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Preface

This volume of OCAMI Reports summarizes the workshop “Submanifolds of Sym-
metric Spaces and Their Time Evolutions” held from March 5th to March 6th in 2021
online by Zoom because of the COVID-19 pandemic. This workshop was supported by
“Osaka city University, Advanced Mathematical Institute MEXT Joint Usage/Research
Center on Mathematics and Theoretical Physics.” The main focus of this workshop is
submanifolds of symmetric spaces (or more general ambient spaces), mean curvature
flows in symmetric spaces (or more general ambient spaces), and related geometric
flows (line bundle mean curvature flows , which is flows of connections of complex line
bundle over Kähler manifold, coupling flows of Ricci flows and heat flows, and so on).
This workshop consisted of two 60 minutes keynote lectures on “mean curvature flow
for isoparametric submanifolds and polar foliations on symmetric spaces” by Professor
Xiaobo Liu (Peking University), two 60 minutes keynote lectures on “deformed Hermi-
tian Yang-Mills connections and line bundle mean curvature flows” by Doctor Hikaru
Yamamoto (University of Tsukuba), and seven 50 minutes lectures on “submanifolds of
symmetric spaces, submanifolds of generalized s-manifolds, proper Fredholm subman-
ifolds of Hilbert spaces, Lagrangian mean curvature flows, and coupling flows of Ricci
flows and heat flows.” There were 38 participants in this workshop. This workshop
conducted international research exchanges on submanifolds of symmetric spaces, their
time evolutions and furthermore related geometric flows.

March 2021

Naoyuki Koike
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Ancient solutions for mean curvature flow of
isoparametric submanifolds

Xiaobo Liu

Ancient solutions are important in studying singularities of mean curvature flows
(MCF). So far most rigidity results about ancient solutions are modeled on shrinking
spheres or spherical caps. In this talk, I will describe the behavior of MCF for a
class of submanifolds, called isoparametric submanifolds, which have more complicated
topological type. We can show that all such solutions are in fact ancient solutions,
i.e. they exist for all time which goes to negative infinity. I will also describe our
conjectures proposed together with Terng on rigidity of ancient solutions to MCF for
hypersurfaces in spheres. These conjectures are closely related to Chern’s conjecture
for minimal hypersurfaces in spheres. This talk is based on joint works with Chuu-Lian
Terng.

(X. Liu) Beijing International Center for Mathematical Research & School of

Mathematical Sciences, Peking University, Beijing, China

E-mail address: xbliu@math.pku.edu.cn



Ancient solutions for Mean
Curvature Flow of Isoparametric

Submanifolds
Xiaobo Liu

Peking University

Talk at Workshop on
”Submanifolds of Symmetric Spaces and Their Time Evolution”

March 5-6, 2021

– p. 1/39

Mean curvature flow
LetM be a submanifold in a Riemannian
manifoldX. Themean curvature flow
(abbreviated asMCF ) of M is a map
f : I ×M −→ X satisfying

∂f

∂t
= H(t, ·)

whereH(t, ·) is the mean curvature vector field
of f(t, ·) andf(0, ·) is the immersion ofM in X.

If a solution exists onI = (−∞, T ] for some
T > 0, it is called anancient solution. Such
solutions are important in studying singularities
of general MCF.

– p. 2/39
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Examples:
• If f0 : M −→ X is minimal, then

f(t, x) = f0(x), x ∈ M

is an ancient solution to MCF. This is the
stationary solution.

• If Mn ⊂ Sn+1 is a subsphere, then the MCF of
M is an ancient solution, which shrinks to a point
in finite positive time and converges to the
equator ast → −∞. This solution is called the
shrinking spherical cap.

– p. 3/39

• If
f0 : M −→ Sn+1 ⊂ R

n+2

is a minimal submanifold of the unit sphereSn+1

of any codimension (in particularM could be
Sn+1), then

f(t, x) =
√
1− 2nt f0(x), x ∈ M

is an ancient solution to MCF forM as a
submanifold inRn+2.

– p. 4/39
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M ⊂ R
N . νM : normal bundle ofM .

Definition(Terng):M is isoparametric if

(1) νM is globally flat, i.e. parallel translations of
normal vectors along closed curves are identity.

(2) For any parallel normal vector fieldη,
principal curvatures alongη are constant.

An isoparametric polynomial is a homogeneous
polynomialF onRn+2 such that∆F and||∇F ||
are constant along level sets ofF .

– p. 5/39

Isoparametric hypersurfaces
• Let F be an isoparametric polynomial which is

normalized such that the range ofF |Sn+1 is
[−1, 1]. Then for anyt ∈ (−1, 1), F−1(t) ∩ Sn+1

is an isoparametric submanifold. These are
isoparametric hypersurfaces in sphere.

M± := F−1(±1) ∩ Sn+1 are not isoparametric,
they are focal submanifolds of isoparametric
hypersurfaces.

Let g be the number of distinct principal
curvatures of an isoparametric hypersurface in
sphere. Theng = 1, 2, 3, 4, 6 (Münzner).

– p. 6/39
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• Clifford examples(Ferus-Karcher-Münzner):
Assume thatE1, . . . , Em−1 are skew symmetric
l × l matrices such that

EiEj + EjEi = −2δijId

(i.e. these matrices give a representation of the
Clifford algebra.)

Then we can construct a homogeneous
polynomial of degree 4 onR2l which is
isoparametric.

The corresponding isoparametric hypersurfaces
have 4 distinct principal curvatures. Most of them
are non-homogeneous.

– p. 7/39

• Homogeneous isoparametric submanifolds:
LetG/K be a symmetric space,
g the Lie algebra ofG,
k the Lie algebra ofK,
p the orthogonal complement ofk in g.
The isotropy representation ofK acts onp.
Principal orbits of this representation are
isoparametric submanifolds. All these
submanifolds are homogeneous.

• Reducible cases: Products of isoparametric
submanifolds are isoparametric.

– p. 8/39
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Properties
• If M ⊂ R

N is complete isoparametric, then
M = M1 × R

k with M1 compact isoparametric.

• If M ⊂ R
N is compact isoparametric, thenM is

contained in a round sphere. After translation and
dilation, we may assumeM is contained in the
unit sphere centered at origin.

• For any parallel normal vector fieldη along
M ⊂ R

N , define

Mη := {x+ η(x) | x ∈ M}.

If M is isoparametric, thenMη is always a
smooth submanifold.

– p. 9/39

Isoparametric foliation:
• If dimMη = dimM , thenMη is also

isoparametric. It is called aparallel
isoparametric submanifoldof M .

• If dimMη < dimM , thenMη is no longer
isoparametric. It is afocal submanifoldof M .

•
⋃

η Mη gives a singular foliation ofRN . If

M ⊂ SN−1, then the set ofMη ⊂ SN−1 also
gives a singular foliation ofSN−1. These
foliations are calledisoparametric foliations.

– p. 10/39
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MCF of Isop. Submanifolds
AssumeM ⊂ SN−1 ⊂ R

N compact
isoparametric. MCF ofM as a submanifold of
R

N (resp.SN−1) is called theEuclidean (resp.
spherical) MCF of M .
Theorem(Liu-Terng, Duke 2009):

• MCFs ofM preserve the isoparametric condition
before collapsing.

• Euclidean MCF ofM always converge to a focal
submanifold in a finite timeT > 0. Same is true
for spherical MCF ifM is not minimal in sphere.

• Every focal submanifold is a limit of the MCF of
some isoparametric submanifold.

– p. 11/39

The above results were generalized:

for MCF of equifocal submanifolds of symmetric
spaces by N. Koike (2011),

and for MCF of regular leaves of isoparametric
foliations on compact non-negativelt curved
manifolds by Alexandrino-Radeschi (2016).

– p. 12/39
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Ancient Solutions
Theorem(Liu-Terng, Math. Ann. 2020):
In both Euclidean and spherical cases,

• MCF of M are ancient solutions, i.e. they exist
for all t ∈ (−∞, 0].

• There is a unique minimal isoparametric
submanifoldMmin for each isoparametric
foliation in SN−1.

• As t → −∞, MCF ofM converges to MCF of
Mmin. (Note that the spherical MCF ofMmin is
stationary).

– p. 13/39

More precisely,∃ a unit parallel normal vector
field ζ onM in SN−1 such that the map
h : M → SN−1 defined by

h(x) = (cos r)x+ (sin r)ζ(x)

is the embedding ofMmin in SN−1, wherer is the
spherical distance betweenM andMmin.

Let f(t, x), F (t, x) be the spherical and
Euclidean MCF ofM . For allx ∈ M ,

lim
t→−∞

||F (t, x)−
√
1− 2nt h(x)|| = 0,

lim
t→−∞

||f(t, x)− h(x)|| = 0.

– p. 14/39
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Hypersurface cases
LetMn ⊂ Sn+1 be an isoparametric hypersurface
with g distinct principal curvatures. For any
x0 ∈ M , letS1(x0) be the geodesic inSn+1

which passesx0 and is perpendicular toM .

LetM± be the focal submanifolds ofM with
dimM+ ≤ dimM−. Let

m1 := dimM − dimM−,
m2 := dimM − dimM+.

Thenm1 andm2 are multiplicities of principal
curvatures ofM .
Note thatm1 ≤ m2.
If g = 1, 3, 6, thenm1 = m2.

– p. 15/39

M+ ∪M− intersectsS1(x0) in exactly2g points,
evenly distributed along the circle. Letx± be the
intersection ofM± with S1(x0) which are closest
to x0. We may identify the normal space ofM in
R

n+2 atx0 with C such thatS1(x0) is the unit
circle inC andx+ = 1, x− = eiπ/g, x0 = eiθ0

with 0 < θ0 < π/g.

Every parallel isoparametric hypersurface
intersect the arc{eiθ | 0 < θ < π/g} at exactly
one point. We can use this point to represent the
parallel isoparametric hypersurface.

– p. 16/39
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LetMmin be the unique minimal isoparametric
hypersurface which is parallel toM . ThenMmin

is represented byeiθmin where

cos gθmin = −δ

with

δ :=
m2 −m1

m2 +m1
≥ 0.

Theorem (Liu-Terng): LetMt be the spherical
mean curvature flow ofM . AssumeMt is
represented byeiθ(t). Thenθ(t) is given by

cos gθ(t) = egnt (cos gθ0 + δ)− δ.

– p. 17/39

Note thateiθmin divides the arc

{eiθ | 0 < θ < π/g}

into two parts.θ(t) → 0 or π/g ast approaches
some positive number. Ast → −∞, θ(t) → θmin.

Remark: For higher codimensional cases,
explicit solutions of MCF can also be constructed
recursively using Coxeter group structure of the
isoparametric submanifolds. In general, it is more
difficult to locate the position of minimal leaf of
isoparametric foliation in higher codimension.

– p. 18/39
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Rigidity Results
Theorem (Huisken and Sinestrari, JDG 2015):
LetMt be the spherical MCF of a hypersurface in
Sn+1, A(t) andH(t) be the shape operator and
the mean curvature vector field ofMt as a
submanifold ofSn+1. Mt is either a shrinking
spherical cap or a stationary solution if one of the
following conditions is satisfied for allt < 0:

• (HS1) Forn ≥ 3 and

||A(t)||2 − 1

n− 1
||H(t)||2 ≤ 2.

• (HS2) For some constantB < 4n,

||A(t)||2 < e−Bt||H(t)||2.
– p. 19/39

Huisken and Sinestrari claimed that condition
(HS1) is sharp. They justify this claim by
considering the MCF of a product of an
(n− 1)-dimensional sphere and a circle inSn+1.
This is precisely the MCF of an isoparametric
hypersurface withg = 2, m1 = 1, m2 = n− 1.

According to our calculations, for this example

||A(t)||2 − 1

n− 1
||H(t)||2 − 2 =

n− 2

n− 1
tan2 θ(t)

whereeiθ(t) representsMt. As t → −∞,
θ(t) → θmin, RHS → n− 2 which is not
arbitrarily small. So the justification for the
sharpness of (HS1) is not correct. – p. 20/39
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Lemma(Liu-Terng): For everyg = 1, 2, 3, 4, 6, ∃
isoparametric hypersurface withg distinct
principal curvatures such that its MCF satisfies

||A(t)||2 < e−2gnt||H(t)||2

for all t < 0.

Corollary : Condition (HS2) is sharp in the sense
thatB can not be≥ 4n. (Otherwiseg = 2 case of
the above lemma would give counter examples.)

– p. 21/39

Rigidity conjectures
Conjecture A(Liu-Terng): If ∃ c1, c2, T > 0 such
that

c1e
−2gnt ≤ ||A(t)||2

||H(t)||2 ≤ c2e
−2gnt

for all t < −T , then the ancient solution of MCF
Mt of compact hypersurfaces in sphere is the
MCF of an isoparametric hypersurface withg
distinct principal curvatures.

Remark: g = 1 case of this conjecture is true by
Huisken and Sinestrari’s result.

The above estimate holds for MCF of
isoparametric hypersurfaces.

– p. 22/39
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Conjecture B(Liu-Terng): If ∃ some constants
0 < ǫ < 1 andT > 0 such that either

(g− 1)n ≤ ||A(t)||2 − 1

n
||H(t)||2 ≤ (g− 1 + ǫ)n

or

(g− 1− ǫ)n ≤ ||A(t)||2 − 1

n
||H(t)||2 ≤ (g− 1)n

for all t < −T , then the ancient solution of MCF
Mt of compact hypersurfaces in sphere is the
MCF of an isoparametric hypersurface withg
distinct principal curvatures.

– p. 23/39

Remark: g = 1 case of Conjecture B is true by a
result of Lei-Xu-Zhao (2019).

The above estimate holds for MCF of
isoparametric hypersurfaces.

The two inequalities in Conjecture B can not be
replaced by the following inequality:

(g−1−ǫ)n ≤ ||A(t)||2−1

n
||H(t)||2 ≤ (g−1+ǫ)n.

Otherwise Otsuki’s construction would give a
counter example (which are minimal of
topological typeSn−1 × S1).

– p. 24/39
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Chern’s Conjecture
OriginalChern’s Conjecture: Mn ⊂ Sn+1

compact minimal with constant||A||. Then the
set of possible values of||A||2 is discrete.

Remark: For minimal isoparametric
hypersurface withg distinct principal curvatures,
||A||2 = n(g − 1).

Stronger version of Chern’s Conjecture:
Mn ⊂ Sn+1 compact minimal with constant
||A||. ThenM is isoparametric.

– p. 25/39

Stationary case of Conjecture B
Conjecture C: Mn ⊂ Sn+1 compact minimal. If
∃ some constants0 < ǫ < 1 such that either

(g − 1)n ≤ ||A||2 ≤ (g − 1 + ǫ)n

or
(g − 1− ǫ)n ≤ ||A||2 ≤ (g − 1)n,

thenM is an isoparametric hypersurface withg
distinct principal curvatures.

Remark: Conjecture C is stronger than Chern’s
conjecture.

– p. 26/39
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Theorem (Chern-do Carmo-Kobayashi, 1970):
Mn ⊂ Sn+1 compact minimal. If

0 ≤ ||A||2 ≤ n,

thenM is either an equator (isoparametric with
g = 1) or a Clifford torus (isoparametric with
g = 2).

This result implies that Conjecture C is true for
g = 1 case and half of theg = 2 case.

– p. 27/39

Theorem: AssumeMn ⊂ Sn+1 compact
minimal with

n ≤ ||A||2 ≤ (1 + ǫ)n.

M must be a Clifford torus if
• ǫ = 1

12 and||A|| is constant (Peng-Terng, 1983),

• ǫ = 1
3 and||A|| is constant (Cheng-Yang, 1998),

• ǫ = 3
7 and||A|| is constant (Suh-Yang, 2007), or

• ǫ = 1
23 (Ding-Xin, 2011), or

• ǫ = 1
22 (Xu-Xu, 2017).

– p. 28/39
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These results give some partial answers for
second half of theg = 2 case of Conjecture C.

Chern’s conjecture for isoparametric
hypersurface inS4 was proved by S.P. Chang
(1993).

The above results was proved using estimates
obtained from elliptic equations for∆∐ and
∆(∇∐). We hope the flow (parabolic) method
may provide new insights to Chern’s conjecture.

– p. 29/39

Idea for Proof: Euclidean Case
AssumeM ⊂ SN−1 ⊂ R

N compact
isoparametric. Fixp ∈ M . LetV = νpM be the
normal space of M as a submanifold inRN atp.

The intersection ofV and the union of all focal
submanifolds ofM is a union of finitely many
hyperplanes inV . LetW be the group generated
by reflections along these hyperplanes.

W is a finite group, called theCoxeter groupof
M (Terng).

– p. 30/39
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LetC be the interior of the fundamental domain
of W acting onV which containsp. C is called
the openWeyl chamberof W .

C is an open simplicial cone inV .

Every parallel isoparametric submanifold ofM
intersectC at exactly one point.

Every focal submanifold ofM intersect∂C at
exactly one point.

– p. 31/39

MCF of M is reduced to a flow equation for
points inC ⊂ V .

W invariant polynomials onV give a new
coordinate system onC. In this coordinates, the
Euclidean MCF becomes a flow equation along a
polynomial vector field, and can be solved
recursively in a rather explicit way. The solution
exists as long as it does not hit∂C.

– p. 32/39
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Since focal submanifolds have lower dimensions,
the volume function approaches0 if the flow
approaches∂C.

As t → −∞, the volume function of MCF is
increasing, hence never hits∂C. Consequently
MCF exists for allt ∈ (−∞, 0], i.e. the solution
is ancient.

– p. 33/39

By a result of Palais-Terng, each isoparametric
foliation in SN−1 contains at least one minimal
isoparametric leaf.

To study the limit of MCF ast → −∞, letx(t) be
the Euclidean MCF ofM andx̃(t) the Euclidean
MCF of a minimal isoparametric submanifold in
SN−1 which is parallel toM . Define

D(t) := ||x(t)− x̃(t)||2.

– p. 34/39
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Lemma: ∃ constantb > 0 such that

D′(t) ≥ b

1− 2nt
D(t).

Corollary : For all t < 0,

D(t) ≤ D(0)(1− 2nt)−
b

2n .

In particular,limt→−∞D(t) = 0, i.e. MCF of M
converges to the MCF of a minimal isoparametric
submanifold.

Corollary : Each isoparametric foliation ofSN−1

contains exactly one minimal isoparametric leaf.– p. 35/39

Spherical Case
Let f(t, x) andF (t, x) denote the spherical and
Euclidean MCF ofM . Then

F (t, x) =
√
1− 2nt f(− 1

2n
ln(1− 2nt), x).

We can use this formula to prove results about
spherical MCF ofM .

– p. 36/39
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Geometric quantities
Let αi be unit normal vectors of walls of Coxeter
group (roots),mi multiplicities of curvature
distribution. Forx ∈ C,

HE(x) = −
∑

i

miαi

〈x, αi〉
,

HS(x) = −
∑

i

miαi

〈x, αi〉
+

nx

‖x‖2 ,

‖AE(x)‖2 =
∑

i

mi

〈x, αi〉2
,

‖AS(x)‖2 =
∑

i

mi

〈x, αi〉2
− n

‖x‖2 .

– p. 37/39

If x(t) ∈ C represents a solution to MCF, then

lim
t→−∞

(1− 2nt) ‖HE(x(t))‖2 = n2,

lim
t→−∞

(1− 2nt) ‖AE(x(t))‖2 =
∑

i

mi

〈xmin, αi〉2
.

and

lim
t→−∞

‖HS(y(t))‖2 = 0,

lim
t→−∞

‖AS(y(t))‖2 =
∑

i

mi

〈xmin, αi〉2
− n.

– p. 38/39
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Thanks!

– p. 39/39
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Polar foliations in symmetric spaces and their mean
curvature flow

Xiaobo Liu

Polar foliations are natural generalizations of orbit foliations of polar actions. In
this talk I will describe the relation between polar foliations and isoparametric subman-
ifolds in simply connected symmetric spaces with non-negative curvature. It turns out
principal orbits of such foliation are isoparametric submanifolds. If leaves are compact,
such foliations must be products of isoparametric foliations in Euclidean spaces and
polar foliations in compact symmetric spaces. For polar foliation in compact symmet-
ric spaces, there is a unique regular leaf which is minimal. The mean curvature flow
of all regular leaves have ancient solutions and always converge to the minimal regular
leaf as time goes to negative infinity. This talk is based on joint works with Marco
Radeschi.

(X. Liu) Beijing International Center for Mathematical Research & School of

Mathematical Sciences, Peking University, Beijing, China

E-mail address: xbliu@math.pku.edu.cn



Polar Foliations on Symmetric
Spaces and Mean Curvature Flow

Xiaobo Liu

Peking University

Talk at Workshop on
”Submanifolds of Symmetric Spaces and Their Time Evolution”

March 5-6, 2021

– p. 1/37

Isoparametric Submanifolds
LetN be a Riemannian manifold,M ⊂ N a
submanifold.

Given a parallel normal vector fieldξ defined
over a small open subsetU ⊂ M , let

Uξ := {exp(ξ(p)) | p ∈ U}.

If ‖ξ‖ is small,Uξ is a smooth submanifold ofN .
We callUξ a locally parallel submanifold of M .

– p. 2/37
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Defination(Heintze-Liu-Olmos, 1997): A
submanifoldM ⊂ N is isoparametric if

(1) Normal bundleνM is flat.

(2) For everyp ∈ M , exp νpM is totally geodesic
in a neighbourhood ofp (called alocal section).

(3) Locally parallel submanifolds ofM have
parallel mean curvature vector fields.

– p. 3/37

Example: If N is a space form, this coincides
with Terng’s definition of isoparametric
submanifolds.

Unlike the space form case, isoparametric
submanifolds in general Riemannian manifold:

(1) may not have constant principal curvatures.

(2) may not produce a global singular foliation of
N . If it does, such foliation is called an
isoparametric foliation.

– p. 4/37
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Example: If N is a compact symmetric space,
M ⊂ N is anequifocal submanifold if
(1) νM is flat and abelian (use Lie algebra
structure).
(2) Focal distance and multiplicities along locally
parallel normal vector fields are constant.

(This definition is due to Terng and
Thorbergsson)

Fact: M is equifocal if and only if it is
isoparametric with flat sections.

– p. 5/37

Example: Let G be a Lie group acting
isometrically on a Riemannian manifoldN . The
action is polar if there exists a totally geodesic
submanifoldΣ ⊂ N which intersects all orbits of
G and intersects them orthogonally, and the
dimension ofΣ is complementary to the
dimension of principal orbits.Σ is called a
sectionof the polar foliation.

Theaction is hyperpolar if it is polar with flat
section.

Fact: Principal orbits of polar actions are
isoparametric.

– p. 6/37
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Given an isoparametric foliation(N,F), i.e. a
singular foliation consists of an isoparametric
submanifoldL and all its parallel submanifolds.
It turns out that allregular leaves(i.e. leaves
with maximal dimension) ofF are isoparametric
submanifolds as well. Passing through every
pointp, there is a totally geodesic submanifold
Σp (i.e. a section) which intersects all leaves
orthogonally.

A vectorv ∈ TN is horizontal if it is tangent to
a section. It isvertical if it is tangent to a leaf.

– p. 7/37

Mean curvature flow
Recallmean curvature flow (abbreviated as
MCF ) of M over an intervalI is a map

f : I ×M −→ N

satisfying
∂f

∂t
= H(t, ·)

whereH(t, ·) is the mean curvature vector field
of f(t, ·) andf(0, ·) is the immersion ofM in N .

If a solution exists onI = (−∞, T ] for some
T > 0, it is called anancient solution. Such
solutions are important in studying singularities
of general MCF.

– p. 8/37
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Theorem(Liu-Terng, Duke 2009): IfL is an
isoparametric submanifold in a Sphere or
Euclidean space. Then

(1) MCFs ofL flows through leaves of the
isoparametric foliation associated toL.

(2) Euclidean MCF ofL always converge to a
singular leaf in a finite timeT > 0. Same is true
for spherical MCF ifL is not minimal in sphere.

– p. 9/37

The previous result was generalized:

for MCF of equifocal submanifolds in symmetric
spaces by N. Koike (2011), and

for MCF of regular leaves of isoparametric
foliations on compact non-negatively curved
manifolds by Alexandrino-Radeschi (2016).

– p. 10/37
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Theorem(Liu-Terng, Math. Ann. 2020):
If L is an isoparametric submanifold in a Sphere
or Euclidean space, then

(1) MCF ofL always has ancient solution, i.e. it
exists for allt ∈ (−∞, 0].

(2) There is a unique minimal isoparametric
submanifoldLmin for each isoparametric foliation
in SN−1.

(3) As t → −∞, MCF ofL converges to MCF of
Lmin. (Note that the spherical MCF ofMmin is
stationary)

– p. 11/37

Theorem A(Liu-Radeschi, 2020): AssumeF is
an isoparametric foliation on a Riemannian
manifoldM such thatRicM(v) > RicΣ(v) for
any sectionΣ andv tangent toΣ, and the leaf
spaceM/F is compact. Then

(1) There is a unique minimal regular leafLmin in
F .

(2) For any regular leafL in F , the MCF ofL
always has ancient solution and it converges to
Lmin ast goes to−∞.

Remark:This result generalizes the
corresponding result of Liu-Terng in spheres.

– p. 12/37
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Polar Foliation
LetN be a complete Riemannian manifold. A
singular foliationF onN is Riemannian if every
geodesic perpendicular to a leaf at one point must
be perpendicular to all leaves which it intersects.

Moreover,F is polar if for ∀p ∈ N , ∃ a totally
geodesic submanifoldΣ ∋ p with dimension
complementary to the dimension of regular
leaves such thatΣ intersects all leaves ofF
orthogonally.Σ is called asectionof F .

Remark: No restriction for mean curvature of
leaves inF .

– p. 13/37

A hyperpolar foliation is a polar foliation with
flat sections.

Remark: In general a polar foliation may not be
isoparametric.

Starting from an isoparametric submanifold, its
parallel submanifolds may not form a foliation.

– p. 14/37
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Example:
Orbits of polar actions form a polar foliation.

Orbits of hyperpolar actions form a hyperpolar
foliation.

Isoparametric foliations are polar.

Parallel submanifolds of an equifocal submifold
in compact simply connected symmetric spaces
form a hyperpolar foliation.

– p. 15/37

Theorem B(Liu-Radeschi, 2020): LetF be a
polar foliation on a simply connected symmetric
spaceN with non-negative curvature. Then

(1)F is always isoparametric.

(2)F is a product of a polar foliation with
compactleaf spaceN/F and an isoparametric
foliation in a Eucliean space.

(3) If F has compact leaves, then it is a product
of a polar foliation in a compact symmetric space
and an isoparametric foliation in a Eucliean
space.

– p. 16/37

34 OCAMI Reports Vol. 2 (2021)



Corollary (Liu-Radeschi, 2020):
LetN be a simply connected symmetric space
with curvature≥ 0 andF is a polar foliation on
N without trivial or Euclidean factors. Then
(1) There is a unique regular leafLmin in F
which is minimal inN .
(2) MCF of every regular leaf ofF has ancient
solution and it converges toLmin ast 7→ −∞.

Remark: Together with Liu-Terng’s result for
isoparametric submanifolds in Euclidean spaces,
this result completeluy describes behavior of
MCF for polar foliation in nen-negatively curved
symmetric spaces in negative time direction.

– p. 17/37

Idea for proof of Theorem A
LetL be a regular leaf in a polar foliationF on a
Riemannian manifoldN . Let γ(t) be a geodesic
with γ(0) = p ∈ L andγ′(0) ⊥ TpL. LetX be a
parallel normal vector field alongL with
X(p) = γ′(0).
Defineend-point mapφX : L −→ N by

φX(q) := expq X(q).

For everyv ∈ TpL, we callJv(t) := dpφtX(v) a
holonomy Jacobi vector fieldalongγ. LetLt be
the leaf ofF passingγ(t). ThenJv(t) ∈ Tγ(t)Lt

for all t.

– p. 18/37
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LetΣ ∋ p be a section ofF . Thenγ(t) ∈ Σ for
all t.

Let Vt := νγ(t)Σ. We have

Vt ⊇ Tγ(t)Lt

for all t with "=" iff Lt is a regular leaf.

The curvature operatorR onN defines a
symmetric operatorRt onVt by

Rt(w) := R(w, γ′(t))γ′(t)

for w ∈ Vt.

– p. 19/37

There is aRaccati operatorSt onVt such that
St(J(t)) = J ′(t) for holonomy Jacobi vector field
J at regular times. In fact−St is the shape
operator ofLt alongγ′(t) if Lt is a regular leaf.
St satisfies theRiccati equation:

S′
t + S2

t +Rt = 0.

Riccati comparison theorem: Let n = dimVt.
If 1

n
tr(Rt) > δ > 0, then 1

n
tr(St) is bounded

above by the solution of

s′(t) + s2(t) + δ = 0

with s(0) = 1
n
tr(S0).

– p. 20/37
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Given an orthonormal basis{ei | i = 1, · · · , n}
of TpL wherep = γ(0). Let Ji be the holonomy
Jacobi field withJi(0) = ei. Letω andωt be the
volume element ofL andLt respectively. Then at
p,

Φ∗
tXωt = fp(t) · ω

where

fp(t) := det(< Ji(t), Ej(t) >)1≤i,j≤n

with Ej(t) the parallel extension ofej alongγ.

– p. 21/37

Fact:

d

dt
ln fp(t) = tr(St) = − < Ht, Xt > .

So we can use Riccati comparison theorem to
estimate volume ofLt. In particular, we have

Lemma: If for all regular leavesL and all
v ∈ νpL, trTpLR(·, v)v > 0, then

V (L) := vol(L)
1

n is a strictly concave function on
the regular part ofN/F .

Corollary : If in addition,N/F is compact, then
there is a unique minimal regular leafLmin.

– p. 22/37
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If F is isoparametric, MCF of a regular leaf can
be reduced to a flow on regular part ofN/F and
V is a Lyapunov function for the flow along−H
with unique global attractorLmin. Hence MCF of
L converges toLmin ast 7→ −∞. This finishes
the proof of Theorem A.

– p. 23/37

Idea for proof of Theorem B
To prove a polar foliationF on a simply
connected manifoldN is isoparametric, we need:

Theorem(Alexandrino-Toeben): LetL be a
regular leaf ofF . Then

(1)L has trivial normal holonomy.

(2)L has constant focal data, i.e., the end point
map of a parallel normal vector field has constant
rank.

So we only need to show mean curvature vector
fields along regular leaves are parallel.

– p. 24/37
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LetN be a simply connected symmetric space
with curvature≥ 0.

Theorem(Lytchak): Every polar foliation inN is
a product of a trivial factor, a hyperpolar foliation,
and polar foliations with spherical sections (i.e.
sections with constant positive curvature).

Theorem(Heintze-Liu-Olmos): Hyperpolar
foliations onN are isoparametric.

So we only need to show polar foliations with
spherical sections are isoparametric.

– p. 25/37

We may assume every sectionΣ is a sphere with
curvature= 1 after re-scaling metric onN . Fix a
regular leafL of F . LetX be a unit parallel
normal vector field alongL. For anyp ∈ L, let
γ(t) be the geodesic withγ(0) = p and
γ′(0) = X(p). Thenγ is periodic with period2π.
In fact expq tX(q) is periodic for allq ∈ L. This
implies that all holonomy Jacobi fields are
periodic with period2π.

– p. 26/37
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We can prove:

(1) Periodicity of holonomy Jacobi fields implies
that eigenvalues ofRt alongγ(t) are squares of
integers

0 ≤ λ2
1 ≤ · · · ≤ λ2

n.

Letm =
∑n

i=1 λi. Then2m is the index of space
of holonomy Jacobi fields alongγ|[0,2π). By
continuity of index, we seem is independent of
p ∈ L.

– p. 27/37

(2) Let{e1, . . . , en} be an orthonormal basis of
V0 whereei is an eigenvector ofR0 with
eigenvalueλ2

i . Let Ji(t) be the holonomy Jacobi
vector field withJi(0) = ei. LetEi(t) be the
parallel translation ofei alongγ(t). Let

fp(t) := det(< Ji(t), Ej(t) >).

Then

fp(t) =
∑

i

ai sin(sit) + bi cos(sit)

wheresi = λ1 ± λ2 ± · · · ± λn.

– p. 28/37

40 OCAMI Reports Vol. 2 (2021)



(3) It follows thatfp lies in a spaceT of
functions withdim T = m+ 1.

(4) Assumeγ intersects singular leavesLj at time
tj ∈ (0, π) for j = 1, . . . , k. Let

mj := dim(L)− dim(Lj). Then
∑k

j=1mj = m

and
f (d)
p (tj) = 0

for all d = 0, . . . ,mj − 1 andj = 1, . . . , k. This
gives a system ofm linearly independent
conditions on spaceT which, together with
conditionfp(0) = 1, uniquely determinesfp.

– p. 29/37

(5) Note thattj andmj are determined by focal
data ofexp tX : L −→ N . By constancy of focal
data,fp(t) does not depend onp ∈ L.

(6) Since

f ′
p(0) = fp(0)tr(S0) = − < Hp, Xp >,

it follows that< Hp, Xp > does not depend on
p ∈ L for all parallel normal vector fieldX. So
H is parallel along all regular leaves andF is
isoparametric.

– p. 30/37

Submanifolds of Symmetric Spaces and Their Time Evolutions 41



Second part of Theorem B is a splitting theorem
for polar foliation. We would like to show that
after splits off Euclidean factors, eitherN/F is
compact, orN is compact.

It follows from a combination of Lytchak’s
results that if(N,F) is an indecomposable polar
foliation with spherical sections, thanN has to be
compact. So we only need to consider the
hyperpolar case.

– p. 31/37

AssumeF is a hyperpolar foliation onM . Forp
in the regular part of the foliation, letLp be the
leaf throughp. Define

D(p) := {v ∈ νpL | R(·, v)v ≡ 0}.

SinceM is a symmetric space with non-netative
Ricci curvature,D(p) is always a vector space
and defines an integrable totally geodesic
distribution whenp varies in the regular part of
the foliation.

– p. 32/37
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Moreover, it follows thatv ∈ D(p) is equvalent
to trR(·, v)v = 0. It is also equivalent to the
geodesicexp(tv) intersecting singular leaves
only finitely many times. The latter fact is proved
by estimating index of the space of holonomy
Jacobi fields using Riccati comparison theorem.

A sectionΣ of F then splits as a product of two
submanifoldsΣ1 × Σ2, with Σ1 an integral
submanifold ofD andΣ2 perpendicular toD.

– p. 33/37

Each hyperpolar foliation has aWeyl group W
which is generated by reflections along affine
hyperplanes ofΣ calledwalls of W . One can
show that the above splitting ofΣ induce a
splitting ofW as well. To prove this, we need to
use the fact that for any horizontal geodesicγ
with γ(0) ∈ Σ1 ∩ Σ2, it intersects walls of Weyl
groupW either finitely times whenγ ⊂ Σ1 or
infinitely many times whenγ " Σ1. So walls of
W is divided into disjoint union of two sets, one
has normal vectors tangent toΣ1, another has
normal vectors tangent toΣ2. The decomposition
of walls gives decomposition ofW .

– p. 34/37
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Decomposition of the Weyl group implies the
splitting of (N,F) into the product of two
foliations(M1,F1)× (M2,F2). (Terng,
Heintze-Liu, Ewert, Silva-Speranca)

The first factor(M1,F1), which hasΣ1 as a
section, is an isoparametric foliation in Euclidean
space (possibly times a trivial factor). The second
factor(M2,F2), which hasΣ2 as a section, has
the property that its leaf spaceM2/F2 is compact.
Every horizontal geodesicγ(t) in M2 meets
singular leaves infinitely many times in positivet
direction.

– p. 35/37

If leaves of(N,F) are compact, we can prove
M2 is compact by contradiction:

In fact, if M2 is not compact, we have a splitting
M2 = M ′ × Rk for somek > 0. We then show
the projection from a regular leafL2 of F2 toRk

is a submersion. This is not possible ifL2 is
compact.

This completes the proof of Theorem B.

– p. 36/37
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Thanks!

– p. 37/37
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Antipodal sets of generalized s-manifolds

Takashi Sakai

Abstract. We introduce the notion of generalized s-manifold as a generalization
of symmetric spaces. Then we study maximal antipodal sets of generalized s-
manifolds. This is partly joint work with S. Ohno and Y. Terauchi.

1 Generalized s-manifolds

A Riemannian symmetric space M is a Riemannian manifold which has a geodesic
symmetry sx at each point x ∈M . The family {sx}x∈M of geodesic symmetries satisfies

sx ◦ sy = ssx(y) ◦ sx (1)

for all x, y ∈ M , that is, a Riemannian manifold M is a quandle. By generalizing (1)
to (2), we define generalized s-manifolds as follows.

Definition 1. Let M be a smooth manifold and Γ a group. Let {ϕx}x∈M be a family of
group homomorphisms ϕx : Γ→ Diff(M) from Γ to the diffeomorphism group Diff(M)
of M . Then (Γ, {ϕx}x∈M) is called a generalized s-structure on M if it satisfies the
following conditions:

1. For each γ ∈ Γ, the map µγ : M × M → M ; (x, y) 7→ ϕx(γ)(y) is smooth.
(When Γ is a Lie group, µ : Γ×M ×M →M ; (γ, x, y) 7→ ϕx(γ)(y) is smooth.)

2. For each x ∈M , x is an isolated fixed point of the action of ϕx(Γ) on M , i.e.,
x is isolated in F (ϕx(Γ),M) := {y ∈M | ϕx(γ)(y) = y (∀γ ∈ Γ)}.

3. For any x, y ∈M and γ, δ ∈ Γ,

ϕx(γ) ◦ ϕy(δ) ◦ ϕx(γ)−1 = ϕϕx(γ)(y)(γδγ
−1) (2)

holds.

When Γ = Z2, a generalized s-manifold is just a symmetric space in the sense of
Loos and Nagano. More generally, a regular s-manifold is a generalized s-manifold
with Γ = Z, in particular a k-symmetric space is a generalized s-manifold with Γ = Zk
(cf. [2]). A Γ-symmetric space introduced by Lutz [3] is a generalized s-manifold with
a finite abelian group Γ.

Let K be R,C or H. For n, n1, . . . , nr ∈ N satisfying n1 + · · ·+ nr < n, we consider
a flag manifold

Fn1,...,nr(Kn) := {x = (V1, . . . , Vr) | V1 ⊂ · · · ⊂ Vr ⊂ Kn, dimVi = n1 + · · ·+ ni} .

This work was partly supported by the Grant-in-Aid for Science Research (C) No. 17K05223,
JSPS.
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The flag manifold Fn1,...,nr(Kn) has fibrations over Grassmannian manifolds. Symme-
tries of the Grassmannian manifolds induce a Γ-symmetric structure on Fn1,...,nr(Kn)
with Γ = (Z2)r. Furthermore, in [4], by using Γ-symmetric triples, we investigated
Γ-symmetric structures on R-spaces, which is a natural generalization of symmetric R-
spaces. We gave a necessary and sufficient condition for an R-space to admit a natural
Γ-symmetric structure in terms of the root system. Then we classified R-spaces that
admit natural Γ-symmetric structures, when the root system is irreducible.

2 Antipodal sets of generalized s-manifolds

Chen and Nagano [1] studied antipodal sets of compact symmetric spaces. The defini-
tion of antipodal sets of compact symmetric spaces naturally extends to a generalized
s-manifold (M,Γ, {ϕx}x∈M).

Definition 2. A subset A of M is called an antipodal set if ϕx(γ)(y) = y holds for all
x, y ∈ A and γ ∈ Γ, i.e., y ∈ F (ϕx(Γ),M) := {y ∈ M | ϕx(γ)(y) = y (∀γ ∈ Γ)}. An
antipodal set A of M is said to be maximal if A = A′ holds for any antipodal set A′

of M with A ⊂ A′. The supremum of the cardinalities of antipodal sets of M , denoted
by #ΓM , is called the antipodal number of M . An antipodal set A is said to be great
if its cardinality attains #ΓM .

Theorem 1 (Ohno-S.-Terauchi). Any maximal antipodal set of Fn1,...,nr(Kn) with re-
spect to the Γ-symmetric structure with Γ ∼= (Z2)r is congruent to

A ={(〈ei1 , . . . , ein1
〉K, 〈ei1 , . . . , ein1+n2

〉K, . . . , 〈ei1 , . . . , ein1+···+nr
〉K)

| 1 ≤ i1 < · · · < in1 ≤ n, 1 ≤ in1+1 < · · · < in1+n2 ≤ n, . . . ,

1 ≤ in1+···+nr−1+1 < · · · < in1+···+nr ≤ n,

#{i1, . . . , in1+···+nr} = n1 + · · ·+ nr},

where e1, . . . , en is the standard basis of Kn.

Furthermore, in [4], we determined maximal antipodal sets of natural Γ-symmetric
structures on R-spaces. More precisely, an R-space M can be realized as an orbit of the
isotropy representation (s-representation) of a compact symmetric space G/K. Then
any maximal antipodal set of the natural Γ-symmetric structure on M is given as an
orbit of the Weyl group of G/K. Consequently we obtain that the antipodal number of
M is the cardinality of the orbit of the Weyl group, hence it is equal to dimH∗(M ;Z2).
These are generalizations of results on maximal antipodal sets and the two-numbers of
symmetric R-spaces by Tanaka–Tasaki [6] and Takeuchi [5].
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Antipodal sets of generalized s-manifolds

Introduction

Definition

(M, g) : Riemannian symmetric space
def⇐⇒ For each x ∈ M , there exists sx ∈ Isom(M, g) s.t.

1 s2x = idM ,

2 x is isolated in F (sx,M) := {y ∈ M | sx(y) = y}.

e.g. En, Sn, RHn, Gr(Kn), compact Lie groups, ...

E. Cartan classified Riemannian symmetric spaces.

Generalizations:

locally symmetric space ∇R = 0

pseudo-Riemannian symmetric space, affine symmetric space

weakly symmetric space (Selberg)

k-symmetric space, s-manifold (Ledger, Obata, Kowalski, ...)

Γ-symmetric space (Lutz)
Antipodal sets of generalized s-manifolds
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Symmetric space

Definition (Loos, Nagano)

M : symmetric space
def⇐⇒ For each x ∈ M , there exists sx ∈ Diff(M) s.t.

1 µ : M ×M → M ; (x, y) 7→ sx(y) is smooth,

2 s2x = idM ,

3 x is isolated in F (sx,M) := {y ∈ M | sx(y) = y},
4 sx ◦ sy = ssx(y) ◦ sx (∀x, y ∈ M).

e.g.

Euclidean space Rn sx(y) = −y + 2x

sphere Sn ⊂ Rn+1 sx(y) = −y + 2〈x, y〉x

Antipodal sets of generalized s-manifolds

Γ-symmetric spaces

Definition (Lutz)

M : C∞-manifold, Γ : finite abelian group

µ = {µγ : M ×M → M smooth map | γ ∈ Γ}
Γ-symmetric strucure on M

def⇐⇒
1 For each x ∈ M

Γ → Diff(M); γ 7→ γx := µγ(x, ·)
is an injective homomorphism, i.e. Γx := {γx | γ ∈ Γ} ∼= Γ.

2 Every x is isolated in

F (Γx,M) := {y ∈ M | γx(y) = y (∀γ ∈ Γ)}.
3 For all x ∈ M and γ ∈ Γ, γx is an automorphism of µ, i.e.

µδ
(
γx(y), γx(z)

)
= γx

(
µδ(y, z)

)
(∀y, z ∈ M, δ ∈ Γ).

3 ⇐⇒ δγx(y) ◦ γx = γx ◦ δy (∀x, y ∈ M, γ, δ ∈ Γ)

Antipodal sets of generalized s-manifolds
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Generalized s-manifolds

Definition (Ohno-S.)

M : C∞-manifold, Γ : (Lie) group

(Γ, {φx}x∈M ) : generalized s-structure on M
def⇐⇒

1 For each x ∈ M , φx : Γ → Diff(M) is a group

homomorphism.

2 For each γ ∈ Γ, µγ : M ×M → M ; (x, y) 7→ φx(γ)(y) is a

smooth mapping. (In the case where Γ is a Lie group,

µ : Γ×M ×M → M ; (γ, x, y) 7→ φx(γ)(y) is smooth.)

3 x is isolated in

F (φx(Γ),M) := {y ∈ M | φx(γ)(y) = y (∀γ ∈ Γ)}.
4 For ∀x, y ∈ M and ∀γ, δ ∈ Γ

φx(γ) ◦ φy(δ) ◦ φx(γ)
−1 = φφx(γ)(y)(γδγ

−1).

Antipodal sets of generalized s-manifolds

Generalized s-manifolds

For each x ∈ M , Γx := {φx(γ) | γ ∈ Γ} is a subgroup of Diff(M).

We call Γx the symmetric transformation group at x ∈ M .

Remark

Γ = Z2 =⇒ (M,Γ, {φx}x∈M ) is a symmetric space

Γ = Zk =⇒ (M,Γ, {φx}x∈M ) is a k-symmetric space

Γ = Z =⇒ (M,Γ, {φx}x∈M ) is a regular s-manifold

Γ is a finite abelian group

=⇒ (M,Γ, {φx}x∈M ) is a Γ-symmetric space

Antipodal sets of generalized s-manifolds
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Antipodal sets of compact symmetric spaces

M : compact Riemannian symmetric space

Definition (B.-Y. Chen-Nagano)

For x ∈ M , each connected component of the fixed point set

F (sx,M) := {y ∈ M | sx(y) = y}
of sx is called a polar. An isolated polar is called a pole.

Definition (B.-Y. Chen-Nagano)

1 A ⊂ M : antipodal set
def⇐⇒ sx(y) = y for all x, y ∈ A

2 A ⊂ M : maximal antipodal set
def⇐⇒ A′ ⊂ M : antipodal set, A ⊂ A′ =⇒ A = A′

3 #2M := sup{#A | A ⊂ M : antipodal} 2-number

4 A ⊂ M : great antipodal set
def⇐⇒ #A = #2M

Antipodal sets of generalized s-manifolds

Antipodal sets of compact symmetric spaces

Example:

o = 〈e1〉 ∈ RPn

F (so,RPn) = {o} ∪ {x ∈ RPn | x ⊥ o}
∼= {o} ∪ RPn−1

A = {〈ei〉 | i = 1, . . . , n+ 1}

#2RPn = n+ 1 = dimH∗(RPn,Z2)

�����

-

6

e1

e2

en+1Rn+1

Theorem (Takeuchi)

M : symmetric R-space =⇒ #2M = dimH∗(M,Z2)

Antipodal sets of generalized s-manifolds
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Antipodal sets of generalized s-manifolds

(Γ, {φx}x∈M ) : generalized s-structure on M .

Definition

For x ∈ M , a connected component of the fixed point set

F (φx(Γ),M) := {y ∈ M | φx(γ)(y) = y (∀γ ∈ Γ)}
is called a polar. An isolated polar is called a pole.

Definition

1 A ⊂ M : antipodal set
def⇐⇒ φx(γ)(y) = y for all x, y ∈ A and γ ∈ Γ

2 A ⊂ M : maximal antipodal set
def⇐⇒ A′ ⊂ M : antipodal set, A ⊂ A′ =⇒ A = A′

3 #ΓM := sup{#A | A ⊂ M : antipodal} antipodal number

4 A ⊂ M : great antipodal set
def⇐⇒ #A = #ΓM

Antipodal sets of generalized s-manifolds

Flag manifolds

K = R, C or H
n, n1, . . . , nr ∈ N satisfying n1 + · · ·+ nr < n

Fn1,...,nr(Kn) :=

{
x = (V1, . . . , Vr)

∣∣∣∣∣ V1 ⊂ V2 ⊂ · · · ⊂ Vr ⊂ Kn

dimVi = n1 + · · ·+ ni (∀i)

}

For x = (V1, . . . , Vr) ∈ Fn1,...,nr(Kn), define

sVi = 2PVi − idKn : Kn → Kn (i = 1, . . . , r),

where PVi : Kn → Vi is the orthogonal projection. Then

sVi ∈ Diff(M), s2Vi
= idM , sVi ◦ sVj = sVj ◦ sVi .

Hence (Z2)
r ∼= 〈sV1 , . . . sVr〉 ⊂ Diff(M).

Therefore Fn1,...,nr(Kn) is a generalized s-manifold with Γ = (Z2)
r.

Antipodal sets of generalized s-manifolds
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Flag manifolds

Fn1(Kn) Fn1+n2(Kn) Fn1+n2+n3(Kn) Z2

V1 V2 V3

Fn1,n2(Kn) Fn1,n2+n3(Kn) Fn1+n2,n3(Kn) Z2 × Z2

(V1, V2) (V1, V3) (V2, V3)

Fn1,n2,n3(Kn) Z2 × Z2 × Z2

(V1, V2, V3)

?

Q
Q

Q
QQs

�
�

�
��+

Q
Q
Q

QQs

�
�

�
��+ ?

�
�

�	 ?

@
@

@R

Antipodal sets of generalized s-manifolds

Maximal antipodal sets of flag manifolds

Theorem (Ohno-S.-Terauchi)

1 Any maximal antipodal set of Fn1,...,nr(Kn) with respect to

the Γ ∼= (Z2)
r-symmetric structure is congruent to

A ={(〈ei1 , . . . , ein1
〉K, 〈ei1 , . . . , ein1+n2

〉K, . . . , 〈ei1 , . . . , ein1+···+nr
〉K)

| 1 ≤ i1 < · · · < in1 ≤ n, 1 ≤ in1+1 < · · · < in1+n2 ≤ n, . . . ,

1 ≤ in1+···+nr−1+1 < · · · < in1+···+nr ≤ n,

#{i1, . . . , in1+···+nr} = n1 + · · ·+ nr},

where e1, . . . , en is the standard basis of Kn.

2

#Γ(Fn1,...,nr(Kn)) =
n!

n1!n2! · · ·nr!nr+1!

= dimH∗(Fn1,...,nr(Kn);Z2),

where nr+1 := n− (n1 + · · ·nr).
Antipodal sets of generalized s-manifolds
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Kähler C-spaces

G : compact connected semisimple Lie group

x0(6= 0) ∈ g

M := Ad(G)x0 ⊂ g : Kähler C-space

∼= G/Gx0

Gx0 := {g ∈ G | Ad(g)x0 = x0}

Z(Gx0) := {g ∈ Gx0 | gh = hg (∀h ∈ Gx0)}

For each x = Ad(gx)x0 ∈ M and γ ∈ Γ, define

φx(γ) : M → M ; y 7→ Ad(gxγg
−1
x )y,

φx : Γ → Diff(G/K); γ → φx(γ).

Then (Γ, {φx}x∈M ) is a G-equivariant generalized s-structure.

Moreover M has k-symmetric structures for ∀k ≥ ∃k0,
i.e. generalized s-structures with Γ ∼= Zk.

Antipodal sets of generalized s-manifolds

Maximal antipodal sets of Kähler C-spaces

M = Ad(G)x0 : a Kähler C-space with Γ = Z(Gx0)

Proposition (Ikawa-Iriyeh-Okuda-S.-Tasaki)

1 For x, y ∈ M

y is antipodal to x ⇐⇒ [x, y] = 0

2 A ⊂ M : maximal antipodal set

=⇒ ∃t ⊂ g : maximal abelian subalgebra

s.t. A = M ∩ t.

Hence A is an orbit of the Weyl group of g with respect to t.

In particular, any maximal antipodal sets of M are congruent

with each other by G.

Antipodal sets of generalized s-manifolds
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Generalized s-structures on complex flag manifolds

Fn1,...,nk
(Cn) is realized as an adjoint orbit of G = SU(n):

Fn1,...,nr(Cn) ∼= SU(n)/S(U(n1)× · · · ×U(nr+1)) = G/Gx0

Observation

1 Fn1,...,nr(Cn) admits Γ-symmetric structures with

Γ = (Z2)
r, Γ = Zk (k ≥ k0), Γ = Z(Gx0).

2 Maximal antipodal sets of Fn1,...,nr(Cn) for these three

generalized s-structures coincide, that is an orbit of the Weyl

group of SU(n).

Antipodal sets of generalized s-manifolds

Compact symmetric triads

(G,K1,K2) : compact symmetric triad

i.e. (G,K1, σ1), (G,K2, σ2) : compact symmetric pairs

Γ := 〈σ1, σ2〉 ⊂ Aut(G)

G

?
π

G/(K1 ∩K2) Γ-symmetric space

�
�	

@
@R

π1 π2

G/K1 G/K2

σ1 = σ2 =⇒ Γ ∼= Z2

σ1 6= σ2, σ1σ2 = σ2σ1 =⇒ Γ ∼= Z2 × Z2

σ1σ2 6= σ2σ1 =⇒ Γ = 〈σ1, σ2〉 is a non-abelian group

Antipodal sets of generalized s-manifolds
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Γ-symmetric triples

Definition (Lutz, Goze-Remm, Ohno-S.-Terauchi)

(G,K,Γ) : Γ-symmetric triple
def⇐⇒ G : connected Lie group

Γ ⊂ Aut(G) : finite subgroup

K ⊂ G : closed subgroup s.t

F (Γ, G)0 ⊂ K ⊂ F (Γ, G),

where F (Γ, G) := {g ∈ G | γ(g) = g (∀γ ∈ Γ)}.

(G,K,Γ) : Γ-symmetric triple

For each x = gxK ∈ G/K and γ ∈ Γ, define

φx(γ) : G/K → G/K; gK 7→ gxγ(g
−1
x g)K,

φx : Γ → Diff(G/K); γ → φx(γ).

Then (Γ, {φx}x∈G/K) is a G-equivariant generalized s-structure

on G/K.

Antipodal sets of generalized s-manifolds

Natural Γ-symmetric structures on R-spaces

P = G/K : simply-connected compact symmetric space

where G := Isom(P )0

g = k⊕ p

a ⊂ p : maximal abelian subalgebra

R ⊂ a∗ : root system of (G,K) with respect to a

Σ := {α1, . . . , αr} : simple roots of R
{ξ1, . . . , ξr} : basis of a dual to Σ

For j ∈ {1, . . . , r}, define

gi := exp(πξi) ∈ G, and γi := IntG(gi)
∣∣
K

∈ Aut(K).

Note γiγi = idK , γi 6= idK , γiγj = γjγi for all i, j ∈ {1, . . . , r},
hence (Z2)

r ∼= 〈γi : i = 1, . . . , r〉 ⊂ Aut(K).
Antipodal sets of generalized s-manifolds
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Natural Γ-symmetric structures on R-spaces

For I ⊂ Ireg := {1, . . . , r}, define ξI :=
∑
i∈I

ξi and

XI := AdG(K)ξI ⊂ p R-space

XI
∼= K/HI where HI = {k ∈ K | AdG(k)ξI = ξI}.

Every R-space in p is equivariantly isomorphic to XI for some

I ⊂ Ireg.

Lemma

Let ∅ 6= Ĩ ⊂ I ⊂ Ireg = {1, . . . , r}, then HI ⊂ HĨ .

Therefore the choice of I ⊂ Ireg gives a stratification of orbit types.

Antipodal sets of generalized s-manifolds

Natural Γ-symmetric structures on R-spaces

ΓI = 〈γi : i ∈ I〉 ⊂ Aut(K)

∼= (Z2)
|I|

A non-empty subset I of Ireg = {1, . . . , r} is called admissible if

(K,HI ,Γ
I) is a ΓI -symmetric triple, that is, if

F (ΓI ,K)0 ⊂ HI ⊂ F (ΓI ,K).

Then ΓI induces a ΓI -symmetric structure on XI
∼= K/HI .

Theorem (Quast-S.)

I ⊂ Ireg = {1, . . . , r} is admissible

⇐⇒ for all α =
r∑

i=1
cαi αi ∈ R+(

∀i ∈ I : cαi even
)

=⇒
(
∀i ∈ I : cαi = 0

)
.

Antipodal sets of generalized s-manifolds
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Extrinsically Γ-symmetric spaces

Assume that I ⊂ Ireg is admissible.

Then K/HI
∼= XI = Ad(K)ξI has a ΓI -symmetric structure.

K/HI → XI := AdG(K)ξI ; kHI 7→ AdG(k)ξI

γiξI (AdG(k)ξI) = AdG(gi)AdG(k)ξI .

γiξI extends to the linear endomorphism AdG(gi)|p of p,

ΓI
ξI

= 〈γiξI : i ∈ I〉 ∼= 〈AdG(gi)|p : i ∈ I〉 ⊂ End(p)

F (ΓI
ξI
, p) = {Y ∈ p | [Y, ξI ] = 0} = T⊥

ξi
XI

Hnece XI can be considered as an extrinsically Γ-symmetric

space.

Antipodal sets of generalized s-manifolds

Maximal antipodal sets of natural Γ-structures on R-spaces

Let I be an admissible subset of Ireg = {1, . . . , r}.

K/HI → XI := AdG(K)ξI ; kHI 7→ AdG(k)ξI

ΓI -symmetric structure on K/HI can be transfered to XI as

γiξI (AdG(k)ξI) = AdG(gi)AdG(k)ξI .

Hence γiξI extends to the linear endomorphism AdG(gi)|p of p.

F (ΓI
ξI
, p) = {Y ∈ p | [Y, ξI ] = 0}

Theorem (Quast-S.)

For each antipodal subset A of XI , there exists some maximal

abelian subspace a′ in p such that

A = XI ∩ a′ = W (P, a′)ξI ,

where W (P, a′) is the Weyl group of (G,K) with respect to a′.

Any two maximal antipodal subsets of XI are conjugate by K.

Antipodal sets of generalized s-manifolds
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Maximal antipodal sets of natural Γ-structures on R-spaces

Corollary

Let A be a maximal antipodal subset of XI . Then

#Γ(XI) = |A| =
∣∣W (P, a′)ξI

∣∣ = dimH∗(XI ,Z2).

Antipodal sets of generalized s-manifolds

Further problems

1 Classify Γ-symmetric spaces and generalized s-manifolds.

2 Determine maximal antipodal sets and antipodal numbers of

generalized s-manifolds.

3 Study geometric meaning of the antipodal numbers of

generalized s-manifolds, in particular, a relationship with its

topology.

Thank you very much for your attention!
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Higher dimensional generalization of

the Chiang Lagrangian
and totally complex submanifolds

Jong Taek Cho, Kaname Hashimoto∗, Yoshihiro Ohnita

Abstract. We will discuss a higher dimensional generalization of Chiang’s La-
grangian submanifold in CP 3 from the viewpoint of totally complex submanifolds
of HPn.

1 The Chiang Lagrangian

The Chiang Lagrangian is a compact embedded minimal Lagrangian submanifold L3 of
CP 3 given as an SU(2)-orbit by the moment map method (R. Chiang [1]). It is known
to be a non-symmetric homogeneous space and a strictly Hamiltonian stable with non-
parallel second fundamental form ([3], [5]), and so on ([6], [4]). The Chiang Lagrangian
L3 is envolved with several nice structures illustrated in the following diagram:

H2 ⋃

π−1(RP 2)⋃

SO(4)/O(2)

S7(1) CiP
3

L̃3 = π−1
j (CP 1)

SU(2)/Z3

S3/Z3

L3 = πi(L̃)

CjP
3 S4(1)= HP 1

CP 1Ñ2 = RP 2 = N2

πi

Z4

pj

Veronese
min. surf.

hor. holom.

Z2

πj

pi

π
S3

S3

π

Here H = R1+Ri+Rj+Rk is the quaternion number field with quaternionic imaginary
units {i, j, k} and Hn+1 is considered as an (n+1)-dimensional quaternionic vecter space
with the rightmultiplication of quaternionic numbers.

2 Totally complex submanifolds and R-spaces

We use the concept of “totally complex submanifolds” of a quaternionic projective space
HP n (e.g. [7]) in order to generalize the above diagram into the higher dimensional
setting. A submanifold of HP n is called a totally complex submanifold if N can be

∗the presenter
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locally lifted to a twistor space CP 2n+1 over HP n as a complex Legendrian submanifold.
We have dimRN ≤ 2n. If dimR = 2n, then N is said to be of maximal dimension.

Main Theorem 1. The above diagram can be generalized into higher dimensions as
follows:

Hn+1⋃
N̂ = π−1(N)⋃

S4n+3(1) CiP
2n+1

L̃2n+1 = π−1
j (Ñ) L2n+1 = πi(L̃)

CjP
2n+1 HP n

Ñn N2n

πi

min. Lag.

min. Leg.
pj

tot. cplx.cplx. Leg.

πj

pi

π
S3

S3

π

Totally complex submanifolds of HP n with parallel second fundamental form have
been classified by Kazumi Tsukada [7].

Theorem 1 (Tsukada [7]). Any n-dimensional totally complex submanifold Ñ in HP n

with parallel second fundamental form is locally congruent to one of canonically im-
mersed totally complex submanifolds:

(0) CP 1 −→ RP 2 ⊂ S4 = HP 1 (Veronese min surf.),

(1) CP n ⊂ HP n (totally geodesic),

(2) Sp(3)/U(3) −→ HP 6,

(3) SU(6)/S(U(3)× U(3)) −→ HP 9,

(4) SO(12)/U(6) −→ HP 15,

(5) E7/E6 · T 1 −→ HP 27,

(6) CP 1(c̃)× CP 1(c̃/2) −→ HP 2,

(7) CP 1(c̃)× CP 1(c̃)× CP 1(c̃) −→ HP 3,

(8) CP 1(c̃)× SO(n+ 1)

SO(2)× SO(n− 1)
−→ HP n (n ≥ 4).

An R-space is a compact homogeneous space obtained as an orbit of the isotropy
representation of a Riemannian symmetric space, i.e. a so-called s-representaion. Olmos-
Sánchez [8] showed the differential geometric characterization of R-spaces by means of
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the parallelism of the second fundamental form with respect to a canonical connec-
tion. By constructing explicitly such a canonical connection on the inverse image
N̂ = π−1(N), we can obtain the following theorem.

Main Theorem 2. Assume that N is a 2n-dimensional totally complex submanifold
of HP n with parallel second fundamental form. Then its inverse image N̂ = π−1(N) ⊂
S4n+3(1) ⊂ Hn+1 is a standardly embedded R-space associated to a quaternion-Kähler
symmetric pair (G,K).

totally cplx. imm. Ñ q. K. symm. sp. G/K Π(G,K)

HP 1 CP 1 G2

(Sp(1)× Sp(1))/Z2

G2

HP n CP n (totally geodesic)
SU(n+ 3)

S(U(2)× U(n+ 1))
B2

HP 6 Sp(3)

U(3)

F4

(Sp(3)× Sp(1))/Z2

F4

HP 9 SU(6)

S(U(3)× U(3))

E6

(SU(6)× Sp(1))/Z2

F4

HP 15 SO(12)

U(6)

E7

(Spin(12)× SU(2))/Z2

F4

HP 27 E7

(U(1)× E6)/Z3

E8

(E7 × SU(2))/Z2

F4

HP 2 CP 1(c̃)× CP 1(c̃/2)
SO(7)

SO(4)× SO(3)
(n = 2) B3

HP 3 CP 1(c̃)× CP 1(c̃)× CP 1(c̃)
SO(8)

SO(4)× SO(4)
(n = 3) D4

HP n CP 1(c̃)× SO(n+ 1)

SO(2)× SO(n− 1)

SO(n+ 5)

SO(4)× SO(n+ 1)
(n ≥ 4) B4

Here Π(G,K) denotes the Dynkin diagram of the restricted root systems of symmetric
pair (G,K).

It gives a new proof of Theorem 1 different from [7].

In the case when G/K =
G2

(Sp(1)× Sp(1))/Z2

, we have n = 1, N2 is a Veronese

minimal surface of HP 1 = S4 and L3 = πi(L̃) is nothing but the Chiang Lagrangian in
CP 3.
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R. Chiang Lagrangian submanifolds

Definition (IMRN, 2004)

The Chiang Lagrangian submanifold L3 ⊂ CP 3 is defined by

L3 :=

{
[z0 : z1 : z2 : z3] ∈ CP 3

∣∣∣∣ 3|z0|2 + |z1|2 − |z2|2 − 3|z3|2 = 0

z0z̄1 + z1z̄2 + z2z̄3 = 0

}

minimal Lagrangian SU(2) orbit L3 = ρ(SU(2))[1 : 0 : 0 : 1].

conn. cpt. embedded minimal Lagranagian submanifold in CP 3.

L3 does not possess parallel second fundamental forms. ∇∗αN ̸= 0

Homogeneous space but not symmetric space.

Curvature characterization
(B. Y. Chen, Dillen, Verstraelen, Vrancken, Bolton, 1996)

Strictly Hamiltonian stable (Ohnita, Bedulli-Gori, 2007)

Floer homology (Evans-Lekili, 2015), min.Maslov number of L3 = 2
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H = R+ Ri + Rj + Rk

Ci := R+ iR ⊂ H, Cj := R+ jR ⊂ H

We consider the following diagram:

H2⋃
S7(1)

CjP
3 CiP

3

S4(1)

πj πi

pj pi

π S3

H2 ⋃

π−1(RP 2)⋃

SO(4)/O(2)

S7(1) CiP
3

L̃3 = π−1
j (CP 1)

SU(2)/Z3

S3/Z3

L3 = πi(L̃)

CjP
3 S4(1)= HP 1

CP 1Ñ2 = RP 2 = N2

πi

Z4

pj

Veronese
min. surf.

hor. holom.

Z2

πj

pi
π

S3

S3

π

• CP 1 → CjP
3 : Veronese embedding of degree 3.

• L̃3 ⊂ S7(1) : minimal Legendrian submanifold embedded in S7(1)
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Higher dimensional generalization

Let Hn+1 ∼= R4n+4 be an (n+ 1)-dimensional quaternionic vector space
with right multiplications by i, j, k. We consider the following standard
fibrations:

Hn+1⋃
S4n+1(1)

CjP
2n+1 CiP

2n+1

HPn

πj

S1

πi

S1

pj

S2

pi

S2

π S3

Then CjP
2n+1 has the standard complex contact structure and the

holomorphic contact 1-form on CjP
2n+1.

Suppose that Ñ → CjP
2n+1 is a horizontal holomorphic immersion of an

n-dimensional complex manifolds Ñ , that is, a complex Legendrian
submanifold of CjP

2n+1.

Hn+1⋃
S4n+1(1)

Ñ CjP
2n+1 CiP

2n+1

HPn

πj

S1

πi

S1

pj

S2

pi

S2

π S3

cplx. Leg.
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Totally complex submanifold

Let (M4n, g,Q) be a quaternionic Kähler manifold. g is the Riemannian
metric on M and Q is a rank 3 subbundle of End TM which satisfies the
following conditions:
For each p ∈ M , there is a neighborhood U of p over which there exists a
local frame field {I, J,K} of Q satisfying

I2 = J2 = K2 = −id,

IJ = −JI = K,JK = −KJ = I,KI = −IK = J.

Definition

A submanifold N2k ⊂ (M4n, g,Q) (k ≤ n) is said to be totally complex
if, for every p ∈ N , there exists an open neighborhood U of q in N and
sections J of Q|U such that the following properties hold:
(1) J(TU) = TU ,
(2) J2 = −id,
(3) I(TqN) ⊆ T⊥

q N for every q ∈ U and I ∈ Qq such that JqI = −IJq,
(4) ∇J = 0.

⇐⇒ N has cplx. Leg. submanifolds to twister spase Z.

A horizontal holomorphic map Ñ → CjP
2n+1 of n-dimensional complex

manifold Ñ corresponds to a maximal dimensional totally complex
immersion Ñ → HPn.

Hn+1⋃

S4n+3(1) CiP
2n+1

L̃ = π−1
j (Ñ) L = πi(L̃)

CjP
2n+1 HPn

Ñn N2n

πi

min. Lag.min. Leg

covering

tot. cplx.cplx. Leg.

πj π

Submanifolds of Symmetric Spaces and Their Time Evolutions 69



Theorem

Hn+1⋃
N̂ = π−1(N)⋃

S4n+3(1) CiP
2n+1

L̃2n+1 = π−1
j (Ñ) L2n+1 = πi(L̃)

CjP
2n+1 HPn

Ñn N2n

πi

min. Lag.
min. Leg.

pj

tot. cplx.cplx. Leg.

πj

pi
π

S3

S3

π

We use the standard Riemannian fibration πi. Then L̃2n+1 → S4n+3(1)
is a minimal Legendrian immersion relative to I.
Therefore, L̃2n+1 → CiP

2n+1 is a minimal Lagrangian immersion relative
to J , which has the S1-action induced by the orthogonal complex
structure I.

Hn+1⋃

S4n+3(1) CiP
2n+1

L̃2n+1 = π−1
j (Ñ) L2n+1 = πi(L̃)

HPn

πi

min. Lag.
min. Leg.

covering

π
S3
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Theorem (Tsukada, 1985)

Any n-dimensional totally complex submanifold Ñ in HPn with parallel
second fundamental form is locally congruent to one of the following
immersed totally complex submanifolds:

(0) CP 1 −→ RP 2 ⊂ S4 = HP 1 Veronese min surf.

(1) CPn ⊂ HPn totally geodesic

(2) Sp(3)/U(3) −→ HP 6

(3) SU(6)/S(U(3)× U(3)) −→ HP 9

(4) SO(12)/U(6) −→ HP 15

(5) E7/((U(1)× E6)/Z3) −→ HP 27

(6) CP 1(c̃)× CP 1(c̃/2) −→ HP 2

(7) CP 1(c̃)× CP 1(c̃)× CP 1(c̃) −→ HP 3

(8) CP 1(c̃)× SO(n+ 1)

SO(2)× SO(n− 1)
−→ HPn (n ≥ 4)

All of those totally complex submanifolds are obtained from the follwing
compact homogeneous complex Legendrian submanifolds embedded in
CP 2n+1.

(1) CPn ⊂ CP 2n+1

(2) Sp(3)/U(3) −→ CP 13

(3) SU(6)/S(U(3)× U(3)) −→ CP 19

(4) SO(12)/U(6) −→ CP 31

(5) E7/(U(1)× E6)/Z3 −→ CP 55

(6) CP 1(c̃)× CP 1(c̃/2) −→ CP 5

(7) CP 1(c̃)× CP 1(c̃)× CP 1(c̃) −→ CP 7

(8) CP 1(c̃)× SO(n+ 1)

SO(2)× SO(n− 1)
= CP 1(c̃)×Qn−1(C) −→ CP 2n+1

(n ≥ 4)
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Quaternionic Symmetric space

A Riemannian manifold M is called a quaternionic symmetric space if M
satisfies the following conditions:
(i) M is a quaternionic Kähler manifold with quaternionic structure Q.
(ii) M is a symmetric space.
(iii) Qp is contained in the linear holonomy group for some point p in M .

G K dimM = G/K

Sp(n+ 1) Sp(n)× Sp(1) 4n

SU(n+ 3) S(U((n+ 1)× U(2)) 4n

SO(n+ 5) SO(n+ 1)× SO(4) 4n

G2 (Sp(1)× Sp(1))/Z2 8

F4 (Sp(3)× Sp(1))/Z2 28

E6 (SU(6)× SU(2))/Z2 40

E7 (Spin(12)× SU(2))/Z2 64

E8 (E7 × SU(2))/Z2 112

Theorem

Suppose that N2n ⊂ HPn is a totally complex submanifold with
∇∗αN = 0.
Then its inverse image N̂2n+3 = π−1(N) ⊂ S4n+3 is an “R-space”

associated to a quaternionic symmetric space G/K with ∇∗αN̂ ̸= 0.

N̂ = π−1(N) ⊂ S4n+3 is a singular orbit of a quaternionic
symmetric space G/K.

N̂ = π−1(N)

S4n+3(1) CiP
2n+1

CjP
2n+1 HPn

N2n

πi

pj

tot. cplx.

πj

pi
π

S3

S3

π
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Definition

Let (M, g) be a Riemannian manifold and ∇ Levi-Civita connection of g.
A linear connection ∇c on M is called a canonical connection if it
satisfies:
(1) ∇cg = 0,

(2) ∇cD = 0,

where D := ∇−∇c.

Theorem (Olmos-Sánchez, 1991)

Let M be a connected compact Riemannian submanifold of Rn and let α
be its second fundamental form. Then the following three statements are
equivalent:

(1) M admits a canonical connection ∇c satisfyin ∇cα = 0.

(2) M is a homogeneous submanifold with constant principal curvatures.

(3) M is a standard embedding of an R-space.

On N̂ = π−1(N), there exist ∇c := ∇−D such that

∇cαN̂ = 0, ∇cD = 0.

From Olmos-Sánchez’s result we obtain that N̂ is an R-space associated
to a quaternionic symmetric space G/K.

We can explicitly construct a tensor field D of type (1, 2) on N̂ .
Suppose that N is a totally complex submanifold of HPn.
For each x ∈ N̂ , INπ(x), J

N
π(x),K

N
π(x) ∈ CjP

2n+1 satisfies

INπ(x)(Tπ(x)N) ⊥ Tπ(x)N, JN
π(x)(Tπ(x)N) = Tπ(x)N, KN

π(x) ⊥ Tπ(x)N.

There are λ1(x), λ2(x), λ3(x) ∈ Sp(1) such that

INπ(x)(x) = xλ1(x), JN
π(x)(x) = xλ2(x), KN

π(x)(x) = xλ3(x).
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We define a tensor field D of type (1, 2) as follow:

At x ∈ N̂ , for each X, Y ∈ Tπ(x)N , V ∈ VxN̂ , v1, v2, v3 ∈ R,

•DX̃(Ỹ ) = ⟨ ˜(JN
π(x)X), Ỹ ⟩JN

π(x)(x) = gN (JN
π(x)X,Y )JN

π(x)(x) ∈ VxN̂ ,

•DX̃(V ) = v2X̃λ2(x) = −v2
˜(JN
π(x)X) ∈ HxN̂ (∀V = x

(
3∑

a=1

vaλa(x)

)
),

•DV (X̃) =
v2
2
X̃λ2(x) = −v2

2
˜(JN
π(x)X) ∈ HxN̂ (∀V = x

(
3∑

a=1

vaλa(x)

)
),

•DU (V ) = x

{
(v2u3 +

1

2
v3u2)λ1(x) + (v3u1 − v1u3)λ2(x)

+ (−1

2
v1u2 − v2u1)λ3(x)

}

= x

∣∣∣∣∣∣∣
v1 v2 v3

u1 −1

2
u2 u3

λ1(x) λ2(x) λ3(x)

∣∣∣∣∣∣∣ ∈ VxN̂ .

Here note that

˜(JN
π(x)X)

x
= (JN

π(x)X)(x) = −(X̃)xλ2(x).

For each w1, w2, w3 ∈ TN̂

Lemma

gN̂ (Dw2 , w3) + gN̂ (w2, Dw1w3) = 0 i.e. ∇cg = 0

∇N̂D = D ·D i.e. ∇cD = 0

Lemma
Suppose that N is a 2n-dimensional totally complex submanifold of HPn

with parallel second fundamental form. Then the second fundamental

form αN̂ of N̂ satisfies the equation

∇∗
w1

αN̂ (w2, w3) + αN̂ (Dw1
w2, w3) + αN̂ (w2, Dw1

w3) = 0.

i.e. ∇cαN̂ = 0
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totally cplx. imm. Ñ q. symm. sp. G/K

CP 1 G2

(Sp(1)× Sp(1))/Z2

CPn SU(n+ 1)

S(U(2)× U(n))

Sp(3)

U(3)

F4

(Sp(3)× Sp(1))/Z2

SU(6)

S(U(3)× U(3))

E6

(SU(6)× Sp(1))/Z2

SO(12)

U(6)
　

E7

(Spin(12)× SU(2))/Z2

E7

(U(1)× E6)/Z3

E8

(E7 × SU(2))/Z2

CP 1(c̃)× CP 1(c̃/2)
SO(7)

SO(4)× SO(3)
(n = 2)

CP 1(c̃)× CP 1(c̃)× CP 1(c̃)
SO(8)

SO(4)× SO(4)
(n = 3)

CP 1(c̃)× SO(n+ 1)

SO(2)× SO(n− 1)

SO(n+ 5)

SO(4)× SO(n+ 1)
(n ≥ 4)

(G,K) = (G2, SO(4))

In this case we obtain the Chiang Lag submfd as L3 = πi(π
−1
j (Ñ)).

g2 = so(4)⊕ p

∼ =

H2 ⋃

π−1(RP 2)⋃

SO(4)/O(2)

S7(1) CiP
3

L̃3 = π−1
j (CP 1) L3 = πi(L̃)

CjP
3 S4(1)= HP 1

CP 1Ñ2 = RP 2 = N2

πi

Z4

pj

tot. cplx.cplx. Leg.

Z2

πj

pi
π

S3

S3

π
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Thank you very much for your kind attention!!
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Minimal PF submanifolds in Hilbert spaces
with symmetries

Masahiro Morimoto

There are several kinds of minimal submanifolds which have certain symmetries. A
submanifold M of a Riemannian manifold N is called austere ([1]) if for each normal
vector ξ the eigenvalues with multiplicities of the shape operator Aξ is invariant under
the multiplication by (−1). M is called reflective ([3]) if it is a connected component of
the fixed point set of an involutive isometry of N . M is called weakly reflective ([2]) if
for each normal vector ξ at each p ∈M there exists an isometry νξ of N satisfying the
conditions νξ(p) = p, dνξ(ξ) = −ξ and νξ(M) = M . From these definitions we have

reflective ⇒ weakly reflective ⇒ austere ⇒ minimal.

It is an interesting problem to classify or give examples of these minimal submanifolds.
A fundamental class of submanifolds in Hilbert spaces is given by proper Fredholm

(PF) submanifolds in Hilbert spaces ([6]). Roughly speaking they are submanifolds
in Hilbert spaces where the shape operators are compact operators and the distance
functions are compatible with the Palais-Smale condition. Many examples of PF sub-
manifolds are obtained through a Riemannian submersion ΦK : Vg → G/K which is
called the parallel transport map ([7]). Here G/K is a compact normal homogeneous
space and Vg := L2([0, 1], g) the Hilbert space of all L2-paths with values in the Lie
algebra g of G. It is known that if M is a compact submanifold of G/K then the
inverse image Φ−1

K (M) is a PF submanifold of Vg.
In my talk I will introduced the concept of reflective submanifolds, weakly reflective

submanifolds and austere submanifolds into the class of PF submanifolds in Hilbert
spaces and show that under suitable condition if M is a weakly reflective submanifold
of G/K then the inverse image Φ−1

K (M) is a weakly reflective PF submanifold of Vg.
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Minimal PF submanifolds in Hilbert spaces
with symmetries

Masahiro Morimoto
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Submanifolds of Symmetric Space and Their Time Evolution
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Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Overview

M ↪→ En

submanifold Euclidean sp.

f
⇝

M ↪→ N
submanifold Riemannian mfd

(finite dim)�� ��minimal submanifold with symmetry

• reflective submanifold
• weakly reflective submanifold
• austere submanifold

M ↪→ V
submanifold Hilbert sp.

(infinite dim)

we define and study
• reflective submanifold

−→ • weakly reflective submanifold
• austere submanifold
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Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Plan

1 Minimal submanifolds with symmetries

2 Submanifolds in Hilbert spaces

3 The parallel transport map

4 Submanifold geometries via the parallel transport map

5 Minimal PF submanifolds with symmetries

6 Symmetric properties
via the parallel transport map (: Main results)

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 1 - Minimal submanifolds with symmetries (1/4)

Definition (Harvey-Lawson 1982)
Let

M ↪→ N
submanifold Riem. manifold.

M is austere

⇔
def
∀p ∈ M, ∀ξ ∈ T⊥p M, the eigenvalues (with multiplicities)

of the shape operator AM
ξ is invariant under the multiplication by (−1).

Proposition
austere =⇒ minimal

Problem
Classify (or, find examples of) austere submanifolds.
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Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 1 - Minimal submanifolds with symmetries (2/4)

Theorem (F. Podestà 1997)
G: Lie group, N: Riemannian manifold.
Suppose G↷ N: isometric action of cohomogeneity one.

(i.e. codim (principal G-orbit) = 1).
⇒ any singular (i.e. non-principal) G-orbit is an austere submanifold of N.

Note
More precisely, Podestà proved that any singular G-orbit M satisfies:
∀p ∈ M, ∀ξ ∈ T⊥p M, there exists νξ ∈ Isom(N) satisfying

νξ(p) = p, νξ(M) = M, dνξ(ξ) = −ξ.

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 1 - Minimal submanifolds with symmetries (3/4)

Definition (Ikawa-Sakai-Tasaki 2009)
Let M ↪→ N

submanifold Riem. manifold.

M is weakly reflective

⇔
def
∀p ∈ M, ∀ξ ∈ T⊥p M, there exists νξ ∈ Isom(N) satisfying

νξ(p) = p, νξ(M) = M, dνξ(ξ) = −ξ.

Proposition (Ikawa-Sakai-Tasaki 2009)
reflective ⇒ weakly reflective ⇒ austere ⇒ minimal

(D.S. Leung 1973)

Problem
Classify (or, find examples of) weakly reflective submanifolds.

82 OCAMI Reports Vol. 2 (2021)



Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 1 - Minimal submanifolds with symmetries (4/4)

Study on weakly reflective submanifolds
Ikawa-Sakai-Tasaki (2009) classified weakly reflective submanifolds
and austere submanifolds which are orbits of s-representations.

Ohno (2016) gave examples of weakly reflective submanifolds which
are orbits of Hermann actions K2 ↷ G/K1.

Enoyoshi (2018) showed that there exists unique weakly reflective
principal orbits in the cohomogeneity one action G2 ↷ G̃r3(ImO)

Note
All known examples of weakly reflective submanifolds are homogeneous.

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 2 - Submanifolds in Hilbert spaces (1/6)

Basic Setting
Suppose: ∀p ∈ M, TpM is a closed subsp. of V. (⇝ T⊥M)

smooth immersion
M ↪→ V

Hilbert manifold separable Hilbert sp.
g f 〈·, ·〉

Riem. metric inner product⇝ ⇝

∇ D
Levi-Civita conn. Levi-Civita conn.

second fundm. form α，shape op. A，normal conn.∇⊥ is defined:{
� Gauss formula. DXY = ∇XY + α(X,Y), X,Y ∈ Γ(T M).
� Weingarten formula DXξ = −AξX + ∇⊥Xξ, ξ ∈ Γ(T⊥M).

Difficulty: Spectral theory of shape op. Aξ : TpM → TpM.
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Sec. 2 - Submanifolds in Hilbert spaces (2/6)

Suppose (C.-L. Terng 1989)
M has finite codimension in V.
The end point map Y : T⊥M → V, (p, ξ) 7→ p + ξ

satisfies: ∀r > 0, restriction to Dr (: normal disc bdl of radius r)
Y |Dr : Dr → V

is proper and Fredholm (i.e. differential is a Fredholm op.)．
Then M is called a proper Fredholm submanifold (PF submanifold).

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 2 - Submanifolds in Hilbert spaces (3/6)

Example
If V = En then
M ↪→ En is PF ⇔ immersion M ↪→ En is proper.

If dim V = ∞, then the unit sphere if V is not PF.

Every affine subspace of a Hilbert space V is PF.

Every orbit of the gauge transformations is PF. (page 6/6)
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Sec. 2 - Submanifolds in Hilbert spaces (4/6)

Proposition (C.-L. Terng 1989)
If M is a PF submanifold of V, then

(1) the shape operator Aξ : TpM → TpM is a self-adjoint compact op.
(2) for each u ∈ V, the function fu : M → R, p 7→ ‖p − u‖2

satisfies Condition C (Palais-Smale 1960s).

Remark
Aξ : TpM → TpM real eigenvalues

µ1 < µ2 < · · ·︸          ︷︷          ︸ < 0 < · · · < λ2 < λ1︸          ︷︷          ︸
finite multip. finite multip

These are called the principal curvatures of M in direction ξ.

the shape op. Aξ : TpM → TpM is not of trace class in general
(There is no natural definition for the mean curvature.)

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 2 - Submanifolds in Hilbert spaces (5/6)

Definition (King-Terng 1993, Heintze-Liu-Olmos 2006, Koike 2002)

M: PF submanifold，ξ ∈ T⊥M，Aξ : TpM → TpM: shape operator.
� µ1 ≤ µ2 ≤ · · · < 0 < · · · ≤ λ2 ≤ λ1: eigenvalues of Aξ
� {κk}∞k=1: distinct eigenvalues of Aξ s.t. |κk|>|κk+1| or κk = −κk+1．

(1) ζ-regularized mean curvature trζ Aξ := lims↘1(
∑∞

k=1 λ
s
k −
∑∞

k=1 |µi|s)
(2) regularized mean curvature trr Aξ :=

∑∞
k=1(λk + µk)

(3) formal mean curvature tr f Aξ :=
∑∞

k=1 multip(κk)κk

(1) M is ζ-minimal ⇔
def
∀ξ ∈ T⊥M, trζ Aξ = 0

(2) M is r-minimal ⇔
def
∀ξ ∈ T⊥M, trr Aξ = 0 (and tr A2 < ∞)

(3) M is f -minimal ⇔
def
∀ξ ∈ T⊥M, tr f Aξ = 0
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Sec. 2 - Submanifolds in Hilbert spaces (6/6)

Example (Terng 1989, Pinkall-Thorbergsson 1990, Terng 1995)

: orbits of the gauge transformations．
G: conn. compact Lie group with bi-inv. Riem met., g: its Lie alg.
P→ [0, 1]: trivial principal G-bundle ( i.e. P := [0, 1] ×G)．

(transitive)(gauge transf. gp) (connections of P)gauge transf.
G := H1([0, 1],G) ↷ Vg := L2([0, 1], g)

path group path sp.
(Hilbert Lie group) (Hilbert sp.)

g ∗ u:=gug−1 − g′g−1

(g ∈ G, u ∈ Vg)∪ =

subgroup P(G,H) ↷ Vg := L2([0, 1], g)

=
: ∪

{g ∈ G | (g(0), g(1)) ∈ H} P(G,H)-orbit
↑

(∀H: closed subgp of G ×G) PF submanifold !

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 3 - The parallel transport map (1/5)

Setting
G: conn. compact Lie group with bi-invariant Riem met., g: its Lie algebra.
G := H1([0, 1],G) : path group of all Sobolev H1-paths from [0, 1] to G.
Vg := L2([0, 1], g): path space of all L2-paths from [0, 1] to g.

Definition (Terng 1995, Terng-Thorbergsson 1995)
The parallel transport map is defined by

Φ : Vg → G

∈ ∈

u 7→ Φ(u)
def
:= gu(1).

Here, gu ∈ G is defined by the ODE
{

g−1
u g′u = u,

gu(0) = e ∈ G.
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Sec. 3 - The parallel transport map (2/5)

Definition
Define the map Ψ : G → G ×G by Ψ(g) := (g(0), g(1)) for g ∈ G.

Proposition (Terng 1995)
The parallel transport map Φ : Vg → G is equivariant with respect to Ψ.
That is, the following diagram commutes:

gauge transformation
g ∗ u := gug−1 − g′g−1

G ↷ Vg

Ψ ↓ Φ ↓
G ×G ↷ G

(b1, b2) · a := b1ab−1
2

isometric action
That is, Φ(g ∗ u) = Ψ(g) · Φ(u).

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 3 - The parallel transport map (3/5)

Theorem (Terng-Thorbergsson 1995)

(1) Φ is a Riemannian submersion，
(2) any two fibers of Φ are congruent

under the isometry of Vg，
(3) Φ is a principal P(G, {e}×{e})-bdl，
(4) If M is a closed submfd of G，
then Φ−1(M) is a PF submfd of Vg．
(5) If M = H · a for subgp H ⊂ G ×G
then Φ−1(M)=P(G,H)∗u for
u∈Φ−1(a).

Nice points
(1) We can obtain examples of (homogeneous) PF submanifolds.
(2) We can linearize geometrical problems of submanifold M ⊂ G.
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Sec. 3 - The parallel transport map (4/5)

Generalization (Terng-Thorbergsson1995)

G/K: compact normal homg. sp，π : G → G/K: projection．
The parallel transport map over G/K

ΦG/K
def
:= π ◦ Φ : Vg → G → G/K.

(1) ΦG/K : a Riemannian submersion，
(2) Two fibers of ΦG/K are congruent

under the isometry of Vg，
(3) ΦG/K : a principal P(G, {e}× K)-bdl.

(4) If M is a closed submfd of G/K，
then Φ−1

G/K(M) is a PF submfd of Vg．
(5) If M = K′ · aK for subgp K′ ⊂ G
then Φ−1

G/K(M)=P(G,K′ × K)∗u for
u∈Φ−1

G/K(aK).

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 3 - The parallel transport map (5/5)

Fundamental problem

: The geometrical relation between M and Φ−1
G/K(M) ?

E.g. • M: minimal⇒ Φ−1
G/K(M) is ζ-minimal and r-minimal.

(King-Terng 1993, Heintze-Liu-Olmos 2006)．
• Suppose G/K: symmetric space of compact type.

M: equifocal⇒ Φ−1
G/K(M):isoparametric (Terng-Thorbergsson1995).
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Sec. 4 - Submanifold geometries via the p.t.m. (1/5)

Problem
G/K：cpt. normal homog. sp.，g = k + n：orthogonal decomp.
• M：closed submanifold of G/K through eK ∈ M.
• Fix a normal vector ξ ∈ T⊥eK M � T⊥

0̂
Φ−1

G/K(M)．

⇝


αΦ

−1
G/K (M) : second f. form

A
Φ−1

G/K (M)
ξ : shape op.
{µ} : principal curv.

⇝


αM : second f. form
AM
ξ : shape op.
{λ} : principal curv.

The relation ?
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Sec. 4 - Submanifold geometries via the p.t.m. (2/5)

Theorem (M. 2019)：the second fundamental form

∀X,Y ∈ T0̂Φ
−1
G/K(M),

αΦ
−1
G/K (M)(X,Y) = αM

(∫ 1
0 X(t)ndt,

∫ 1
0 Y(t)ndt

)
+ 1

2

[∫ 1
0 X(t)kdt,

∫ 1
0 Y(t)ndt

]⊥
− 1

2

[∫ 1
0 X(t)ndt,

∫ 1
0 Y(t)ndt

]⊥
+ 1

2

[∫ 1
0 X(t)dt,

∫ 1
0 Y(t)dt

]⊥
−
(∫ 1

0

[∫ t
0 X(s)ds,Y(t)

]
dt
)⊥
．

Theorem (M. 2019)：the shape operator

∀X ∈ T0̂Φ
−1
G/K(M), ξ ∈ T⊥

0̂
Φ−1

G/K(M),

A
Φ−1

G/K (M)
ξ (X) = AM

ξ

(∫ 1
0 X(t)ndt

)
− 1

2

[∫ 1
0 X(t)ndt, ξ

]
k

+ 1
2

[∫ 1
0 X(t)kdt, ξ

]>
− 1

2

[∫ 1
0 X(t)dt, ξ

]>
+
[∫ t

0 X(s)ds, ξ
]
−
[∫ 1

0

∫ t
0 X(s)dsdt, ξ

]⊥
．
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Sec. 4 - Submanifold geometries via the p.t.m. (3/5)

Theorem (Koike 2002, M. 2019)：Principal curvatures

G/K：compact symmetric sp．g = k + n: canonical decomp．
Suppose M：curvature adapted submfd of G/K．
(i.e. ad(ξ)2 : n→ n preserves TeK M

and commutes with AM
ξ : TeK M → TeK M.)

{λ}: eigenvalue of AM
ξ ，{

√
−1ν}: eigenvalue of ad(ξ) : g→ g.

Then the principal curvatures of Φ−1
G/K(M) in direction ξ is{

0, λ,
ν

nπ
,

ν

arctan νλ + mπ

}
λ, ν > 0, n ∈ Z\{0}, m ∈ Z.

eigenfunctions and multiplicities are given in the next page:

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 4 - Submanifold geometries via the p.t.m. (4/5)

Theorem (Koike 2002, M. 2019)：Principal curvatures

Set µ(ν, λ,m) :=
ν

arctan νλ + mπ
．

eigenval. basis of eigenfunctions multip.

0 {x0
i sin nπt, y(0,λ)

j cos nπt, y(0,⊥)
l cos nπt}n∈Z≥1, λ, i, j, l ∞

λ {y(0,λ)
j } j m(0, λ)

ν

nπ
{x(ν,⊥)

r sin nπt − y(ν,⊥)
r cos nπt}r m(ν,⊥)

µ(ν, λ,m)
{∑

n∈Z
ν

nπµ+ν (x(ν,λ)
k sin nπt + y(ν,λ)

k cos nπt)
}
k

m(ν, λ)
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Sec. 4 - Submanifold geometries via the p.t.m. (5/5)

By using the formula of the shape operator, we obtain:

Theorem (M. 2019): The totally geodesic property
The following are equivalent:
(1) Φ−1

G/K(M) is a totally geodesic PF submanifold of Vg
(i.e. an affine subspace of Vg).

(2) M is a totally geodesic submfd of G/K s.t. T⊥eK M ⊂ (center of g).

Thus Φ−1
G/K(M) is not totally geodesic, except for rare cases

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 5 - Minimal PF submanifolds with symmetries (1/4)

Definition

Let
M ↪→ V

PF submfd separable Hilbert sp.
M is reflective
⇔
def
∃ σ : V → V : involutive isometry s.t. M = Fix(σ)0.

M is weakly reflective
⇔
def
∀p ∈ M, ∀ξ ∈ T⊥p M, ∃νξ : V → V : isometry

s.t. (i) νξ(p) = p, (ii) dνξ(ξ) = −ξ, (iii) νξ(M) = M.

M is austere
⇔
def
∀p ∈ M, ∀ξ ∈ T⊥p M,
{eigenvalues of Aξ (with multip)} is invariant under (−1)×.
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Sec. 5 - Minimal PF submanifolds with symmetries (2/4)

Recall
M ↪→ N

submfd Riem mfd

reflective ⇒ weakly reflective ⇒ austere ⇒ minimal

Note
Φ−1

G/K(M) ↪→ Vg
PF submfd separable Hilbert sp.

reflective ⇒ weakly reflective ⇒ austere ⇒ ζ-minimal
r-minimal

}
same
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Sec. 5 - Minimal PF submanifolds with symmetries (3/4)

Theorem (M. 2019)
G/K: compact normal homogeneous space.
Then each fiber of the parallel transport map ΦG/K : Vg → G/K
is a weakly reflective PF submanifold of Vg.

Proof (outline)
The canonical reflection (M. 2019) of the path space Vg = L2([0, 1], g)

r : Vg → Vg , u 7→ r(u) , r(u)(t) := −u(1 − t)
plays an important role.

Remark
The fiber is not totally geodesic (except for rare cases).
Therefore, the fiber is not reflective.
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Sec. 5 - Minimal PF submanifolds with symmetries (4/4)

Problem

(1) M : reflective ⇒ Φ−1
G/K(M) : reflective ?

(2) M : weakly reflective ⇒ Φ−1
G/K(M) : weakly reflective ?

(3) M : austere ⇒ Φ−1
G/K(M) : austere ?

Sec. 1 Sec. 2 Sec. 3 Sec. 4 Sec. 5 Sec. 6

Sec. 6 - Symmetric properties via the p.t.m. (1/7)

Problem

(1) M : reflective ⇒ Φ−1
G/K(M) : reflective × (e.g. fiber)

(2) M : weakly reflective ⇒ Φ−1
G/K(M) : weakly reflective © (Thm A and B)

(3) M : austere ⇒ Φ−1
G/K(M) : austere△ (Thm C and D)
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Sec. 6 - Symmetric properties via the p.t.m. (2/7)

Theorem A (M. 2019)
G: connected compact semi-simple Lie group

with bi-inv metric induced from negative of the Killing form,
K: symmetric subgroup of G s.t. (G,K): effective.
M: weakly reflective submanifold of G/K.
⇒ Φ−1

G/K(M) is a weakly reflective PF submanifold of Vg.

Theorem B (M. 2020)
N: compact isotropy irreducible Riemannian homogeneous space.
Fix p ∈ N. Set G := Isom0(N) and K := Isom(N)p so that N � G/K.
M: weakly reflective submanifold of N � G/K
⇒ Φ−1

G/K(M) is a weakly reflective PF submanifold of Vg.
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Sec. 6 - Symmetric properties via the p.t.m. (3/7)

Theorem C (M. 2020)
Suppose G/K = S O(n + 1)/S O(n): sphere.
M: closed submanifold of G/K.
Then the following conditions are equivalent:
(1) M is an austere submanifold of G/K,
(2) Φ−1

G/K(M) is an austere PF submanifold of Vg.

Theorem D (M. 2021)
Let G/K: symmetric of compact type. Suppose G is simple.
M: an austere orbit of a Hermann action with commuting involutions.
⇒ Φ−1

G/K(M) is an austere PF submanifold of Vg.
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Sec. 6 - Symmetric properties via the p.t.m. (4/7)

Example
G/K: symmetric sp. of compact type, K′: closed subgroup of G.
Suppose the action K′ ↷ G/K: of cohomogeneity one.
Let M := K′ · aK: singular orbit through aK ∈ G/K.
(⇒ M is weakly reflective submfd of G/K (Podesta 1997, IST2009).
By Thm A, Φ−1

G/K(M) (=P(G,K′ × K)∗u) is a weakly reflective PF submfd
of Vg.

Example
(U, L): compact Riem. symmetric pair. Assume L: connected.
u = l + p: canonical decomp. Ad : L→ S O(p) : isotropy rep.
Suppose M := Ad(L)x: weakly reflective submfd of S (‖x‖)(⊂ p).

(Such M was classified in Ikawa-Sakai-Tasaki 2009)
By Thm A (or Thm B), Φ−1

G/K(M)
(
= P(S O(p),Ad(L) × S O(p)x) ∗ 0̂

)
is a

weakly reflective PF submanifold of Vg.
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Sec. 6 - Symmetric properties via the p.t.m. (5/7)

Example
G/K: symmetric space of compact type. K′: symmetric subgroup of G.
Suppose M = K′ · aK: weakly reflective orbit of the Hermann action.
(Such examples were given by Ohno 2016).
Then by Thm A, Φ−1

G/K(M) (= P(G,K′ × K)∗u) is a weakly reflective PF
submfd

Example

G2：exceptional Lie grp，
G̃r3(ImO) (� S O(7)/(S O(3) × S O(4)))：Grassmann manifold
G2 ↷ G̃r3(ImO) has unique weakly reflective orbit M [Enoyoshi 2018].
Then by Thm A, Φ−1

G/K(M)
(
= P(S O(7),G2 × S O(3) × S O(4)) ∗ 0̂

)
is a

weakly reflective PF submfd of Vo(7)．
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Sec. 6 - Symmetric properties via the p.t.m. (6/7)

Example
(U, L): compact Riem. symmetric pair. Assume L: connected.
u = l + p: canonical decomp. Ad : L→ S O(p) : isotropy rep.
Suppose M := Ad(L)x: austere submfd of S (‖x‖)(⊂ p).

(Such M was classified by Ikawa-Sakai-Tasaki 2009)
Then by Thm C , Φ−1

G/K(M)
(
= P(S O(p),Ad(L) × S O(p)x) ∗ 0̂

)
is an austere

PF submanifold of Vg.

Example
G/K: symmetric space of compact type. Suppose G is simple.
Suppose M: austere orbit of a Hermann action with commuting involutions.
(Such examples classified by Ikawa 2011).
Then by Thm D, Φ−1

G/K(M) (= P(G,K′ × K)∗u) is an austere PF submfd of
Vg.
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Sec. 6 - Symmetric properties via the p.t.m. (7/7)

Note
Recently, Taketomi (2018) introduced a generalized concept of weakly
reflective submanifolds, namely arid submanifolds:

austere⇒ ⇒
reflective ⇒ weakly reflective minimal⇒ ⇒arid

A submanifold M of a Riemannian manifold N is arid
⇔
def
∀p ∈ M, ∀ξ ∈ T⊥p M there exists ϕξ ∈ Isom(N) satisfying

ϕξ(p) = p, ϕξ(M) = M, dϕξ(ξ) , ξ.

Theorems A and B can be formulated to the arid case.
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On homogeneous minimal submanifolds

Note
In infinite dimensional Hilbert spaces,
there exist many examples of homogeneous minimal PF submanifolds
which are not totally geodesic (by Theorem in Sec. 4.)

Theorem (Di Scala 2002)
In finite dimensional Euclidean spaces,
any homogeneous minimal submanifolds must be totally geodesic.
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Lagrangian submanifolds in complex projective
space and quaternionic Kähler geometry

Makoto Kimura

Abstract. We discuss a relationship of certain Lagrangian submanifolds in
complex projective space and submanifolds in complex 2-plane Grassmannian.

1. Let CPn be an n-dimensional complex projective space with Fubini-Study metric
of constant holomorphic sectional curvature 4. For a Lagrangian submanifold Mn in
CPn and a unit normal vector field N on M , we find the condition such that for r ∈ R
with sufficiently small |r| > 0, 1-parameter family of ’parallel’ submanifolds

Mr := {expp(rNp)| p ∈M}

are Lagrangian submanifolds in CPn, by computing the differential of the normal ex-
ponential map (cf. [1]).

2. For a Lagrangian submanifold Mn in CPn and a unit normal vector field N on
M , we define a ’Gauss map’ γ to complex 2-plane Grassmannian G2(Cn+1) (cf. [2],
[3], [4]). If M and N admits parallel Lagrangian submanifolds Mr as 1., and moreover
if JN is an eigenvector of the shape operator AN and the eigenvalue is constant, then
the rank of γ is n− 1 and γ(M) is a quarter dimensional totally real submanifold with
respect to both complex and quaternionic Kähler structure of G2(Cn+1).

3. Conversely, let Σn−1 be a quarter dimensional submanifold in G2(Cn+1) which
is totally real with respect to both complex and quaternionic Kähler structure of
G2(Cn+1). Then we have locally a horizontal lift of Σ in the twistor space of G2(Cn+1),
and we can construct ruled (i.e., foliated by geodesics in CPn) Lagrangian immersion ϕ
from a circle bundle Mn over Σ to CPn, provided ϕ is regular, and M admits parallel
family of Lagrangian submanifolds Mr in CPn.

This research was supported by JSPS KAKENHI Grant Number JP20K03575.
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Parallel hypersurfaces

.
Parallel hypersurfaces
..

.

M̃ : Riemann manifold,
M : An oriented hypersurface of M̃ ,

Nx: Unit normal vector field M in M̃ ,

ϕr(M) := {expx(rNx)| x ∈ M} (0 < r)

is called a parallel hypersurface of M , provided

ϕr(M) is a smooth hypersurface of M̃ .
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Examples of parallel hypersurfaces in R3:
Circular cylinders
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Examples of parallel hypersurfaces in R3:
tori of revolution
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Submanifolds of Symmetric Spaces and Their Time Evolutions 105



Isoparametric hypersurfaces in space forms

.
Isoparametric hypersurfaces in space forms
..

.

If Mn
0 : is an isoparametric hypersurface (i.e.,

principal curvatures are constant) in M̃n+1(c) of
constant sectional curvature c, then its parallel

hypersurfaces Mn
r in M̃n+1(c) is also

isoparametric.
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Hopf hypersurfaces in Kähler manifold

.
Structure vector of real hypersurface
..

.

M2n−1: Oriented real hypersurface in Kähler

manifold M̃n,
N : unit normal vector field of M in M̃ ,
ξ := −JN : structure vector field of M .

.
Hopf hypersurface
..

.

M2n−1: real hypersurface in Kähler manifold M̃n,

M : Hopf hypersurface in M̃
⇔ Aξ = µξ (µ: Hopf principal curvature) .

A: shape operator of M in M̃ .
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Hopf hypersurfaces in complex space forms

.
Hopf principal curvature
..

.

µ is constant when M̃ = M̃n(c) with constant
holomorphic sectional curvature c ̸= 0.

.
Hopf hypersurface
..

.

M2n−1 is a Hopf hypersurface in M̃n(c) (c ̸= 0)
⇒

Parallel hypersurfaces Mr in M̃
n(c) are also

Hopf,

Each integral curve of ξ is a geodesic on M

and a ’circle’ in M̃1(c) ⊂ M̃n(c).
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Parallel family of Lagrangian submanifolds

.
Parallel family of Lagrangian submanifolds in CPn
..

.

In this talk, we treat with 1-parameter family of
’parallel’ Lagrangian submanifolds Mn

r in CPn with
Fubini-Study metric of constant holomorphic
sectional curvature 4.
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Problem

.
Problem..

.

Let M0 be a Lagrangian submanifold in CPn and
let N be a unit normal vector field on M . For
r ∈ R with sufficient small |r|, when each of the
parallel family

Mr := {expp(rNp) ∈ CPn| p ∈ M0} (1)

is a Lagrangian submanifold in CPn?
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Answer

.
Answer..

.

For r ∈ R (with small |r|), each n-dimensional
submanifold Mr in CPn given by (1) is Lagrangian
if and only if the following 4 equations are satisfied:

...1 ∇JN(JN) = 0, i.e., JN is a geodesic vector
field on M0, where J and ∇ denote the
complex structure and the induced Levi-Civita
connection on M0, respectively,

...2 ⟨AN(JN),∇X(JN)⟩ = 0, where X, A
and ⟨ , ⟩ denote a tangent vector field
orthogonal to JN , the shape operator and the
induced metric of M0, respectively,
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Answer

.
Answer..

.

...3 ⟨∇X(JN), Y ⟩ = ⟨∇Y (JN), X⟩, where X
and Y are tangent vector fields on M0 which
are orthogonal to JN , i.e., {JN}⊥ is an
integrable distribution on M0,

...4 ⟨∇X(JN), ANY ⟩ = ⟨∇Y (JN), ANX⟩,
where X and Y are tangent vector fields on
M0 which are orthogonal to JN .
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Integral curve of JN

.
Integral curve of JN
..

.

Furthermore we consider the case:
...5 JN is an eigenvector of the shape operator
AN , i.e., AN(JN) = µJN and the
eigenvalue µ is constant on M0.

Then each integral curve of JN inM0 is a circle in
a complex projective line CP1 in CPn. Moreover for
each r, with respect to a unit normal vector field
(Nr)exp(rNp) := (d exp)rNp

(Np) on Mr, each
integral curve of JNr in Mr is either a circle or a
geodesic (ruled Lagrangian submanifold) in CPn.

Makoto Kimura(Ibaraki University) Lagrangian submanifolds

Submanifolds of Symmetric Spaces and Their Time Evolutions 109



Complex Stiefel manifold

.
Euclidean inner product on Cn+1

..

.

For z, w ∈ Cn+1, we define R-valued Euclidean
inner product by ⟨z, w⟩ = Re(z∗w).

.
Complex Stiefel manifold
..

.

V2(Cn+1) = {(u1, u2) ∈ Cn+1 × Cn+1|
∥u1∥ = ∥u2∥ = 1, ⟨u1, u2⟩ = ⟨u1, iu2⟩ = 0}

:Complex Stiefel manifold,
MV := V2(Cn+1) = U(n+ 1)/U(n− 1).
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Complex 2-plane Grassmann manifold

.
Complex 2-plane Grassmann manifold
..

.

Complex 2-plane Grassmann manifold G2(Cn+1) is
realized as a quotient space of an action of U(2) on
V2(Cn+1) as U(2) ∋ g, (u1, u2) 7→ (u1, u2)g.

G2(Cn+1) = U(n+ 1)/U(n− 1) × U(2).
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Circle actions on V2(Cn+1)

.
Circle actions on complex Stiefel manifold
..

.

We consider circle actions on MV :
S1 = R/2πZ ∋ θ, (u1, u2) 7→ (eiθu1, e

iθu2),

SO(2) ∋
(
cos t − sin t
sin t cos t

)
,

(u1, u2) 7→ (u1, u2)

(
cos t − sin t
sin t cos t

)
.
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Sequence of projections

.
Sequence of projections
..

.
MV

πS1−−→ MS

πSO(2)−−−→ MZ
πZ−→
S2

MG,

M4n−4
G : G2(Cn+1), Complex 2-plane

Grassmannian,

M4n−2
Z : twistor space of MG, complex contact

manifold,

M4n−1
S : S1-bundle over MZ (3-Sasakian).
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Tangent spaces

.
Tangent space of MV..

.

T(u1,u2)MV = ({u1, u2}⊥ × {u1, u2}⊥)

⊕R(iu1, iu2) ⊕ R(−u2, u1)

⊕R(−iu1, iu2) ⊕ R(iu2, iu1),

.
Tangent space of MS..

.

T[u1,u2]MS
∼= ({u1, u2}⊥ × {u1, u2}⊥)

⊕R(−u2, u1)

⊕R(−iu1, iu2) ⊕ R(iu2, iu1),
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Tangent spaces

.
Tangent space of MZ..

.

T[u1,u2]MZ ∼= ({u1, u2}⊥ × {u1, u2}⊥)

⊕R(−iu1, iu2) ⊕ R(iu2, iu1),

.
Tangent space of MG..

. T[u1,u2]MG
∼= ({u1, u2}⊥ × {u1, u2}⊥).
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Q.K. structure of MG

.
Q.K. structure of MG..

.

Then for (u1, u2) ∈ V2(Cn+1), a basis I1, I2, I3
of quaternionic Kähler structure of MG at [u1, u2]
is give as follows:

(x1, x2) ∈ {u1, u2}⊥ × {u1, u2}⊥,

I1 : (x1, x2) 7→ (−x2, x1),

I2 : (x1, x2) 7→ (−ix1, ix2),

I3 : (x1, x2) 7→ (ix2, ix1).

Complex structure is J : (x1, x2) 7→ (ix1, ix2).
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’Gauss map’ to G2(Cn+1)

.
’Gauss map’ to G2(Cn+1)
..

.

Let Mn
0 be a Lagrangian submanifold in CPn and

let N be a unit normal vector field on M0. Then
we have a ’Gauss map’ γN from M0 to the
complex 2-plane Grassmannian G2(Cn+1), where
γN(p) is the complex 2-plane spanned by the
position vector p and Np in Cn+1 for p ∈ Mn.
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Theorem 1

.
Theorem 1..

.

Let Mn be a Lagrangian submanifold in CPn and
let N be a unit normal vector field on M . Suppose
that for each r ∈ R with sufficiently small |r|, each
of the parallel family Mr of M0 is a Lagrangian
submanifold in CPn and JN is an eigenvector of
the shape operator AN of M0 with constant
eigenvalue µ.
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Theorem 1

.
Theorem 1..

.

Then
...1 The image γN(M0) is a quarter-dimensional
totally real submanifold with respect to both
complex structure and Quaternionic Kähler
structure of G2(Cn+1), and

...2 Each fiber of γN is an integral curve of JN
on M0.

...3 Hence M0 is a total space of circle bundle over
γN(M0) with projection γ.
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’Gauss map’ of real hypersurfaces

.
’Gauss map’ of real hypersurfaces
..

.

Similar result was obtained for real hypersurfaces, in
particular Hopf hypersurfaces in CPn and
half-dimensional totally complex submanufolds in
G2(Cn+1), [K, 2014].
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Gauss map of hypersurface in sphere

.
Gauss map of hypersurface in Sn+1

..

.

x : Mn → Sn+1: an immersion,
N : Mn → Rn+2: unit normal vector field,
 
γ : Mn → G̃2(Rn+2) ∼= Qn: Gauss map, defined
by γ(p) = x(p) ∧N(p).

Here Mn is an oriented hypersurface in Sn+1,
G̃2(Rn+2): oriented real 2-plane Grassmannian,
Qn: complex hyperquadric in CPn+1.
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Gauss map of hypersurface in sphere

.
Gauss map of hypersurface in Sn+1

..

.

x : Mn → Sn+1: an immersion,
N : Mn → Rn+2: unit normal vector field,
 
γ : Mn → G̃2(Rn+2) ∼= Qn: Gauss map, defined
by γ(p) = x(p) ∧N(p).

Here Mn is an oriented hypersurface in Sn+1,
G̃2(Rn+2): oriented real 2-plane Grassmannian,
Qn: complex hyperquadric in CPn+1.
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Gauss map of hypersurface in sphere
.
Theorem (Palmer, 1997)
..

.

Mn; oriented hypersurface in Sn+1

⇒
γ(M): Lagrangian submanifold in Qn, and
Mn is either isoparametric or austere in Sn+1

⇒
γ(M): Minimal Lagrangian in Qn.

For t ∈ R, Mt := {cos tx(p) + sin tN(p)}:
parallel hypersurface of M , the Gauss image is not
changed:

γ(Mt) = γ(M).
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Proposition 2

.
Proposition 2
..

.

Let φ : Σn−1 → MG be a totally real immersion
concerning both complex structure and quaternionic
Kähler structure ofMG, Σ̃ the universal covering of
Σ, and πΣ : Σ̃ → Σ the covering projection. Then
there exists a horizontal immersion φ̃ : Σ̃ → MZ
such that πZ ◦ φ̃ = φ ◦ πΣ (φ̃: horizontal lift of
φ).
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Converse construction

.
Converse construction..

.

Let ψ : Σn−1 → MZ be a horizontal immersion
such that πZ ◦ ψ : Σ → MG is a totally real
immersion concerning both complex structure and
quaternionic Kähler structure of MG.
Concerning a circle bundle MS → MZ , let
πψ : ψ∗MS → Σ be the pullback bundle over Σ
for ψ.
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Converse construction

.
Converse construction..

.

Then we have the following commutative diagram:

ψ∗MS −−→
η

MS

πψ

y yπZ

Σn−1 −−→
ψ

MZ.
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Converse construction

.
Converse construction..

.

For a projection pr : MS → CPn,
[u1, u2] 7→ [u1], We define a map
Φ0 := pr ◦η : ψ∗MS → CPn. Then the image of
each fiber π−1(p) for p ∈ Σ is a geodesic cp in
CPn and on the open subset O ⊂ ψ∗MS of
regular points for Φ0, Φ0(O) is a ruled Lagrangian
submanifold in CPn.
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Converse construction

.
Converse construction..

.

For a ruled Lagrangian submanifold M0 = Φ0(O),
along geodesics normal to M0 with initial vector
Jċp, each of parallel family of n-dimensional
submanifold Mr in CPn is also Lagrangian for
sufficiently small |r|.
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Special case

.
Special case
..

.

Complex quadric Qn−1 in CPn which is identified
with real oriented 2-plane Grassmannian G̃2(Rn+1)
is half-dimensional totally geodesic, totally complex
(concerning Q.K. structure) and totally real
(concerning complex structure) submanifold in
G2(Cn+1).
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Gauss image of hypersurfaces in Sn

.
Special case
..

.

Hence Gauss image of oriented hypersurface Σn−1

in Sn is considered as a totally real submanifold
concerning both complex structure and Q.K.
structure in G2(Cn+1), so it satisfies conditions to
construct parallel family of Lagrangian submanifolds
Mr in CPn.
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Examples

.
Examples
..

.

Let Σn−1 be an oriented hypersurface, p a position
vector of Σ in Sn ⊂ Rn+1 and Np a unit normal
of Σn−1 in Sn at p ∈ Σ.
For r ∈ R with sufficiently small |r|, we define a
map, Φr : M

n = S1 × Σn−1 → CPn,

Φr(t, p) := π((cos r cos t− i sin r sin t)p

+(− sin r cos t+ i cos r sin t)Np),

where π : S2n+1 → CPn is the Hopf fibration.
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Examples

.
Examples
..

.

Then {Φr(M
n)} gives a parallel family of

Lagrangian submanifold in CPn, provided Φr is an
immersion. Here t is a parameter of integral curve
(a circle lies in CP1) of JN .
In particular when r = 0, Φ0(M) is a ruled
Lagrangian submanifold in CPn, provided the shape
operator of Σn−1 in Sn is non-degenerate.
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An introduction to the deformed Hermitian
Yang-Mills (dHYM) connections

Hikaru Yamamoto

Abstract. In this talk, I gave an introduction to the deformed Hermitian Yang–
Mills (dHYM) connections. The talk was started with the introduction of some
basic notions of special Lagrangian submanifolds. After that, the easy version of
the real Fourier–Mukai transform was explained. Finally, I gave a list of recent
results obtained in a joint works with K. Kawai.

1 Special Lagrangian submanifold

Roughly speaking, a deformed Hermitian Yang–Mills connection is a mirror object of
a special Lagrangian submanifold in the sense of mirror symmetry. So, it’s better to
start with the introduction of special Lagrangian submanifolds.

Let Cn ∼= R2n be the standard complex plane with coordinates x = x+ iy. Denote
the standard Kähler form and the holomorphic volume form on Cn by ω =

∑
i dx

i∧dyi
and Ω := dz1 ∧ · · · ∧ dzn, respectively.

Definition 1. An n-dimensional real submanifold L in Cn is called a special Lagrangian
submanifold with phase eiθ if it satisfies ω|L = 0 and Im(e−iθΩ)|L = 0.

It is well-known that a special Lagrangian submanifold is volume minimizing in its
homology class. One can easily see that if a Lagrangian submanifold L ∈ Cn is written
by the graph of the gradient of some function f on Rn the special Lagrangian condition
is equivalent to

arg det (I + iHess f) = θ. (1)

It is also known (as a result of McLean) that the moduli space of special Lagrangian
submanifolds (around L) is a smooth b1(L)-dimensional manifold.

2 The real Fourier–Mukai transform

Historically, the definition of deformed Hermitian Yang–Mills connections is introduced
by the real Fourier–Mukai transform in the paper in the paper of Leung, Yau and
Zaslow. To explain that, let f : Rn → R be a smooth function. Then, as explained
above, we obtain the graph of Y := ∇f denoted by SY . On the other hand, we also
get a connection by

∇Y := d+
n∑
i=1

Y idyi.

This is an Hermitian connection of the trivial C-bundle over Cn. Then, by Leung, Yau
and Zaslow, it was found that f satisfies (1) if and only if the curvature 2-form F∇Y

satisfies
Im
(
e−iθ(ω + F∇Y )n

)
= 0.
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We remark that the condition that Y is written as ∇f is equivalent to F 0,2
∇Y = 0. Thus,

we have reached the definition of deformed Hermitian Yang–Mills connections.

Definition 2. Let (X,ω) be a Kähler manifold with dimCX = n and L → X be a
smooth C-bundle with an Hermitian metric h. Then, an Hermitian connection ∇ of
(L, h) is called a deformed Hermitian Yang–Mills connection with phase eiθ if it satisfies
F 0,2
∇ = 0 and

Im
(
e−iθ(ω + F∇Y )n

)
= 0,

where F∇ is the curvature 2-form of ∇.

The correspondence between SY and ∇Y is (roughly) called the real Fourier–Mukai
transform.

3 Some results

We are wondering whether some properties of special Lagrangian submanifolds also
hold for deformed Hermitian Yang–Mills connections or not. In other words, we are
wondering whether deformed Hermitian Yang–Mills connections are similar to special
Lagrangian submanifolds or not. This is a motivation of a joint work with K. Kawai.
We answered the following questions affirmatively.

• Is a deformed Hermitian Yang–Mills connection a minimizer of some functional?

• Is there a flow similar to mean curvature flows?

• Is the moduli space of deformed Hermitian Yang–Mills connections smooth and
finite dimensional?

We give some more detail on the first and second question. First, the functional V
on the set of all Hermitian connections of (L, h) is given by

V (∇) :=

∫
X

√
det
(

idTX − iF ]
∇

)ωn
n!
.

We call V the volume functional for Hermitian connections. As the case of submani-
folds, we can define a 1-form depends on ∇, denoted by H(∇), which satisfies the first
variation formula:

δ∇V = −
∫
X

〈 · , H(∇)〉.

Then, the first main theorem of a joint work with Kawai is as follows .

Theorem 1. Assume that (X,ω) is a Kähler manifold with dimCX = 3 or 4. Then,
the functional V has a topologically determined lower bound and it is attained at ∇ if
and only if it is a deformed Hermitian Yang–Mills connection.
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As the case of mean curvature flows, we can consider the negative gradient flow of
V and it written as

∂

∂t
∇ = H(∇). (2)

Of course, the volume functional V is decreasing along this flow. So, we can expect
that the flow converges a deformed Hermitian Yang–Mills connection if the flow has
a long time solution. As the first step to realize this expectation, we have proved the
following, the short time existence and uniqueness.

Theorem 2. Assume that X is compact. Then, the flow (2) satisfies the short time
existence and uniqueness for any initial connection ∇.
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Line bundle mean curvature flows and the moduli
space of dHYM connections

Hikaru Yamamoto

Abstract. In this talk, I introduced two recent results. One is given in a joint
work with X. Han. It is about an ε-regularity theorem for line bundle mean
curvature flow. The other is given in a joint work with K. Kawai. It proves that
the moduli space of deformed Hermitian Yang–Mills connections is a smooth finite
dimensional manifold.

1 Line bundle mean curvature flow

In the former talk, I introduced a flow for Hermitian connections. There is a metric
version of the flow, the so-called line bundle mean curvature flow. It was introduced
by Jacob and Yau.

Definition 1. Let (X,ω) be a Kähler manifold with dimC = n and L→ X be a holo-
morphic line bundle. Then, a one-parameter family of Hermitian metrics {ht }t∈[0,T )

of L is called a line bundle mean curvature flow if it satisfies

∂

∂
(− log ht) = Θ(ht)− θ,

for some fixed constant θ ∈ R.

In the above definition, the angle function Θ(h) is defined to satisfy

(ω − ∂∂̄ log h)n = R(h)eiΘ(h)ωn.

The function R(h) is called the radius function.
The line bundle mean curvature flow is considered as a mirror object of a mean

curvature flow. So, it could be singular in finite time as the mean curvature flow case.
Thus, I considered that establishing an ε-regularity theorem for line bundle mean
curvature flows will be useful.

To introduce our main result, we should put some assumptions. Assume that X
is diffeomorphic to the product of balls B(r1) and B(r2) in Rn and L is the trivial
C-bundle. Also assume that the Kähler form and ht are y-invariant. Then, we define
a kind of “the Gaussian density” for Hermitian connections by

D(ht) := (Vol(B(r2)))−1 1

(4π(T − t))n/2

∫
X

exp

(
−|x|

2 + |∂ log ht|2

4(T − t)

)
R(ht)

ωn

n!
.

Then, the ε-regularity theorem given in a joint work with Han is expressed as
follows.

Theorem 1. There exist C > 0 and ε > 0 satisfying the following condition. If a line
bundle mean curvature flow {ht }t∈[0,T ) satisfies

|F (ht)| ≤ C and lim
t→T

D(ht) < 1 + ε,

then ht can be extended beyond T .
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2 The moduli space of dHYM connections

Next, we switch the subject to connections from metrics. So, we consider deformed
Hermitian Yang–Mills connections, not metrics. This part is based on a joint work with
K. Kawai. We studied the moduli space of deformed Hermitian Yang–Mills connections.

The setting is as follows. Let (X,ω) be a compact Kähler manifold and let L→ X
be a smooth C-bundle with an Hermitian metric h. Fix θ ∈ R. Put

M := { dHYM connections of (L, h) }/U(1)-gauge

Then, we proved the following.

Theorem 2. If M 6= ∅, then M is a smooth b1(X)-dimensional manifold. Moreover,
it has an affine structure and it is orientable.
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Lagrangian mean curvature flows with generalized
perpendicular symmetries

Akifumi Ochiai

Abstract. We show a method of constructing an invariant Lagrangian mean
curvature flow in a Calabi-Yau manifold with the use of generalized perpendicular
symmetries. We use moment maps of the action of Lie groups, which are not
necessarily abelian. We also show a general way to construct an invariant mean
curvature flow in a Riemannian manifold.

1 Preliminaries

Definition 1. Let φ : Σ → M be an immersion from a manifold Σ to a manifold M .
For a smooth map {

F : Σ× [0, T )→M ; (p, t) 7→ Ft(p)

F0 = φ
,

if Ft(·) : Σ→M is an immersion for any t ∈ [0, T ), then we call F a deformation of φ.

Definition 2. Let φ : Σ→ (M, g) be an immersion from a manifold Σ to a Riemannian
manifold (M, g). The mean curvature flow F = (Ft)t∈[0,T ) of φ is the deformation of φ
such that it is a smooth solution of the following partial differential equation for the
mean curvature vector field Ht of Ft:

∂
∂t
F (p, t) = Ht(p).

2 Constructions of invariant mean curvature flows

Let (M, g) be a Riemannian manifold, H a Lie group which acts on M , K a closed
subgroup of H, Z(h∗) the center of the Lie coalgebra h∗, Lh : M →M the translation
by an element h ∈ H, ξ# a fundamental vector field generated by ξ ∈ h =: Lie (H),
LK a subset in L defined by LK = {p ∈ L | Hp = K} for any submanifold L of M ,
where Hp is the isotropy subgroup of H at p ∈ L, V a submanifold of M such that
V ⊂ MK , φV : (H/K) × V → M a map defined by (hK, p) 7→ hp. We also use these
notations in the following section.

Definition 3. If the map φV is an immersion with the mean curvature vector field H
and it holds that

H(hK, p) = (Lh)∗pH(K, p) ((hK, p) ∈ (H/K)× V ),

then we say that V has the property (∗). Moreover, if there exists a deformation
f : V × [0, T ) → MK of V such that the immersed submanifold Vt := ft(V ) also has
the property (∗), we say that f preserves the property (∗) of V.

Definition 4. Suppose there exists a deformation f : V × [0, T ) → MK . If φVt is an
immersion for any t ∈ [0, T ), the following map F defines a deformation of φV0 and we
say F the expansion of f :

F : (H/K)× V × [0, T )→M ; (hK, p, t) 7→ hft(p).
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Theorem 1. Suppose a submanifold V ⊂ MK has the property (∗) and there exists a
deformation f : V × [0, T )→MK of V with the expansion F satisfying the followings.

(i) For any t ∈ [0, T ) and any p ∈ V , it holds that ∂
∂t
Ft(K, p) = Ht(K, p), and

(ii) the deformation f preserves the property (∗),

where, Ht is the mean curvature vector field of the immersion Ft. Then, the family of
maps (Ft)t∈[0,T ) is the mean curvature flow of the map φV .

Corollary 1. Suppose that a submanifold V ⊂ MK has the property (∗) and there
exists a vector field A satisfying the followings.

(i.a) The vector field A generates a deformation f : V × [0, T ) → MK of V with the
expansion F ,

(i.b) for any t ∈ [0, T ) and any p ∈ V , it holds that Ht(K, p) = Aft(p), and

(ii) the deformation f preserves the property (∗).

Then, the family of maps (Ft)t∈[0,T ) is the mean curvature flow of the map φV .

We note that for a given submanifold V , if we find a vector field A satisfying the
condition (i.b), then the condition (i.a) is an ordinary differential equation.

3 Constructions of invariant Lagrangian mean curvature flows

We show a method of constructing a Lagrangian mean curvature flow in a Calabi-Yau
manifold by the corollary above, using generalized perpendicular symmetries.

Theorem 2. Let (M, I, g,Ω) be a connected Calabi-Yau manifold with a complex struc-
ture I, Kähler metric g and a Calabi-Yau structure Ω, H a connected Lie group which
acts on M preserving I and g with a moment map µ : M → h∗, K a closed subgroup of
H such that H/K is orientable and the K-action preserves Ω, L a special Lagrangian
submanifold, c ∈ Z(h∗), Vc an

(
n − dim(H/K)

)
-dimensional submanifold of M such

that Vc ⊂ µ−1(c) ∩ LK and φVc is an immersion. Then, it holds that

(1) the map φVc is a Lagrangian immersion, and

(2) there exists a vector field AH along LK such that

Hc(hK, p) = (AH)hp + (Lh)∗pIp
{

(gradφ∗Vcg
θc(K, ·))p

}
((hK, p) ∈ (H/K)× Vc)

holds, where Hc is the mean curvature vector field of φVc and θc : (H/K)× Vc →
R/2πZ is the Lagrangian angle of φVc.

Moreover, suppose that AH generates a deformation f : Vc × [0, T ) → LK with the
expansion F and for any t ∈ [0, T ) and Vt := ft(Vc), the following condition holds.

ξ#
p ∈ T⊥p L⊕ TpVc and ξ#

p /∈ TpVc\{0} (“generalized perpendicular condition′′).

Then, the family of maps (Ft)t∈[0,T ) is the Lagrangian mean curvature flow of φVc.
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§1. Goals

•Goal（general cases）：
To construct mean curvature flows by symmetries of Lie groups in
Riemannian mfds.

•Goal（special cases）：
To construct Lagrangian mean curvature flows by generalized per-
pendicular symmetries of Lie groups in Calabi-Yau mfds.

2
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§2. Previous Researches
•Previous Researches:

Yamamoto(2016)
construct generalized Lag MCF

in toric almost Calabi-Yau mfds
using moment map & toric symm.

Konno(2018)
construct Lag MCF

in Calabi-Yau mfds
using moment map & perp. symm. of abelian actions

•Our Researches:
Ours

(general cases)
construct MCF

in Riem. mfds
using symm. of general actions
Ours

(special cases)
construct Lag MCF

in Calabi-Yau mfds
using moment map & generalized perp. symm. of general actions

3

§3. Overview
How to construct MCF by symm. of Lie groups
M : Riem. mfd, H: Lie grp s.t. H!M,
Σ: H-invariant submfd of M.

Step.1 Find a nice sumfd V0 ⊂ Σ s.t. H · V0 = Σ.

Step.2 Study how V0 is deformed by the MCF of Σ.

Step.3 Have the MCF of Σ by Σt := H · Vt.

4

-

1が凹
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§4. Preliminaries

Def. 1 Let φ :
mfd
Σ →

mfd
M be an immersion. For a smooth map

{
F : Σ × [0,T)→M; (p, t) $→ Ft(p)
F0 = φ

,

if Ft(·) : Σ → M is an immersion for ∀t ∈ [0,T), then we call F the
deformation of φ (or Σ).

Let φ :
mfd
Σ →

Riem.mfd
(M, g) be an immersion. The mean curvature flow

F = (Ft)t∈[0,T) of φ is the deformation of φ s.t. it is a smooth solution
of the following PDE:

∂
∂t

F(p, t) = H t(p) w/ H t : mcv of Ft.

Fact. 2 MCF preserves the “Lagrangeness” in Kähler-Einstein mfds.

5

§5. Constructions of MCFs
•Setting (∗1):

· (M, g): Riem. mfd,
· H: Lie grp s.t. H!M,
· K: closed subgrp of H,
· V: submfd of M s.t. V ⊂MK.

Def. 3 Under (∗1),

Z(h∗) : the center of the Lie coalgebra h∗,
LK := {p ∈ L | Hp = K}, w/L : any submfd of M,
φV : (H/K) × V →M; (hK, p) $→ hp.

Def. 4 (property (∗)) Under (∗1), if φV is an immersion & its mean
curvature vectors are H-invariant, i.e., it holds that

H(hK, p) = (Lh)∗pH(K, p), (∗)
then we say that V has the property (∗) wrt the H-actions.

6
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Def. 5 (preserve the property (∗)) Let V0 is a submfd of M s.t.
V0 ⊂ MK & has the property (∗). Under (∗1), if ∃ a deformation
of V0 in MK & Vt := ft(V) also has the property (∗), we say that f
preserves the property (∗) of V0.

7

Under (∗1), suppose that ∃ a deformation f : V0 × [0,T)→MK.

Def. 6 (expansion of deformation) If φVt is an immersion for ∀t ∈
[0,T), we can define a deformation F of φV0 by

F : (H/K) × V0 × [0,T)→M; (hK, p, t) '→ h ft(p) =: Ft(hK, p).

We call F the expansion of f .
We denote the mean curvature vector of Ft by H t.

8
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•Setting (∗2):

· (M, g): Riem. mfd,
· H: Lie grp s.t. H!M,
· K: closed subgrp of H,
· V0: submfd with (∗) of M ( s.t. V0 ⊂MK).

Thm. 7 Under (∗2), suppose that ∃ a deformation f of V0 with its
expansion F satisfying (i) & (ii):

(i) For ∀t ∈ [0,T),∀p ∈ V0,

∂
∂t

Ft(K, p) = H t(K, p) (“restricted MCF condition′′),

(ii) f preserves the property (∗).
Then, (Ft)t∈[0,T) is the MCF of φV0.

9

i://.ie?!:LM癭・欝H"

i.it:0?!!I!:iii.蕺鰆竈iiiiiで来

e.g. 8 (circle, sphere)

φ : Sn→ Rn+1, V0 := single point, H := SO(n + 1).

e.g. 9 (cylinder)

φ : Sm ×Rn−m→ Rn+1,V0 := Sm, H := Rn−m.

10

H-action

H-action

v

八

v
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e.g. 10 (generalized cylinder)

φ : Mm ×Rn−m→ Rn+1, V0 :=M, H := Rn−m.

11

H-action
八

v

Question: How to reduce the restricted MCF eq to an ODE ?

! Additional assumption:

The evolution of the restricted MCF forms a vector field of the mean
curvature vectors.

e.g. 11

(1) The MCF of Sn forms a vector filed of their mcv.

(2) The MCF of Dumbbell-like surfaces do not.

12

⇧V0

⇧

○ ○

○○✖
V0

:滅簸簿
鰆翦 獷恭i.来 た .to
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Cor. 12 Under (∗2), suppose that the restricted MCF of (V0, φV0)forms
a vector filed A, i.e., ∃ a vector field A satisfying (i.a) & (i.b):

(i.a) A generates a deformation f of V0 in MK with F, i.e.,

d
dt

Ft(K, p) = A ft(p) (∀p ∈ V0,∀t ∈ [0,T)) ← ODE

(i.b) For ∀t ∈ [0,T) & p ∈ V0,

H t(K, p) = A ft(p).

Moerover, suppose that

(ii) f preserves the property (∗).
Then, (Ft)t∈[0,T) is the MCF of φV0.

! How to find V0 with A satisfying (i.b) for constructing Lag MCFs
in CY mfds ?

14

E M

ii

§6. Constructions of Lag MCFs
•Setting (∗3):

· (M,ω): 2n-dimR symp. mfd,
· H: Lie grp s.t. H! (M,ω) with moment map µ : M→ h∗,
· K: closed subgrp of H,
· Vc: submfd of M s.t. Vc ⊂MK,
· φVc: immersion.

Prop. 13 Under (∗3), suppose

(i) Vc is isotropic,
(ii) (“moment map condition”) Vc ⊂ µ−1(c) for c ∈ Z(h∗).
(iii) dimH/K + dimVc = n

Then φVc is Lagrangian. Conversely, if φVc is connected & La-
grangian, then (i), (ii) and (iii) hold.

15
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Def. 14 (Lagrangian angle) (M, I, g,Ω): Calabi-Yau mfd, L: oriented
Lag submafd of M,

θ : L→ R/2πZ : Lagrangian angle :⇔ ι∗Ω = e
√
−1θvolι∗g

w/ ι : L→M: inclusion map.

L : special Lagrangian submfd :⇔ θ ≡ const.

Prop. 15 H(p): mean curvature vector of L at p ∈ L. Then,

H(p) = Iι(p)
{
ι∗p(gradι∗gθ)p

}
.

16

•Setting (∗4):

· (M, I,ω,Ω): connected Calabi-Yau mfd,
· H: connected Lie grp s.t. H! (M, I,ω)

with moment map µ : M→ h∗,
· K: closed subgrp of H s.t. H/K: orientable & K! Ω,
· Vc: orientable submfd of M s.t. Vc ⊂ µ−1(c) ∩MK,
· φVc: Lag immersion.

Prop. 16 Under (∗4),

(1) θc(hK, p) = ∃θH(hK) + ∃θVc(p), w/ θc: Lag angle of φVc,
↑ defined only by (M,H,K)

(2) Hc(hK, p) = ∃ (AH)hp + (Lh)∗pIp
{
(gradφ∗Vc

gθVc)p
}
,

↑ defined only by (M,H,K)
w/ Hc :MCV of φVc.

If θVc ≡ const.! Hc = AH holds and Vc accomodates to Cor.12

20
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•Setting (∗5):

· (M, I,ω,Ω): connected Calabi-Yau mfd,
· H: connected Lie grp s.t. H! (M, I,ω)

with moment map µ : M→ h∗,
· K: closed subgrp of H s.t. H/K: orientable & K! Ω,
· AH: vector field along MK as in Prop.16
· L: special Lag submfd with Lag angle θ(p) ≡ θ,
· c ∈ Z(h∗),
· Vc:

(
n − dim(H/K)

)
-dim submfd of M s.t. Vc ⊂ µ−1(c) ∩ LK.

Prop. 17 Under (∗5), suppose

∀p ∈ Vc,∀ξ ∈ h, ξ#
p ∈ T⊥p L⊕TpVc & ξ#

p ! TpVc\{0}.
(“generalized perp. condition”)

Then,

(1) θVc(p) = θ − π2 dim(H/K), ← const.
(2) Hc(hK, p) = (AH)hp.

21

generalized

strictly perp

ン、 >

i 」

Thm. 18 Under (∗5), suppose that AH generates a deformation f :
Vc × [0,T) → LK with its expansion F, and for ∀t ∈ [0,T) and Vt :=
ft(Vc), the generalized perpendicular condition holds.
Then, AH and Vc satisfies the condition of Cor.12 and (Ft)t∈[0,T) is a
Lag MCF of φVc.

22
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§7. Examples

e.g. 19
construct Lag self-similar solution

in C4

using strictly perp. symm. of U(1) × SO(3)

e.g. 20
construct Lag MCF

in C5

using gen. perp. symm. of R × SO(2)

e.g. 21
construct Lag translating soliton

in C5

using strictly perp. symm. of U(1) × SO(3)

e.g. 22
construct Lag translating soliton

in C6

using gen. perp. symm. of R × SO(2)

23

が
、

An

Thank you very much for your attention.

24
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Ricci flow, heat equation, Liouville type theorem

Keita Kunikawa

Abstract. In this talk, we will see a Liouville type theorem for heat equation
along ancient (super) Ricci flow using Perelman’s reduced distance.

1. Liouville theorems

Let (Mn, g) be a complete Riemannian manifold with Ric ≥ −K (K ≥ 0) and BR(x0)
be a geodesic ball on M centered at x0 ∈ M with radius R > 0. In 1975, Cheng-Yau
established a gradient estimate for positive harmonic function u : BR(x0)→ R;

|∇u|
u
≤ Cn

(
1

R
+
√
K

)
on BR

2
(x0),

where Cn is a constant depending only on n. When K = 0, Cheng-Yau’s gradient
estimate implies the celebrated Yau’s Liouville theorem, that is, positive harmonic
function on a complete Riemannian manifold with Ric ≥ 0 must be constant.

A parabolic analogue of this theory is considered by Souplet-Zhang [2]. They ob-
tained a space-only gradient estimate for a positive solution to the heat equation on
a Riemannian manifold with Ric ≥ −K. More precisely, they showed that for a
positive solution to ∂tu = ∆u, 0 < u ≤ A on a parabolic cylinder QR,T (x0, t0) =
BR(x0)× [t0 − T, t0],

|∇u|
u
≤ Cn

(
1

R
+

1√
T

+
√
K

)(
1 + log

A

u

)
on QR

2
,T
4
(x0, t0).

As a corollary, they showed Liouville type results for ancient solutions (i.e., solutions
defined for all the negative time t ∈ (−∞, 0]) to heat equation on a complete Rieman-
nian manifold with Ric ≥ 0;

(a1) positive ancient solution u with u(x, t) = exp [o(dg(x) +
√
|t|)] near infinity must

be constant,

(b1) ancient solution u with u(x, t) = o(dg(x) +
√
|t|) near infinity must be constant.

Without the growth conditions, there exist nontrivial ancient solutions. For (a1), we
know a positive ancient solution u(x, t) = ex+t on M = R which does not satisy the
growth condition. Likewise, we have another example for (b1): u(x, t) = x. This is a
static ancient solution on M = R which does not satisfy the growth condition. In this
sense, Souplet-Zhang’s growth conditions are essential and sharp in the space direction.
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2. Main results

In this talk, we will see that the analogous results to Souplet-Zhang hold under Ricci
flow background. Althohg it is natural to consider the time-dependent Riemannian
distance dg(t)(x), one finds that it does not work well. The problem is that the condition
Ric ≥ −K is not sufficient to estimate the time derivative of dg(t)(x). If we additionally
impose Ric ≥ −K, then it is possible to estimate the time derivative of dg(t)(x) and
we can obtain a gradient estimate as above. However, in order to derive Liouville type
results, this situation can deal with only trivial situation, i.e., Ricci flat (K = 0).

To overcome this difficulty, we adobt Perelman’s reduced geometry. In reduced
geometry, it is natural to use reverse time parameter τ := −t. Instead of dg(t)(x), we
adopt the so-called reduced distance `(x, τ). This makes it possible for us to avoid the
estimate of time-derivative of dg(t)(x).

Here, we will consider more general situation than the Ricci flow. Let (M, g(τ)) be
a time-dependent Riemannian manifold, τ ∈ [0,∞). Set h := 1

2
∂τg and H := trgh. For

(x, τ) ∈M × (0,∞), let L(x, τ) stand for the L-distance from a space-time base point
(x0, 0), i.e., the infimum of the so-called L-length over all curves γ : [0, τ ] → M with
γ(0) = x0 and γ(τ) = x. We only consider the case that the infimum is achieved by
a minimal L-geodesic. Then the reduced distance from (x0, 0) and its squred root is
defined by

`(x, τ) =
1

2
√
τ
L(x, τ), d(x, τ) =

√
4τ`(x, τ).

In the static case of g(τ) ≡ g, it holds that `(x, τ) = dg(x)2/4τ . Moreover, we introduce
the Müller quantity D(V ) and the trace Harnack quantity H(V ) for (time-dependent)
vector field V on M by

D(V ) := −∂τH −∆H − 2||h||2 + divh(V )− 2g(∇H, V ) + 2Ric− 2h(V, V ),

H(V ) := −∂τH − H

τ
− 2g(∇H, V ) + 2h(V, V ).

Main Theorem. (K.-Sakurai [1]) Let (M, g(τ))τ∈[0,∞) be a complete ancient backward
super Ricci flow Ric ≥ h with D(V ) ≥ 0, H(V ) ≥ −H/τ and H ≥ 0 for any V . Then,

(a2) positive ancient solution to ∂τu = −∆g(τ)u with u(x, τ) = exp[o(d(x, τ) +
√
τ)]

near infinity must be constant;

(b2) ancient solution to ∂τu = −∆g(τ)u with u(x, τ) = o(d(x, τ) +
√
τ) near infinity

must be constant.

Remark. For a static manifold with Ric ≥ 0, all the assumptions automatically hold
and d(x, τ) = dg(x). So, our theorem includes Souplet-Zhang’s Liouville type result.
As for the Ricci flow Ric = h with bounded nonnegative curvature operator Rm, again
all the assumptions are satisfied and we obtain a Liouville type result.
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Antipodal sets of compact symmetric spaces and
polars of compact Lie groups

Makiko Sumi Tanaka

Abstract. This presentation is based on the author’s collaboration with Hi-
royuki Tasaki. In their former research, Tasaki and the author classified maximal
antipodal sets of some classical compact Riemannian symmetric spaces by using
their embeddings into connected compact Lie groups as polars. In order to con-
tinue the classification of maximal antipodal sets of other compact Riemannian
symmetric spaces, their realization as polars of disconnected compact Lie groups
is needed. In this presentation the author explain the recent research relating to
them.

Let M be a compact Riemannian symmetric space and sx denote the point symme-
try at a point x in M . A subset A of M is called an antipodal set if sx(y) = y holds for
any points x, y in A. The 2-number of M is the maximum of the cardinalities of antipo-
dal sets. In the 1980’s Chen and Nagano introduced these notions and gave detailed
studies of the 2-numbers. In the past ten years there was progress on the research of
antipodal sets. Our interest has been shifted to maximal antipodal sets themselves
rather than their cardinalities. Tasaki and the author classified maximal antipodal
subgroups of some classical compact Lie groups G and gave their explicit descriptions
(J. Lie Theory, 2017), and after that, they classified maximal antipodal sets of some
classical compact Riemannian symmetric spaces M (Differential Geom. Appl., 2020).
The basic principle is to make use of an embedding of M into G as a polar with respect
to the identity element and apply the classification of maximal antipodal subgroups
of G. In order to continue the classification of maximal antipodal sets for some other
classical compact Riemannian symmetric spaces M , the realization of M as a polar of
a disconnected compact Lie group is needed. Chen-Nagano (Duke Math. J., 1978) and
Nagano (Tokyo J. Math., 1988) gave detailed studies of polars of connected compact
Riemannian symmetric spaces. Tasaki and the author studied polars of disconnected
compact Lie groups in their submitting paper.

Let G be a compact Lie group and we denote by e the identity element of G. There
exists a biinvariant Riemannian metric on G and G is a Riemannian symmetric space
with respect to the metric. For any x ∈ G, the point symmetry at x, denoted by
sx, is given by sx(y) = xy−1x (y ∈ G). Let G be a connected compact Lie group
and σ be an involutive automorphism of G. We denote by 〈σ〉 the subgroup of the
group of automorphisms of G generated by σ. For the semidirect product G o 〈σ〉,
Go 〈σ〉 = (G, e′) ∪ (G, σ) is the decomposition into a disjoint union of the connected
components, where e′ = idG denotes the identity element of 〈σ〉. We denote by ê the
identity element of the semidirect product G o 〈σ〉. We define the action ρσ of G on
G by ρσ(g)(h) = ghσ(g)−1 (g, h ∈ G), which is called the twisted conjugate action by
σ. For an isometry f of G, we denote by F (f,G) the set of fixed points of f . The
following is the main theorem:
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Theorem (Tanaka-Tasaki, submitted). Let G be a connected compact Lie group
and σ be an involutive automorphism of G. Then we obtain

F (sê, Go 〈σ〉) = (F (se, G), e′) ∪ (F (se ◦ σ,G), σ).

In particular, each connected component of (F (se ◦ σ,G), σ) is a polar of G o 〈σ〉.
Moreover, the connected component of (F (se ◦ σ,G), σ) containing (e, σ) coincides
with (ρσ(G) · e, σ), where ρσ(G) · e is a symmetric space defined by a symmetric pair
(G,F (σ,G)), which is realized by the imbedding G/F (σ,G)→ G ; gF (σ,G) 7→ gσ(g)−1.

(Makiko Sumi Tanaka) Department of Mathematics, Faculty of Science and Tech-

nology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
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1. Introduction

M: a Riemannian manifold

M is called a Riemannian symmetric space

if for ∀x ∈ M, the point symmetry sx at x

is given, i.e., (i) sx is an isometry of M,

(ii) sx ◦ sx = idM, (iii) x is an isolated fixed

point of sx.

• The differential (dsx)x is −idTxM.

• When M is connected, sx is uniquely de-

termined by (i)-(iii) and sx is the geodesic

symmetry.

F (sx,M) := {y ∈ M |sx(y) = y}
A connected component of F (sx,M) is called

a polar w.r.t. x.

By (iii), {x} is a polar w.r.t. x, called the

trivial polar.

•A polar M+ of positive dimension is a to-

tally geodesic submanifold and hence M+ is

a Riemannian symmetric space. The point

symmetry at y ∈ M+ is given by sy|M+.

• Rn: Euclidean space, F (sx,Rn) = {x}
• Sn: a sphere, F (sx, Sn) = {x,−x}

160 OCAMI Reports Vol. 2 (2021)



• Pn: the projective space, F (sx, Pn) = {x} ∪
Pn−1

(∵) Set K = R,C, or H and denote Pn by KPn.

Since sx is induced by the reflection along

x in Kn+1, F (sx,KPn) =

{x} ∪ {1−dim. subspaces in x⊥}(= KPn−1).

• If M is of noncompact type, F (sx,M) =

{x}.
Hereafter we consider the case where M is

compact.

•A compact connected Riem. sym. sp.M is

(i) of compact type (I(M) is compact and

semisimple), (ii) a torus, or a product of (i)

and (ii) locally.

A: a subset of M

A is called an antipodal set if for ∀x, y ∈ A,

sx(y) = y holds.

For ∀x ∈ A, A ⊂ F (sx,M). x is an isolated

point in F (sx,M) as well as in A. Thus A is

discrete. Hence an antipodal set is finite.
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The 2-number of M is #2M := max{|A| |A ⊂
M : an antipodal set}.
If A satisfies |A| = #2M, A is called great.

If A ⊂ A′ implies A = A′, we say A is maxi-

mal.

• A great antipodal set is maximal but the

converse is not true.

• #2S
n = 2 and {x,−x} is a great antipodal

set.

Bang-Yen Chen and Tadashi Nagano gave

detailed studies of the 2-numbers (Chen-

Nagano, 1988).

In the past ten years there was progress

in the research of antipodal sets. Our in-

terest is in maximal antipodal sets them-

selves rather than their cardinalities. We

are working on the classification of maxi-

mal antipodal sets.

• In (T.-Tasaki, 2017) we classified max. antip.

subgr. of some classical cpt. Lie groups G.

• In (T.-Tasaki, 2020) we classified max. antip.

sets of some classical cpt. Riem. sym. sp.M.

The basic principle is to make use of an
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embedding of M into G as a polar w.r.t.

the identity element and apply the classifi-

cation of max. antip. subgr. of G.

• In order to continue the classification of

max. antip. sets for some other classical cpt.

Riem. sym. sp.M, we need a realization of

M as a polar of a disconnected cpt. Lie gr.

•Chen-Nagano and Nagano gave detailed

studies of polars of connected cpt. Riem.

symmetric spaces.

•We studied polars of disconnected cpt. Lie

groups (T.-Tasaki, submitted).

2. Relations between antipodal sets and po-

lars

G: a compact Lie group

e: the identity element of G

G0: the identity component of G

∃ a biinvariant Riemannian metric on G

G is a compact Riem. symmetric space.

∀x ∈ G, sx(y) = xy−1x (y ∈ G)

• se(y) = y−1, sx(y) = Lx ◦ se ◦ Lx−1(y)

F (se, G) = {x ∈ G | x2 = e}
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F (se, G) =
r∪

j=0
G+
j , G+

j : a polar, G+
0 = {e}

In general, when a polar consists of a single

point x, we call x a pole.

Proposition 1

ZG(G0): the centralizer of G0 in G

Z̃2(G) := ZG(G0) ∩ F (se, G)

•The set of poles coincides with Z̃2(G).

•For a point x in G+
j , G+

j = {Ig(x) | g ∈ G0},
where Ig(x) = gxg−1.

Hence each polar is a G0-conjugacy class

of involutive elements.

A: an antipodal set of G

We can assume e∈A by left (or right) trans-

lations. Then,

• x2 = e (x ∈ A), xy = yx (x, y ∈ A).

• If A is maximal, A is a subgroup ∼=
Z2 × · · · × Z2.

We call such A a maximal antipodal sub-

group.
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Example. G = O(n): the orthogonal group

G0 = SO(n)

1n: the identity matrix

Ij = daig(−1, . . . ,−1︸ ︷︷ ︸
j

,1, . . . ,1) ∈ O(n)

G+
j = {gIjg−1 | g ∈ SO(n)}

∼= SO(n)/S(O(j)×O(n− j))

= Gj(Rn): the real Grassmann mfd.

A0 = {diag(ϵ1, . . . , ϵn) | ϵi = ±1} is a maximal

antipodal subgroup of O(n).

Z̃2(O(n)) = {±1n}

•A0 is a unique max. antip. subgr. of O(n)

up to conjugation, while a max. antip. subgr.

of O(n)/{±1n} is not unique up to conjuga-

tion when n is even and n ≥ 4.

M = G+
j : a polar of positive dim.

M is a connected cpt. Riem. sym. sp.

x0 ∈ M, M = {Ig(x0) | g ∈ G0}
• I0(M) = {Ig|M | g ∈ G0}
• If A is an antip. set of M, then A ∪ {e} is

an antip. set of G.
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• ∃Ã: a max. antip. subgr. A ∪ {e} ⊂ Ã

• If A is maximal in M, then A = M ∩ Ã.

C1, . . . , Ck: G0-conjugacy classes of maxi.

antip. subgr. of G

Bs: a representative of Cs (1 ≤ s ≤ k)

(We gave their explicit descriptions for some

classical G.)

∃g ∈ G0, 1 ≤ ∃s ≤ k, Ã = Ig(Bs)

A = M ∩ Ã = M ∩ Ig(Bs) = Ig(M ∩Bs)

Hence A is I0(M)-congruent to M ∩Bs.

Therefore, a representative of an I0(M)-

congruence class of maximal antipodal sets

of M is one of M ∩B1, . . . ,M ∩Bk.

•Using this principle, for some classical cpt.

Riem. sym. sp.M, we determined I0(M)-cong.

classes of max. antip. sets of M and gave

explicit descriptions of their representatives.

• ∃M, realized as a polar not of a connected

G but of a disconnected G.

e.g., U(n)/O(n), U(2n)/Sp(n)
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3. Polars of disconnected compact Lie groups

G: a compact Lie group

G0: the identity component of G

G = G0 ∪ ∪
λ∈Λ

Gλ, Gλ: a conn. component

F (se, G) = (F (se, G) ∩G0) ∪
∪

λ∈Λ
(F (se, G) ∩Gλ)

We know F (se, G) ∩G0 by Chen-Nagano.

We study F (se, G) ∩Gλ.

If F (se, G)∩Gλ ̸= ∅, for ∀xλ ∈ Gλ∩F (se, G) we

have Gλ = G0xλ = xλG0.

Ixλ (Ixλ(y) = xλyx
−1
λ ) is an involutive auto-

morphism of G0.

The action defined by g.h = ghIxλ(g)
−1 (g, h ∈

G0) is called the twisted conjugate action

by Ixλ. (It is a Hermann action.)

Tλ: a maximal torus of the identity comp. of

F (Ixλ, G0).

By a property of Hermann actions we have:

Proposition 2 Gλ =
∪

g∈G0

g(xλTλ)g
−1

(It is well-known G0 =
∪

g∈G0

gTg−1 for a max-

imal torus T of G0.)
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F (se, G) ∩Gλ =
∪

g∈G0

g{x ∈ xλTλ |x2 = e}g−1

In order to determine F (se, G) ∩ Gλ, it is

enough to determine {x ∈ xλTλ |x2 = e} and

G0-conjugacy classes of each element of

the set.

We can carry out them for each G on a

case-by-case argument.

On the other hand, we have the following:

Proposition 3 Assume Gλ ∩ F (se, G) ̸= ∅.
(1) G0 ∪Gλ is a subgroup.

(2) For xλ ∈ Gλ ∩ F (se, G), G0 ∪Gλ is isomor-

phic to G0⋊⟨Ixλ⟩, where ⟨Ixλ⟩ is the subgroup

of Aut(G0) generated by Ixλ.

Hence, the determination of polars of G is

reduced to the determination of polars of

G0 ⋊ ⟨Ixλ⟩.

G0 ⋊ ⟨Ixλ⟩ consists of two connected com-

ponents:

G0 ⋊ ⟨Ixλ⟩ = {(g, id) | g ∈ G0} ∪ {(g, Ixλ) | g ∈ G0}
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The group operation of G0 ⋊ ⟨Ixλ⟩:
For g, h ∈ G0, e′ := id, τ := Ixλ,

(g, e′)(h, e′) = (gh, e′), (g, e′)(h, τ) = (gh, τ),

(g, τ)(h, e′) = (gτ(h), τ), (g, τ)(h, τ) = (gτ(h), e′).

Proof of Prop. 3: (1) is easily seen by the

group operation. (2) φ : G0⋊ ⟨Ixλ⟩ → G0 ∪Gλ

defined by φ(g, id) = g, φ(g, Ixλ) = gxλ gives a

Lie group isomorphism.

G: a connected cpt. Lie group

σ: an involutive atumorphism of G

ê = (e, id): the identity element of G ⋊ ⟨σ⟩

Theorem 4

F (sê, G ⋊ ⟨σ⟩) = (F (se, G), id) ∪ (F (se ◦ σ,G), σ)

In particular, each connected component of

(F (se◦σ,G), σ) is a polar of G⋊⟨σ⟩. Moreover,

the conn. comp. of (F (se◦σ,G), σ) containing

(e, σ) coincides with (ρσ(G) · e, σ), where ρσ

is the twisted conjugate action by σ, and

ρσ(G) · e ∼= G/F (σ,G).

Proof of Thm. 4：

F (sê, G ⋊ ⟨σ⟩) = F (sê, (G, id)) ∪ F (sê, (G, σ))
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F (sê, (G, id)) = (F (se, G), id)

F (sê, (G, σ)) = (F (se ◦ σ,G), σ)

(∵) ∀g ∈ G,

sê(g, σ) = (g, σ)

⇔ (g, σ) = (g, σ)−1 = (σ(g−1), σ)

⇔ g = σ(g−1)

⇔ se ◦ σ(g) = g

As stated before, if we obtain the classifi-

cation of max.antip. sugr. of G⋊ ⟨σ⟩, we can

determine max. antip. sets of G/F (σ,G).

4. Examples

U(n): the unitary group

F (s1n, U(n)) =

{x ∈ U(n) |x2 = 1n} =
n∪

j=0
{g Ij g−1 | g ∈ U(n)}

Ij = diag(−1, . . . ,−1︸ ︷︷ ︸
j

,1, . . . ,1) ∈ U(n)

The polars of U(n) w.r.t. 1n is:

{1n}, {−1n},
U(n)/(U(j) × U(n − j)) = Gj(Cn) (1 ≤ j ≤
n− 1) the complex Grassmann mfd.

τ(g) := ḡ (g ∈ U(n))
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τ is an involutive autom. of U(n)

G = U(n) ⋊ ⟨τ⟩, ⟨τ⟩ = {e′, τ}
G = {(g, e′) | g ∈ U(n)}∪{(g, τ) | g ∈ U(n)} · · · (∗)

We write (g, e′) by g, and (g, τ) by gτ .

(∗)⇝ G = U(n) ∪ U(n)τ

F (sê, G) = (F (sê, G)∩U(n))∪(F (sê, G)∩U(n)τ)

F (sê, G) ∩ U(n) = F (s1n, U(n)) =
n∪

j=0
Gj(Cn)

We study F (sê, G) ∩ U(n)τ by using Thm. 4.

T : a maximal torus of F (τ, U(n)) = O(n)

U(n)τ =
∪

g∈U(n)
g(τT )g−1 (by Prop. 2)

F (sê, G)∩U(n)τ =
∪

g∈U(n)
g{x ∈ τT |x2 = 1n}g−1

So we study {x ∈ τT |x2 = 1n}. We can take

T ⊂ O(n) as

T =





R(θ1)
. . .

R(θk)
(1)


∣∣∣∣∣ θ1, . . . , θk ∈ R


,

R(θ) =

cos θ − sin θ

sin θ cos θ

 , k = ⌊n2⌋

∀t ∈ T, τt = (1n, τ)(t, e′) = (τ(t), τ) = tτ,

(τt)2 = τ2t2 = t2
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Hence, {x ∈ τT |x2 = 1n} = τ{t ∈ T | t2 = 1n}

= τ





ϵ112
. . .

ϵk12
(1)


∣∣∣∣∣ ϵ1, . . . , ϵk = ±1


.

F (sê, G) ∩ U(n)τ =
∪

g∈U(n)
gτ{t ∈ T | t2 = 1n}g−1

• ∀t ∈ T, ∀g ∈ U(n), g(τt)g−1 = g t tg τ

• Since (i12)(−12)(i12) = 12,

∀t ∈ T, t2 = 1n, ∃h ∈ U(n) s.t. h t th = 1n.

Hence, if t ∈ T, t2 = 1n, {g(τt)g−1 | g ∈ U(n)} =

{g t tg | g ∈ U(n)}τ = {g 1n tg | g ∈ U(n)}τ.

So F (sê, G) ∩ U(n)τ = {g 1n tg | g ∈ U(n)}τ
Here g1n tg = g1nḡ−1 = g1nτ(g)−1 = ρτ(g)(1n).

ρτ: the twisted conjugate action by τ .

Hence {g 1n tg | g ∈ U(n)} is an orbit of ρτ(G)

through 1n.

g 1n tg = 1n ⇔ tg = g−1 = tḡ ⇔ g ∈ O(n)

F (sê, G) ∩ U(n)τ ∼= U(n)/O(n) (connected)

U(n)/O(n) is realized as a polar of U(n)⋊⟨τ⟩.
(U(n)/O(n) is not realized as a polar of a

connected compact Lie group.)
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Thank you for your kind attention.
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