position, the arc system $gf(\alpha')$ is deformed into an arc system $gf(\alpha')^*$ disjoint from the interior of the core disk E' of $E' \times I$ by an isotopy of $gf(\alpha')$ keeping the boundary point system fixed. On the other hand, the sphere system gf(O') may transversely meet the interior of E' with finite points, but which is also deformed to a sphere system $qf(O')^*$ disjoint from the interior of E' by Finger Move Canceling, [7]. Let $qf(F')^*$ be a ribbon surface-link given by the sphere-chord system $(gf(O')^*, gf(\alpha')^*)$. The surface-link $G^* = G_1 \cup gf(F')^*$ is still a ribbon surface-link because there is a SUPH system $g(W_1 \cup h_1)$ for G_1 disjoint from the sphere-chord system $(gf(O')^*, gf(\alpha')^*)$. The O2-handle pair $(E \times I, E' \times I)$ for G_1 is an O2-handle pair for the ribbon surface-link G^* . It is known that the ribbonness of G^* implies the ribbonness of the surgery surface-link $G^*(E \times I, E' \times I)$, [9]. The surgery surface-link $G^*(E \times I, E' \times I)$ is equivalent to the surgery surface-link $G^*(E \times I)$, [6]. By construction, $G^*(E \times I)$ is equivalent to the surface-link $G(E \times I) = gfF(h_1)(gfD \times I)$, which is equivalent to $F(h_1)(D \times I) = F$, for D is a transverse disk of the 1-handle h_1 . Thus, the surface-link F is a ribbon surface-link. This completes the proof of Theorem 1.1.

The proof of Lemma 1.2 is done as follows.

Proof of Lemma 1.2. Let F be a surface-link in S^4 of a possibly non-sphere surface-knot component K and the remaining S²-link $L = F \setminus K$. Since the second homology class [K] = 0 in $H_2(S^4 \setminus L; Z) = 0$, there is a compact connected oriented 3-manifold V_K smoothly embedded in S^4 with $\partial V_K = K$ and $V_K \cap L = \emptyset$. Let h_K be a 1-handle system on K in V_K such that the closed complement $V(K) = cl(V_K \setminus h_K)$ is a handlebody given by a decomposition into a 3-ball B(K) and an attaching 1-handle system h(K). The surface-knot $K(h_K)$ obtained from K by surgery along h is a trivial surface-knot bounding the handlebody V(K). Let S be any S²-knot component in L, which bounds a compact connected oriented 3-manifold V_S smoothly embedded in S^4 such that $V_S \cap (L \setminus S) = \emptyset$. The 3-ball B(K) and the 1-handle system h(K) are deformed in S^4 so that $V_S \cap B(K) = \emptyset$ and the 1-handle system h(K) transversely meets V_S with transversal disks in the interior of V_S . Then there is a 1-handle system h_S on S in V_S such that the closed complement $V(S) = cl(V_S \setminus h_S)$ is a handlebody given by a decomposition into a 3-ball B(S) and an attaching 1-handle system h(S) such that the transversal disks of h(K) in the interior of V_S are in the interior of B(S). Then the surface-link $K(h_K) \cup S(h_S)$ is a ribbon surface-link. Then the 1-handle systems h_K and h_S are made disjoint. Next, let T be any S²-knot component in $L \setminus S$, which bounds a compact connected oriented 3-manifold V_T smoothly embedded in S^4 such that $V_T \cap (L \setminus (S \cup T)) = \emptyset$. The 3-balls B(K), B(S) and the 1-handle systems h(K) and h(S) are deformed in S^4 so that $V_T \cap (B(K) \cup B(S)) = \emptyset$ and the 1-handle systems h(K) and h(S)transversely meet V_T with transversal disks in the interior of V_T . Then there is a 1-handle system h_T on T in V_T such that the closed complement $V(T) = cl(V_T \setminus h_T)$ is a handlebody given by a decomposition into a 3-ball B(T) and an attaching 1-handle system h(T) such that the transversal disks of h(K) and h(S) in the interior of V_T are in the interior of B(T). Then the surface-link $K(h_K) \cup S(h_S) \cup T(h_S)$ is a ribbon surface-link given by the trivial S²-link $\partial B(K) \cup \partial B(S) \cup \partial B(T)$ and the 1-handle system $h(K) \cup h(S) \cup h(T)$. Then the 1-handle systems h_K , h_S and h_T are made disjoint. By continuing this process, it is shown that there is a 1-handle system \bar{h} on F such that the surface-link $F(\bar{h})$ obtained from F by surgery along h is a ribbon surface link. This completes the proof of Lemma 1.2.

Before proving Theorem 1.4, some explanations of the null-homotopic Gauss sum invariant of a surface-link are made, [4]. For a surface-link F in S^4 , let $\Delta(F; \mathbb{Z}_2)$ be the subgroup of $H_1(F; Z_2)$ of an element represented a loop ℓ in F which bounds an immersed disk d in S^4 with $d \cap F = \ell$. Let $\xi : \Delta(F; Z_2) \to Z_2$ be the function defined by $\xi([\ell])$ to be the Z_2 -self-trivial -intersection number $\operatorname{Int}(d, d) \mod 2$ in S^4 with respect to the framing of the surface F, which defines a possibly singular Z_2 -quadratic function

$$\xi(x+y) = \xi(x) + \xi(y) + x \cdot y \quad (x, y \in \Delta(F; Z_2)),$$

where $x \cdot y$ denotes the z_2 -intersection number of x and y in F and called the *null-homotopic* quadratic function of the surface-link F. The *null-homotopic Gauss sum* of F is the Gauss sum $GS_0(F)$ of ξ defined by

$$GS_0(F) = \sum_{x \in \Delta(F;Z_2)} \exp(2\pi \sqrt{-1}\frac{\xi(x)}{2}).$$

This number $GS_0(F)$ is an invariant of a surface-link F and calculable, [4]. In particular, it is known that if F is a ribbon surface-link of total genus g, then $GS_0(F) = 2^g$. The following result in the case that \mathbf{F} has at least two aspheric components is obtained by using this invariant $GS_0(F)$ which strengthens an earlier result, [8, Theorem 2].

Proof of Theorem 1.4. Let $k \cup k'$ be a non-splittable link in the interior of a 3-ball B such that k and k' are trivial knots. For the boundary 2-sphere $S = \partial B$ and the disk D^2 with the boundary circle S^1 , let K be the torus-link of the torus-components $T = k \times S^1$ and $T' = k' \times S^1$ in the 4-sphere S^4 with $S^4 = B \times S^1 \cup S \times D^2$, which is a ribbon torus-link in S^4 , [5]. In particular, $GS_0(K) = 2^2$. Since k and k' are trivial knots in B, the torus-knots T and T' are trivial torus-knots in S^4 by construction. Since $k \cup k'$ is non-splittable in B, there is a simple loop t(k) in T coming from the longitude of k in B such that t(k) does not bound any disk not meeting T' in S^4 , meaning that there is a simple loop c in T unique up to isotopies of T which bounds a disk d in S^4 not meeting T', where c and d are given by $c = p \times S^1$ and $d = a \times S^1 \cup q \times D^2$ for a simple arc a in B joining a point p of k to a point q in S with $a \cap (k \cup k') = \{p\}$ and $a \cap S = \{q\}$. Regard the 3-ball B as the product $B = B_1 \times [0,1]$ for a disk B_1 . Let τ_1 is a diffeomorphism of the solid torus $B_1 \times S^1$ given by one full-twist rounding the meridian disk B_1 one time along the S^1 -direction, and $\tau = \tau_1 \times 1$ the product diffeomorphism of $(B_1 \times S^1) \times [0,1] = B \times S^1$. Let $\partial \tau$ be the diffeomorphism of the boundary $S \times S^1$ of $B \times S^1$ obtained from τ by restricting to the boundary, and the 4manifold M obtained from $B \times S^1$ and $S \times D^2$ by pasting the boundaries $\partial(B \times S^1) = S \times S^1$ and $\partial(S \times D^2) = S \times S^1$ by the diffeomorphism $\partial \tau$. Since the diffeomorphism $\partial \tau$ of $S \times S^1$ extends to the diffeomorphism τ of $B \times S^1$, the 4-manifold M is diffeomorphic to S^4 . Let $K_M = T_M \cup T'_M$ be the torus-link in the 4-sphere M arising from $K = T \cup T'$ in $B \times S^1$. There is a meridian-preserving isomorphism $\pi_1(S^4 \setminus K, x) \to \pi_1(M \setminus K_M, x)$ by van Kampen theorem. The loop t(k) in T_M does not bound any disk not meeting T'_M in M, so that the loop c in T_M is a unique simple loop up to isotopies of T_M which bounds a disk $d_M = a \times S^1 \cup D_M^2$ in M

not meeting T'_M , where D^2_M denotes a proper disk in $S \times D^2$ bounded by the loop $\partial \tau(q \times S^1)$. An important observation is that the self-trivial -intersection number $Int(d_M, d_M)$ in M with respect to the surface-framing on K_M is ± 1 . This means that the loop c in T_M is a non-spin loop. Similarly, there is a unique non-spin loop c' in T'_M which bounds a disk d'_M with the self-trivial -intersection number $Int(d'_M, d'_M) = \pm 1$ with respect to the surface-framing on K_M . Then it is calculated that $GS_0(K_M) = 0$ and the torus-link K_M in M is not any ribbon torus-link, [4]. Let $(S^4, K') = (M, K_M)$. If **F** consists of two tori, then the pair (K, K') forms a desired pair. If **F** is any surface of two aspheric components, then a desired **F**-link pair is obtained from the pair (K, K') by taking connected sums of some trivial surface-knots, because every stabilization of a ribbon surface-link is a ribbon surface-link and every stableribbon surface-link is a ribbon surface-link, [8]. If F has some other surface F_1 in addition to a surface \mathbf{F}_0 of two aspheric components, then a desired \mathbf{F} -link pair is obtained from a desired \mathbf{F}_0 -link pair by adding the trivial \mathbf{F}_1 -link as a split sum. Thus, a desired \mathbf{F} -link pair (K, K') is obtained. In particular, if **F** has total genus $g \leq 2$, then $GS_0(K) = 2^g$ and $GS_0(K') = 2^{g-2}$. Let A be a 4-ball in S^4 such that $A \cap L = A \cap K'$ is a trivial disk system in A with one disk component from one component of K and of K'. The self-trivial 1-handle system h used for every surgery of K in S^4 is deformed into A, so that h is also considered as a self-trivial 1-handle system used for a surgery of K' in S^4 . Thus, the surface-links L and L' obtained from K and K' by surgery along the same self-trivial 1-handle system hin A are F'-links for the same surface F' induced from F by the surgery along h. By van Kampen theorem, the fundamental groups of the \mathbf{F}' -links L and L' are the same group up to meridian-preserving isomorphisms. The null-homotopic Gauss sum invariant is independent of choices of a self-trivial 1-handle by calculations, [4]. Thus, if the self-trivial 1-handle system h consists of s self-trivial 1-handles, then L is a ribbon F'-link of total genus q + swith $GS_0(K) = 2^{g+s}$ and L' is a non-ribbon **F**'-link with $GS_0(K') = 2^{g-2+s}$. This completes the proof of Theorem 1.4.

Note that the non-ribbon surface-link L' of two components starting from the Hopf link $k \cup k'$ in the interior of a 3-ball B has the free abelian fundamental group of rank 2. The diffeomorphism $\partial \tau$ of $S \times S^1$ in the proof of Theorem 1.4 coincides with Gluck's non-spin diffeomorphism of $S^2 \times S^1$, [2]. The torus-link (M, T_M) called a *turned torus-link* of a link $k \cup k'$ in B is an analogy of a turned torus-knot of a knot in B, [1].

Acknowledgements. This work was partly supported by JSPS KAKENHI Grant Number JP21H00978 and MEXT Promotion of Distinctive Joint Research Center Program JP-MXP0723833165 and Osaka Metropolitan University Strategic Research Promotion Project (Development of International Research Hubs).

References

- [1] Boyle, J. (1993). The turned torus knot in S^4 . J Knot Theory Ramifications, 2: 239-249.
- [2] Gluck, H. (1962). The embedding of two-spheres in the four-sphere, Trans Amer Math Soc, 104: 308-333.
- [3] Hosokawa, F. and Kawauchi, A. (1979). Proposals for unknotted surfaces in four-space, Osaka J. Math. 16 (1979), 233-248.
- [4] Kawauchi, A. (2002). On pseudo-ribbon surface-links. J Knot Theory Ramifications, 11: 1043-1062.
- [5] Kawauchi, A. (2015). A chord diagram of a ribbon surface-link, J Knot Theory Ramifications, 24: 1540002 (24 pages).
- [6] A. Kawauchi, Ribbonness of a stable-ribbon surface-link, I. A stably trivial surface-link, Topology and its Applications 301 (2021), 107522 (16pages).
- [7] A. Kawauchi, Uniqueness of an orthogonal 2-handle pair on a surface-link, Contemporary Mathematics (UWP) 4 (2023), 182-188.
- [8] Kawauchi, A. (2024). Note on surface-link of trivial components, Journal of Comprehensive Pure and Applied Mathematics, 2 (1) : 1 05.
- [9] Kawauchi, A. (2025). Ribbonness of a stable-ribbon surface-link, II: General case. (MDPI) Mathematics 13 (3), 402 (2025),1-11.
- [10] Kawauchi, A. (2025). Ribbonness on boundary surface-link.
- [11] Kawauchi, A., Shibuya, T., Suzuki, S. (1982). Descriptions on surfaces in four-space, II: Singularities and cross-sectional links. Math Sem Notes Kobe Univ, 11: 31-69.
- [12] Ogasa, E. (2001). Nonribbon 2-links all of whose components are trivial knots and some of whose band-sums are nonribbon knots, J. Knot Theory Ramifications, 10 : 913-922.