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Preface

This volume of OCAMI Reports summarizes the workshop “Submanifolds of Sym-
metric Spaces and Their Time Evolutions” held from March 5th to March 6th in 2021
online by Zoom because of the COVID-19 pandemic. This workshop was supported by
“Osaka city University, Advanced Mathematical Institute MEXT Joint Usage/Research
Center on Mathematics and Theoretical Physics.” The main focus of this workshop is
submanifolds of symmetric spaces (or more general ambient spaces), mean curvature
flows in symmetric spaces (or more general ambient spaces), and related geometric
flows (line bundle mean curvature flows , which is flows of connections of complex line
bundle over Kéhler manifold, coupling flows of Ricci flows and heat flows, and so on).
This workshop consisted of two 60 minutes keynote lectures on “mean curvature flow
for isoparametric submanifolds and polar foliations on symmetric spaces” by Professor
Xiaobo Liu (Peking University), two 60 minutes keynote lectures on “deformed Hermi-
tian Yang-Mills connections and line bundle mean curvature flows” by Doctor Hikaru
Yamamoto (University of Tsukuba), and seven 50 minutes lectures on “submanifolds of
symmetric spaces, submanifolds of generalized s-manifolds, proper Fredholm subman-
ifolds of Hilbert spaces, Lagrangian mean curvature flows, and coupling flows of Ricci
flows and heat flows.” There were 38 participants in this workshop. This workshop
conducted international research exchanges on submanifolds of symmetric spaces, their
time evolutions and furthermore related geometric flows.

March 2021

Naoyuki Koike
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Ancient solutions for mean curvature flow of
isoparametric submanifolds

XIAOBO L1u

Ancient solutions are important in studying singularities of mean curvature flows
(MCF). So far most rigidity results about ancient solutions are modeled on shrinking
spheres or spherical caps. In this talk, I will describe the behavior of MCF for a
class of submanifolds, called isoparametric submanifolds, which have more complicated
topological type. We can show that all such solutions are in fact ancient solutions,
i.e. they exist for all time which goes to negative infinity. I will also describe our
conjectures proposed together with Terng on rigidity of ancient solutions to MCF for
hypersurfaces in spheres. These conjectures are closely related to Chern’s conjecture
for minimal hypersurfaces in spheres. This talk is based on joint works with Chuu-Lian
Terng.

(X. Liv) BEIING INTERNATIONAL CENTER FOR MATHEMATICAL RESEARCH & SCHOOL OF
MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING, CHINA
E-mail address: xbliu@math.pku.edu.cn



OCAMI Reports Vol. 2 (2021)

Ancient solutions for Mean
Curvature Flow of Isoparametric
Submanifolds

Xiaobo Liu

Peking University

Talk at Workshop on
"Submanifolds of Symmetric Spaces and Their Time Evolutiori
March 5-6, 2021

—p. 1/39

Mean curvature flow

Let M be a submanifold in a Riemannian
manifold X. Themean curvature flow
(abbreviated aBICF) of M is a map
f:Ix M — X satisfying

of _

ot
whereH (¢, -) is the mean curvature vector field
of f(t,-) andf(0,-) is the immersion of\/ in X.

If a solution exists ol = (—oo, T'] for some

T > 0, itis called amancient solution Such
solutions are important in studying singularities
of general MCF.

H(t,-)

—p. 2139
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Examples:

If fo: M — X is minimal, then

flt,x) = fox), xeM

IS an ancient solution to MCF. This is the
stationary solution.

If M c S"!is a subsphere, then the MCF of
M is an ancient solution, which shrinks to a point
in finite positive time and converges to the
equator a$ — —oo. This solution is called the
shrinking spherical cap.

—p.3/39

fO M — Sn—i—l - RTH—Z

is a minimal submanifold of the unit sphes& !
of any codimension (in particulav/ could be

S™H), then
flt,z) =v1—=2nt fo(zr), xeM

IS an ancient solution to MCF fa¥/ as a
submanifold inR"*2,

—p. 4/39
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M c RY. vM: normal bundle of\/.

Definition(Terng): M is isoparametric if
(1) vM is globally flat, i.e. parallel translations of
normal vectors along closed curves are identity.

(2) For any parallel normal vector field
principal curvatures along are constant.

An isoparametric polynomial is a homogeneous
polynomial F on R"*2 such thatA ' and ||V F |
are constant along level sets Bf

—p.5/39

Isoparametric hypersurfaces

Let F' be an isoparametric polynomial which is
normalized such that the range Bf| gn+1 IS
[—1,1]. Then for anyt € (—1,1), F~!(¢) n S™*!
Is an isoparametric submanifold. These are
iIsoparametric hypersurfaces in sphere

My := F~1(£1) n S"*! are not isoparametric,
they are focal submanifolds of isoparametric
hypersurfaces.

Let g be the number of distinct principal
curvatures of an isoparametric hypersurface in
sphere. Then = 1, 2, 3,4, 6 (Minzner).

—p. 6/39
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Clifford examples(Ferus-Karcher-Munzner):
Assume that, . .., E,,_ are skew symmetric
[ x [ matrices such that

EZ'E]' + E]El = —25”]d

(i.e. these matrices give a representation of the
Clifford algebra.)

Then we can construct a homogeneous

polynomial of degree 4 oR? which is
iIsoparametric.

The corresponding isoparametric hypersurfaces
have 4 distinct principal curvatures. Most of them
are non-homogeneous.

—p.7/39

Homogeneous isoparametric submanifolds
Let G/ K be a symmetric space,

g the Lie algebra of7,

t the Lie algebra off,

p the orthogonal complement &in g.

The isotropy representation &f acts onp.
Principal orbits of this representation are
Isoparametric submanifolds. All these
submanifolds are homogeneous.

Reducible cases: Products of isoparametric
submanifolds are isoparametric.

—p. 8/39
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Properties

If M c RY is complete isoparametric, then
M = M, x R* with M; compact isoparametric.

If M c RY is compact isoparametric, théd is
contained in a round sphere. After translation and
dilation, we may assum&/ is contained in the

unit sphere centered at origin.

For any parallel normal vector fielgalong
M c RY, define

M, :={z+n(zx) |z e M}

If M is isoparametric, theft/, is always a
smooth submanifold.

—p.9/39

|Isoparametric foliation:

If dim M,, = dim M, then},, is also
Isoparametric. Itis called parallel
iIsoparametric submanifold of M.

If dim M, < dim M, then}M,, is no longer
Isoparametric. It is #ocal submanifold of M.
U, M, gives a singular foliation aR™. If

M c SN~ then the set off, ¢ SV~ also

gives a singular foliation of ¥ ~. These
foliations are calledsoparametric foliations.

—p. 10/39
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MCF of Isop. Submanifolds

AssumeM c SV-! c RY compact
isoparametric. MCF of\/ as a submanifold of
RY (resp.SV~1) is called theuclidean (resp.
spherical) MCF of M.

Theorem(Liu-Terng, Duke 2009):

MCFs of M preserve the isoparametric condition
before collapsing.

Euclidean MCF of)M/ always converge to a focal
submanifold in a finite tim&" > 0. Same is true
for spherical MCF ifM is not minimal in sphere.

Every focal submanifold is a limit of the MCF of
some isoparametric submanifold.

—p. 11/39

The above results were generalized:

for MCF of equifocal submanifolds of symmetric
spaces by N. Koike (2011),

and for MCF of regular leaves of isoparametric
foliations on compact non-negativelt curved
manifolds by Alexandrino-Radeschi (2016).

—p. 12/39
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Ancient Solutions

Theorem(Liu-Terng, Math. Ann. 2020):
In both Euclidean and spherical cases,

MCF of M are ancient solutions, i.e. they exist
forall t € (—o0,0].

There is a uniqgue minimal isoparametric
submanifold),,;, for each isoparametric

foliation in SV-1,

Ast — —oo, MCF of M converges to MCF of
M in. (Note that the spherical MCF afl,,;,, is
stationary).

—p. 13/39

More preciselyd a unit parallel normal vector
field ¢ on M in SV~ such that the map
h: M — SV-! defined by

h(z) = (cosr)x + (sinr)((x)

is the embedding of/,,;, in SV, wherer is the
spherical distance betweéd andM,,,;,.

Let f(¢,x), F'(t,z) be the spherical and
Euclidean MCF ofM . For allx € M,

tlim |F(t,z) — v1—2nt h(z)|| =0,
——00
i [1f(t,2) — h@)]| = 0.

—p. 14/39
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Hypersurface cases

Let M" C S"*! be an isoparametric hypersurface
with ¢ distinct principal curvatures. For any

z9 € M, let S'(z) be the geodesic if"*!
which passes; and is perpendicular to/.

Let M. be the focal submanifolds @/ with
dim M, < dim M_. Let

mp = dim M —dim M _,
me = dim M —dim M.

Thenm; andms, are multiplicities of principal
curvatures of\/.

Note thatm; < ms.

If g=1,3,6, thenm; = ms.

—p. 15/39

M, U M_ intersectsS!(z,) in exactly2g points,
evenly distributed along the circle. Let be the

intersection of\/.. with S*(z,) which are closest
to xo. We may identify the normal space &f in
R™*2 at g with C such thatS!(x) is the unit
circleinCandz, =1,z_ = e, g = et

with 0 < 6y < /g.

Every parallel isoparametric hypersurface

intersect the ar¢e® | 0 < 0 < 7/g} at exactly
one point. We can use this point to represent the
parallel isoparametric hypersurface.

—p. 16/39
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Let M,,;, be the unique minimal isoparametric
hypersurface which is parallel to. ThenM,;,

is represented by/?»» where
co8 §Onin = —0

with
M2 — 1My

0: > 0.

mo + My

Theorem (Liu-Terng): LetM, be the spherical
mean curvature flow af/. Assumel/; is

represented by’*). Thend(t) is given by
cos gf(t) = 9" (cos gfy + ) — 0.

—p. 17/39

Note thate??=i» divides the arc
{1 0<8<n/g}

into two partsé(t) — 0 or 7/g ast approaches
some positive number. As— —oo, 0(t) — G-

Remark: For higher codimensional cases,
explicit solutions of MCF can also be constructed
recursively using Coxeter group structure of the
Isoparametric submanifolds. In general, it is more
difficult to locate the position of minimal leaf of
iIsoparametric foliation in higher codimension.

—p. 18/39
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Rigidity Results

Theorem (Huisken and Sinestrari, JDG 2015):
Let M, be the spherical MCF of a hypersurface in
Sl A(t) and H (t) be the shape operator and
the mean curvature vector field &f;, as a
submanifold ofS™*1. M, is either a shrinking
spherical cap or a stationary solution if one of the
following conditions is satisfied for atl < 0:

(HS1) Forn > 3 and
1

AR)||P — ——||H®)||? < 2.

DI = —<IHOII* <

(HS2) For some constait < 4n,

AW < e ™[ H D).

—p. 19/39

Huisken and Sinestrari claimed that condition
(HS1) is sharp. They justify this claim by
considering the MCF of a product of an

(n — 1)-dimensional sphere and a circle$ti™!.
This is precisely the MCF of an isoparametric
hypersurface witly = 2, m; =1, my =n — 1.

According to our calculations, for this example

— 2
n tan? 6(t)
n—1

JA()])? — ﬁHH(t)HQ —2=

wheree?® represents/,. Ast — —oo,

0(t) = Opm, RHS — n — 2 which is not

arbitrarily small. So the justification for the
sharpness of (HS1) is not correct.
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Lemma(Liu-Terng): For everyy = 1,2,3,4,6, 3
iIsoparametric hypersurface wighdistinct
principal curvatures such that its MCF satisfies

A < e ™| H (1)

forall t < 0.

Corollary : Condition (HS2) is sharp in the sense
that B can not be> 4n. (Otherwiseg = 2 case of
the above lemma would give counter examples.)

—p.21/39

Rigidity conjectures

Conjecture A(Liu-Terng): If 3 ¢, co, T > 0 such
that

—2gnt ‘|A<t)”2

cie < o S ee
[[H(@)]]?
forall t < —T, then the ancient solution of MCF
M, of compact hypersurfaces in sphere is the
MCF of an isoparametric hypersurface with
distinct principal curvatures.

Remark: g = 1 case of this conjecture is true by
Huisken and Sinestrari’s result.

The above estimate holds for MCF of
Isoparametric hypersurfaces.

—2gnt

—p. 22/39
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Conjecture B(Liu-Terng): If 3 some constants
0 < e < 1andT > 0 such that either

(g—1n < [JAM)II" - %HH(??)H2 <(g—1+€n
or
(9= 1=en <A - %I\H(t)II2 <(g—1n

forallt < —T, then the ancient solution of MCF
M, of compact hypersurfaces in sphere is the
MCF of an isoparametric hypersurface with
distinct principal curvatures.

—p. 23/39

Remark: ¢ = 1 case of Conjecture B is true by a
result of Lei-Xu-Zhao (2019).

The above estimate holds for MCF of
Isoparametric hypersurfaces.

The two inequalities in Conjecture B can not be
replaced by the following inequality:

1
(g=1=n < JADIF=—IHOIP < (9=1+€)n.
Otherwise Otsuki’s construction would give a
counter example (which are minimal of

topological typeS™—! x S1).

—p. 24/39
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Chern’s Conjecture

Original Chern’s Conjecture: M" c S"*!
compact minimal with constantA||. Then the

set of possible values ¢ff4||? is discrete.

Remark: For minimal isoparametric
hypersurface witly distinct principal curvatures,

1AI]? =n(g - 1).
Stronger version of Chern’s Conjecture

M™ c S""! compact minimal with constant
|Al|. ThenM is isoparametric.

—p. 25/39

Stationary case of Conjecture B

Conjecture C: M™ c S™"! compact minimal. If
4 some constant$ < € < 1 such that either

(9= Dn < |IAIP < (g —1+en
or
(9—1—en < JA|]* < (g — Dn,

then M is an isoparametric hypersurface with
distinct principal curvatures.

Remark: Conjecture C is stronger than Chern’s
conjecture.

—p. 26/39
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Theorem (Chern-do Carmo-Kobayashi, 1970):
M"™ c S™*! compact minimal. If

0 < [IA|]* <n,

then)M is either an equator (isoparametric with
g = 1) or a Clifford torus (isoparametric with

g=2).
This result implies that Conjecture C is true for
g = 1 case and half of the = 2 case.

—p. 27/39

Theorem: AssumeM™ C S"*! compact
minimal with

n <||A]]* < (1+e)n.
M must be a Clifford torus if
e = -5 and||A|| is constant (Peng-Terng, 1983),
¢ = 1 and||A]| is constant (Cheng-Yang, 1998),
¢ = 3 and||A|| is constant (Suh-Yang, 2007), or
¢ = 55 (Ding-Xin, 2011), or
€ = 5 (Xu-Xu, 2017).

—p. 28/39
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These results give some partial answers for
second half of thg = 2 case of Conjecture C.
Chern’s conjecture for isoparametric
hypersurface irb* was proved by S.P. Chang
(1993).

The above results was proved using estimates
obtained from elliptic equations faxII and
A(VII). We hope the flow (parabolic) method
may provide new insights to Chern’s conjecture.

—p. 29/39

Idea for Proof: Euclidean Case

AssumeM C SV~! c RY compact
isoparametric. Fiy € M. LetV = v,M be the

normal space of M as a submanifold®?" atp.

The intersection of/ and the union of all focal
submanifolds of\/ is a union of finitely many
hyperplanes iiv’. Let W be the group generated
by reflections along these hyperplanes.

W is a finite group, called th€oxeter group of
M (Terng).

—p. 30/39
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Let C' be the interior of the fundamental domain
of W acting onV” which containg. C'is called
the openWeyl chamberof 1.

C'is an open simplicial cone iW.

Every parallel isoparametric submanifold /af
intersectC' at exactly one point.

Every focal submanifold o/ intersectoC at
exactly one point.

—p.31/39

MCF of M is reduced to a flow equation for
points inC' C V.

W invariant polynomials o’ give a new

coordinate system ofl. In this coordinates, the
Euclidean MCF becomes a flow equation along a
polynomial vector field, and can be solved
recursively in a rather explicit way. The solution
exists as long as it does not bt

—p. 32/39
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Since focal submanifolds have lower dimensions,
the volume function approachesf the flow
approaches(C.

Ast — —o0o, the volume function of MCF is
increasing, hence never hit§¢’. Consequently
MCF exists for allt € (—o0, 0], i.e. the solution
IS ancient.

—p. 33/39

By a result of Palais-Terng, each isoparametric

foliation in SV ~! contains at least one minimal
Isoparametric leaf.

To study the limit of MCF ag$ — —oo, letx(t) be
the Euclidean MCF of\/ andz(t) the Euclidean
MCF of a minimal isoparametric submanifold in

SN=1 which is parallel taV/. Define

D(t) := [la(t) — 2(®)]]*

—p. 34/39
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Lemma: 3 constant > 0 such that

D)= "
1 —2nt

D(1).

Corollary: For allt < 0,

D(t) < D(0)(1 — 2nt) .
In particular,lim; , ., D(t) =0, i.e. MCF of M
converges to the MCF of a minimal isoparametric
submanifold.

Corollary : Each isoparametric foliation ¢fV !
contains exactly one minimal isoparametric leatf, ...,

Spherical Case

Let f(¢,x) and F'(t, x) denote the spherical and
Euclidean MCF of/. Then

Flt.z) = V1= 2t f(—% In(1 — 2nt), ).

We can use this formula to prove results about
spherical MCF of)M .

—p. 36/39
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Geometric quantities

Let o; be unit normal vectors of walls of Coxeter
group (roots)n; multiplicities of curvature
distribution. Forr € C,

Hw) = =3 e

HS _ m;o; nx
@) = 2 ey T
AE (12 = L)
47 = 30

S = mi "
@I = 2~ Tl

i

—p.37/39

If z(¢) € C represents a solution to MCF, then

lim (1 —2nt) ||H®(z(t))||* = n?

t——00

dim (1= 2nt) [AE@()|? = D ——

i <xmin7 ai>2 .
and

lim [|H>(y(t))II* = 0,

t——0o0

Jim A5 = 3

i <xmin7 ai>2

m;
—n.

—p. 38/39
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Thanks!

—p. 39/39
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Polar foliations in symmetric spaces and their mean
curvature flow

X1A0BO Liu

Polar foliations are natural generalizations of orbit foliations of polar actions. In
this talk I will describe the relation between polar foliations and isoparametric subman-
ifolds in simply connected symmetric spaces with non-negative curvature. It turns out
principal orbits of such foliation are isoparametric submanifolds. If leaves are compact,
such foliations must be products of isoparametric foliations in Euclidean spaces and
polar foliations in compact symmetric spaces. For polar foliation in compact symmet-
ric spaces, there is a unique regular leaf which is minimal. The mean curvature flow
of all regular leaves have ancient solutions and always converge to the minimal regular
leaf as time goes to negative infinity. This talk is based on joint works with Marco
Radeschi.

(X. Liv) BEING INTERNATIONAL CENTER FOR MATHEMATICAL RESEARCH & SCHOOL OF
MATHEMATICAL SCIENCES, PEKING UNIVERSITY, BEIJING, CHINA

E-mail address: xbliu@math.pku.edu.cn
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Polar Foliations on Symmetric
Spaces and Mean Curvature Flow

Xiaobo Liu

Peking University

Talk at Workshop on
"Submanifolds of Symmetric Spaces and Their Time Evolutioni
March 5-6, 2021

—p. 137

|Isoparametric Submanifolds

Let NV be a Riemannian manifold/ ¢ N a
submanifold.

Given a parallel normal vector fielddefined
over a small open subsEt C M, let

Ue := {exp({(p)) | p € U}.

If |£]| is small,U; is a smooth submanifold aY .
We callU; alocally parallel submanifold of M.

—p. 2137
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Defination(Heintze-Liu-Olmos, 1997): A
submanifoldM C N is isoparametric if

(1) Normal bundle/ M is flat.

(2) For everyp € M, exp v, M is totally geodesic
in a neighbourhood af (called alocal section.

(3) Locally parallel submanifolds af/ have
parallel mean curvature vector fields.

—p.3/37

Example: If N is a space form, this coincides
with Terng’s definition of isoparametric
submanifolds.

Unlike the space form case, isoparametric
submanifolds in general Riemannian manifold:
(1) may not have constant principal curvatures.

(2) may not produce a global singular foliation of
N. If it does, such foliation is called an
iIsoparametric foliation.

—p. 4137
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Example: If N is a compact symmetric space,
M C N is anequifocal submanifoldif

(1) vM is flat and abelian (use Lie algebra
structure).

(2) Focal distance and multiplicities along locally
parallel normal vector fields are constant.

(This definition is due to Terng and
Thorbergsson)

Fact: M is equifocal if and only if it is
Isoparametric with flat sections.

—p.5/37

Example: Let G be a Lie group acting
iIsometrically on a Riemannian manifold. The
action is polar if there exists a totally geodesic
submanifold” c N which intersects all orbits of
G and intersects them orthogonally, and the
dimension of® is complementary to the
dimension of principal orbitsX is called a
sectionof the polar foliation.

Theaction is hyperpolar if it is polar with flat
section.

Fact: Principal orbits of polar actions are
iIsoparametric.

—p. 6/37
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Given an isoparametric foliatioflVv, 7), i.e. a
singular foliation consists of an isoparametric
submanifoldL and all its parallel submanifolds.
It turns out that alfegular leaves(i.e. leaves
with maximal dimension) ofF are isoparametric
submanifolds as well. Passing through every
pointp, there is a totally geodesic submanifold
>, (i.e. a section) which intersects all leaves
orthogonally.

A vectorv € T'N is horizontal if it is tangent to
a section. Itisvertical if it is tangent to a leaf.

—p. 7137

Mean curvature flow

Recallmean curvature flow (abbreviated as
MCF) of M over an interval is a map

FiIxM— N

satisfying
of
i
whereH (¢, -) is the mean curvature vector field
of f(t,-) andf(0,-) is the immersion of\/ in V.

If a solution exists o = (—oo, T for some

T > 0, itis called anancient solution Such
solutions are important in studying singularities
of general MCF.

H(t,")

—p. 837
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Theorem(Liu-Terng, Duke 2009): If_ is an
Isoparametric submanifold in a Sphere or
Euclidean space. Then

(1) MCFs of L flows through leaves of the
Isoparametric foliation associated to

(2) Euclidean MCF ofl, always converge to a
singular leaf in a finite tim&" > 0. Same is true
for spherical MCF ifL is not minimal in sphere.

—p.9/37

The previous result was generalized:

for MCF of equifocal submanifolds in symmetric
spaces by N. Koike (2011), and

for MCF of regular leaves of isoparametric
foliations on compact non-negatively curved
manifolds by Alexandrino-Radeschi (2016).

—p. 10/37
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Theorem(Liu-Terng, Math. Ann. 2020):
If L is an isoparametric submanifold in a Sphere
or Euclidean space, then

(1) MCF of L always has ancient solution, i.e. it
exists for allt € (—oo, 0].

(2) There is a unique minimal isoparametric
submanifoldL,,;, for each isoparametric foliation

in SV-1,

(3) Ast —+ —oo, MCF of L converges to MCF of
Luin. (Note that the spherical MCF afl,,;,, is
stationary)

—p. 11/37

Theorem A(Liu-Radeschi, 2020): ASSumg is
an isoparametric foliation on a Riemannian
manifold M such thaRicy,(v) > Ricy(v) for
any sectiort: andv tangent to>, and the leaf
spacelM /F is compact. Then

(1) There is a unique minimal regular legf,;,, in
F.

(2) For any regular leak in F, the MCF ofLL
always has ancient solution and it converges to
Lin @St goes to—oo.

Remark:This result generalizes the
corresponding result of Liu-Terng in spheres.

—p. 12/37
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Polar Foliation

Let NV be a complete Riemannian manifold. A
singular foliationF on NV is Riemannianif every
geodesic perpendicular to a leaf at one point must
be perpendicular to all leaves which it intersects.

Moreover,F is polar if for Vp € N, 3 a totally
geodesic submanifold > p with dimension
complementary to the dimension of regular
leaves such thaf intersects all leaves of
orthogonally.X is called asectionof F.

Remark: No restriction for mean curvature of
leaves inF.

—p.13/37

A hyperpolar foliation is a polar foliation with
flat sections.

Remark: In general a polar foliation may not be
Isoparametric.

Starting from an isoparametric submanifold, its
parallel submanifolds may not form a foliation.

—p. 14/37
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Example:
Orbits of polar actions form a polar foliation.

Orbits of hyperpolar actions form a hyperpolar
foliation.

Isoparametric foliations are polar.

Parallel submanifolds of an equifocal submifold
in compact simply connected symmetric spaces
form a hyperpolar foliation.

—p. 15/37

Theorem B(Liu-Radeschi, 2020): LeF be a
polar foliation on a simply connected symmetric
spaceN with non-negative curvature. Then

(1) F is always isoparametric.

(2) F is a product of a polar foliation with
compacteaf spaceN/F and an isoparametric
foliation in a Eucliean space.

(3) If 7 has compact leaves, then it is a product
of a polar foliation in a compact symmetric space
and an isoparametric foliation in a Eucliean
space.

—p. 16/37
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Corollary (Liu-Radeschi, 2020):

Let V be a simply connected symmetric space
with curvature> 0 and.F is a polar foliation on
N without trivial or Euclidean factors. Then

(1) There is a unique regular leaf,;, in

which is minimal inNV.

(2) MCF of every regular leaf of has ancient
solution and it converges tb,,;, ast — —oo.

Remark: Together with Liu-Terng’s result for
Isoparametric submanifolds in Euclidean spaces,
this result completeluy describes behavior of
MCF for polar foliation in nen-negatively curved
symmetric spaces in negative time direction.

—p. 17/37

|dea for proof of Theorem A

Let L be a regular leaf in a polar foliatioh on a
Riemannian manifoldVv. Let~(¢) be a geodesic
with v(0) =p € Landy/(0) L T,L. Let X be a
parallel normal vector field alonfy with

X(p) =~'(0).

Defineend-point map ¢y : L — N by

¢x(q) = exp, X(q).

For everyv € T,,L, we callJ,(t) := dy¢rx(v) @
holonomy Jacobi vector fieldalong~. Let L, be
the leaf of 7 passingy(t). ThenJ,(t) € T’ L
for all ¢.

—p. 18/37
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LetY > p be a section ofF. Then~(t) € X for
all ¢.

LetV; := v, 2. We have
Vi 2 Ty Lt

for all ¢ with "="iff L, is a regular leaf.

The curvature operatde on N defines a
symmetric operatoR; onV; by

Ri(w) := R(w,~'(t))7'(t)
forw € V..

—p.19/37

There is aRaccati operator S; onV; such that
Si(J(t)) = J'(t) for holonomy Jacobi vector field
J at regular times. In fact S, is the shape
operator ofL; alongy’(t) if L; is a regular leaf.

S; satisfies théRiccati equation:

S+ S?+ Ry = 0.

Riccati comparison theorem Letn = dim V.
If Ltr(R;) > 0 > 0, thenitr(S,) is bounded
above by the solution of

s(t)+s*(t)+6=0
with s(0) = Ltr(Sp).

—p. 20137
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Given an orthonormal basig; |i=1,--- ,n}
of 7,,L wherep = ~(0). Let J; be the holonomy

Jacobi field withJ;(0) = e;. Letw andw; be the
volume element of. and L, respectively. Then at

yor
Qi vwr = f(t) - w
where

fo(t) = det(< Ji(t), E;(t) >)1<ij<n

with E;(t) the parallel extension af; along-.

—p. 21/37

Fact:

d
%hfl fp(t) = tI'(St) =—< HtaXt > .

So we can use Riccati comparison theorem to
estimate volume of ;. In particular, we have

Lemma: If for all regular leaved. and all

v € v,L, trp, L R(-,v)v > 0, then

V(L) := vol(L)# is a strictly concave function on
the regular part ofV/F.

Corollary : If in addition, N/ F is compact, then
there is a unique minimal regular leAf;,..

—p. 22/37
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If F is isoparametric, MCF of a regular leaf can
be reduced to a flow on regular part®f F and
V' is a Lyapunov function for the flow along H
with unique global attractok,,;,. Hence MCF of
L converges td.,,,;, ast — —oo. This finishes
the proof of Theorem A.

—p.23/37

|dea for proof of Theorem B

To prove a polar foliatiorF on a simply
connected manifoldV is isoparametric, we need:

Theorem(Alexandrino-Toeben): Let be a
regular leaf ofF. Then
(1) L has trivial normal holonomy.

(2) L has constant focal data, i.e., the end point
map of a parallel normal vector field has constant
rank.

So we only need to show mean curvature vector
fields along regular leaves are parallel.

—p. 24/37
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Let NV be a simply connected symmetric space
with curvature> 0.

Theorem(Lytchak): Every polar foliation inV is

a product of a trivial factor, a hyperpolar foliation,
and polar foliations with spherical sections (i.e.
sections with constant positive curvature).

Theorem(Heintze-Liu-Olmos): Hyperpolar
foliations on/V are isoparametric.

So we only need to show polar foliations with
spherical sections are isoparametric.

—p. 25/37

We may assume every sectitns a sphere with
curvature= 1 after re-scaling metric ofV. Fix a
regular leafL of F. Let X be a unit parallel
normal vector field alond.. For anyp € L, let
~v(t) be the geodesic with(0) = p and

7'(0) = X (p). Then is periodic with perio®r.
In factexp, t X (q) is periodic for allg € L. This
implies that all holonomy Jacobi fields are
periodic with perio®.

—p. 26/37
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We can prove:

(1) Periodicity of holonomy Jacobi fields implies
that eigenvalues ak; along~(t) are squares of
integers

0 <A< <A

Letm = >""" , \i. Then2m is the index of space
of holonomy Jacobi fields along o). By

continuity of index, we see: is independent of
p € L.

—p.27/37

(2) Let{ey,...,e,} be an orthonormal basis of
)y Wheree; is an eigenvector o, with
eigenvalue\?. Let J;(t) be the holonomy Jacobi
vector field withJ;(0) = e;. Let E;(¢) be the
parallel translation of; along~(¢). Let

fp(t) == det(< Ji(t), E;(t) >).
Then

fp(t) = Z a; sin(s;t) + b; cos(s;t)

wheres; = A\ = Ao £ --- £ \,.

—p. 28/37
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(3) It follows that f, lies in a spacd™ of
functions withdim 7 = m + 1.

(4) Assumey intersects singular leavds at time
t; € (0,m)forj=1,... k. Let
m; = dim(L) — dim(L;). Thel’lz:?:1 mj =m
and

£y0(t5) =0
foralld=0,...,m; —landj =1,...,k. This

gives a system af: linearly independent
conditions on spac& which, together with

condition f,(0) = 1, uniquely determineg,.

—p.29/37

(5) Note that; andm; are determined by focal
data ofexptX : L — N. By constancy of focal
data,f,(t) does not depend gne L.

(6) Since
f5(0) = f,(0)tr(Sp) = — < Hy, X, >,

it follows that< H,,, X,, > does not depend on
p € L for all parallel normal vector field. So
H is parallel along all regular leaves asidis
iIsoparametric.

—p. 30/37
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Second part of Theorem B is a splitting theorem
for polar foliation. We would like to show that
after splits off Euclidean factors, eith&f/ F is
compact, orV is compact.

It follows from a combination of Lytchak’s
results that iV, F) is an indecomposable polar
foliation with spherical sections, thax has to be
compact. So we only need to consider the
hyperpolar case.

—p. 31/37

AssumefF is a hyperpolar foliation od/. Forp
in the regular part of the foliation, Idt, be the
leaf throughp. Define

D(p) :=={v ev,L | R(-,v)v = 0}.

SinceM is a symmetric space with non-netative
Ricci curvature,D(p) is always a vector space
and defines an integrable totally geodesic
distribution wheryp varies in the regular part of
the foliation.

—p. 32/37
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Moreover, it follows that € D(p) is equvalent
totrR(-,v)v = 0. Itis also equivalent to the
geodesiexp(tv) intersecting singular leaves
only finitely many times. The latter fact is proved
by estimating index of the space of holonomy
Jacobi fields using Riccati comparison theorem.

A sectionX of F then splits as a product of two
submanifolde:; x >, with ¥; an integral
submanifold ofD and>:; perpendicular tdD.

—p. 33/37

Each hyperpolar foliation has\@eyl group W
which is generated by reflections along affine
hyperplanes oE calledwalls of 7. One can
show that the above splitting &f induce a
splitting of W as well. To prove this, we need to
use the fact that for any horizontal geodesic
with v(0) € X1 N X, it intersects walls of Weyl
groupW either finitely times when C ¥, or
infinitely many times when g >1. So walls of
W is divided into disjoint union of two sets, one
has normal vectors tangentX, another has
normal vectors tangent t3,. The decomposition
of walls gives decomposition /.

—p. 34/37
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Decomposition of the Weyl group implies the
splitting of (/V, F) into the product of two
foliations (M, F1) x (My, F3). (Terng,
Heintze-Liu, Ewert, Silva-Speranca)

The first factor(M;, F1), which has®; as a

section, is an isoparametric foliation in Euclidean
space (possibly times a trivial factor). The second
factor (M,, F3), which has¥; as a section, has

the property that its leaf spadé, / F, is compact.
Every horizontal geodesig(t) in M; meets
singular leaves infinitely many times in positive
direction.

—p.35/37

If leaves of( NV, F) are compact, we can prove
M, is compact by contradiction:

In fact, if M5 is not compact, we have a splitting
My = M’ x R* for somek > 0. We then show

the projection from a regular ledf, of 7, to R*
Is a submersion. This is not possibleif is
compact.

This completes the proof of Theorem B.

—p. 36/37
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Thanks!

—p. 37/37
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Antipodal sets of generalized s-manifolds

TAKASHI SAKAI

ABSTRACT. We introduce the notion of generalized s-manifold as a generalization
of symmetric spaces. Then we study maximal antipodal sets of generalized s-
manifolds. This is partly joint work with S. Ohno and Y. Terauchi.

1 Generalized s-manifolds

A Riemannian symmetric space M is a Riemannian manifold which has a geodesic
symmetry s, at each point x € M. The family {s,}.cn of geodesic symmetries satisfies

5208y = Sg,(y) © Sz (1)

for all z,y € M, that is, a Riemannian manifold M is a quandle. By generalizing (1)
to (2), we define generalized s-manifolds as follows.

Definition 1. Let M be a smooth manifold and I a group. Let {¢, }.car be a family of
group homomorphisms ¢, : I' = Diff (M) from I" to the diffeomorphism group Diff (M)
of M. Then (T, {p,}renm) is called a generalized s-structure on M if it satisfies the
following conditions:

1. For each v € ', the map u? : M x M — M; (z,y) — @.(7)(y) is smooth.
(When I' is a Lie group, p: I' x M x M — M; (v, z,y) — v.(7)(y) is smooth.)

2. For each z € M, z is an isolated fixed point of the action of ¢,(I") on M, i.e.,
x is isolated in F(p,(I'), M) :={y e M | p.(7)(y) =y (VyeD)}.

3. For any z,y € M and 7,0 €T,

@ (7) 0 0y(8) 0 (7)™ = Py ) (V0T ) (2)
holds.

When I' = Z,, a generalized s-manifold is just a symmetric space in the sense of
Loos and Nagano. More generally, a regular s-manifold is a generalized s-manifold
with I' = Z, in particular a k-symmetric space is a generalized s-manifold with I' = Z
(cf. [2]). A I'-symmetric space introduced by Lutz [3] is a generalized s-manifold with
a finite abelian group I'.

Let K be R,C or H. For n,nq,...,n, € N satisfying ny 4+ - - - +n, < n, we consider
a flag manifold

Foyo ®) :i={z=WV,.... V)| ViC---CV, CK"dimV; =ny + -+ +n;}.

This work was partly supported by the Grant-in-Aid for Science Research (C) No. 17K05223,
JSPS.
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The flag manifold F,,, ., (K") has fibrations over Grassmannian manifolds. Symme-
tries of the Grassmannian manifolds induce a I'-symmetric structure on F,, .. (K")
with I' = (Z3)". Furthermore, in [4], by using I'-symmetric triples, we investigated
['-symmetric structures on R-spaces, which is a natural generalization of symmetric R-
spaces. We gave a necessary and sufficient condition for an R-space to admit a natural
[-symmetric structure in terms of the root system. Then we classified R-spaces that
admit natural I'-symmetric structures, when the root system is irreducible.

2 Antipodal sets of generalized s-manifolds

Chen and Nagano [1] studied antipodal sets of compact symmetric spaces. The defini-
tion of antipodal sets of compact symmetric spaces naturally extends to a generalized

s-manifold (M, T, {¢.}renm)-

Definition 2. A subset A of M is called an antipodal set if p.(7)(y) = y holds for all
z,y € Aand y €T de, y € Flp.(I'), M) :={y € M | o:(7)(y) =y (Vy € )}. An
antipodal set A of M is said to be maximal if A = A’ holds for any antipodal set A’
of M with A C A’. The supremum of the cardinalities of antipodal sets of M, denoted
by #rM, is called the antipodal number of M. An antipodal set A is said to be great
if its cardinality attains #rM.

Theorem 1 (Ohno-S.-Terauchi). Any mazimal antipodal set of F,,, ., (K") with re-
spect to the I'-symmetric structure with T' = (Zy)" is congruent to

A :{((6“, . ,6in1>K, <€Z‘1, . ,ein1+n2>K, Ceey <€i1, c. ’ein1+~-+n7—>K)
1<y < v <y <y 1<y <o <lpygng <Myeen,
1< Z.”1+"'+nr71+1 << Z.n1+~--+nr <n,
#{il, . 7in1+~~'+nr} =N + .+ nr};

where €4, ..., e, is the standard basis of K".

Furthermore, in [4], we determined maximal antipodal sets of natural I-symmetric
structures on R-spaces. More precisely, an R-space M can be realized as an orbit of the
isotropy representation (s-representation) of a compact symmetric space G/K. Then
any maximal antipodal set of the natural ['-symmetric structure on M is given as an
orbit of the Weyl group of G/K. Consequently we obtain that the antipodal number of
M is the cardinality of the orbit of the Weyl group, hence it is equal to dim H,(M; Z,).
These are generalizations of results on maximal antipodal sets and the two-numbers of
symmetric R-spaces by Tanaka—Tasaki [6] and Takeuchi [5].

REFERENCES

[1] B.-Y. Chen, T. Nagano, A Riemannian geometric invariant and its applications to a problem of
Borel and Serre, Trans. Am. Math. Soc. 308 (1988), 273-297.

[2] O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics 805, Springer-Verlag,
Berlin-New York, 1980.



48 OCAMI Reports Vol. 2 (2021)

[3] R. Lutz, Sur la géométrie des espaces I'-symétriques, C. R. Acad. Sci., Paris, Sér. I 293 (1981),
55-58.

[4] P. Quast and T. Sakai, Natural I'-symmetric structures on R-spaces, J. Math. Pures Appl. (9)
141 (2020), 371-383.

[6] M. Takeuchi, Two-number of symmetric R-spaces, Nagoya Math. J. 115 (1989), 43-46.

[6] M. S. Tanaka, H. Tasaki, Antipodal sets of symmetric R-spaces, Osaka J. Math. 50 (2013),
161-169.

(T. SAKAI) DEPARTMENT OF MATHEMATICAL SCIENCES, TOKYO METROPOLITAN UNIVERSITY,
1-1 MINAMI-OSAWA, HAcCHIOJI-SHI, TOKYO 192-0397, JAPAN

E-mail address: sakai-t@tmu.ac. jp



Submanifolds of Symmetric Spaces and Their Time Evolutions 49

Antipodal sets of generalized s-manifolds

Takashi Sakai
(Tokyo Metropolitan University / OCAMI)

March 5, 2021

Submanifolds of symmetric spaces and their time evolutions

Antipodal sets of generalized s-manifolds

Introduction

Definition

(M, g) : Riemannian symmetric space
&L For each z € M, there exists s, € Isom(M, g) s.t.
Q s2 =idy,
@ =z isisolated in F(s;, M) :={y € M| s.(y) = y}.

eg. E” 5" RH", G,(K"), compact Lie groups, ...
E. Cartan classified Riemannian symmetric spaces.

Generalizations:

@ locally symmetric space VR =0

@ pseudo-Riemannian symmetric space, affine symmetric space
e weakly symmetric space (Selberg)

@ k-symmetric space, s-manifold (Ledger, Obata, Kowalski, ...)

@ I'-symmetric space (Lutz)

Antipodal sets of generalized s-manifolds
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Symmetric space

Definition (Loos, Nagano)

M : symmetric space

&L For each z € M, there exists s, € Diff(M) s.t.

Q pu:MxM— M; (z,y) — s.(y) is smooth,

Q s2 =idy,

© =z isisolated in F(s;, M) :={y € M| s.(y) =y},
Q syo08,=5,)°8: (Vo,y€e M)

e.g.
e Euclidean space R”  s,(y) = —y+ 2z
@ sphere S™ Cc R*H! se(y) = —y + 2(z, y)x

Antipodal sets of generalized s-manifolds

['-symmetric spaces

Definition (Lutz)

M : C*°-manifold, T': finite abelian group
pw=A{u’: M x M — M smooth map | v € T'}

['-symmetric strucure on M
def
<~

Q Foreachx e M
I' = Diff(M); v v = p (2, ")
is an injective homomorphism, i.e. 'y := {v, |y € T'} =ZT.
© Every z is isolated in
F(ly, M) :={y € M [v(y) =y (Vy €I)}.
© Forall x € M and v €T, 7, is an automorphism of p, i.e.
2 (12(9),72(2)) = 1 (W (y,2))  (Vy,2 € M, §€T).

v

e 5’)’2(9)0’7%:733059 (VfL’,yEM, 75561—‘) J
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Generalized s-manifolds

Definition (Ohno-S.)
M : C*°-manifold, I': (Lie) group

(T, {@x}zenm) : generalized s-structure on M
def

© For each x € M, ¢, : I' — Diff (M) is a group

homomorphism.

@ Foreach~y el u¥: M x M — M; (z,y) — p(7)(y) is a
smooth mapping.  (In the case where I is a Lie group,

p:T'x M xM— M; (v,z,y) — ¢z(7)(y) is smooth.)

© zx is isolated in

F(pz('), M) := {y € M [ p2(7)(y) =y (vy € )}
Q ForVx,y e M and Vv,6 € T’

0 (7) © oy(8) 0 0z (7)1 = () (VYY)

N,

Antipodal sets of generalized s-manifolds

Generalized s-manifolds

For each z € M, I'; := {wz(7) | ¥ € I'} is a subgroup of Diff(M).
We call T';, the symmetric transformation group at x € M.

o '=7y, = (M,T',{pz}tzen) is a symmetric space
o I'=7y, = (M, {ps}zenm) is a k-symmetric space
o I'=72Z = (M,I',{vz}tzem) is a regular s-manifold

@ I' is a finite abelian group

= (M, {ps}zerr) is a I'-symmetric space

Antipodal sets of generalized s-manifolds
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Antipodal sets of compact symmetric spaces

M : compact Riemannian symmetric space

Definition (B.-Y. Chen-Nagano)

For x € M, each connected component of the fixed point set
F(sz, M) :={y € M | sz(y) = y}

of s, is called a polar. An isolated polar is called a pole.

Definition (B.-Y. Chen-Nagano)

Q@ A C M : antipodal set

PLIN sz(y) =y for all x,y € A

Q@ A C M : maximal antipodal set
A A« M - antipodal set, A C A —> A= A’
© #oM :=sup{#A | AC M : antipodal} 2-number

Q A C M : great antipodal set gty H#A=H#HM

v

Antipodal sets of generalized s-manifolds

Antipodal sets of compact symmetric spaces

Example:

Rn—l—l

o= (e1) € RP" En+1

F(s6,RP") ={o}U{x e RP" |z L o}
>~ (o} URP"!

€2
A={{e;)|i=1,...,n+1} el
#oRP™ = n + 1 = dim H, (RP"™, Zs)

Theorem (Takeuchi)

M : symmetric R-space = #oM = dim H,.(M,Z>)

Antipodal sets of generalized s-manifolds
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Antipodal sets of generalized s-manifolds

(T, {¥z }zerr) : generalized s-structure on M.

For x € M, a connected component of the fixed point set
F(pz(T), M) :={y € M | pz(7)(y) =y (Vy € ')}
is called a polar. An isolated polar is called a pole.

4

Q@ A C M : antipodal set
def

vz (7)(y) =y forall z,y € Aand y € T
Q@ A C M : maximal antipodal set
S antipodal set, AC A =— A=A

© #rM :=sup{#A| A C M : antipodal} antipodal number

Q A C M : great antipodal set PN H#A=H#HrM

Antipodal sets of generalized s-manifolds

Flag manifolds

K=R, CorH
n,ni,...,n, € N satisfying ni +---+n, <n

Fnl,...,nr(Kn) = {-T = (‘/17 sy V;")

VicVoC---CV, CK"
dimV; =ny + -+ n; (Vi)

Forx = (WV1,...,V;) € By, n, (K™), define
sy, = 2Py, —idgn : K" = K" (i=1,...,71),
where Py, : K" — V; is the orthogonal projection. Then
sy, € Diff (M), 3‘2/1, =idy, sy 08y, = sy, 0 sy

Hence (ZQ)T = <$V1, R SVT> - DIH(M)

Therefore Fy,, ., (K") is a generalized s-manifold with I' = (Z5)".
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Flag manifolds

Fn1,n2,n3 (Kn) Ly X Lo X Lo
(Vi, Vo, V3)
Fn17n2 (Kn) Fm n2+ng (Kn) Fn1+n2 n3 (Kn) Lo X Lz
(V1,Va) (V4,V3) (Va, V3)
m Kn n1~|—nz Kn n1+n2+n3 (Kn) Lo
Vi Va V3

Antipodal sets of generalized s-manifolds

Maximal antipodal sets of flag manifolds

Theorem (Ohno-S.-Terauchi)

© Any maximal antipodal set of Fy,, ., (K") with respect to
the I' = (Zy)"-symmetric structure is congruent to

A={((€iys--1€ip JKr{(€irs- s €ip 1)Ky {€iyseees€ip 1 10 )K)
1< < <ipy, <1, L <ipg1 < < lnging < Myeno,
L < imoin 41 < e < inpean <7,
#H#{i1, iy tetn, f =N1 4 N0},

where eq, ..., e, Is the standard basis of K.

2]

n!

#F (Fnl,...,nr (Kn)) —

= dim H., (Fnl,...,nr (Kn)u Z2)7

nilng! - nplneq!

where ny+1 :=n— (ny +---ny).

Antipodal sets of generalized s-manifolds
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Kahler C-spaces

GG : compact connected semisimple Lie group

zo(#0) € g
M = Ad(G)xg C g :Kéahler C-space
= G/Gy
Gz = {9€G|Ad(g)xo =z}
Z(Gao) = {9 € Gu | gh=hg (Vh € Gy)}

For each z = Ad(gs)zo € M and y € I, define
0z(7) : M — M; y — Ad(g27v9, )y,
¢o : I' = Diff (G/K); v = ¢a(7).
Then (I', {¢s }zen) is a G-equivariant generalized s-structure.

Moreover M has k-symmetric structures for Vk > dkg, J

i.e. generalized s-structures with I' = Z;.

Antipodal sets of generalized s-manifolds

Maximal antipodal sets of Kahler C-spaces

M = Ad(G)zg : a Kahler C-space with I' = Z(G5,)

Proposition (lkawa-Iriyeh-Okuda-S.-Tasaki)

Q Forxz,ye M
y is antipodal to z < [z,y] =0

Q@ A C M : maximal antipodal set
—> Jt C g : maximal abelian subalgebra

st. A=Mnt
Hence A is an orbit of the Weyl group of g with respect to t.
In particular, any maximal antipodal sets of M are congruent

with each other by G.

Antipodal sets of generalized s-manifolds
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Generalized s-structures on complex flag manifolds

Fo, ... (C") is realized as an adjoint orbit of G = SU(n):

Foyon, (C7) = SU(n) /S(U(n1) x -+ X U(n11)) = G/ Gy

Q F,,... n (C") admits I'-symmetric structures with
= (Zsy)", I'=27Z (k> ko), I'=2Z(Gy)-

@ Maximal antipodal sets of F},,, 5, (C") for these three

generalized s-structures coincide, that is an orbit of the Weyl
group of SU(n).

Antipodal sets of generalized s-manifolds

Compact symmetric triads

(G, K1, K3) : compact symmetric triad
ie. (G,Ki,01), (G, Ka,02) : compact symmetric pairs

[':= (01,02) C Aut(G)
G

lw
G/(KyNKy)  I'-symmetric space
7'('/ \7:2
G/K G/Ko
@ 01 =09 — I' =2 7Zs
] 0'1750'2, 0109 = 0201 — I' =2 7o X Zo

@ 0109 #0901 — I'=(0y,09) is a non-abelian group

Antipodal sets of generalized s-manifolds
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['-symmetric triples

Definition (Lutz, Goze-Remm, Ohno-S.-Terauchi)

(G, K,T) : I'-symmetric triple

LG - connected Lie group

I' C Aut(G) : finite subgroup

K C G : closed subgroup s.t
F{,G)yc K Cc F(I,G),

where F(I',G) :={g € G |v(9) =g (Vye)}.

(G, K,T') : T'-symmetric triple
For each x = g, K € G/K and v € T, define
p(7): G/K = G/K; gK — g.7(9; ' 9) K,
¢e : I' = Diff (G/K); v = ¢ (7).
Then (I', {¢z}zeq/K) is a G-equivariant generalized s-structure
on G/K.

Antipodal sets of generalized s-manifolds

Natural I'-symmetric structures on R-spaces

P = G/K : simply-connected compact symmetric space
where G := Isom(P)y

g=tdyp

a C p : maximal abelian subalgebra

R C a* : root system of (G, K) with respect to a
Y :={a,...,a,} : simple roots of R
{&1,...,&} : basis of a dual to X

For j € {1,...,r}, define
gi :=exp(n&) €G, and A = Intq(gi)| , € Aut(K).
Note 7' = idg, +* # idg, vy =47+ forall 4,5 € {1,...,r},

hence (Za)" = (' : i =1,...,r) C Aut(K).
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Natural I'-symmetric structures on R-spaces

For I C Lieg :={1,...,7}, define & := > & and
i€l

X7 :=Adg(K)¢{ Cp  R-space

X7 gK/H[ where H; = {k e K | Adg(k)&' :f]}.

Every R-space in p is equivariantly isomorphic to X; for some
I C Ieg.

Let 0 #1 C I C Lieg = {1,...,7}, then H; C H;.

Therefore the choice of I C I, gives a stratification of orbit types.

Antipodal sets of generalized s-manifolds

Natural I'-symmetric structures on R-spaces

I =(y:icl) CAut(K)
g(@)lfl

A non-empty subset I of Ioe = {1,...,r} is called admissible if
(K, H7,T'7) is a I''-symmetric triple, that is, if

F(I'",K)y c Hy c FI! K).

Then T'! induces a I'!-symmetric structure on X =~ K/Hj.

Theorem (Quast-S.)

I C L ={1,...,7} is admissible
T
— foralla=> cfa; € R
i=1
(Viel: c¢even) = (Viel:c}=0).

Antipodal sets of generalized s-manifolds
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Extrinsically I'-symmetric spaces
Assume that I C I,¢ is admissible.
Then K/H; = X1 = Ad(K)&; has a I'/-symmetric structure.
K/H[ — X7 = Adg(K)fj; kHr — Ad(;(k)&'

e, (Ada(k)ér) = Ada(gi)Ada(k)Er.

’yél extends to the linear endomorphism Adg(g;)|p of p,
Fé; = <721 cie 1) = (Adg(gi)lp =i € I) C End(p)

P(TLp) = {Y €| [V.&] = 0} = T4 X

Hnece X can be considered as an extrinsically I'-symmetric

space.

Antipodal sets of generalized s-manifolds

Maximal antipodal sets of natural I'-structures on R-spaces
Let I be an admissible subset of I.cs = {1,...,r}.
K/Hr — X1 :=Adg(K)¢&r;  kHp— Adg(k)ér
I’I—symmetric structure on K/Hy can be transfered to X as

v, (Ada(k)ér) = Ada(gi)Ada(k)ér.

Hence 7¢, extends to the linear endomorphism Adg(g:)lp of p.

F(T¢,p) ={Y €p|[Y,&] =0}
Theorem (Quast-S.)
For each antipodal subset A of X7, there exists some maximal
abelian subspace a’ in p such that
A=X;nd =W (P, d)¢;,
where W (P, a’) is the Weyl group of (G, K) with respect to o’
Any two maximal antipodal subsets of X; are conjugate by K.

v

Antipodal sets of generalized s-manifolds
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Maximal antipodal sets of natural I'-structures on R-spaces

Let A be a maximal antipodal subset of X;. Then

#r(X1) = |A] = [W(P,d")¢;| = dim Ho (X[, Zo).

Antipodal sets of generalized s-manifolds

Further problems

©Q Classify I'-symmetric spaces and generalized s-manifolds.

© Determine maximal antipodal sets and antipodal numbers of

generalized s-manifolds.

© Study geometric meaning of the antipodal numbers of
generalized s-manifolds, in particular, a relationship with its

topology.

Thank you very much for your attention!

Antipodal sets of generalized s-manifolds
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Higher dimensional generalization of

the Chiang Lagrangian
and totally complex submanifolds

JoNG TAEK CHO, KANAME HASHIMOTO*, YOSHIHIRO OHNITA

ABSTRACT. We will discuss a higher dimensional generalization of Chiang’s La-
grangian submanifold in CP? from the viewpoint of totally complex submanifolds
of HP™.

1  The Chiang Lagrangian

The Chiang Lagrangian is a compact embedded minimal Lagrangian submanifold L? of
CP? given as an SU(2)-orbit by the moment map method (R. Chiang [1]). It is known
to be a non-symmetric homogeneous space and a strictly Hamiltonian stable with non-
parallel second fundamental form ([3], [5]), and so on ([6], [4]). The Chiang Lagrangian
L3 is envolved with several nice structures illustrated in the following diagram:

H Q U .
S7(1) C,P?
S8 i
50(4)/0/(@/ 7;]\ - ] \p
I 3 4 1
T (RP?) &P J p; S {L=HP

EQ Z.| . .
3 = Wj_l((CPI) — = L} =m(L)

hor. holom. Vergnese
g3 \ wm. surf.

N2 =CP! 7 RP2 = N2
2

Here H = R1+Ri+Rj+RE is the quaternion number field with quaternionic imaginary
units {7, 7, k} and H""! is considered as an (n+1)-dimensional quaternionic vecter space
with the rightmultiplication of quaternionic numbers.

2 Totally complex submanifolds and R-spaces

We use the concept of “totally complex submanifolds” of a quaternionic projective space
HP™ (e.g.[7]) in order to generalize the above diagram into the higher dimensional
setting. A submanifold of HP" is called a totally complex submanifold if N can be

*the presenter
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locally lifted to a twistor space CP?"** over HP™ as a complex Legendrian submanifold.
We have dimg N < 2n. If dimg = 2n, then N is said to be of mazimal dimension.

Main Theorem 1. The above diagram can be generalized into higher dimensions as
follows:

Hn+1

S4n+3 ( 1) i , (CiP2n+1

C; P2t HP"
Dj
Lag.

min.
Q ~
2n+1 7T-_1(N) . L2n+1 — 71'1(fz>

Totally complex submanifolds of HP"™ with parallel second fundamental form have
been classified by Kazumi Tsukada [7].

Theorem 1 (Tsukada [7]). Any n-dimensional totally complex submanifold N in HP"
with parallel second fundamental form s locally congruent to one of canonically im-
mersed totally complex submanifolds:

(0) CP!' — RP?2C S*=HP' (Veronese min surf.),
(1) CP™C HP™ (totally geodesic),

(2) Sp(3)/U(3) — HP®,

(3) SU(6)/S(U3) x U(3)) — HP?,

(4) SO(12)/U(6) — HP,

(5) FE;/Es-T' — HP?,

(6) CP'(c) x CP(¢/2) — HP?,

(7) CP*(¢c) x CP'(¢) x CP'(¢) — HP?,

(8) CPI(e) x 2ot D gp (n > 4).

SO(2) x SO(n—1)

An R-space is a compact homogeneous space obtained as an orbit of the isotropy
representation of a Riemannian symmetric space, i.e. a so-called s-representaion. Olmos-
Sanchez [8] showed the differential geometric characterization of R-spaces by means of
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the parallelism of the second fundamental form with respect to a canonical connec-
tion. By constructing explicitly such a canonical connection on the inverse image
N = 771(N), we can obtain the following theorem.

Main Theorem 2. Assume that N is a 2n-dimensional totally complex submanifold
of HP™ with parallel second fundamental form. Then its inverse image N = 7 Y(N) C
SAnt3(1) € H™M is a standardly embedded R-space associated to a quaternion-Kdhler
symmetric pair (G, K).

totally cplx.imm. N q. K.symm.sp. G/K II(G, K)
1 1 GQ
HP e (il = o) ¢
HP" CP" (totally geodesic) S(U(ngin(j(s)—{— ) B,
6 Sp(3) Fa
o o (SP) % Sp/Z: i
9 6 6
Hr SUG) x UE) (SU() x Sp(1))/Z h
. SO(12) B
He 0(6) (Spin(12) x SU(2))/Z, Fa
HP* i s F
(U(1) x Eg)/Zs (E; xs%ng)) /7, *
H P2 CP'(¢) x CP'(¢/2) o0 X( 53 o) (n=2)| Bs
HP? | CP'(é) x CP'(¢) x CP(¢) 50(5)(1(220(4) (n=3)| D
" L~ SO(n+1) SO(n +5)
HP" | CPUO > s5m % s0m—1) | So@ xsom+1 "m=4| B

Here II(G, K) denotes the Dynkin diagram of the restricted root systems of symmetric
pair (G, K).

It gives a new proof of Theorem 1 different from [7].

G

(Sp(1) x Sp(1))/Zy’
= S% and L? = (L) is nothing but the Chiang Lagrangian in

In the case when G/K = we have n = 1, N? is a Veronese

minimal surface of HP?
CP3.
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R. Chiang Lagrangian submanifolds

Definition (IMRN, 2004)
The Chiang Lagrangian submanifold L?> C CP3 is defined by

L3 .= {[20121222 . 23] € CP?

3|20® + |21[* — |22]? — 323]* = 0}

2021 + 2122 + 2923 =0

minimal Lagrangian SU(2) orbit L3 = p(SU(2))[1:0:0: 1].
conn. cpt. embedded minimal Lagranagian submanifold in CP3.

°
°
@ L? does not possess parallel second fundamental forms. V*a?¥ # 0
@ Homogeneous space but not symmetric space.

°

Curvature characterization
(B. Y. Chen, Dillen, Verstraelen, Vrancken, Bolton, 1996)

@ Strictly Hamiltonian stable (Ohnita, Bedulli-Gori, 2007)
@ Floer homology (Evans-Lekili, 2015), min.Maslov number of L3 = 2
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H=R+Ri
C;:=R+iR C H,

We consider the following diagram:

+Rj + Rk

Ci:=R+jRCH

HQ

U
S7(

CjPS T

Dj

1)

3

S3 C; P?

bi

— L3 == Wi(i)

ergnese
min. |surf.

»RP? = N?

e CP! — C;P? : Veronese embedding of degree 3.
e L3 C S7(1) : minimal Legendrian submanifold embedded in S7(1)
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Higher dimensional generalization

Let H" ! = R4+ be an (n + 1)-dimensional quaternionic vector space
with right multiplications by i, j, k. We consider the following standard
fibrations:

Hn+1

U

S4n+1(1)

Then C;P?"*1 has the standard complex contact structure and the
holomorphic contact 1-form on C; P+,
Suppose that N — C;P?"*! is a horizontal holomorphic immersion of an

n-dimensional complex manifolds NN, that is, a complex Legendrian
submanifold of C; P21,

Hn—|—1
U
S4n+1(1)
T
Sl
]Y:plx LengP 2 Tls3  GPH
52 52
Dj bi

HP"
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Totally complex submanifold

Let (M*", g, Q) be a quaternionic Kihler manifold. g is the Riemannian
metric on M and @ is a rank 3 subbundle of End T'M which satisfies the
following conditions:

For each p € M, there is a neighborhood U of p over which there exists a
local frame field {7, J, K} of @ satisfying

I’ =J% = K? = —id,
IJ=-JI=K,JK=-KJ=1KI=-IK =J.

Definition

A submanifold N?* c (M*", g,Q) (k < n) is said to be totally complex
if, for every p € N, there exists an open neighborhood U of q in N and
sections J of Q|y such that the following properties hold:

(1) J (TU) TU,

(2) J
(3) (T N) CTLN for every ¢ € U and I € Q, such that J,I = —1J,,
(4) VJ=0.

<= N has cplx. Leg. submanifolds to twister spase Z.

A horizontal holomorphic map N — CjP2"+1 of n-dimensional complex
manifold N corresponds to a maximal dimensional totally complex
immersion N — HP".

Hn—H

S4n—|—3 ( 1)

ij2n+1
min.| Leg 0 min.|Lag.

- 1, . covering L
L=m"(N) ——|— L=m(L)

wlx. Leg. tot. cplx.

N™ » N2
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Hn—i—l

We use the standard Riemannian fibration 7. Then L?**1 — §4n+3(1)
is a minimal Legendrian immersion relative to I.

Therefore, L2"t1 — C;P2"*1 is a minimal Lagrangian immersion relative
to J, which has the S'-action induced by the orthogonal complex
structure 1.

Hn+1
S4n+3(1) i 3 CiPZn—i—l
A~ g1
s
HP"
min. | Leg. )
min.|Lag.

- - __ coverin ° -
f2n+1 — 7TJ-_1(N) g L2+ = (L)
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Theorem (Tsukada, 1985)

Any n-dimensional totally complex submanifold N in HLP™ with parallel
second fundamental form is locally congruent to one of the following
immersed totally complex submanifolds:

w N = O

Ot

~~N I~~~ /N I~ I/ —~ /N
(=) o~
~— — ~— S ~— S ~— ~—

~J

—~
co
~—

CP! — RP? c S* =HP' Veronese min surf.
CP™ C HP™ totally geodesic

Sp(3)/U(3) — HP®

SU(6)/S(U(3) x U(3)) — HP?

SO(12)/U(6) — HP®

E;/(UQ1) x Eg)/Z3) — HP?"

CP(¢) x CP(¢/2) — HP?

CP'(¢) x CP(¢é) x CPY(¢) — HP3
SO(n+1)

CPYO) X 55@) x 50 = 1)

— HP" (n > 4)

All of those totally complex submanifolds are obtained from the follwing

compact homogeneous complex Legendrian submanifolds embedded in
CP2n+1.

Cp™ c Cp?ntt

Sp(3)/U(3) — CP'3
SU(6)/S(U(3) x U(3)) —s CP?
S0O(12)/U(6) — CP3!
E;/(U(1) x Eg)/Z3 — CP®

CP'(¢) x CP'(¢/2) — CP5

CP'(¢) x CPY(¢) x CPY(¢) — CP”

CP\(z SO(n+1) . _—
(¢) x = CP'(¢) X Qu_1(C) — CP

SO(2) x SO(n — 1)

(n>4)
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Quaternionic Symmetric space

A Riemannian manifold M is called a quaternionic symmetric space if M
satisfies the following conditions:

(i) M is a quaternionic Kahler manifold with quaternionic structure Q.
(7i) M is a symmetric space.

(#91) @, is contained in the linear holonomy group for some point p in M.

G K dim M = G/K
Sp(n+1) Sp(n) x Sp(1) dn
SUMn+3) | SWU(n+1)xUQ)) 4n
SO(n+5) SO(n+1) x SO(4) 4n

G, (Sp(1) x Sp(1))/Zs 8

Fy (Sp(3) x Sp(1))/Zs 28

Eq (SU(6) x SU(2))/Zs 10

Er (Spin(12) x SU(2))/Zs 64

Es (E7 x SU(2))/Zs 112

Suppose that N?* C HIP" is a totally complex submanifold with
V*aN = 0. R
Then its inverse image N?"+3 = r=1(N) C §"*3 s an “R-space”
associated to a quaternionic symmetric space G/K with V*aN # 0.

o N= 7~ Y(N) C 843 is a singular orbit of a quaternionic
symmetric space G/ K.

S4n—|—3 (1)

S

e CiP2n+1

T tot. cplx.

N2n
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Definition

Let (M, g) be a Riemannian manifold and V Levi-Civita connection of g.
A linear connection V¢ on M is called a canonical connection /f it
satisfies:

(1) Veg=0,
(2) VD =0,
where D :=V — V¢.

| A

Theorem (Olmos-Sanchez, 1991)

Let M be a connected compact Riemannian submanifold of R™ and let «
be its second fundamental form. Then the following three statements are
equivalent:

(1) M admits a canonical connection V¢ satisfyin Vo = 0.
(2) M is a homogeneous submanifold with constant principal curvatures.

(3) M is a standard embedding of an R-space.

~

On N = 7~(N), there exist V¢ := V — D such that
vea¥b =0,  veD=o.

From Olmos-Sanchez's result we obtain that IV is an R-space associated
to a quaternionic symmetric space G/K.

We can explicitly construct a tensor field D of type (1,2) on N.
Suppose that NV is a totally complex submanifold of HP".
Foreachxe N, IN . JN KN ) € C; P?"*! satisfies

m(x) “mw(x) T w(x

N N N
I (X) (Tﬂ-(X)N) J_ Tﬂ-(X)N, J7r(x) (TW(X)N) = TTF(X)N7 Kﬂ'(x) J_ Tﬂ-(X)N.

T

There are A\1(x), A\2(x), A3(x) € Sp(1) such that

IAEX) (x) = xA1(x), JAEX) (x) = xA2(x), KN(X) (x) = xA3(x).

™ ™ ™
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We define a tensor field D of type (1,2) as follow:
Atx € N, foreach X, Y € Tﬂ(X)N, V eV,N, v, vg, v3 € R,

7r(x) ™

—_—

3
e D (V) = vaXXa(x) = —va(JN, ) X) € HuN ("V =x (Z va)\a(x)> ),

a=1
e Dy(X) = %sz(x) (Jg(x) yeHN (V=x (f: va)\a(x)> ),
e Dy (V) =x {(U2u3 + %Usuz))q(X) + (vsug — viug) A2 (x)
+ (_%UIUQ - v2u1))\3(x)}
U1 U2 v3
=X | wu —%1@ us | € VXN.

)\1 (X) )\2 (X) )\3 (X)

Here note that

P

(N0 X), = (T Mo X) (%) = = (X)xAa(x).

For each wy, ws, ws € TN

° gﬁ(Dw27w3)+gf\7(w27Dw1w3):0 ie. ch:()

o VND=D.D ie VD=0

Lemma

Suppose that N is a 2n-dimensional totally complex submanifold of HP™
with paralle/ second fundamental form. Then the second fundamental

form oN of N satisfies the equation

vjlkUlaN(w27w3) + (Dw1w2a w3) + « (w2’ Dy, w3) = 0.

ie. VeaN =0
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totally cplx. imm. N g. symm. sp. G/K
1 G
o (Sp(1) % 5p(1))/Z
" SU(n+1)
“r SWE) x U()
Sp(3) Fy
U(3) (Sp(3) x Sp(1))/Z2
SU(6) Eg
S(U3) x U(3)) (SU(6) x Sp(1))/Z
SO(12) E;
U (6) (Spin(12) x SU(2))/Z
E7 E8
(U(1) x Eg)/Z3 (E7 x SU(2))/Zs
CP' (&) x CPY(¢/2) o1 f)OX(Q oG (n=2)
CP'(é) x CP(¢) x CP'(3) o1 Si(SS) 0@ (n = 3)
1/~ SO(n+1) SO(n+5)
CP(e) x SO(2) x SO(n—1) | SO(4) x SO(n + 1) (n=4)

(G, K) = (G2,50(4))

In this case we obtain the Chiang Lag submfd as L? = mi(m 7 (N)).

g2 =50(4) Dp

2l

o HZ

\\\\ Q 7_(_1

\‘ 57(1) (Cipg

Y N o 7 "
SO(4)/0(2 | 7 |

| 5 s
Gp > 5%(1) = 1

1 (RP?) N pj ( )=HP

\’c(?t. cplx.

» RP? = N?
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Minimal PF submanifolds in Hilbert spaces
with symmetries

MASAHIRO MORIMOTO

There are several kinds of minimal submanifolds which have certain symmetries. A
submanifold M of a Riemannian manifold N is called austere ([1]) if for each normal
vector & the eigenvalues with multiplicities of the shape operator A¢ is invariant under
the multiplication by (—1). M is called reflective ([3]) if it is a connected component of
the fixed point set of an involutive isometry of N. M is called weakly reflective ([2]) if
for each normal vector £ at each p € M there exists an isometry v¢ of N satisfying the
conditions v¢(p) = p, dve(§) = —€ and v¢(M) = M. From these definitions we have

reflective = weakly reflective =  austere = minimal.

It is an interesting problem to classify or give examples of these minimal submanifolds.

A fundamental class of submanifolds in Hilbert spaces is given by proper Fredholm
(PF) submanifolds in Hilbert spaces ([6]). Roughly speaking they are submanifolds
in Hilbert spaces where the shape operators are compact operators and the distance
functions are compatible with the Palais-Smale condition. Many examples of PF sub-
manifolds are obtained through a Riemannian submersion ®x : V; — G/K which is
called the parallel transport map ([7]). Here G/K is a compact normal homogeneous
space and V, := L?([0,1],g) the Hilbert space of all L*paths with values in the Lie
algebra g of G. It is known that if M is a compact submanifold of G/K then the
inverse image @' (M) is a PF submanifold of V.

In my talk I will introduced the concept of reflective submanifolds, weakly reflective
submanifolds and austere submanifolds into the class of PF submanifolds in Hilbert
spaces and show that under suitable condition if M is a weakly reflective submanifold
of G/K then the inverse image ®,' (M) is a weakly reflective PF submanifold of V.
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Minimal PF submanifolds in Hilbert spaces

with symmetries

Masahiro Morimoto

Osaka City University Advanced Mathematical Institute

Submanifolds of Symmetric Space and Their Time Evolution
March 5 - 6, 2021

Overview

M — E"
submanifold  Euclidean sp. J

o My
M = N M — V
submanifold  Riemannian mfd submanifold Hilbert sp.
(finite dim) (infinite dim)

{minimal submanifold with symmetry}l

we define and study

o reflective submanifold o reflective submanifold

o weakly reflective submanifold - e weakly reflective submanifold
e austere submanifold e austere submanifold
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@ Minimal submanifolds with symmetries

© Submanifolds in Hilbert spaces

© The parallel transport map

@ Submanifold geometries via the parallel transport map
© Minimal PF submanifolds with symmetries

@ Symmetric properties
via the parallel transport map (: Main results)

Sec. 1

Sec. 1 - Minimal submanifolds with symmetries (1/4)

Definition (Harvey-Lawson 1982)

M — N
submanifold Riem. manifold.
M is austere

é:)f Vpe M, Véce T;M, the eigenvalues (with multiplicities)
e

of the shape operator Aé” is invariant under the multiplication by (—1).
Proposition
austere — minimal
Problem

Classify (or, find examples of) austere submanifolds.
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Sec. 1

Sec. 1 - Minimal submanifolds with symmetries (2/4)

Theorem (F. Podesta 1997)

G: Lie group, N: Riemannian manifold.
Suppose G ~ N: isometric action of conomogeneity one.
(i.e. codim (principal G-orbit) = 1).
= any singular (i.e. non-principal) G-orbit is an austere submanifold of N.

Note

More precisely, Podesta proved that any singular G-orbit M satisfies:
Vp € M,Vé € T, M, there exists v, € Isom(N) satisfying

ve(p) = p, ve(M) = M, dvg(€) = €.

| \

Sec. 1

Sec. 1 - Minimal submanifolds with symmetries (3/4)

Definition (lkawa-Sakai-Tasaki 2009)
Let M

— N
submanifold Riem. manifold.

M is weakly reflective

S Vp € M, Vé € T,y M, there exists v, € Isom(N) satisfying
e
ve(p) = p, ve(M) = M, dve(&) = —€.

Proposition (Ikawa-Sakai-Tasaki 2009)

reflective =  weakly reflective = austere = minimal
(D.S. Leung 1973)

Classify (or, find examples of) weakly reflective submanifolds.

v




Submanifolds of Symmetric Spaces and Their Time Evolutions 83

Sec. 1

Sec. 1 - Minimal submanifolds with symmetries (4/4)

Study on weakly reflective submanifolds

@ lkawa-Sakai-Tasaki (2009) classified weakly reflective submanifolds
and austere submanifolds which are orbits of s-representations.

@ Ohno (2016) gave examples of weakly reflective submanifolds which
are orbits of Hermann actions K, ~ G/Kj.

@ Enoyoshi (2018) showed that there exists unique weakly reflective
principal orbits in the cohomogeneity one action G, ~ Gr3;(Im Q)

All known examples of weakly reflective submanifolds are homogeneous.

v

Sec. 2

Sec. 2 - Submanifolds in Hilbert spaces (1/6)

Basic Setting

Suppose: Yp € M, T,M is a closed subsp. of V. (v~ T+M)
smooth immersion

M — \%
Hilbert manifold separable Hilbert sp.
8 o~ <'7 >
Riem. metric inner product
¢ ¢
\Y D
Levi-Civita conn. Levi-Civita conn.

second fundm. form @, shape op. A, normal conn.V+ is defined:
{ o  Gaussformula. DyxY=VxY+alXY), X Yecl(TM).
o Weingarten formula Dx¢é = —A:X +Vyé, & eT(T+M).
Difficulty: Spectral theory of shape op. As : T,M — T ,M.
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Sec. 2

Sec. 2 - Submanifolds in Hilbert spaces (2/6)

Suppose (C.-L. Terng 1989)

@ M has finite codimension in V.
@ Theendpointmap Y : T*M - V, (p,&) > p + &

£¥P+E

satisfies: Vr > 0, restriction to D, (: normal disc bdl of radius r)
YD, : D, -V
is proper and Fredholm (i.e. differential is a Fredholm op.).

Then M is called a proper Fredholm submanifold (PF submanifold).

Sec. 2

Sec. 2 - Submanifolds in Hilbert spaces (3/6)

@ If V =E" then
M — E"is PF & immersion M — E" is proper.

@ If dimV = oo, then the unit sphere if V is not PF.
@ Every affine subspace of a Hilbert space V is PF.
@ Every orbit of the gauge transformations is PF. (page 6/6)
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Sec. 2

Sec. 2 - Submanifolds in Hilbert spaces (4/6)

Proposition (C.-L. Terng 1989)

If M is a PF submanifold of V, then
(1) the shape operator As : T,M — T,M is a self-adjoint compact op.
(2) for each u € V, the function £, : M - R, p = |lp — ull?
satisfies Condition C (Palais-Smale 1960s).

@ A;: T,M — T,M real eigenvalues

<y <---<0<--- <A<
— —

finite multip. finite multip
These are called the principal curvatures of M in direction &.

@ the shape op. A¢ : T,M — T,M is not of trace class in general
(There is no natural definition for the mean curvature.)

Sec. 2

Sec. 2 - Submanifolds in Hilbert spaces (5/6)

Definition (King-Terng 1993, Heintze-Liu-Olmos 2006, Koike 2002)

M: PF submanifold, ¢ € T*M, Ag:T,M — T,M: shape operator.
opy Spp <---<0<--- <Ay < Ayt eigenvalues of A
o {ki}e - distinct eigenvalues of Ag s.t. |ki|>[ki+1] OF Kk = —Kpt1-

(1) ¢-regularized mean curvature try Az :=limgy 1 (Tpoy A5 — 252 |il®)
(2) regularized mean curvature  tr, Ag := 37 (Ak + k)

(3) formal mean curvature treAg := X0, multip(ky)Kg

(1) M is {-minimal b VéEeT M, tr;Ag =0

(2) M is r-minimal © VEe T+ M, tr,A; =0 (and tr A% < o)

(3) M is f-minimal e VéEeT M, tryA: =0
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Sec. 2

Sec. 2 - Submanifolds in Hilbert spaces (6/6)

Example (Terng 1989, Pinkall-Thorbergsson 1990, Terng 1995)

: orbits of the gauge transformations.
G: conn. compact Lie group with bi-inv. Riem met., g: its Lie alg.
P — [0, 1]: trivial principal G-bundle (i.e. P := [0, 1] X G).

(gauge transt. gp) égjggiﬂ‘;i)sf (connections of P)

G:=H'(0,1,6) ~ g}ggL]::Lz([o,l],g)

1

path group g *u:=gug " — path sp.
(Hilbert Lie group) (§€G, ueVy) " (Hilbert sp.)
subgroup P(G, H) ~ Vy := L*([0,1], 6)
I U
{g€G1(g0),g(1) € H} P(G, H)-oTrbit
(VH: closed subgp of G X G) PF submanifold !

Sec. 3

Sec. 3 - The parallel transport map (1/5)

G: conn. compact Lie group with bi-invariant Riem met., g: its Lie algebra.
G = H'([0, 1], G) : path group of all Sobolev H'!-paths from [0, 1] to G.
Vy = L2([0, 1], 9): path space of all L>-paths from [0, 1] to g.

Definition (Terng 1995, Terng-Thorbergsson 1995)

The parallel transport map is defined by

VvV, - G
w W
i o W) 2 g, ).

-1
g . 8u 8u = U
Here, g, € G is defined by the ODE { 2,(0) = ¢ € G.
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Sec. 3

Sec. 3 - The parallel transport map (2/5)

Definition
Definethemap ¥ : G — G x G by ¥(g) :=(g(0),g(1)) forg € G.

Proposition (Terng 1995)

The parallel transport map @ : V; — G is equivariant with respect to Y.
That is, the following diagram commutes:
gauge transformation

gru:=gug ' —g'g!

G ~ 'V
Y] ()
GxG ~ G

(b1,by) - a:= blabgl
isometric action
That is, ®(g * u) = ¥(g) - ©(u).

Sec. 3

Sec. 3 - The parallel transport map (3/5)

Theorem (Terng-Thorbergsson 1995)

(1) @ is a Riemannian submersion,
(2) any two fibers of @ are congruent infinite dim, Vg

under the isometry of V, linear

-1

(3) @ is a principal P(G, {e}x{e})-bdl, D (M)
(4) If M is a closed submfd of G,
then ®~!(M) is a PF submfd of V. lgpi
B)lf M =H-aforsubgp HC G xXG finite dim, | G
then ®~!(M)=P(G, H)*u for non-linear @
ued!(a). M |

(1) We can obtain examples of (homogeneous) PF submanifolds.
(2) We can linearize geometrical problems of submanifold M c G.
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Sec. 3

Sec. 3 - The parallel transport map (4/5)

Generalization (Terng-Thorbergsson1995)

G/K: compact normal homg. sp, 7 : G — G/K: projection.

The parallel transport map over G/K

def
gk =mo®d:V, >G> G/K.

(1) @Gk a Riemannian submersion,

(2) Two fibers of ®¢/x are congruent infinite dim, Vé
under the isometry of Vg, linear
. D (M)
(3) D¢,k a principal P(G, {e}x K)-bdl. G/K
(4) If M is a closed submfd of G/K,
then (Dé}K(M) is a PF submfd of V. ! E
l¢0;/1(

(5) If M = K’ - aK for subgp K’ c G finite dim, | G/
then @) (M)=P(G, K’ x K)*u for non-linear @ K
ueCDE},K(aK). M )

Sec. 3

Sec. 3 - The parallel transport map (5/5)

Fundamental problem

: The geometrical relation between M and d)é}K(M) ?
infinite dim, VQ

linear
Dy (M)

e

finite dim, !
non—linear @ /K
M
E.g. e M: minimal = (I)é}K(M) is {-minimal and r-minimal.
(King-Terng 1993, Heintze-Liu-Olmos 2006).
e Suppose G/K: symmetric space of compact type.

M: equifocal = cDal/ x(M):isoparametric (Terng-Thorbergsson1995).
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Sec. 4

Sec. 4 - Submanifold geometries via the p.t.m. (1/5)

Problem

G/K : cpt. normal homog. sp., g =+ n . orthogonal decomp.
e M : closed submanifold of G/K through eK € M.

e Fix anormal vector £ € T, M = T%CDG/K(M).
infinite dim, Vg
linear 5 a gy (M) second f. form
£ Dy (M) v A, %1 (M) shape op.
{/J} :  principal curv.
L l¢03/1f o . second f. form
finite _dlm’ G/K ~ AM . shape op.
non-linear i {/l} . principal curv.

The relation ?

Sec. 4

Sec. 4 - Submanifold geometries via the p.t.m. (2/5)

Theorem (M. 2019) . the second fundamental form
VX, Y € Ty®g) (M),
@M, ¥) = oM ( [ X, [} Y(t)ndt)

+3 [ fo X(f)dt, fo Y(t)ndt] -1 [ fo X(f)ndt, fol Y(t)ndtr
+1 [ ' x@ar, [ Y(t)dt]l - ( b Lk x(s)ds, Y dt)L-

Theorem (M. 2019) : the shape operator
VX € T@cbg;}K(M), Ee Tgcpa} (M),

A;DE;MM)(X) — AM ( N X(t)ndt) -1 [ [ Xty gL ! [ [ X, g]T
-l [ ' X, g]T + [ X(9)ds. £] - [ bR X(s)dsdr, g]l.
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Sec. 4

Sec. 4 - Submanifold geometries via the p.t.m. (3/5)

Theorem (Koike 2002, M. 2019) . Principal curvatures

G/K : compact symmetric sp. g =t + n: canonical decomp.
Suppose M . curvature adapted submfd of G/K.
(i.e. ad(é)? : n — n preserves Tox M

and commutes with Aé” : ToxM — ToxM.)
{1}: eigenvalue of Aé”, (V=1v}: eigenvalue of ad(¢) : g — g.
Then the principal curvatures of d)g;l/K(M) in direction & is

4 )4
0’ /la » Vv
nmw  arctan 7+ mn A, v>0, neZ\{0}, meZ.
eigenfunctions and multiplicities are given in the next page:

Sec. 4

Sec. 4 - Submanifold geometries via the p.t.m. (4/5)

Theorem (Koike 2002, M. 2019) : Principal curvatures

1%
Set v,Ad,m) = .
He : arctan ¥ + mm

eigenval. basis of eigenfunctions multip.

0 {x? sin nt, yi.o”l) cos nnt, yEO’l) COSNAtYnez. 1, A, )il 00

0.1

A 05 m(0. )

v }

— (X sin nre — YO cos nnt, m(v, L)

nm

A) s A

u(v, A, m) {ZneZ e (x,(cy ) sin nat + y,(: ) cos mrt)}k m(v,d) | |
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Sec. 4

Sec. 4 - Submanifold geometries via the p.t.m. (5/5)

By using the formula of the shape operator, we obtain:

Theorem (M. 2019): The totally geodesic property

The following are equivalent:
(1) @5}K(M) is a totally geodesic PF submanifold of V,
(i.e. an affine subspace of V).
(2) M is a totally geodesic submfd of G/K s.t. T;; M C (center of g).

Thus d)&} (M) is not totally geodesic, except for rare cases

Sec. 5

Sec. 5 - Minimal PF submanifolds with symmetries (1/4)

Let

M — V
PF submfd separable Hilbert sp.
@ M is reflective
<:> do: V — V:involutive isometry s.t. M = Fix(o)y.
° M |s weakly reflective

C(ﬁj’p €M, VéE €Ty M, Jvg: V — V:isometry
€

s.t. (i) ve(p) = p, (i) dve(§) = =&, (iii) ve(M) =
@ M is austere
©VpeM,Vée Ty M,
aef {eigenvalues of Ag (with multip)} is invariant under (—1)x.
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Sec. 5

Sec. 5 - Minimal PF submanifolds with symmetries (2/4)

M — N
submfd Riem mfd

reflective =  weakly reflective = austere = minimal

cD;;}K(M) < Vs
PF submfd  separable Hilbert sp.

: , J-minimal
reflective = weakly reflective = austere = | ..oo0 rsame

o

Sec. 5

Sec. 5 - Minimal PF submanifolds with symmetries (3/4)

Theorem (M. 2019)

G/K: compact normal homogeneous space.
Then each fiber of the parallel transport map ®g/x : Vo = G/K
is a weakly reflective PF submanifold of V.

Proof (outline)
The canonical reflection (M. 2019) of the path space V, = L*([0,1],9)
r: Vo>V, ur@), r@)@):=-u(l-1)
plays an important role.

The fiber is not totally geodesic (except for rare cases).
Therefore, the fiber is not reflective.
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Sec. 5
Sec. 5 - Minimal PF submanifolds with symmetries (4/4)

Problem
infinite dim,
linear
o
finite dim, !
non-linear @
(1) M : reflective = q)g;}K(M):

(2) M : weakly reflective = cb(—}} M) :
(3) M : austere = (I)&}K(M) :

Vy

& (M)

G/K
M
reflective ?

weakly reflective ?
austere ?

Sec. 6 - Symmetric properties via the p.t.m. (1/7)

Problem
infinite dim, VQ
linear
D (M)
P
finite dim, !
non-linear @ G/K
M
(1) M : reflective = (I)E;}K(M) : reflective x  (e.qg. fiber)
(2) M : weakly reflective = d)&} (M) : weakly reflective O (Thm A and B)
(3) M : austere = CI)(‘;}K(M) : austere A\ (Thm C and D)

v
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Sec. 6 - Symmetric properties via the p.t.m. (2/7)

Theorem A (M. 2019)

G: connected compact semi-simple Lie group

with bi-inv metric induced from negative of the Killing form,
K: symmetric subgroup of G s.t. (G, K): effective.
M: weakly reflective submanifold of G/K.

= (I)&} (M) is a weakly reflective PF submanifold of V.

Theorem B (M. 2020)

N: compact isotropy irreducible Riemannian homogeneous space.
Fix p € N. Set G := Isomy(N) and K := Isom(N), so that N = G/K.
M: weakly reflective submanifold of N = G/K

= O, (M) is a weakly reflective PF submanifold of V.

Sec. 6 - Symmetric properties via the p.t.m. (3/7)

Theorem C (M. 2020)
Suppose G/K = SO(n + 1)/S O(n): sphere.
M: closed submanifold of G/K.
Then the following conditions are equivalent:
(1) M is an austere submanifold of G/K,
2) Gi)&}K(M) is an austere PF submanifold of V.

Theorem D (M. 2021)

Let G/K: symmetric of compact type. Suppose G is simple.
M: an austere orbit of a Hermann action with commuting involutions.
= d)&}K(M) is an austere PF submanifold of V.
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Sec. 6 - Symmetric properties via the p.t.m. (4/7)

Example

G/K: symmetric sp. of compact type, K’: closed subgroup of G.
Suppose the action K’ ~ G/K: of cohomogeneity one.

Let M := K’ - aK: singular orbit through aK € G/K.

(= M is weakly reflective submfd of G/K (Podesta 1997, IST2009).

By Thm A, @, (M) (= P(G, K’ x K)+u) is a weakly reflective PF submfd
of V.

| A\

Example

(U, L): compact Riem. symmetric pair. Assume L: connected.
u = [+ p: canonical decomp. Ad : L — S O(p) : isotropy rep.
Suppose M := Ad(L)x: weakly reflective submfd of S (||x]|)(C p).
(Such M was classified in lkawa-Sakai-Tasaki 2009)
By Thm A (or Thm B), @} (M) (= P(SO(p), Ad(L) X S O(p),) + 0) is a
weakly reflective PF submanifold of V.

Sec. 6 - Symmetric properties via the p.t.m. (5/7)

Example

G/K: symmetric space of compact type. K’: symmetric subgroup of G.
Suppose M = K’ - aK: weakly reflective orbit of the Hermann action.
(Such examples were given by Ohno 2016).

Then by Thm A, d)é}K(M) (= P(G, K’ x K)u) is a weakly reflective PF
submfd

Example

| A

G, . exceptional Lie grp,

Gr3(Im 0) (= S O(7)/(S03) x S O(4))) : Grassmann manifold

G, ~ Gr3(Im O) has unique weakly reflective orbit M [Enoyoshi 2018].
Then by Thm A, ®g! (M) (= P(SO(7).G2 x SOB3) x SO(4)) + 0) is a
weakly reflective PF submfd of V7).
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Sec. 6 - Symmetric properties via the p.t.m. (6/7)

Example

(U, L): compact Riem. symmetric pair. Assume L: connected.
u = [+ p: canonical decomp. Ad : L — SO(p) : isotropy rep.
Suppose M := Ad(L)x: austere submfd of S (||x|[)(C p).
(Such M was classified by lkawa-Sakai-Tasaki 2009)
Then by Thm C , @) (M) (= P(SO(»), Ad(L) x S O(p),) * 0) is an austere
PF submanifold of V.

| A

Example

G/K: symmetric space of compact type. Suppose G is simple.

Suppose M: austere orbit of a Hermann action with commuting involutions.
(Such examples classified by lkawa 2011).

Then by Thm D, (Dé}K(M) (= P(G,K’ X K)=u) is an austere PF submfd of
V.

\

Sec. 6 - Symmetric properties via the p.t.m. (7/7)

Recently, Taketomi (2018) introduced a generalized concept of weakly
reflective submanifolds, namely arid submanifolds:
& austere o
reflective = weakly reflective minimal
arid
A submanifold M of a Riemannian manifold N is arid

e Vp € M, Vé € T, M there exists ¢; € Isom(N) satisfying

e

ve(p) = p, we(M) = M, dpe(§) # €.

Theorems A and B can be formulated to the arid case.
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On homogeneous minimal submanifolds

Note

In infinite dimensional Hilbert spaces,
there exist many examples of homogeneous minimal PF submanifolds
which are not totally geodesic (by Theorem in Sec. 4.)

Theorem (Di Scala 2002)

In finite dimensional Euclidean spaces,
any homogeneous minimal submanifolds must be totally geodesic.
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Thank you very much for your attention.
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Lagrangian submanifolds in complex projective
space and quaternionic Kahler geometry

MakoTO KIMURA

ABSTRACT. We discuss a relationship of certain Lagrangian submanifolds in
complex projective space and submanifolds in complex 2-plane Grassmannian.

1. Let CP" be an n-dimensional complex projective space with Fubini-Study metric
of constant holomorphic sectional curvature 4. For a Lagrangian submanifold M™ in
CP"™ and a unit normal vector field N on M, we find the condition such that for » € R
with sufficiently small |r| > 0, 1-parameter family of "parallel” submanifolds

M, := {exp,(rN,)| p € M}

are Lagrangian submanifolds in CP", by computing the differential of the normal ex-
ponential map (cf. [1]).

2. For a Lagrangian submanifold M™ in CP" and a unit normal vector field N on
M, we define a 'Gauss map’ 7 to complex 2-plane Grassmannian Go(C™"*1) (cf. [2],
3], [4]). If M and N admits parallel Lagrangian submanifolds M, as 1., and moreover
if JIN is an eigenvector of the shape operator Ay and the eigenvalue is constant, then
the rank of v is n — 1 and (M) is a quarter dimensional totally real submanifold with
respect to both complex and quaternionic Kahler structure of Go(C™1).

3. Conversely, let " be a quarter dimensional submanifold in G5(C™"*!) which
is totally real with respect to both complex and quaternionic Kahler structure of
G2(C"*1). Then we have locally a horizontal lift of 3 in the twistor space of Go(C"*1),
and we can construct ruled (i.e., foliated by geodesics in CP") Lagrangian immersion ¢
from a circle bundle M™ over X to CP", provided ¢ is regular, and M admits parallel
family of Lagrangian submanifolds M, in CP".

This research was supported by JSPS KAKENHI Grant Number JP20K03575.

REFERENCES

[1] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans.
Amer. Math. Soc. 269 (1982), no. 2, 481-499.

[2] J. T. Cho and M. Kimura, Hopf hypersurfaces in complex hyperbolic space and submanifolds in
indefinite complex 2-plane Grassmannian I, Topology Appl., 196 (2015), part B, 594-607.

[3] M. Kimura, Hopf hypersurfaces in complex projective space and half-dimensional totally complex
submanifolds in complex 2-plane Grassmannian I, Diff. Geom. Appl. 35, suppl., 266-273, II,
ibid. 54, part A, 44-52

[4] B. Palmer, Hamiltonian minimality and Hamiltonian stability of Gauss maps, Diff. Geom. Appl.
7 (1997), no. 1, 51-58.

(M. KIMURA) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, IBARAKI UNIVERSITY,
Mito, IBARAKI 310-8512, JAPAN

E-mail address: makoto.kimura.geometry@vc.ibaraki.ac.jp



102 OCAMI Reports Vol. 2 (2021)

Lagrangian submanifolds in complex

projective space and quaternionic
Kahler geometry

Makoto Kimura(lbaraki University)
March 5, 2021

Submanifolds of Symmetric Spaces and Their Time
evolutions

Makoto Kimura(lbaraki University) Lagrangian submanifolds

@ 'Parallel family’ of Lagrangian submanifolds in
CP™,

Makoto Kimura(lbaraki University) Lagrangian submanifolds



Submanifolds of Symmetric Spaces and Their Time Evolutions 103

@ 'Parallel family’ of Lagrangian submanifolds in
CP™,

@ 'Gauss map' from Lagrangian submanifolds in
CP™ to complex 2-plane Grassmannian

Gz(@n—i_l),

Makoto Kimura(lbaraki University) Lagrangian submanifolds

@ 'Parallel family’ of Lagrangian submanifolds in
CP™,

@ 'Gauss map’ from Lagrangian submanifolds in
CP™ to complex 2-plane Grassmannian

Gz(@n+1),
e 'Totally real’ submanifolds in Go(C™*1),
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@ 'Parallel family’ of Lagrangian submanifolds in
CP™,

@ 'Gauss map' from Lagrangian submanifolds in
CP™ to complex 2-plane Grassmannian
Gz(@n—i_l),

e 'Totally real’ submanifolds in Go(C™*1),

@ Examples.

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Parallel hypersurfaces

Parallel hypersurfaces

M: Riemann manifold, .
M: An oriented hypersurface of M,

IN,: Unit normal vector field M in M,

(M) := {exp,(rN;)| x € M} (0 <r)

is called a parallel hypersurface of M, provided
¢ (M) is a smooth hypersurface of M.

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Examples of parallel hypersurfaces in R3:
Circular cylinders

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Examples of parallel hypersurfaces in R®:
tori of revolution

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Isoparametric hypersurfaces in space forms

Isoparametric hypersurfaces in space forms
If M': is an isoparametric hypersurface (i.e.,

principal curvatures are constant) in M"™*1(¢) of
constant sectional curvature ¢, then its parallel

n . Agn+1 ;
.hypersurfac.es M? in M"™7*(c) is also
isoparametric.

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Hopf hypersurfaces in Kahler manifold

Structure vector of real hypersurface

M?"~1: Oriented real hypersurface in Kahler
manifold M™, .

IN: unit normal vector field of M in M,

& := —JN: structure vector field of M.

Hopf hypersurface

M?"~1: real hypersurface in Kahler manifold Mn,
M : Hopf hypersurface in M
< A€ = p€ (p: Hopf principal curvature) .

A: shape operator of M in M.

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Hopf hypersurfaces in complex space forms

Hopf principal curvature

p is constant when M = M"(c) with constant
holomorphic sectional curvature ¢ # 0.

Hopf hypersurface

M2~ is a Hopf hypersurface in M™(c) (c # 0)
=
o Parallel hypersurfaces M, in M™(c) are also
Hopf,
@ Each integral curve of £ is a geodesic on M
and a ‘circle’ in M*'(c) C M™(c).

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Parallel family of Lagrangian submanifolds

Parallel family of Lagrangian submanifolds in CP"™

In this talk, we treat with 1-parameter family of
'parallel’ Lagrangian submanifolds M in CP™ with
Fubini-Study metric of constant holomorphic
sectional curvature 4.

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Problem

Let M be a Lagrangian submanifold in CIP™ and
let IN be a unit normal vector field on M. For

r € R with sufficient small |r|, when each of the
parallel family

M, := {exp,(rN,) € CP"| p € Mo} (1)

is a Lagrangian submanifold in CPP™?

For » € R (with small |r|), each n-dimensional
submanifold M, in CP™ given by (1) is Lagrangian
if and only if the following 4 equations are satisfied:

Q@ Vyn(JN) =0, ie, JN is a geodesic vector
field on My, where J and V denote the
complex structure and the induced Levi-Civita
connection on M, respectively,

@ (AN(JN),Vx(JN)) =0, where X, A
and ( , ) denote a tangent vector field
orthogonal to JIN, the shape operator and the
induced metric of My, respectively,
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Answer

Q@ (Vx(JN),Y) = (Vy(JN), X), where X
and Y are tangent vector fields on My which
are orthogonal to JIN, i.e., {JN}+ is an
integrable distribution on M,

Q@ (Vx(JN),AnY) = (Vy(JN), ANX),
where X and Y are tangent vector fields on
M which are orthogonal to JIN.

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Integral curve of JIN

Integral curve of JIN
Furthermore we consider the case:

©@ J N is an eigenvector of the shape operator

Apn,ie, AN(JN) = puJN and the
eigenvalue g is constant on M.

Then each integral curve of JIN in M is a circle in

a complex projective line CP! in CP™. Moreover for

each 7, with respect to a unit normal vector field

(INr)exp(rN,) = (dexp),n,(INp) on M,., each

integral curve of JIN,. in M, is either a circle or a

geodesic (ruled Lagrangian submanifold) in CP™.

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Complex Stiefel manifold

Euclidean inner product on C**1!

For z, w € C™*!, we define R-valued Euclidean
inner product by (z,w) = Re(z*w).

Complex Stiefel manifold
Vo(C"Y) = {(ug, uy) € C™H x C*H|
lua]l = lluz|l =1, (w1, uz) = (u1,iuz) = 0}

:Complex Stiefel manifold,
My := Vo(C"™) =U(n+1)/U(n — 1).

Complex 2-plane Grassmann manifold

Complex 2-plane Grassmann manifold

Complex 2-plane Grassmann manifold Go(C™*1) is
realized as a quotient space of an action of U (2) on

‘/Q(CTH_l) as U(2) ) g, (ul,uz) —> (Ul, ’U,z)g

G2(C"Y) = U(n +1)/U(n — 1) x U(2).
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Circle actions on V,(C" 1)

Circle actions on complex Stiefel manifold

We consider circle actions on My, : . _
S =R/27Z S 0, (u1,us) — (e®uq, eu,),

sint cost

SO(2) > (

cost — sin t)

cost — sin t)

(w1, uz) = (u1, u2) (sint cost

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Sequence of projections

Sequence of projections

Tl TSO(2)
MVL>MS—>MZ’;—§M6,

M:"* : Go(C™t1), Complex 2-plane
Grassmannian,

MZ"~%: twistor space of Mg, complex contact
manifold,

M " S'-bundle over Mz (3-Sasakian).

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Tangent spaces

Tangent space of My

Tws My = ({ur, u2} x {ur, us}t)
DR (tu1, tuz) G R(—uz, u1)
@R(—iul, ZUz) EB R(iﬂz, iul),

Tangent space of Mg

ﬂul,uz]MS g ({u].,uz}l X {u17u2}J_)
@R(_U% ul)
@R(—iul, ’LUz) @ R(’I:’U,z, ’I:’U,l),

Tangent spaces

Tangent space of Mz

T[ul,uz]MZ = ({u17u2}J_ X {ul?’u’2}J_)
@R(—iul, ’I/U,z) @ R(’I:’u,z, iul),

Tangent space of Mg

T[ul,w]MG = ({u19u2}l X {ulvu2}l)'
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Q.K. structure of M

Q.K. structure of M

Then for (uy,uz) € Vo(C™t1), a basis I, I, I3
of quaternionic Kahler structure of Mg at [uq, us]
is give as follows:

(w1, T2) € {ur, us}™ X {ur, us},
I : (1, x2) — (—x2, 1),
I : (x1,x2) — (—ix1, t22),
I3 : (1, 22) — (L2, t21).

Complex structure is J : (€1, x2) — (121, 1x2).

Makoto Kimura(lbaraki University) Lagrangian submanifolds

'Gauss map’ to G,(C"™1)

'Gauss map’ to Go(C™*1)
Let M be a Lagrangian submanifold in CIP" and
let N be a unit normal vector field on M. Then
we have a 'Gauss map’ vn from M to the
complex 2-plane Grassmannian G2 (C™*1), where
v~ (p) is the complex 2-plane spanned by the
position vector p and IN, in C**! for p € M™.

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Theorem 1

Theorem 1

Let M™ be a Lagrangian submanifold in CP™ and
let N be a unit normal vector field on M. Suppose
that for each » € R with sufficiently small |r|, each
of the parallel family M, of My is a Lagrangian
submanifold in CPP™ and J N is an eigenvector of
the shape operator A of My with constant
eigenvalue p.

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Theorem 1

Theorem 1
Then
@ The image vYn (M) is a quarter-dimensional
totally real submanifold with respect to both

complex structure and Quaternionic Kahler
structure of Go(C™*1), and

© Each fiber of v is an integral curve of JIN
on M.

© Hence M is a total space of circle bundle over
~n (My) with projection ~.

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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'Gauss map’ of real hypersurfaces

'Gauss map’ of real hypersurfaces

Similar result was obtained for real hypersurfaces, in
particular Hopf hypersurfaces in CPP"™ and
half-dimensional totally complex submanufolds in

Go(Cm 1), [K, 2014].

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Gauss map of hypersurface in sphere

Gauss map of hypersurface in S?*1

x : M™ — S™1: an immersion,
N : M™ — R™2: unit normal vector field,

v : M™ — Go(R™2) 22 Q™ Gauss map, defined
by v(p) = =(p) A N(p).

Here M™ is an oriented hypersurface in S"*1,
GQ(R"+2): oriented real 2-plane Grassmannian,
Q™: complex hyperquadric in CP™*1,

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Gauss map of hypersurface in sphere

Gauss map of hypersurface in S?*1

x : M"™ — S™1: an immersion,

N : M™ — R™2: unit normal vector field,

~

~y:M" — @2(R"+2) >~ Q": Gauss map, defined
by v(p) = z(p) A N(p).

Here M™ is an oriented hypersurface in Snt+1

Go(R™"2): oriented real 2-plane Grassmannian,
Q™: complex hyperquadric in CP™*1,

Gauss map of hypersurface in sphere

Theorem (Palmer, 1997)

M™:; oriented hypersurface in S**1!

=

~(M): Lagrangian submanifold in Q", and
M™ is either isoparametric or austere in S?t1
=

~(M): Minimal Lagrangian in Q™.

Fort € R, M, := {costx(p) + sintN(p)}:
parallel hypersurface of M, the Gauss image is not
changed:

v(M) = v(M).
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Proposition 2

Proposition 2

Let o : X1 — M be a totally real immersion
concerning both complex structure and quaternionic
Kahler structure of Mg, X the universal covering of
Y., and 7y : X — X the covering projection. Then
there exists a horizontal immersion ¢ : 3 — Mz
such that wz o ¢ = o 7y (¢: horizontal lift of

p).

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Converse construction

Converse construction

Let @) : ¥® 1 — Mz be a horizontal immersion
such that mz o : X — My is a totally real
immersion concerning both complex structure and
quaternionic Kahler structure of M.

Concerning a circle bundle Mg — Mz, let

Ty : P Mg — 3 be the pullback bundle over X

for .

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Converse construction

Converse construction
Then we have the following commutative diagram:

PY*Ms — Mg
n

| [ ==

DY T) M=.

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Converse construction

Converse construction

For a projection pr : Mg — CP",

[u1, uz] — [uq], We define a map

by := pron : Y*Mg — CP". Then the image of
each fiber w=1(p) for p € T is a geodesic ¢, in
CP™ and on the open subset O C ¥* Mg of
regular points for ®g, ®o(0) is a ruled Lagrangian
submanifold in CP".

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Converse construction

Converse construction

For a ruled Lagrangian submanifold My = ®4(0O),
along geodesics normal to My with initial vector
J¢p, each of parallel family of n-dimensional
submanifold M,. in CP" is also Lagrangian for
sufficiently small |r|.

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Special case

Special case

Complex quadric Q! in CP™ which is identified
with real oriented 2-plane Grassmannian Go(R™*1)
is half-dimensional totally geodesic, totally complex
(concerning Q.K. structure) and totally real
(concerning complex structure) submanifold in

Ga(CH1).

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Gauss image of hypersurfaces in S™

Special case

Hence Gauss image of oriented hypersurface X" 1
in 8™ is considered as a totally real submanifold
concerning both complex structure and Q.K.
structure in Go(C™™1), so it satisfies conditions to
construct parallel family of Lagrangian submanifolds
M, in CP".

Makoto Kimura(lbaraki University) Lagrangian submanifolds

Examples

Let ™! be an oriented hypersurface, p a position
vector of X in 8™ C R™*! and IV, a unit normal
of X" 1in S"atp € .

For » € R with sufficiently small ||, we define a
map, ®, : M"* = S x ¥»~! — CP",

®,.(t,p) := w((cosrcost — isinrsint)p
+(—sinrcost + icosrsint)N,),

where 7 : §2*+t1 3 CP" is the Hopf fibration.

Makoto Kimura(lbaraki University) Lagrangian submanifolds
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Examples

Then {®,.(M™)} gives a parallel family of
Lagrangian submanifold in CP", provided ®,. is an
immersion. Here t is a parameter of integral curve
(a circle lies in CP') of JIN.

In particular when r» = 0, ®¢(M) is a ruled
Lagrangian submanifold in CP", provided the shape
operator of 3”1 in 8™ is non-degenerate.
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An introduction to the deformed Hermitian
Yang-Mills (dHYM) connections

HIKARU YAMAMOTO

ABSTRACT. In this talk, I gave an introduction to the deformed Hermitian Yang—
Mills (dHYM) connections. The talk was started with the introduction of some
basic notions of special Lagrangian submanifolds. After that, the easy version of
the real Fourier—Mukai transform was explained. Finally, I gave a list of recent
results obtained in a joint works with K. Kawai.

1 Special Lagrangian submanifold

Roughly speaking, a deformed Hermitian Yang-Mills connection is a mirror object of
a special Lagrangian submanifold in the sense of mirror symmetry. So, it’s better to
start with the introduction of special Lagrangian submanifolds.

Let C* =2 R?" be the standard complex plane with coordinates x = x + iy. Denote
the standard Kéhler form and the holomorphic volume form on C" by w = Y. dz' Ady’
and Q :=dz! A -+ A d2", respectively.

Definition 1. An n-dimensional real submanifold L in C" is called a special Lagrangian
submanifold with phase e if it satisfies w|;, = 0 and Im(e~?Q)|;, = 0.

It is well-known that a special Lagrangian submanifold is volume minimizing in its
homology class. One can easily see that if a Lagrangian submanifold L € C" is written
by the graph of the gradient of some function f on R" the special Lagrangian condition

is equivalent to
argdet (I + i Hess f) = 0. (1)

It is also known (as a result of McLean) that the moduli space of special Lagrangian
submanifolds (around L) is a smooth b'(L)-dimensional manifold.

2 The real Fourier—Mukai transform

Historically, the definition of deformed Hermitian Yang—Mills connections is introduced
by the real Fourier—Mukai transform in the paper in the paper of Leung, Yau and
Zaslow. To explain that, let f : R” — R be a smooth function. Then, as explained
above, we obtain the graph of Y := V f denoted by Sy. On the other hand, we also
get a connection by

VY =d+ En: Yidy'.
i=1

This is an Hermitian connection of the trivial C-bundle over C". Then, by Leung, Yau
and Zaslow, it was found that f satisfies (1) if and only if the curvature 2-form Fyv
satisfies

Im (e “(w + Fyv)") = 0.
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We remark that the condition that Y is written as V f is equivalent to Fg’g = 0. Thus,
we have reached the definition of deformed Hermitian Yang—Mills connections.

Definition 2. Let (X,w) be a Kahler manifold with dim¢ X = n and L — X be a
smooth C-bundle with an Hermitian metric h. Then, an Hermitian connection V of
(L, h) is called a deformed Hermitian Yang-Mills connection with phase e? if it satisfies
Fg® =0 and

Im (e (w + Fyv)") =0,

where Fy is the curvature 2-form of V.

The correspondence between Sy and VY is (roughly) called the real Fourier—Mukai
transform.

3 Some results

We are wondering whether some properties of special Lagrangian submanifolds also
hold for deformed Hermitian Yang—Mills connections or not. In other words, we are
wondering whether deformed Hermitian Yang—Mills connections are similar to special
Lagrangian submanifolds or not. This is a motivation of a joint work with K. Kawai.
We answered the following questions affirmatively.

e [s a deformed Hermitian Yang—Mills connection a minimizer of some functional?
e Is there a flow similar to mean curvature flows?

e [s the moduli space of deformed Hermitian Yang—Mills connections smooth and
finite dimensional?

We give some more detail on the first and second question. First, the functional V'
on the set of all Hermitian connections of (L, h) is given by

V(V) :—/X\/det (idTX—iFg)%.

We call V' the volume functional for Hermitian connections. As the case of submani-
folds, we can define a 1-form depends on V, denoted by H(V), which satisfies the first
variation formula:

SyV = —/X<~,H(V)>.

Then, the first main theorem of a joint work with Kawai is as follows .

Theorem 1. Assume that (X,w) is a Kdhler manifold with dime¢ X = 3 or 4. Then,
the functional V' has a topologically determined lower bound and it is attained at V if
and only if it is a deformed Hermitian Yang—Mills connection.
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As the case of mean curvature flows, we can consider the negative gradient flow of
V' and it written as 9

5V = H(Y). (2)

Of course, the volume functional V' is decreasing along this flow. So, we can expect
that the flow converges a deformed Hermitian Yang—Mills connection if the flow has
a long time solution. As the first step to realize this expectation, we have proved the
following, the short time existence and uniqueness.

Theorem 2. Assume that X is compact. Then, the flow (2) satisfies the short time
existence and uniqueness for any initial connection V.

(H. YAMAMOTO) DEPARTMENT OF MATHEMATICS, FACULTY OF PURE AND APPLIED SCIENCE,
UNIVERSITY OF TSUKUBA, 1-1-1 TENNODAI, TSUKUBA, IBARAKI 305-8577, JAPAN

E-mail address: hyamamoto@math.tsukuba.ac.jp
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Line bundle mean curvature flows and the moduli
space of dHYM connections

HIKARU YAMAMOTO

ABSTRACT. In this talk, I introduced two recent results. One is given in a joint
work with X. Han. It is about an e-regularity theorem for line bundle mean
curvature flow. The other is given in a joint work with K. Kawai. It proves that
the moduli space of deformed Hermitian Yang—Mills connections is a smooth finite
dimensional manifold.

1 Line bundle mean curvature flow

In the former talk, I introduced a flow for Hermitian connections. There is a metric
version of the flow, the so-called line bundle mean curvature flow. It was introduced
by Jacob and Yau.

Definition 1. Let (X,w) be a Kéhler manifold with dim¢ = n and L — X be a holo-
morphic line bundle. Then, a one-parameter family of Hermitian metrics { h¢ }iepo1)
of L is called a line bundle mean curvature flow if it satisfies

0
5(— log ht) = 6<ht) — 6,

for some fixed constant 6 € R.

In the above definition, the angle function ©(h) is defined to satisfy
(w— 00log h)" = R(h)e®Mym,

The function R(h) is called the radius function.

The line bundle mean curvature flow is considered as a mirror object of a mean
curvature flow. So, it could be singular in finite time as the mean curvature flow case.
Thus, I considered that establishing an e-regularity theorem for line bundle mean
curvature flows will be useful.

To introduce our main result, we should put some assumptions. Assume that X
is diffeomorphic to the product of balls B(r) and B(re) in R™ and L is the trivial
C-bundle. Also assume that the Kéahler form and h; are y-invariant. Then, we define
a kind of “the Gaussian density” for Hermitian connections by

D(ht) = (V01<B(7’2)))_1 (47T(T 1_ t))n/2 /XeXp <_ |$| Z&La—lotg)hA ) R(hty;_?'

Then, the e-regularity theorem given in a joint work with Han is expressed as
follows.

Theorem 1. There exist C' > 0 and € > 0 satisfying the following condition. If a line
bundle mean curvature flow { by }ieo1) satisfies

|F(h)| <C and lim D(hy) <1+,
t—=T

then hy can be extended beyond T .
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2 The moduli space of dHYM connections

Next, we switch the subject to connections from metrics. So, we consider deformed
Hermitian Yang—Mills connections, not metrics. This part is based on a joint work with
K. Kawai. We studied the moduli space of deformed Hermitian Yang-Mills connections.

The setting is as follows. Let (X,w) be a compact Kéhler manifold and let L — X
be a smooth C-bundle with an Hermitian metric h. Fix 8§ € R. Put

M = {dHYM connections of (L, h) }/U(1)-gauge

Then, we proved the following.

Theorem 2. If M # (), then M is a smooth b*(X)-dimensional manifold. Moreover,
it has an affine structure and it is orientable.

(H. YAMAMOTO) DEPARTMENT OF MATHEMATICS, FACULTY OF PURE AND APPLIED SCIENCE,
UNIVERSITY OF TSUKUBA, 1-1-1 TENNODAI, TSUKUBA, IBARAKI 305-8577, JAPAN

E-mail address: hyamamoto@math. tsukuba.ac. jp
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Lagrangian mean curvature flows with generalized
perpendicular symmetries

AKIFUMI OCHIAI

ABSTRACT. We show a method of constructing an invariant Lagrangian mean
curvature flow in a Calabi-Yau manifold with the use of generalized perpendicular
symmetries. We use moment maps of the action of Lie groups, which are not
necessarily abelian. We also show a general way to construct an invariant mean
curvature flow in a Riemannian manifold.

1 Preliminaries

Definition 1. Let ¢ : ¥ — M be an immersion from a manifold ¥ to a manifold M.
For a smooth map

Fo=¢ ’
if Fi(-) : ¥ — M is an immersion for any ¢ € [0,T), then we call F' a deformation of ¢.

{F Y% [0,T) = M; (p,t) — F(p)

Definition 2. Let ¢ : ¥ — (M, g) be an immersion from a manifold ¥ to a Riemannian
manifold (M, g). The mean curvature flow F = (F})icjory of ¢ is the deformation of ¢
such that it is a smooth solution of the following partial differential equation for the
mean curvature vector field H' of Fy: 2 F(p,t) = H'(p).

2 Constructions of invariant mean curvature flows

Let (M,g) be a Riemannian manifold, H a Lie group which acts on M, K a closed
subgroup of H, Z(h*) the center of the Lie coalgebra h*, L, : M — M the translation
by an element h € H, {# a fundamental vector field generated by & € b =: Lie (H),
L% a subset in L defined by L* = {p € L | H, = K} for any submanifold L of M,
where H, is the isotropy subgroup of H at p € L, V' a submanifold of M such that
V C MK, ¢y : (H/K)xV — M a map defined by (hK,p) — hp. We also use these
notations in the following section.

Definition 3. If the map ¢y is an immersion with the mean curvature vector field H
and it holds that

H(hK,p) = (Ln)oH(K,p) ((hK,p) € (H/K) xV),

then we say that V has the property (x). Moreover, if there exists a deformation
f:V x[0,T) — M¥ of V such that the immersed submanifold V; := f,(V') also has
the property (x), we say that f preserves the property (x) of V.

Definition 4. Suppose there exists a deformation f : V x [0,T) — M¥. If ¢y, is an
immersion for any t € [0,7"), the following map F' defines a deformation of ¢y, and we
say F' the expansion of f:

F:(H/K)xV x|[0,T)— M; (hK,p,t)— hf(p).
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Theorem 1. Suppose a submanifold V. C M¥ has the property () and there exists a
deformation f:V x [0,T) — M¥ of V with the expansion F satisfying the followings.

(i) For anyt € [0,T) and any p € V, it holds that %Ft(K,p) =H'(K,p), and
(ii) the deformation f preserves the property (x),

where, H' is the mean curvature vector field of the immersion Fy;. Then, the family of
maps (F})iejo,r) s the mean curvature flow of the map ¢v .

Corollary 1. Suppose that a submanifold V- C MY has the property (x) and there
exists a vector field A satisfying the followings.

(i.a) The vector field A generates a deformation f:V x [0,T) — MX of V with the
expansion F,

(i.b) for anyt € [0,T) and any p € V, it holds that H'(K,p) = Ay, and

(ii) the deformation f preserves the property (x).
Then, the family of maps (F})icpor) 45 the mean curvature flow of the map ¢y .

We note that for a given submanifold V', if we find a vector field A satisfying the
condition (i.b), then the condition (i.a) is an ordinary differential equation.

3 Constructions of invariant Lagrangian mean curvature flows

We show a method of constructing a Lagrangian mean curvature flow in a Calabi-Yau
manifold by the corollary above, using generalized perpendicular symmetries.

Theorem 2. Let (M, 1, g,2) be a connected Calabi- Yau manifold with a complex struc-
ture I, Kahler metric g and a Calabi- Yau structure ), H a connected Lie group which
acts on M preserving I and g with a moment map i : M — b*, K a closed subgroup of
H such that H/K is orientable and the K-action preserves 2, L a special Lagrangian
submanifold, ¢ € Z(h*), V. an (n — dim(H/K))-dimensional submanifold of M such
that V. C u=(c) N LK and ¢v, is an immersion. Then, it holds that

(1) the map ¢y, is a Lagrangian immersion, and
(2) there exists a vector field Ay along L™ such that
HO(hK,p) = (An)np + (L) wplp{ (grady; ,0c(K,))p}  ((AKp) € (H/K) x V)

holds, where HE is the mean curvature vector field of ¢y, and 6, : (H/K) x V. —
R/27Z is the Lagrangian angle of ¢y, .

Moreover, suppose that Ay generates a deformation f : V. x [0,T) — L% with the
expansion F and for any t € [0,T) and V, := f,(V.), the following condition holds.

&FeT,LaT,V, and & ¢ T,V.\{0} (“generalized perpendicular condition”).

Then, the family of maps (Fy)ico,r) is the Lagrangian mean curvature flow of ¢y,.
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Lagrangian mean curvature flows
with generalized perpendicular symmetries

Tokyo Metropolitan University, Akifumi Ochiai

March 6, 2021
Submanifolds of Symmetric Spaces and Their Time Evolutions

§1. Goals

eGoal (general cases) :
To construct mean curvature flows by symmetries of Lie groups in
Riemannian mfds.

eGoal (special cases) :
To construct Lagrangian mean curvature flows by generalized per-
pendicular symmetries of Lie groups in Calabi-Yau mfds.
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§2. Previous Researches

ePrevious Researches:

[ Yamamoto(2016) |
construct generalized Lag MCF
in toric almost Calabi-Yau mfds
using moment map & toric symm.
[ Konno(2018) | |
construct Lag MCF
in Calabi-Yau mfds
using moment map & perp. symm. of abelian actions

oQur Researches:

Ours
(general cases)
construct MCF
in Riem. mfds
using symm. of general actions
Ours
(special cases)
construct Lag MCF
in Calabi-Yau mfds
using moment map & generalized perp. symm. of general actions

§3. Overview

How to construct MCF by symm. of Lie groups

M : Riem. mfd, H: Lie grp s.t. H ~ M,
2. H-invariant submfd of M.

Step.1 Find a nice sumfd Vo c X s.t. H- V= L.

Step.2 Study how V| is deformed by the MCF of L.

To

Step.3 Have the MCF of Z by Xy := H - V.

T

adron
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§4. Preliminaries

mfd mfd . .
Def.1 Let¢: ¥ — M be an immersion. For a smooth map

{F 12X [0,T) > M; (p,t)— Fip)
Fo=¢ '

if Ft(-) : £ — M is an immersion for V¢t € [0, T), then we call F the
deformation of ¢ (or X).

mfd Riem.mfd ) )
Let¢p: ¥ — (M,g) beanimmersion. The mean curvature flow

F = (F)e[o,) Of ¢ is the deformation of ¢ s.t. it is a smooth solution
of the following PDE:
%F(p, ) =Hip) w/H":mev of Fy.

1 g

Fact. 2 MCF preserves the “Lagrangeness” in Kdhler-Einstein mfds.

§5. Constructions of MCFs
*Setting (+1): (s HUP)

(M, g): Riem. mfd, Hikp) ‘HUnkrr)
H: Liegrps.t. H~ M,

K: closed subgrp of H,

V: submfd of M s.t. V c MK, b "f

Def. 3 Under (x1), v

Z(h*) : the center of the Lie coalgebra b7,
LK.= {peL|Hy=K}, w/L:anysubmfd of M,
¢y : (H/KyxV = M; (hK,p)— hp.

Def. 4 (property (x)) Under (+1), if ¢y, is an immersion & its mean
curvature vectors are H-invariant, i.e., it holds that

H(hK,p) = Lp)pH (K, p), (*)
then we say that V has the property (+) wrt the H-actions.
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Def. 5 (preserve the property (x)) Let Vj is a submfd of M s.t.
Vo ¢ MK & has the property (x). Under («1), if 3 a deformation
of Vyin MK & V; := f1(V) also has the property (+), we say that f
preserves the property (+) of V.

M.g)
M &
‘/(*)
Vi
Vo
"preserving ()"

Under (+1), suppose that 3 a deformation f : Vo x[0,T) — MK,

Def. 6 (expansion of deformation) If ¢y, is an immersion for ¥t €
[0, T), we can define a deformation F of ¢y, by

F:(H/K)x Vox[0,T) > M; (hK,p,t) = hfsp) =: Fy(hK, p).

We call F the expansion of f.
We denote the mean curvature vector of F; by H".

/ = A Im%" 577
wy e 7
v'-b/ (‘~ :E;'"
\ ‘l T Ty
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eSetting (+2): H Vo

(M, g): Riem. mfd,

H: Liegrps.t. H~ M,

K: closed subgrp of H,

Vo: submfd with (+) of M ( s.t. Vy € MK).

Thm. 7 Under (+2), suppose that 3 a deformation f of V with its
expansion F satisfying (i) & (ii):

(i) Forv¥te[0,T),Vp eV,

%Ft(K, p) = HY(K,p) (“restricted MCF condition”’),

(i)  f preserves the property (+).
Then, (Fp)iefo,1) is the MCF of ¢y,,.

e.g. 8 (circle, sphere)

¢ : 8" — R™1, V= single point, H := SO(n + 1).

Hacton@ ‘ Hu’m@
e

e.d. 9 (cylinder)
¢S xRV — R™1 V= 8", H:= R,
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e.g. 10 (generalized cylinder)
¢ M" X R - R*™L V= M, H:=R"™.

H-action

[ —

Question: How to reduce the restricted MCF eq to an ODE ?

» Additional assumption:

The evolution of the restricted MCF forms a vector field of the mean
curvature vectors.

e.g. 11
(1) The MCF of S" forms a vector filed of their mcv.
V N ’ . ’ «4
0 ) JVY e, )
= SNy
> = —> — — <
s T\ s
7 N

72 fthi'i
4

7 L

(2) The MCF of Dumbbell-like surfaces do not.
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Cor. 12 Under (+2), suppose that the restricted MCF of (Vy, ¢v,,)forms
a vector filed A, i.e., 3 a vector field A satisfying (i.a) & (i.b):

(ia) A generates a deformation f of Vi in MK with F, i.e.,

d
K p) = Agq) (Ype VoVt e[0,T) « ODE
(ib) ForvVtel0,T) & pe Vy,
p ot o M
H(K,p) = A ).

Moerover, suppose that
(ii)  f preserves the property ().
Then, (Fp)ielo,1) s the MCF of ¢y,.

~» How to find Vj with A satisfying (i.b) for constructing Lag MCFs
in CY mfds ?

§6. Constructions of Lag MCFs
eSetting (+3):

(M, w): 2n-dim symp. mfd,

H: Lie grp s.t. H ~ (M, w) with moment map p : M — b,
K: closed subgrp of H,

V,: submfd of M s.t. V., c MK,

¢y, immersion.

Prop. 13 Under (+3), suppose
(i) V¢ is isotropic,
(i) (“moment map condition”) V. ¢ u~Y(c) forc € Z(h*).
(iii) dimH/K +dimV,=mn
Then ¢y, is Lagrangian. Conversely, if ¢y, is connected & La-
grangian, then (i), (ii) and (iii) hold.
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Def. 14 (Lagrangian angle) (M, I, g, QO): Calabi-Yau mfd, L: oriented
Lag submafd of M,

0 : L — R/2nZ : Lagrangian angle :& (*Q = e\/‘_levoll*g
w/ ¢ : L — M: inclusion map.

L : special Lagrangian submfd :& 6 = const.

Prop. 15 H(p): mean curvature vector of L atp € L. Then,

H(p) = Il(p){t*p(gradl*ge)p}.

eSetting (+4):

(M, I, w, Q): connected Calabi-Yau mfd,
H: connected Lie grp s.t. H ~ (M, I, w)
with moment map u: M — b*,
K: closed subgrp of H s.t. H/K: orientable & K ~ Q,
V: orientable submfd of M s.t. V. ¢ u~1(c) n MK,
¢y.: Lag immersion.

Prop. 16 Under (x4),
(1) 6c(hK,p) =30y(hK) + A0y (p), w/O.:Lag angle of ¢y,
T defined only by (M, H, K)
(2) HBKp) =3 (A + L)ply|(gradgy (Ovop)
T defined only by (M, H, K)
w/ H :MCV of ¢y

If Oy, = const. ~ H® = Ay holds and V. accomodates to Cor.12
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eSetting (+5):

(M, I, w,Q): connected Calabi-Yau mfd,
H: connected Lie grp s.t. H ~ (M, I, w)
with moment map p : M — b7,
K: closed subgrp of H s.t. H/K: orientable & K ~ Q,
Apy: vector field along MX as in Prop.16
L: special Lag submfd with Lag angle 6(p) = 0,
ce Z([b"),
Ve: (n - dim(H/K))-dim submfd of M s.t. Ve ¢ u~Y(c) n LK.

Prop. 17 Under (+5), suppose

generalized

Vpe Ve VEeh, & eTrLaoTyV, & & ¢ TV \(0).
(“generalized perp. condition”) %

Then; strictly perp
(1) Oy (p) =0 - Fdim(H/K), « const.
(2) HEUK,p) = (Ar)pp-

Thm. 18 Under (+5), suppose that Ay generates a deformation f :
Ve x [0,T) — LX with its expansion F, and for V't € [0,T) and V; :=
ft(Ve), the generalized perpendicular condition holds.

Then, Ay and V. satisfies the condition of Cor.12 and (Fy)se|o,T) IS @
Lag MCF of ¢y..
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e.g. 19

e.g. 20

e.g. 21

e.g. 22

§7. Examples

T

construct Lag self-similar solution
in ct
using | strictly perp. symm. of U(1) x SO(3)
construct Lag MCF
in C>
using | gen. perp. symm. of R x SO(2)
construct Lag translating soliton
in C>
using | strictly perp. symm. of U(1) x SO(3)
construct Lag translating soliton
in Ct
using | gen. perp. symm. of R x SO(2)

Thank you very much for your attention.
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Ricci flow, heat equation, Liouville type theorem

KEiTA KUNIKAWA

ABSTRACT. In this talk, we will see a Liouville type theorem for heat equation
along ancient (super) Ricci flow using Perelman’s reduced distance.

1. Liouville theorems

Let (M",g) be a complete Riemannian manifold with Ric > —K (K > 0) and Bg(zo)
be a geodesic ball on M centered at xo € M with radius R > 0. In 1975, Cheng-Yau
established a gradient estimate for positive harmonic function u : Br(xg) — R;

[Vl <C, <}% + ﬁ) on Bg(xo),

u

where C), is a constant depending only on n. When K = 0, Cheng-Yau’s gradient
estimate implies the celebrated Yau’s Liouville theorem, that is, positive harmonic
function on a complete Riemannian manifold with Ric > 0 must be constant.

A parabolic analogue of this theory is considered by Souplet-Zhang [2]. They ob-
tained a space-only gradient estimate for a positive solution to the heat equation on
a Riemannian manifold with Ric > —K. More precisely, they showed that for a
positive solution to dyu = Au, 0 < u < A on a parabolic cylinder Qrr(xo,ty) =
Br(xo) X [to — T, o],

|Vl 1 1 A
— < p—y p— - R T .
= C, 7 + Nis +VK ) (1+]log ” on Q?Z(xo,to)

As a corollary, they showed Liouville type results for ancient solutions (i.e., solutions
defined for all the negative time ¢ € (—o0,0]) to heat equation on a complete Rieman-
nian manifold with Ric > 0;

(al) positive ancient solution u with u(z,t) = exp [o(d,(z) + /|t|)] near infinity must
be constant,

(bl) ancient solution u with u(x,t) = o(d,(x) + /|t|) near infinity must be constant.

Without the growth conditions, there exist nontrivial ancient solutions. For (al), we
know a positive ancient solution u(z,t) = e on M = R which does not satisy the
growth condition. Likewise, we have another example for (bl): u(x,t) = x. This is a
static ancient solution on M = R which does not satisfy the growth condition. In this
sense, Souplet-Zhang’s growth conditions are essential and sharp in the space direction.



Submanifolds of Symmetric Spaces and Their Time Evolutions 149

2. Main results

In this talk, we will see that the analogous results to Souplet-Zhang hold under Ricci
flow background. Althohg it is natural to consider the time-dependent Riemannian
distance dy(;)(x), one finds that it does not work well. The problem is that the condition
Ric > —K is not sufficient to estimate the time derivative of dy(x). If we additionally
impose Ric > —K, then it is possible to estimate the time derivative of dyy)(z) and
we can obtain a gradient estimate as above. However, in order to derive Liouville type
results, this situation can deal with only trivial situation, i.e., Ricci flat (K = 0).

To overcome this difficulty, we adobt Perelman’s reduced geometry. In reduced
geometry, it is natural to use reverse time parameter 7 := —t. Instead of dyq) (), we
adopt the so-called reduced distance ¢(z, 7). This makes it possible for us to avoid the
estimate of time-derivative of dg)(x).

Here, we will consider more general situation than the Ricci flow. Let (M, g(7)) be
a time-dependent Riemannian manifold, 7 € [0, 00). Set h := $8,g and H := tryh. For
(x,7) € M x (0,00), let L(z, T) stand for the L-distance from a space-time base point
(x9,0), i.e., the infimum of the so-called L-length over all curves ~ : [0,7] - M with
7(0) = x¢ and y(7) = x. We only consider the case that the infimum is achieved by
a minimal £-geodesic. Then the reduced distance from (zy,0) and its squred root is
defined by

Uz, T) = #L(I,T), o(x, 7) = \/41l(z, 7).

In the static case of g(7) = g, it holds that ¢(z, 7) = d,(z)?/47. Moreover, we introduce
the Miiller quantity D(V') and the trace Harnack quantity H (V') for (time-dependent)
vector field V on M by

D(V) = —0.H — AH — 2||h||* + divh(V) — 29(VH, V) + 2Ric — 2h(V, V),
H
H(V):=—0TH — — - 29(VH,V)+2h(V,V).

Main Theorem. (K.-Sakurai [1]) Let (M, g(7))-cjo,c) be a complete ancient backward
super Ricci flow Ric > h with D(V) > 0, H(V) > —H/7 and H > 0 for any V. Then,

(a2) positive ancient solution to 0-u = —Aynu with u(x, 7) = explo(d(z,T) + /7)]
near infinity must be constant;

(b2) ancient solution to O,u = —Ayyu with u(z,7) = 0(d(x, T) + \/T) near infinity
must be constant.

Remark. For a static manifold with Ric > 0, all the assumptions automatically hold
and d(z,7) = dy(x). So, our theorem includes Souplet-Zhang’s Liouville type result.
As for the Ricci flow Ric = h with bounded nonnegative curvature operator Rm, again
all the assumptions are satisfied and we obtain a Liouville type result.
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Antipodal sets of compact symmetric spaces and
polars of compact Lie groups

MAKIKO SuMI TANAKA

ABSTRACT. This presentation is based on the author’s collaboration with Hi-
royuki Tasaki. In their former research, Tasaki and the author classified maximal
antipodal sets of some classical compact Riemannian symmetric spaces by using
their embeddings into connected compact Lie groups as polars. In order to con-
tinue the classification of maximal antipodal sets of other compact Riemannian
symmetric spaces, their realization as polars of disconnected compact Lie groups
is needed. In this presentation the author explain the recent research relating to
them.

Let M be a compact Riemannian symmetric space and s, denote the point symme-
try at a point x in M. A subset A of M is called an antipodal set if s,(y) = y holds for
any points z,y in A. The 2-number of M is the maximum of the cardinalities of antipo-
dal sets. In the 1980’s Chen and Nagano introduced these notions and gave detailed
studies of the 2-numbers. In the past ten years there was progress on the research of
antipodal sets. Our interest has been shifted to maximal antipodal sets themselves
rather than their cardinalities. Tasaki and the author classified maximal antipodal
subgroups of some classical compact Lie groups G and gave their explicit descriptions
(J. Lie Theory, 2017), and after that, they classified maximal antipodal sets of some
classical compact Riemannian symmetric spaces M (Differential Geom. Appl., 2020).
The basic principle is to make use of an embedding of M into GG as a polar with respect
to the identity element and apply the classification of maximal antipodal subgroups
of G. In order to continue the classification of maximal antipodal sets for some other
classical compact Riemannian symmetric spaces M, the realization of M as a polar of
a disconnected compact Lie group is needed. Chen-Nagano (Duke Math. J., 1978) and
Nagano (Tokyo J. Math., 1988) gave detailed studies of polars of connected compact
Riemannian symmetric spaces. Tasaki and the author studied polars of disconnected
compact Lie groups in their submitting paper.

Let G be a compact Lie group and we denote by e the identity element of GG. There
exists a biinvariant Riemannian metric on G and G is a Riemannian symmetric space
with respect to the metric. For any x € G, the point symmetry at z, denoted by
Sz, is given by s,(y) = zy~'z (y € G). Let G be a connected compact Lie group
and o be an involutive automorphism of G. We denote by (o) the subgroup of the
group of automorphisms of G' generated by o. For the semidirect product G x (o),
G x (o) = (G,€') U (G, o) is the decomposition into a disjoint union of the connected
components, where ¢’ = idg denotes the identity element of (o). We denote by é the
identity element of the semidirect product G x (o). We define the action p, of G on
G by ps(g9)(h) = gho(g)~' (g, h € G), which is called the twisted conjugate action by
o. For an isometry f of G, we denote by F(f,G) the set of fixed points of f. The
following is the main theorem:
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Theorem (Tanaka-Tasaki, submitted). Let G be a connected compact Lie group
and o be an involutive automorphism of G. Then we obtain

F(s6,G % (0)) = (F(8¢,G), €YU (F(sc.00,G),0).

In particular, each connected component of (F(se o 0,G),0) is a polar of G x (o).
Moreover, the connected component of (F(s. o 0,G),0) containing (e,0) coincides
with (ps(G) - e,0), where p,(G) - e is a symmetric space defined by a symmetric pair
(G, F(0,Q)), which is realized by the imbedding G/ F(0,G) — G ; gF(0,G) > go(g)~'.

(MAKIKO SUMI TANAKA) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECH-
NOLOGY, TOKYO UNIVERSITY OF SCIENCE, NODA, CHIBA, 278-8510, JAPAN

E-mail address: tanaka makiko®@ma.noda.tus.ac.jp
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1. Introduction

M: a Riemannian manifold

M i1s called a Riemannian symmetric space
if for Vx €¢ M, the point symmetry s, at =
iIs given, i.e., (i) s is an isometry of M,
(ii) sgzosy =idys, (iii) z is an isolated fixed
point of s;.

e The differential (dsy)z is —idp, /.

e When M is connected, s; is uniquely de-
termined by (i)-(iii) and s; is the geodesic
symmetry.

F(sz, M) :={y € M|sz(y) = y}

A connected component of F'(s;, M) is called
a polar w.r.t. =x.

By (iii), {z} is a polar w.r.t. z, called the
trivial polar.

e A polar MT of positive dimension is a to-
tally geodesic submanifold and hence M is
a Riemannian symmetric space. The point
symmetry at y € M is given by sy|+.

e R": Euclidean space, F'(sg; R"™) = {«x}
e S™: a sphere, F(sz, S") = {x, —x}
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e P": the projective space, F(sgz, P") = {x} U
pn—1

() Set K = R, C, or H and denote P" by KP".
Since s; iIs induced by the reflection along
z in K*"t1, (s, KP") =

{z} U {1—dim. subspaces in z1-}(=KpP"—1).

oIf M is of noncompact type, F(sz, M) =
Hereafter we consider the case where M is
compact.

e A compact connected Riem. sym. sp. M is
(i) of compact type (/(M) is compact and
semisimple), (ii) a torus, or a product of (i)
and (ii) locally.

A: a subset of M

A 1s called an antipodal set if for Vz,y € A,
sz(y) =y holds.

For Vx ¢ A, A C F(sz,M). =z is an isolated
point in F(s;,M) as well as in A. Thus A is
discrete. Hence an antipodal set is finite.
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The 2-number of M is #o,M = max{|A|| A C
M : an antipodal set}.

If A satisfies |A| = #>M, A is called great.
If AcC A" implies A = A/, we say A is maxi-
mal.

e A great antipodal set is maximal but the
converse is not true.

o #,5" =2 and {z,—z} is a great antipodal
set.

Bang-Yen Chen and Tadashi Nagano gave
detailed studies of the 2-numbers (Chen-
Nagano, 1988).

In the past ten years there was progress
in the research of antipodal sets. Our iIin-
terest is in maximal antipodal sets them-
selves rather than their cardinalities. We
are working on the classification of maxi-
mal antipodal sets.

e In (T.-Tasaki, 2017) we classified max. antip.
subgr. of some classical cpt. Lie groups G.

e In (T .-Tasaki, 2020) we classified max. antip.
sets of some classical cpt. Riem. sym. sp. M.
The basic principle is to make use of an
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embedding of M into G as a polar w.r.t.
the identity element and apply the classifi-
cation of max. antip. subgr. of G.

e In order to continue the classification of
max. antip. sets for some other classical cpt.
Riem. sym. sp. M, we need a realization of
M as a polar of a disconnected cpt. Lie gr.
e Chen-Nagano and Nagano gave detailed
studies of polars of connected cpt. Riem.
symmetric spaces.

e We studied polars of disconnected cpt. Lie
groups (T.-Tasaki, submitted).

2. Relations between antipodal sets and po-
lars

G: a compact Lie group

e: the identity element of G

Go: the identity component of G

Ja biinvariant Riemannian metric on G
G 1s a compact Riem. symmetric space.
Ve € G, sz(y) =2y 1z (ye @)

e se(y) =y 1, su(y) = Lgoseo L. 1(y)
F(se, G)={zx€G | z°=¢}
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r
F(se,G) = U Gj-', G;": a polar, Gg = {e}
j=0
In general, when a polar consists of a single

point z, we call x a pole.

Proposition 1

Za(Gp): the centralizer of Gg in G

Z5(G) = Za(Go) N F(se, G)

e The set of poles coincides with Z5(G).

e For a point z in G7, Gj-' = {Iy(z) | g € Go}.,

where [,(x) = grg~ L.

Hence each polar is a Gg-conjugacy class
of involutive elements.

A: an antipodal set of G
We can assume ec A by left (or right) trans-
lations. Then,
2 =¢e (z€A), zy=yx (z,y € A).
oIf A is maximal, A is a subgroup =
Lo X -+ X L.
We call such A a maximal antipodal sub-
group.
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Example. G = O(n): the orthogonal group

Gog = SO(n)
1,,: the identity matrix
I; = daig(—1,. ax —-1,1,...,1) € O(n)

J
G ={gljg7t | g€ SO(n)}

= 50(n)/S(0() x O(n —j))

= G,;(R™): the real Grassmann mfd.

Ag = {diag(eq,...,en) | ¢, = £1} is a maximal
antipodal subgroup of O(n).

Z>(0(n)) = {£1n)}

e Ap is a unique max. antip. subgr. of O(n)
up to conjugation, while a max. antip. subgr.
of O(n)/{£1y} is not unique up to conjuga-
tion when n is even and n > 4.

M = G;": a polar of positive dim.

M 1s a connected cpt. Riem. sym. sp.
zo € M, M = {I4(z0) | g € Go}

o Io(M) = {Iyly | g € Go}

oIf A is an antip.set of M, then AU {e} is
an antip. set of G.
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e 3A: a max. antip.subgr. Au{e}C 4
o If A is maximal in M, then A= M N A.

C1,...,C0L: Gp-conjugacy classes of maxi.
antip. subgr. of ¢

Bs: a representative of C; (1 <s<k)

(We gave their explicit descriptions for some
classical G.)

dg e Go, 1 <3s<k, A= Iy(Bs)
A=MNA=MnIy(Bs) = 14(M N Bs)

Hence A is Io(M)-congruent to M N Bs.

Therefore, a representative of an Iy(M)-
congruence class of maximal antipodal sets
of M is one of M N Bq,...,MN B;.

e Using this principle, for some classical cpt.
Riem. sym. sp. M, we determined I5(M)-cong.
classes of max. antip. sets of M and gave
explicit descriptions of their representatives.
e M, realized as a polar not of a connected
G but of a disconnected G.

e.g., U(n)/O(n),U(2n)/Sp(n)
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3. Polars of disconnected compact Lie groups

G: a compact Lie group

Go: the identity component of G

G = GoU ,\U/\ Gy, G): a conn.component
F(s0.6) = (P(s50.G) NG0) U U (F(50,G) 1 G
We know F'(se, G) N Gg by Chen-Nagano.
We study F(se, G) NGy.

If F'(se, G)NGy) #£ 0, for Vz, € G\NF(se,G) we
have G, = Goz) = 7),Gp.

Iz, (Iz\(y) = :B/\yx;\l) is an involutive auto-
morphism of Gj.

The action defined by g.h = ghl;,(9) "1 (g,h €
Gp) is called the twisted conjugate action
by Ip,. (It is a Hermann action.)

T: a maximal torus of the identity comp. of
F(I,,Gp)-

By a property of Hermann actions we have:

Proposition 2 G, = U g(z)\T)\)g !
9€Go
(It is well-known Gg = |J ¢Tg~! for a max-
g€Go

imal torus T of Gg.)



168 OCAMI Reports Vol. 2 (2021)

F(s¢,G)NGy= U g{z €xyT)|z®=e}g*
9€Go

In order to determine F'(se,G) N G,, it is
enough to determine {z € z,T) |22 = ¢} and
Gop-conjugacy classes of each element of
the set.

We can carry out them for each G on a
case-by-case argument.

On the other hand, we have the following:
Proposition 3 Assume G\ N F(se, G) #= 0.
(1) Go UG, is a subgroup.

(2) For =, € GyNF(se,G), GogUG, is isomor-
phic to Gox(Iz,), where (I,) is the subgroup
of Aut(Gp) generated by I,.

Hence, the determination of polars of G is
reduced to the determination of polars of
GO X <Iaj>\>.

Go x (Iz,) consists of two connected com-
ponents:

Go % (Iz,) = {(g,id) | g € Go} U {(9,Ix,) | g € Go}
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The group operation of Gy x (Iz),):

For g,h € Gp, ¢ :=id, 7:=I,,

(9,€)(h,€) = (gh,€), (g,€)(h, ) = (gh,T),

(g, 7)(h,€') = (g7(h),7), (g,7)(h,7) = (g7(h),€).

Proof of Prop.3: (1) is easily seen by the
group operation. (2) ¢ : Ggx (Iz,) = GogUG),
defined by ¢(g,id) = g,¢(g, Iz,) = gx) dives a
Lie group isomorphism.

G: a connected cpt. Lie group
o: an involutive atumorphism of G
€ = (e,id): the identity element of G x (o)

Theorem 4
F(S€7 G X <U>) — (F(S€7 G)a 'd) U (F(Se ©0, G),O')
In particular, each connected component of

(F'(seco,G),o0) is a polar of Gx (o). Moreover,
the conn. comp. of (F(sco0,G), o) containing
(e,0) coincides with (ps(G) - e, o), where ps
iIs the twisted conjugate action by o, and
po(G) -e = G/F(o0,G).

Proof of Thm.4:
F(Sg, G~ <0>) = F(Sg, (G, Id)) U F(Sé, (G, U))
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F(sz (G,id)) = (F(se, G),id)
F(sz (G,0)) = (F(seo0o0,G),0)
() Vg € G,

se(g,0) = (g,0)

& (g9,0) =(g,0) "t =(o(g71),0)
& g=o(gh)

S seoo(g) =g

As stated before, if we obtain the classifi-
cation of max.antip. sugr. of G x (o), we can
determine max. antip. sets of G/F(0,G).

4. Examples

U(n): the unitary group
F(s1,,U(n)) =
n
feeUma® =1} = U{gljg ' lgeUm)}
J:
Ij=diag(=1,...,~1,1,...,1) € U(n)

The polars ofj U(n) w.r.t. 1, is:

{1n}, {—1n},

Un)/(UG) xU(n —j)) = Gi(C") (1 <j<
n—1) the complex Grassmann mfd.

7(g9) :=g (g € U(n))
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7 is an involutive autom. of U(n)
G=U(n) x(r), (t)={€, 1}
G={(g,¢)|geUM)}U{(g,7)[g € UMm)} (%)

We write (g,€¢') by g, and (g,7) by gr.
()~ G=Um)UuU(n)r
F(sg, G) = (F(s5 G)NU(n))U(F(sg, G)NU(n)T)

F(s5,G) NU(n) = F(sy,,U(n)) = ,GO G (C™)
s

We study F(s;,G) NU(n)T by using Thm. 4.
T: a maximal torus of F'(r,U(n)) = O(n)

Un)r= U g(TT)g_l (by Prop. 2)
geU(n)

F(sg, G)NUMm)T= U g{xerT| 2 = 1n}g_1
geU(n)

So we study {z € 7T |22 = 1,,}. We can take

T C O(n) as
R(01)
T = ‘91,...,9 cRY,
R(0y) g
_ (1))
__|cosf —sind _(n
R(0) = sinf® cosf |’ k= L2]

vteT, 7t = (1n,7)(t, ) = (7 (t),7) = tr,
(1t)% = 72¢2 = ¢2
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Hence, {z € 7T | z2 = In}=7{teT| t2 = 1,}

€1lo
= €1y...,€6, = *£1
€rlo
_ (1))
F(sz,G)NUMm)r= U gr{teT|t>=1,)g" 1!
geU(n)

oVt c T\Vg c U(n), g(rt)g 1 =gtlyr
e Since (ilo)(—15)(ils) = 15,
Vt € T,t2 = 1p,, 3h € U(n) s.t. htth = 1.

Hence, ift € T,t2 = 1, {g(vt)g g Un)} =
{gtlglge Un)}r ={glnlg|g € U(n)}r.

So F(sz;, GYNUM)T ={glnlglgc Un)}r
Here gl,'g = glng ' = gla7(9) ™! = pr(9)(10).
pr: the twisted conjugate action by r.
Hence {gl,%|g € U(n)} is an orbit of p-(G)
through 1,,.

glilg=1lp,elg=9g 1=l ge O(n)

F(sz, G)NU(Mm)T =U(n)/O(n) (connected)
U(n)/O(n) is realized as a polar of U(n) x ().
(U(n)/O(n) is not realized as a polar of a
connected compact Lie group.)
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Thank you for your kind attention.



