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ABSTRACT

It is shown that a boundary surface-link in the 4-sphere is a ribbon surface-
link if the surface-knot obtained from it by surgery along a pairwise nontrivial 1-
handle system is a ribbon surface-link. As a corollary, the surface-knot obtained
from the anti-parallel surface-link of a non-ribbon surface-knot by surgery along
a nontrivial fusion 1-handle is a non-ribbon surface-knot. This result answers
Cochran’s conjecture on non-ribbon sphere-knots in the affirmative.
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1. Introduction

A surface-link is a closed oriented (possibly, disconnected) surface F smoothly
embedded in the 4-sphere S4. When F is connected, F is called a surface-knot. The
components Fi (i = 1, 2, . . . , r) of F are 2-spheres, then F is called a sphere-link (or
an S2-link) of r components. A 1-handle system on a surface-link F is a system h of
disjoint 1-handles hj (j = 1, 2, . . . , s) on F smoothly embedded in S4. Let F (h) be
the surface-link obtained from F by surgery along a 1-handle system h. The 1-handle
system h on F is a fusion 1-handle system if the number of connected components
of F (h) is r − s(≥ 1), where the 1-handles hj (j = 1, 2, . . . , s) of h are called fusion
1-handles. A surface-link F is a boundary surface-link if there is a system V of disjoint
compact connected oriented 3-manifolds Vi (i = 1, 2, . . . , r) smoothly embeded in S4

with ∂Vi = Fi (i = 1, 2, . . . , r). Assume that r ≥ 2. A ribbon surface-link is a
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surface-link F which is obtained from a trivial S2-link O by surgery along a 1-handle
system h, [5], [10]. For a bounadry surface-link F , let D be a disk system of r disks
Di(⊂ Fi) (i = 1, 2, . . . , r), and a disjoint 3-ball system B of 3-balls Bi (i = 1, 2, . . . , r)
in S4 with Bi ∩Vi = Di (i = 1, 2, . . . , r). Note that the surface-link F is equivalent to
the union ∪r

i=1∂(Vi ∪Bi) since Vi ∪Bi is cell-move equivalent to Vi (i = 1, 2, . . . , r). A
local S2-link of a bounadry surface-link F is a trivial S2-link system L = ∂B. Every
1-handle system h on a boundary surface-link F is moved into a 1-handle system
to attach on the disk system D′ = cl(∂B \D) and to meet transversely the interior
of B with a trasversal disk system. Thus, every 1-handle system h on a boundary
surface-link F is understood as a 1-handle system on a local S2-link L of F in S4, so
that L(h) is a ribbon S2-link. A 1-handle hj in a 1-handle system h on a boundary
surface-link F is trivial if the core arc cj of hj is ∂-relatively isotopic to a simple arc
with interior disjoint from V in S4. Otherwise, hj is nontrivial. A 1-handle system h
on a boundary surface-link F is pairwise nontrivial if every 1-handle hj is nontrivial.
The following theorem is a main result of this paper which is a revised version of an
earlier result, [8, Theorem 1.4], [9].

Theorem 1.1. Let F be a boundary surface-link of r(≥ 2) components in S4. If
the surface-knot F (h) obtained from F by surgery along a pairwise nontrivial fusion
1-handle system h is a ribbon surface-link, then the surface-link F is a ribbon surface-
link with h belonging to the 1-handle system of the ribbon surface-knot F (h).

For a surface-knot F in S4, let F × [0, 1] be a normal [0, 1]-bundle over F in
S4 such that the natural homomorphism H1(F × 1;Z) → H1(S

4 \ F × 0;Z) is the
zero map. In other words, take F × [0, 1] a boundary collar of a compact connected
oriented 3-manifold V smoothly embedded in S4 with ∂V = F , [2]. The surface-link
P (F ) = ∂(F × [0, 1]) = F × 0 ∪ F × 1 in S4 is called the anti-parallel surface-link of
F , where by convention F × 0 and F × 1 are identified with −F (i.e., the orientation-
reversed F ) and F , respecrtively. The anti-parallel surface-link P (F ) is a boundary
surface-link, because P (F ) is the boundary of V ×0∪V ×1 for a normal [0, 1]-bundle
V × [0, 1] of a compact connected oriented 3-manifold V with ∂V = F smoothly
embedded in S4. The half parti of the following theorem is a direct consequence of
Theorem 1.1.

Theorem 1.2. Let P (F ) be the anti-parallel surface-link of a non-ribbon surface-
knot F in S4, and P (F )(h) the surface-knot obtained from P (F ) by surgery along
a fusion 1-handle h. According to whether h is a trivial or nontrivial 1-handle, the
surface-knot P (F )(h) is a trivial or non-ribbon surface-knot, respectively.
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Therem 1.2 positively answers Cochran’s conjecture on non-ribbonability of the
S2-knot P (F ;h) for a non-ribbon S2-knot F and any sufficiently complicated fusion1-
handle h, [1].

2. Proofs of Theorem 1.1 and 1.2

The proof of Theorem 1.1 is done as follows.

2.1: Proof of Theorem 1.1. If F (h) is a disconnected ribbon surface-link, then
there is a pairwise nontrivial fusion 1-handle system h+ on F extending h such that
F (h+) is a ribbon surface-knot. Thus, assume that F (h) is a ribbon surface-knot.
First, the proof of the case r = 2 is given. Let i = 1 or 2. For the 3-manifold
Vi with ∂Vi = Fi, let βi be a 1-handle system on Fi embedded in Vi and disjoint
from h and B such that V ′

i = cl(Vi \ βi) is a handlebody, [4]. Then the surface-
link F (β) = F1(β1) ∪ F2(β2) for the 1-handle system β = β1 ∪ β2 bounds the disjoint
handlebody system V ′ = V ′

1∪V ′
2 and hence is a trivial surface-link in S4. The surface-

knot F (β)(h) is a ribbon surface-knot which is equivalent to the connected sum of
the non-trivial ribbon S2-knot L(h) and the trivial surface-knots Fi(βi) (i = 1, 2)
attaching along the disks Di (i = 1, 2). The ribbon S2-knot L(h) has a canonical

SUPH system W (Lh) = B(0)∪h, where B(0) = B
(0)
1 ∪B

(0)
2 for a once-punctured 3-ball

B
(0)
i of the 3-ball Bi in the 3-ball system B = B1 ∪B2. Then the ribbon surface-knot

F (β)(h) has a SUPH system W = W (Lh) ∪ V ′ which is a disk sum of W (Lh) and
V ′ pasting along the disk system D = D1 ∪D2. On the other hand, the surface-knot
F (h) is a ribbon surface-link and hence has a SUPH system W (Fh). If necessary,
by replacing W (Fh) with a multi-punctured W (Fh), the union W ′ = W (Fh) ∪ β is
a SUPH system for the surface-knot F (β)(h). By replacing W and W ′ with multi-
punctured W and W ′, respectively, there is an orientation-preserving diffeomorphism
f of S4 sending W and W ′. The following property is used here.

(2.1.1) The diffeomorphism f of S4 is isotopically deformed so that the restriction
of f to F (β)(h) is the identity map.

By (2.1.1), assume that the restriction f |F (β)(h) is the identity. Let D(h) be a
transversal disk of the 1-handle h, and D(β) a transversal disk system of the 1-handle
system β with one disk for each 1-handle of β. Let (k, k′) be a loop basis of F (β)(h)
such that k is the boundary loop system of a meridian disk system D(k) of V ′ and
k′ is the boundary loop system of a disk system D(k′) with D(k′) ∩ V ′ = k′, so that
(D(k), D(k′)) is an O2-handle pair on F (β)(h). Since W is a disk sum of W (Lh) and
V ′ with open 3-balls removed, it is assumed that the loop system k is equal to the
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loop system ∂D(β). The interior of the disk f(D(h)) transversely meets the interior
of the disk system D(β) in the multi-punctured handlebody W ′. Since any smoothly
embedded 2-sphere in W ′ bounds a multi-punctured 3-ball in W ′, the interior of the
disk f(D(h)) is isotopically deformed in W ′ so that f(D(h))∩D(β) = ∅. By cutting
W ′ along the disk union f(D(h)) ∪ D(β), a SUPH system W ′′ for F is obtained.
Thus, F is a ribbon surface-link with h belonging to the 1-handle system of the
ribbon surface-knot F (h), completing the proof for the case r = 2.

In general, if F has the r(≥ 3) components Fi (i = 1, 2, . . . , r), then assume that
h′ = h\h1 is a pairwise nontrivial fusion 1-handle system on the boundary surface-link
F ′ = F \F1 with F ′(h′) a surface-knot. Then h1 is a nontrivial fusion 1-handle on the
boundary surface-link F ′′ = F1 ∪ F ′(h′) with F ′′(h1) = F (h) a ribbon surface-knot.
By the argument of r = 2 above, F ′′ is a ribbon surface-link with h1 belonging to the
ribbon 1-handle system of the ribbon surface-link F ′′. In particular, F ′(h′) is a ribbon
surface-knot. By inductive assumption on r, the boundary surface-link F ′ is a ribbon
surface-link with h′ belonging to the ribbon 1-handle system of the ribbon surface-
knot F ′(h′). This means that F = F1 ∪ F ′ is a ribbon surface-link with h belonging
to the ribbon 1-handle system of the ribbon surface-knot F (h). This completes the
proof of Theorem 1.1.

(2.1.1) is proved as follows.

Proof of (2.1.1). For i = 1 or 2, let (ki, k
′
i) be a loop basis of Fi(βi) such that ki is

the boundary loop system of a meridian disk system D(ki) of the handlebody V ′
i and

k′
i is the boundary loop system of a disk system D(k′

i) with D(k′
i)∩V ′

i = k′
i. Let (k, k

′)
be a loop basis of F (β)(h) consisting of (ki, k

′
i)(i = 1, 2) such that k is the bound-

ary loop system of a meridian disk system D(k) consisting of D(ki) (i = 1, 2) and k′

is the boundary loop system of a disk system D(k′) consisting of D(k′
i) (i = 1, 2)

with D(k′) ∩ V ′ = k′, so that (D(k), D(k′)) is an O2-handle basis on F (β)(h).
Let F (β)(h)∗ be the ribbon S2-knot obtained from F (β)(h) by surgery along the
O2-handle basis (D(k), D(k′)), which is isotopic to the ribbon S2-knot L(h), [7].
The image f(F (β)(h)∗) is a ribbon S2-knot obtained from the ribbon surface-knot
f(F (β)(h)) by surgery along the O2-handle basis (f(D(k)), f(D(k′))), which is iso-
toipic to the ribbon S2-knot f(L(h)). Any S2-knot K equivalent to L(h) is isotopic to
L(h). In fact, K is written as a ribbon S2-knot L(h′) for a 1-handle h′ on the trivial
S2-link system L = ∂B1∪∂B2 (since a trivial S

2-link is isotopically unique). Then the
1-handle h′ is isotopically and attaching-part-relatively deformed into the 1-handle h.
This is because equivalent ribbon S2-knots L(h) and L(h′) are faithfully equivalent,
[6]. Thus, the ribbon S2-knot f(L(h)) is isotopic to L(h), so that f(F (β)(h)∗) is iso-
topic to F (β)(h)∗. The uniqueness of an O2-handle pair in the soft sense, the image
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f(F (β)(h)) is isotopic to the surface-knot F (β)(h), [9]. This completes the proof of
(2.1.1)

The proof of Theorem 1.2 is done as follows.

2.2: Proof of Theorem 1.2. Assume that the fusion 1-handle h on the anti-parallel
surface-link P (F ) is nontrivial. Since the surface-knot P (F )(h) is a ribbon surface-
knot the surface-link P (F ) is a boundary surface-link, the surface-link P (F ) is a
ribbon surface-link by Theorem 1.1, so that F is a ribbon surface-knot, contradicting
that F is a non-ribbon surface-knot. Thus, P (F )(h) is a non-ribbon surface-knot.
Assume that h is a trivial fusion 1-handle on P (F ) = F0∪F1 with Fi = F×i (i = 0, 1).
Let V = V0 ∪ V1 be a disconnected compact oriented 3-manifold without containing
a closed 3-manifold such that ∂Vi = Fi (i = 0, 1) and the 1-handle h on V does not
meet V except for the attaching part. Let βi be a 1-handle system on Fi embedded
in Vi and disjoint from h and B such that V ′

i = cl(Vi \ βi) is a handlebody for i = 0
or 1, [4]. Then ∂V ′

i = Fi(βi) (i = 0, 1). Let h0 = d × [0, 1] in F × [0, 1] for a disk
d in F which is a 1-handle of P (F ). Then the surface-knot P (F )(h0) is a trivial
surface-knot which bounds a handlebody H containing h0 as a thickenned meridian
disk such that the union W = H ∪ β0 ∪ β1 is a handlebody. Let H = h0 ∪H0 ∪H1

for two handlebodies Hi (i = 0, 1) connected by h0 so that ∂Hi ⊃ F
(0)
i (i = 0, 1) and

W = h0 ∪ (H0 ∪ β0) ∪ (H1 ∪ β1) with Hi ∪ βi a handlebody containing Fi(βi)
(0) in

the boundary for i = 0, 1. Since for any two spin loop bases (a, a′), (b, b′) of a trivial
surface-knot T in S4, there is an orientation-preserving diffeomorphism of (S4, F )
sending (a, a′) to (b, b′), there is an orientation-preserving diffeomorphism f of S4

sending W ′ = h∪V ′
0 ∪V ′

1 to a handlebody W ′
0 = h0∪V ′

0 ∪V ′
1 such that the restriction

of f to V ′
i is the identity for i = 0, 1 by isotopically deforming h into h0 together

with V ′
1 . Furhter, there is an orientation-preserving diffeomorphism g of S4 keeping

∂W = ∂W ′
0 fixed and sending W = h0∪(H0∪β0)∪(H1∪β1) to W ′

0 = h0∪V ′
0∪V ′

1 with
Hi ∪ βi sent to V ′

i (i = 0, 1). Then F (h) bounds a handlebody cl(W ′ \ f−1g(β0 ∪ β1).
Thus, F (h) is a trivial surface-knot. This completes the proof of Theorem 1.2.
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