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ABSTRACT

A ribbon chord diagram, or simply a chord diagram, of a ribbon surface-
link in the 4-space is introduced. Links, virtual links and welded virtual links
can be described naturally by chord diagrams with the corresponding moves,
respectively. Some moves on chord diagrams are introduces by overseeing these
special moves. Then the faithful equivalence on ribbon surface-links is stated
in terms of the moves on chord diagrams. This answers questions by Y. Nakan-
ishi and Y. Marumoto affirmatively. The faithful TOP-equivalence on ribbon
surface-links derives the same result. By combining a previous result on TOP-
triviality of a surface-knot, a ribbon surface-knot is DIFF-trivial if and only if
the fundamental group is an infinite cyclic group. This corrects an erroneous
proof in T. Yanagawa’s old paper.

Keywords: Chord diagram, Ribbon surface-link, Virtual link, Reidemeister move, Chord dia-

gram move, Smooth unknotting.
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1. Introduction

A ribbon surface-link in the 4-space R4 defined in [16] is described as a ribbon
chord diagram, or simply a chord diagram in Section 2, which is a diagram of a
chord graph, a trivalent spatial graph in the 3-space R3 consisting of a trivial link
called based loops and arcs called chords.1 We investigate a transformation from
a link diagram or a virtual link diagram to a chord diagram of a ribbon torus-link
which is defined by observing Artin’s spinning construction [1] for a classical link

1Our basic techniques depend on the papers [15, 16]. Earlier arguments in T. Yajima’s papers
[23, 24] and T. Yanagawa’s paper [26] are also helpful here.



and by observing Satoh’s construction [21] for a virtual or welded virtual link. In
this section, we also investigate consequences of the classical, virtual and welded
virtual Reidemeister moves to chord diagrams. In Section 3, three kinds of moves
on the chord diagrams, called M0, M1 and M2 are introduced as moves relaxing the
classical, virtual and welded virtual Reidemeister moves given in Section 2. The
move M0 is nothing but the Reidemeister moves on diagrams of trivalent spatial
graphs. The move M1 is a move on the based loops, called the fusion-fission move,
which is equivalent under the use of the move M0 to the elementary fusion-fission
move M1.0, the moves of the chord slide M1.1 and the chord pass M1.2. In Section 4,
first of all, the definition of a faithful equivalence on ribbon surface-links is made
as an equivalence together with a homotopical vanishing condition on meridians of
the ribbon 1-handles. Then the main result (Theorem 4.1) saying that two ribbon
surface-links are faithfully equivalent if and only if any chord diagrams of them are
mutually deformed into each other by a finite number of the moves M0, M1 and
M2 is stated and proved. This answers questions by Y. Nakanishi in [19] and Y.
Marumoto in [17] affirmatively. A main idea of this proof is outlined as follows:
Given a faithful equivalence on ribbon surface-links F and F ′, then we send a chord
graph put on F to F ′ by the faithful equivalence. Then we deform the image of the
chord graph into a chord graph of F ′ put on F ′ homotopically while using the moves
M0, M1 and M2 on the chord diagrams. In Section 5, it is observed in Corollary 5.1
that the topological version of Theorem 4.1 holds without essential change. This
means that any two ribbon surface-links are faithfully TOP-equivalent if and only if
they are faithfully equivalent. A surface-knot F in R4 is DIFF-trivial or TOP-trivial
respectively if F bounds a handlebody embedded in R4 by a smooth embedding or
a locally-flat topological embedding. It is proved in [4] and [13] that a surface-knot
F in R4 is TOP-trivial if and only if the fundamental group π1(R

4 \F ) is an infinite
cyclic group. As a consequence of Corollary 5.1, we see that a ribbon surface-knot F
is DIFF-trivial if and only if the fundamental group π1(R

4 \ F ) is an infinite cyclic
group (Corollary 5.3). This corrects an erroneous proof of T. Yanagawa’s old paper
[27].

The author would like to thank Seiichi Kamada and Shin Satoh for helpful com-
ments for this research. An essential part of this paper is completed during his stay
at the Chinese University of Hong Kong, where he thanks Zhongtao Wu for his nice
hospitalities.

2. A ribbon surface-link and a ribbon chord diagram

A band surgery on an oriented link ℓ in R3 is a transformation of ℓ into an oriented
link ℓ′ by a band b spanning ℓ such that ℓ′ = cl(ℓ \ ℓ ∩ b) ∪ cl(∂b \ ℓ ∩ b) (see Fig. 1).

For the real line R, the 4-space R4 is considered as

R4 = {(x, t)|x ∈ R3, t ∈ R}.
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Figure 1: A band surgery

For an interval [a, b] and a subset A ⊂ R3, we use the notation

A[a, b] = {(x, t)|x ∈ A, t ∈ [a, b]}.

The realizing surface of a band surgery ℓ → ℓ′ on finitely many mutually disjoint
bands βj (j = 1, 2, . . . , p) is a surface F b

a in R3[a, b] defined by the following identity:

F b
a ∩R3[t] =


ℓ′[t] (a+b

2
< t ≦ b)

(ℓ ∪ b1 ∪ · · · ∪ bp)[t] (t = a+b
2
)

ℓ[t] (a ≦ t < a+b
2
)

Figure 2: A closed realizing surface F̂ 2
−2 in R3[−2, 2]

For a band surgery sequence ℓ0 → ℓ1 → · · · → ℓm and an increasing real sequence
a = a0 < a1 < · · · < am = b, we can construct the realizing surface

F b
a = F a1

a0
∪ F a2

a1
∪ · · · ∪ F am

am−1

of the band surgery sequence ℓ0 → ℓ1 → · · · → ℓm in R3[a, b], whose topological type
is independent of particular choices of the numbers ai (i = 1, 2, . . . ,m − 1). If the
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links ℓ0 and ℓm are trivial, then we have disk systems d and d′ in R3 bounded by ℓ0
and ℓm, respectively, so that we can construct a closed oriented surface

F̂ b
a = d[a] ∪ F b

a ∪ d′[b]

in R3[a, b], which we call the closed realizing surface of the band surgery sequence
ℓ0 → ℓ1 → · · · → ℓm in R3[a, b] (see Fig. 2).

A surface-link in R4 is a closed oriented (possibly disconnected) surface F embed-
ded in R4 by a smooth embedding or a piecewise-linear locally flat embedding. When
F is connected, it is called a surface-knot in R4. Two surface-links F and F ′ in R4

are equivalent if there is an orientation-preserving smooth or piecewise-linear home-
omorphism f : R4 → R4 sending F to F ′ orientation-preservingly. The following
lemma called Horibe-Yanagawa’s lemma is shown in [15].

Lemma 2.1. Any two closed realizing surfaces constructed from the same realizing
surface F b

a by using any disk systems are equivalent by an equivalence f : R4 → R4

keeping R3[a+ ε, b− ε′] fixed for any sufficiently small positive numbers ε, ε′.

We use the following definition of a ribbon surface-link given in [16]:

Definition. A surface-link F in R4 is ribbon if F is equivalent to the closed realizing
surface of a band surgery sequence

o→ ℓ→ o

such that o is a trivial link in R3 and the band surgery ℓ→ o is the inverse of o→ ℓ
(see Fig. 3).

Figure 3: A ribbon surface-knot in R3[−2, 2]

An embedded 1-handle on a surface-link F in R4 is the image h = im(ψ) of an
embedding

ψ : D2 × I → R4
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such that
F ∩ h = ψ(D2 × {0, 1}),

where D2 is the unit disk and I = [0, 1]. The surface-link obtained from F by surgery
along the embedded 1-handle h is the surface-link

F ′ = cl(F \ F ∩ h) ∪ cl(∂h \ F ∩ h)

in R4. The following characterization of a ribbon-surface-link is given in [16], which
is reproved here because we use a property of this characterization.

Lemma 2.2. An oriented surface-link F in R4 is ribbon if and only if F is obtained
from a trivial S2-link

O = S2
0 ∪ S2

1 ∪ · · · ∪ S2
n

in R4 by surgery along embedded 1-handles hj (j = 1, 2, . . . , s) on O.

Proof of Lemma 2.2. By definition, a ribbon surface-link F is equivalent to a
surface-link obtained from the trivial S2-link

O = d[−2] ∪ o[−2, 2] ∪ d[2]

by surgery along the 1-handles

(β1 ∪ β2 ∪ · · · ∪ βs)[−1, 1],

where o is a trivial link in R3, d is a disk system bounded by o and βj(j = 1, 2, . . . , s)
are the bands used for the band surgery o→ ℓ (see Fig. 4).

Figure 4: Creating a 1-handle from a band

Conversely, assume that F is obtained from a trivial S2-link O by surgery along 1-
handles hj (j = 1, 2, . . . , s) on O. Let αj be a core arc of hj attaching to O. Let F ′ be
another surface-link obtained from O by a surgery along 1-handles h′j (j = 1, 2, . . . , s)
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on O, and α′
j a core arc of h′j attaching to O. We use the following lemma seen from

[6, Theorem 1.2]:

Lemma 2.3. If α′
j is homotopic to αj by a homotopy relative to O in R4, then F ′ is

equivalent to F .

Let O = d[−2] ∪ o[−2, 2] ∪ d[2] for a trivial link o in R3 and a disk system d
bounded by o. Assume that the endpoints of the arcs αj (j = 1, 2, . . . , s) are in
R3[0] and by a general position argument the projection images α′

j (j = 1, 2, . . . , s)

of αj (j = 1, 2, . . . , s) into R3[0] are mutually disjoint embedded arcs. Then α′
j

(j = 1, 2, . . . , s) are homotopic to αj (j = 1, 2, . . . , s) by a homotopy relative to O.
By Lemma 2.3, we can assume that the arcs αj (j = 1, 2, . . . , s) are in R3[0]. Let
βj be a band spanning o in R3 such that αj is a core arc of βj. The surface-link
F is equivalent to the surface-link obtained from O by surgery along the 1-handles
hj = βj[−1, 1] (j = 1, 2, . . . , s) on O. (The latter surface-link will be denoted by

F̂ 2
−2(o, α).) Hence F is a ribbon surface-link, completing the proof of Lemma 2.2. □

By Lemmas 2.2 and 2.3, we have the following corollary.

Corollary 2.4. Every oriented ribbon surface-link is presented as a union of an
oriented trivial link o = ∪n

i=0oi and the arcs α = ∪s
j=1αj spanning o in R3 (see Fig. 5).

Figure 5: A chord graph

The pair (o;α) is called a chord graph, the trivial link o the based loops, and the
arcs α the chords. The ribbon surface-link F given by the pair (o;α) is denoted by

F = F (o;α). The notation F̂ 2
−2(o, α) given in the proof of Lemma 2.2 is also used

when we emphasize that the disk systems are in R3[±2], the upper bands are in R3[1]
and the lower bands are in R3[−1].

We note that the chord graph (o;α) is nothing but a trivalent spatial graph ob-
tained from a trivial link by adding a finite number of mutually disjoint arcs. A
ribbon chord diagram or simply a chord diagram is a spatial graph diagram C(o;α)
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of a chord graph (o;α). In an earlier paper [12], the chord graph is called a disk-arc
presentation of a ribbon-surface-link.

We note that the diagram on the based loops in the chord diagram C(o;α) may
have crossings since it is exactly a diagram of a trivial link. See Fig. 6 for a chord
diagram whose based loops have crossings.

Figure 6: A chord diagram with crossed based loops

In the band presentations of the chords, the bands should be twisted so that
the realizing surface is oriented. For example, as band presentations of the chords
in Fig. 7, the chord of (1) must be replaced by a 2m-half-twist band whereas the
chord of (2) must be replaced by a (2m + 1)-half-twist band, for any integer m,
to obtain an oriented surface-link. Then we note that the equivalence class of the
resulting surface-link is independent of a choice of the twists by [6, Lemma 1.4], which
gives a merit adopting a chord rather than a band to represent a ribbon surface-link.
Although every based loop in a chord graph is oriented, the arrow is omitted unless
we emphasize the orientation.

Figure 7: A difference on chords

If an oriented compact 1-manifold ℓ is properly embedded in the upper-half 3-space

R3
+ = {(x1, x2, x3) ∈ R3|x3 ≧ 0},

then the surface-link F (ℓ) in R4 is constructed from ℓ by the mapping

(x1, x2, x3) → (x1, x2, x3 cos θ, x3 sin θ)| 0 ≦ θ ≦ 2π},
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where every arc or loop component in ℓ changes into an S2-component or a torus-
component in F (ℓ), respectively. The surface-link F (ℓ) is a ribbon surface-link (see
[17]), called the spun surface-link of ℓ, and this construction is called Artin’s spinning
construction (see [1]). A chord diagram CD of the ribbon surface-link F (ℓ) is obtained
from any diagram D of ℓ in R3

+ by replacing a neighborhood of every crossing point
of D with any one of the two diagrams in the right hand of Fig. 8 and every endpoint
of an arc component of ℓ with a based loop (with any orientation) attaching to the
endpoint. See Fig. 9 for an illustration of this replacement, where the equality in
Fig. 9 will be seen from the moves M0, M1 and M2 on chord diagrams introduced in
Section 3.

Figure 8: Transforming a neighborhood of a crossing point into a part of a chord
diagram

Figure 9: Transforming a diagram of a 1-manifold into a chord diagram

The following example concerns a ribbon torus-knot due to T. Yajima [23].

Example 2.5. Yajima’s ribbon torus-knot is described in Fig. 10. As it is explained
in [23], the spun trefoil S2-knot (in the left side of Fig. 10) is obtained by cutting the
chord α1 and the ribbon S2-knot (in the right side of Fig. 10) constructed from the
standard ribbon disk of the Stevedore knot (61) is obtained by cutting the chord α2.

Every virtual link diagram D (see [10]) is transformed into a chord diagram CD

by replacing a neighborhood of every real crossing with any one of the two diagrams
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Figure 10: Yajima’s ribbon torus-knot

in the right hand of Fig. 8 and then by replacing a neighborhood of every virtual
crossing by any one of the two diagrams in the right hand of Fig. 11.

Figure 11: Transforming a neighborhood of a virtual crossing point into a part of a
chord diagram

The based loops of the chord diagram CD bound mutually disjoint disks in the
plane and every based loop of CD is passed through by a chord. In general, such
a chord diagram is called a regular chord diagram. Further, if every chord of CD is
oriented as it is illustrated in Fig. 12, then every chord of CD is compatibly oriented.
In general, such a regular chord diagram is called an oriented regular chord diagram.
For an oriented regular chord diagram, an orientation to one chord is sufficient to
specify the orientations on all the chords. The chord system of a chord diagram is
simple if there is no crossing among the chords. If D is a link diagram, then the chord
diagram CD is an oriented regular chord diagram with simple chord system, and if
D is a virtual link diagram, then the chord diagram CD is an oriented regular chord
diagram.

To avoid ambiguities on an oriented regular chord diagram CD constructed from
a virtual link diagram D, we also use the replacements given in Fig. 13. Then the
diagram resulting from CD is called the flat chord diagram of CD and denoted by
C̄D. It is noted that the flat chord diagram C̄D recovers the virtual link diagram
D uniquely by taking the upper arcs on the based loops of any chord diagram CD

inducing C̄D and then by replacing the crossing points on the chords of C̄D with the
virtual crossing points.

Let D be the set of link diagrams, and DV be the set of virtual link diagrams.
Then we have D ⊂ DV . Let C̄D be the set of flat chord diagrams obtained from the
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Figure 12: An oriented chord diagram

Figure 13: Transforming a neighborhood of a crossing point and a virtual crossing
point into a flat chord diagram

set D of link diagrams, and C̄V the set of flat chord diagrams obtained from the set
DV of virtual link diagrams. We also have C̄D ⊂ C̄V . Let

ι : (DV ,D) −→ (C̄V , C̄D)

be the bijection defined by sending every D to C̄D. The Reidemeister moves of
classical, virtual and welded virtual link diagrams are transformed into moves on the
flat chord diagrams as they are given in Fig. 14, where the Reidemeister moves R1−R8

change into the moves cR1 − cR8 on the flat chord diagrams, where orientations of
the chords, naturally preserved are omitted.

Note that the sets of links, virtual links and welded virtual links are given by
the quotient sets D/(R1 − R3), DV/(R1 − R7) and DV/(R1 − R8), respectively. The
following proposition is direct.

Proposition 2.6. The bijection ι induces bijections:

ι∗ : D/(R1 −R3) −→ C̄D/(cR1 − cR3),

ι∗ : DV/(R1 −R7) −→ C̄V/(cR1 − cR7),

ι∗ : DV/(R1 −R8) −→ C̄V/(cR1 − cR8).
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Figure 14: Replacements of the Reidemeister moves

The following proposition is known by [3] for (1) and [20] for (2).

Proposition 2.7. (1) The quotient map

D/(R1 −R3) → DV/(R1 −R7)

is injective.
(2) The composite quotient map

D/(R1 −R3) → DV/(R1 −R7) → DV/(R1 −R8)

is injective, whereas the quotient map

DV/(R1 −R7) → DV/(R1 −R8)

is not injective.

Non-injectivity of the quotient map

DV/(R1 −R7) → DV/(R1 −R8)

using flat chord diagrams is shown by Fig. 15.

The following corollary is direct from Proposition 2.7.
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Figure 15: Non-injectivity of the map DV/(R1 −R7) → DV/(R1 −R8)

Corollary 2.8. The composite map

C̄D/(cR1 − cR3) → C̄V/(cR1 − cR7)
non−injective→ C̄V/(cR1 − cR8)

is injective.

3. Moves on chord diagrams

In this section, three kinds of movesM0,M1 andM2 on the set C of chord diagrams
are introduced such that the moves cR1− cR8 are consequences of the moves M0, M1

and M2.

Move M0. This move consists of the Reidemeister moves R1, R2, R3, gR4, gR5 as
spatial trivalent graphs, illustrated in Fig. 16.

We note that any two arcs in the three arcs together with a vertex or any arc
in Fig. 16 can be taken to belong to a based loop although the orientation and the
shadow of the based loop are omitted there.

Move M1. This move is the fusion-fission move, illustrated in Fig. 17, where the
fusion operation is done only for a chord between different based loops.

The following lemma is obtained.

Lemma 3.1. Under the use of the move M0, the move M1 is equivalent to the
combination move of the elementary fusion-fission move M1.0, the chord slide move
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Figure 16: Move M0: Reidemeister moves R1, R2, R3, gR4, gR5 for trivalent graph
diagrams

Figure 17: Fusion-fission M1
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M1.1 and the chord pass move M1.2 illustrated in Fig. 18. The birth-death move
illustrated in Fig. 19 is obtained from these moves, unless a closed chord is involved.

As a convention, a closed chord is regarded as a chord with a based loop constructed
from the birth-death move.

Figure 18: Elementary fusion-fission M1.0, Chord slide M1.1 and Chord pass M1.2

Proof of Lemma 3.1. The move M1 implies the moves M1.0, M1.1 and M1.2. To
obtain the converse, we assume by using M0 that the disks bounded by the based
loops in the left figure of Fig. 17 are embedded in the plane and disjoint from the
other based loops. By using M1.1 and M1.2, a situation to apply M1.0 is created, so
that the right figure of Fig. 17 is obtained. Next, we assume by using M0 that the
disk bounded by the based loop in the right figure of Fig. 17 is embedded in the plane
and disjoint from the other based loops. By M1.0, a situation to apply M1.1 and M1.2

is created, so that the left figure of Fig. 17 is obtained. Thus, the desired equivalence
is shown. Next, to obtain the birth-death move from M1, we take the chord of the
left figure of Fig. 19 near the attaching point of the chord to a based loop to obtain
the right figure of Fig. 19 by using M1. The resulting based loop can slide along the
chord by using M0. Thus, we obtain the birth-death move. □

Move M2. This move consists of moves on chords, illustrated in Fig. 20.

The following observation is easily obtained.

Observation 3.2. The moves cR1 − cR8 on the set CV of oriented chord diagrams
are the consequences of the moves M0,M1,M2.
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Figure 19: The birth-death move

Figure 20: Chord moves M2
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The following proposition is given by S. Satoh [21].

Proposition 3.3. Let C1 be the subset of C represented by ribbon torus-links. Then
the operation recovering any chord diagram CD from the flat chord diagram C̄D for
every virtual link diagram D induces a surjection

τ : C̄V/(cR1 − cR8) → C1/(M0,M1,M2).

Thus, there is a surjection from the set of welded virtual links onto the set of ribbon
torus-links. Further, every arrow of the following sequence

D/(R1−R3) → DV/(R1−R7) → DV/(R1−R8)
ι∗∼= C̄V/(cR1−cR8)

τ→ C1/(M0,M1,M2)

preserves the fundamental group presentations.

Proof of Proposition 3.3 from our viewpoint. Observation 3.2, it suffices to
show that τ is a surjection. By the move M0, a chord diagram C ∈ C1 is deformed
into a chord diagram C ′ so that the based loops bound mutually disjoint disks in the
plane and the crossings among the chords arise outside the disks. Since C ′ represents
a ribbon torus-link, by the chord slide M1.1, the chord diagram C ′ is deformed into a
chord diagram C ′′ so that every based loop of C ′′ has just two end points. A based
loop where no chord passes through can be removed by the birth-death move. Thus,
by the fusion-fission move M1, C

′′ is deformed into a regular chord diagram. If the
regular chord diagram C ′′ is oriented, then we have C ′′ = CD for a virtual link diagram
D. The flat chord diagram C̄D is sent to C in C1/(M0,M1,M2). If the chord diagram
C ′′ is non-orientable, then C ′′ can be changed into an oriented regular chord diagram
by the move M0 as it is shown in Fig. 21. The reason why the fundamental group
presentations are preserved comes from the fact that the group relations of a virtual
link diagram are exactly equal to the group relations of a ribbon torus-link diagram
(cf. [23]), as they are shown in Fig. 22. This completes the proof of Proposition 3.3.
□

The following observation is more or less known.

Observation 3.4. The map τ : C̄V/(cR1 − cR8) → C1/(M0,M1,M2) is not injective.

Proof of Observation 3.4. By construction of a ribbon surface-link, every chord
diagram C(o;α) and the inversed mirror image C(−o;α)∗ represent the equivalent
ribbon surface-links. On the other hand, there are many links L in R3, which is not
equivalent to the inversed mirror image (=the negative amphicheiral link) −L∗ of L
(for example, take the trefoil knot as L) which are still distinct as welded virtual links
by [20], completing the proof of Observation 3.4. □

16



Figure 21: Changing a non-orientable chord into an oriented chord

Figure 22: Group relations
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4. Faithful equivalence on ribbon surface-link and the main result

To state the definition of a faithful equivalence, let h(α) be the 1-handles along the
chords α, used for the construction of a ribbon surface-link F (o;α). Let F (o;h(α)) =
F (o;α) ∪ h(α). A ribbon surface-link F (o;α) is faithfully equivalent to a ribbon
surface-link F (o′;α′) if there is an equivalence f : R4 → R4 sending F (o;α) to
F (o′;α′) and every meridian (i.e., belt 1-sphere) of the 1-handles h(α) to a null-
homotopic curve in F (o′;h(α′)).

To see that the faithful equivalence is an equivalence relation, first assume that
F (o;α) be a ribbon surface-knot. Let π1(F (o;α))∧ be the quotient of the fundamental
group π1(F (o;α)) by the normal subgroup generated normally by meridians of the
1-handles h(α). The group π1(F (o;α))∧ is isomorphic to the group π1(F (o;h(α)))
which is a free group of rank equal to the genus of the surface F (o;α). By definition,
the faithful equivalence f : R4 → R4 induces an epimorphism f# : π1(F (o;α))∧ →
π1(F (o

′;α′))∧, which is an isomorphism since they are free groups of the same rank.
Thus, the inverse equivalence f−1 gives a faithful equivalence from F (o′;α′) to F (o;α)
and hence the faithful equivalence on ribbon surface-knots is an equivalence relation.
Considering this argument componentwise, we see that the faithful equivalence on rib-
bon surface-links is an equivalence relation. We also note that the ribbon surface-link
F (o;α) is uniquely constructed from a chord graph (o;α) up to faithful equivalences.

The main theorem of this paper is stated as follows:

Theorem 4.1. Two ribbon surface-links F (o;α) and F (o′;α′) are faithfully equiv-
alent if and only if the chord diagram C(o′;α′) is obtained from the chord diagram
C(o;α) by a finite number of the moves M0, M1, M2.

Since any faithful equivalence on ribbon S2-links is equivalent to an equivalence,
this result answers a question of Y. Nakanishi’s paper [19] and Y. Marumoto’s paper
[17] (cf. [11, p.186]) asking on ribbon S2-knots affirmatively. We also mention that a
similar result is claimed by B. Winter [22] in a different way (unpublished).

The moves M0,M1,M2 do not alter the faithful equivalence class of a ribbon
surface-link. Thus, the if part is trivial. Throughout the remainder of this section,
the proof of the only if part of Theorem 4.1 will be done. First, assume that the ribbon
surface-links F (o;α) = F̂ 2

−2(o;α) and F (o
′;α′) = F̂ 2

−2(o
′;α′) are ribbon surface-knots.

Let F 2
−2(o;α) and F

2
−2(o

′;α′) be the surfaces obtained from F̂ 2
−2(o;α) and F̂

2
−2(o

′;α′)
by removing the upper and lower disk systems, respectively. By the moves M1 and
M2, we can assume the following (1)-(3).

(1) The based loops o and o′ are identical: o = o′ and have the n+ 1 components oi
(i = 0, 1, 2, . . . , n).
(2) The chords α and α′ have the same number of chords αj and α′

j with identical
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boundaries ∂αj = ∂α′
j for all j (j = 1, 2, . . . , s),

(3) The chords α connect the based loops o as in Fig. 23. Namely, for every j with
1 ≦ j ≦ n the chord αj joins the based loop oj to the based loop o0, referred to as a
non-self-connecting chord, and for every j with n+ 1 ≦ j ≦ s the chord αj joins the
based loop o0 itself, referred to as a self-connecting chord.

Figure 23: A specification of the chords α joining the based loops o

We use the following lemma, well-known by the uniqueness of regular neighbor-
hoods and the isotopy extention theorem in the piecewise-linear topology (cf. Hudson
[7]).

Lemma 4.2. Let (D4, D2) be the standard (4,2)-disk pair. For any two disjoint
disks di (i = 0, 1, . . . , n) and d′i (i = 0, 1, . . . , n) in the disk interior int(D2) whose
complement cl(D2 \ (∪n

i=1di ∪ d′i)) is a 2-manifold, there is a self-homeomorphism g :
(D4, D2) → (D4, D2) such that g| ∂D4 = 1 and g(di) = d′i for every i (i = 0, 1, . . . , n).
Further, if there is an identification of the disks di and d

′
i with the orientations induced

from an orientation of D2, then we can take g| di = 1.

In fact, by the assumption of Lemma 4.2, the disks di (i = 0, 1, . . . , n) and d′i (i =
0, 1, . . . , n) are considered as piecewise-linearly embedded disks in D2 where we can
apply the uniqueness of regular neighborhoods and the isotopy extention theorem.
By Lemma 4.2, we have the following lemma.

Lemma 4.3. There is a faithful equivalence

f : R4 → R4

from F̂ 2
−2(o;α)) to F̂

2
−2(o;α

′) with f |R3(−∞,−3] ∪R3[3,+∞) = 1 such that

f | d[−2] ∪ u[−2, 1] ∪ o[1, 2] ∪ d[2] = 1

for the union u of an arc ui ⊂ oi \ oi ∩ α for every i.
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Proof of Lemma 4.3. Since a surface-link is compact, the faithful equivalence
is given by an orientation-preserving homeomorphism h : R4 → R4 with compact
support. Thus, we can assume that h|R3(−∞,−3] ∪ R3[3,+∞) = 1. Choose a 2-

disk D2
1 in F̂

2
−2(o;α

′) containing the disk system f(d[−2]∪u[−2, 1]∪o[1, 2]∪d[2]) and a

disjoint small 2-disk ∆1. Since F̂
2
−2(o;α

′) is smoothly embedded in R3[−3, 3], the disk

D2
1 is regarded as a standard 2-disk in a 4-disk D4

1 in R3[−3, 3] with D4
1∩ F̂ 2

−2(o;α
′) =

D2
1. By Lemma 4.2, the disk system f(d[−2]∪u[−2, 1]∪o[1, 2]∪d[2]) is deformed into

a previously specified disk system in ∆1 by a homeomorphism g1 : D4
1 → D4

1 with

g1(D
2
1) = D2

1 and g1| ∂D4
1 = 1. Let D2

2 be a 2-disk in F̂ 2
−2(o;α

′) containing the disk
system d[−2] ∪ u[−2, 1] ∪ o[1, 2] ∪ d[2] and a disjoint 2-disk ∆2, and D4

2 a 4-disk in

R3[−3, 3] with D2
2 a standard 2-disk and D4

2 ∩ F̂ 2
−2(o;α

′) = D2
2. By Lemma 4.2, the

disk system d[−2]∪u[−2, 1]∪ o[1, 2]∪d[2] is deformed into a previously specified disk
system in ∆2 by a homeomorphism g2 : D

4
2 → D4

2 with g2(D
2
2) = D2

2 and g2| ∂D4
2 = 1.

Let ∆1 ∩ ∆2 = ∅. Choose a 2-disk D2
3 in F̂ 2

−2(o;α
′) containing ∆1 ∪ ∆2. Let D4

3 be

a 4-disk in R3[−3, 3] with D2
3 as a standard 2-disk and D4

3 ∩ F̂ 2
−2(o;α

′) = D2
3. By

Lemma 4.2, a previously specified disk system in ∆1 is also deformed into a previously
specified disk system in ∆2 by a homeomorphism g3 : D4

3 → D4
3 with g3(D

2
3) = D2

3

and g3| ∂D4
3 = 1. Let g+i : R4 → R4 be the homeomorphism obtained from gi by

the identity extension for i = 1, 2, 3. Then the composition f = (g+2 )
−1g+3 g

+
1 h is a

desired faithful homeomorphism because gi (i = 1, 2, 3) give isotopic deformations on

F̂ 2
−2(o;α

′). □

We put copies of the chords α and α′ in the upper bands of F̂ 2
−2(o;α) and F̂

2
−2(o;α

′)
in R3[1] which are denoted by ᾱ and ᾱ′, respectively. Let Γ(α) be the graph obtained
from the chord graph (o;α) in R3 by deleting the interior of u, and Γ(α′) the graph
obtained similarly from the chord graph (o;α′) in R3 (see Fig. 24). Let Γ̄(α) and
Γ̄(α′) be the graphs obtained by putting Γ(α) and Γ(α′) in F 2

−2(o;α) ∩ R3[1] and
F 2
−2(o;α

′) ∩R3[1], respectively. Then we have the following lemma:

Lemma 4.4. The faithful equivalence f : R4 → R4 in Lemma 4.3 induces a map

f∗ : Γ̄(α) → Γ̄(α′)

preserving the degree one vertices graph-componentwise and inducing an isomorphism
on the fundamental groups of the corresponding components.

Proof of Lemma 4.4. First, assume that G and G′ are ribbon surface-knots. Let
G = F̂ 2

−2(o;α) and G′ = F̂ 2
−2(o;α

′). Also, let Gh = G ∪ h(α) and G′
h = G′ ∪ h(α′).

Let

∆ = d[−2] ∪ u[−2, 2] ∪ d[2], E = cl(G \∆) and E ′ = cl(G′ \∆).
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Figure 24: The graph Γ

Also, let
Eh = E ∪ h(α) and E ′

h = E ′ ∪ h(α′).

We note that
Γ̄(α) ⊂ E ⊂ Eh, Γ̄(α′) ⊂ E ′ ⊂ E ′

h

and there are strong deformation retractions Eh → Γ̄(α) and E ′
h → Γ̄(α′). Since f

defines a homeomorphism E → E ′, we see from the inclusion map Γ̄(α) ⊂ E and
the retraction E ′

h → Γ̄(α′) that f defines a map f∗ : Γ̄(α) → Γ̄(α′) uniquely up
to homotopy which keeps the degree one vertices. Also, note that the fundamental
groups π1(Γ̄(α)) and π1(Γ̄(α

′)) are free groups of rank s−n with bases represented by
the self-connecting chords ᾱj and ᾱ

′
j (j = n+1, n+2, . . . , s), respectively. To see that

f∗ induces an isomorphism on the fundamental groups, let m ⊂ E be a meridian of
the 1-handles h(α). By the faithfulness of f , the image f(m) ⊂ E ′ is null-homotopic
in G′

h. For the disk system d bounded by o in R3 which is used for the construction
of G′, let c : o× [0, ε] → d be a boundary collar of o in d with c(x, 0) = x (∀x ∈ o) for
a sufficiently small positive number ε. For the 2-sphere S2 = d[−2] ∪ o[−2, 2] ∪ d[2],
let

S2
c = d[−2,−2 + ε] ∪ c(o× [0, ε])[−2, 2] ∪ d[2, 2− ε]

be a 3-manifold naturally homeomorphic to S2× [0, ε]. We assume that the 1-handles
h(α′) meet the compact 3-manifold S2

c only in the attaching disks to o[−2, 2].
The loop f(m) bounds a generic piecewise-linear singular disk D∗ in the compact

3-manifold G′
h,c = G′

h ∪ S2
c . Let

∆c = d[−2,−2 + ε] ∪ c(u× [0, ε])[−2, 2] ∪ d[2, 2− ε]

be a 3-manifold naturally homeomorphic to ∆× [0, ε]. Let J = c(p× [0, ε]) be the arc
for an interior point p of u which is proper in S2

c . Since ∆c is a regular neighborhood
of J in S2

c and J can be assumed to meet the singular disk D∗ in a part apart from the
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singularity transversely, we can assume from the uniqueness of regular neighborhoods
that the disk D∗ meets ∆c in disks P (∆) parallel to the disk ∆ in ∆c. Note that
the disks P (∆) are contained in 2-spheres P (S2) parallel to the 2-sphere S2 in S2

c .
Replacing the disks P (∆) with the complementary disks cl(P (S2) \ P (∆)), we see
that the loop f(m) bounds a singular disk D′

∗ in the 3-manifold cl(G′
c,h \∆c) of which

E ′
h is a strong deformation retract. Thus, the loop f(m) is null-homotopic in E ′

h.
This implies that the map f∗ : Γ̄(α) → Γ̄(α′) induces an epimorphism on the free
fundamental groups of the same rank, meaning an isomorphism. When G and G′ are
ribbon surface-links, the same conclusion is obtained by considering the argument
above componentwise. □

On the non-self-connecting chords, it is seen from Lemma 4.4 that after the end-
points of every non-self-connecting chord α′

j are moved along the arcs cl(o \ u) and
the other chords α′

j′ (j
′ ̸= j), the image f(ᾱj) of every non-self-connecting chord ᾱj

is homotopically deformed into the chord ᾱ′
j by a homotopy in Γ̄(α′) relative to the

endpoints of ᾱ′
j.

On the self-connecting chords, we use the fact in [18] that every automorphism of
a free group of a finite rank is generated by the elementary Nielsen transformations,
meaning

(1) Exchange of two basis elements,
(2) Replacement of a basis element by its inverse, and
(3) Replacement of a basis element by the product of it and another basis element.

By this fact and Lemma 4.4, after finitely many processes of sliding the endpoints
of every self-connecting chord α′

j along the arcs cl(o \ u) and some of the other
chords α′

j′ (j
′ ̸= j), the image f(ᾱj) of every self-connecting chord ᾱj is homotopically

deformed into the chord ᾱ′
j by a homotopy in Γ̄(α′) relative to the endpoints of ᾱ′

j.
Thus, we have the following lemma.

Lemma 4.5. After a finite number of the moves M0, M1, M2 on the chord diagrams
C(o;α) and C(o;α′), the image f(ᾱ) is homotopic to ᾱ′ in R3[−3, 3] by a homotopy
relative to the cylinders o[−3, 3].

The following lemma is needed to compare the chords α with the chords α′.

Lemma 4.6. The homeomorphism f : R3[−3, 3] → R3[−3, 3] is isotopic to a home-
omorphism f ′ : R3[−3, 3] → R3[−3, 3] extending the homeomorphism

f |F 2
−2(o;α) : F

2
−2(o;α) → F 2

−2(o;α
′)

such that
f ′| o[−3] ∪ u[−3, 3] ∪ o[3] = 1.
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Proof of Lemma 4.6. Let p be the set of an interior point of the arc ui for every i.
By the result of Freedman-Quinn [2, 8.1A], we may consider that the arcs f(p[2, 3]) are
smooth arcs although the homeomorphism f is not a diffeomorphism or a piecewise-
linear homeomorphism. The intersection f(p[2, 3]) ∩R3[−3, 2] is a disjoint union of
the points f(p[2]) = p[2] and compact arcs I with the boundaries ∂I in R3[2]. Since
the natural homomorphism

π1(R
3[2] \ o[2]) → π1(R

3[−3, 2] \ (F 2
−2(o;α

′) ∪ d[−2]))

is onto, it can be seen that the arcs I are homotopically deformed into R3[2] \ o[2]
by a homotopy relative to ∂I in R3[−3, 2] \ (F 2

−2(o;α
′) ∪ d[−2]). By applying the

same argument to f(p[−3,−2]), we may consider that there is a homeomorphism
f ′ : R3[−3, 3] → R3[−3, 3] which is isotopic to f and extends the homeomorphism
f |F 2

−2(o;α) : F
2
−2(o;α) → F 2

−2(o;α
′) such that

f ′(p[2, 3]) = p[2, 3] and f ′(p[−3,−2]) = p[−3,−2].

By the uniqueness of regular neighborhoods and an argument of [6, Lemma 1.4], we
may have

f ′(N(p[2, 3])) = N(p[2, 3]) and f ′(N(p[−3;−2])) = N(p[−3,−2])

for normal disk-bundles N(p[2, 3]) and N(p[−3,−2]) of the arcs p[2, 3] and p[−3,−2]
in R3[2, 3] and R3[−3,−2], respectively. Further, by the uniqueness of regular neigh-
borhoods, the bands f ′(u[−3,−2]) and f ′(u[2, 3]) are respectively considered to be
obtained from the bands u[−3,−2] and u[2, 3] by twisting along the arcs p[−3,−2] and
p[2, 3] in the normal disk-bundles N(p[−3,−2]) and N(p[2, 3]). By a further isotopic
deformation of f ′ keeping f |F 2

−2(o;α) fixed but granting an isotopic deformation of
f ′|R3[−3] ∪R3[3], we may have

f ′| o[−3] ∪ u[−3, 3] ∪ o[3] = 1. □

The following corollary is obtained from Lemma 4.6.

Corollary 4.7. After a finite number of the movesM0,M1,M2 on the chord diagrams
C(o;α) and C(o;α′), the chords α are homotopic to the chords α′ inR3 by a homotopy
relative to the based loops o.

Proof of Corollary 4.7. Move the endpoints ∂α = ∂α′ of the chords α and α′

into the arcs u. For the homeomorphism f ′ in Lemma 4.6, let D′ ⊂ R3[−3, 3] be
smoothly immersed disks which are homotopic to the disks f ′(α[1, 3]) ⊂ R3[−3, 3] by
a homotopy in R3[−3, 3] relative to the boundaries ∂D′ = ∂f ′(α[1, 3]). Apart from
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the arcs (∂α)[1, 3], the disks D′ meet the 3-disks d[−3, 3] transversely as a compact
1-manifold (avoiding the double points of D′) and the disks cl(o \u)[−3, 3] ⊂ o[−3, 3]
transversely as the boundaries of proper arcs in the 1-manifold of D′ ∩ d[−3, 3]. By
using a bi-collar of d[−3, 3] in R3[−3, 3], these proper arcs can be moved out of
the 3-disks d[−3, 3] outside homotopically to obtain from D′ singular disks D′′ with
∂D′′ = ∂D′ and D′′ ∩ o[−3, 3] = (∂α)[1, 3]. Let (o;αf ′

) be the chord graph in R3

given by f ′((o;α)[3]) = (o;αf ′
)[3] in R3[3]. Since (o;αf ′

) is equivalent to the chord
graph (o;α) as trivalent spatial graphs, the chord diagram C(o;α) is transformed
into any chord diagram C(o;αf ′

) by the move M0 (see [8, 9, 14] for this proof). By
a homotopy from f ′(ᾱ) = f(ᾱ) to ᾱ′ in R3[−3, 3] relative to the cylinders o[−3, 3]
given by Lemma 4.5, we have singular disks D′′′ in R3[−3, 3] bounded by f(ᾱ) ∪ ᾱ′.
The union D̃ = D′′ ∪ D′′′ ∪ α′[−3, 1] is singular disks in R3[−3, 3] meeting o[−3, 3]
only in the arcs (∂α)[−3, 3]. The projection of the union o[−3, 3]∪ D̃ into R3 gives a
homotopy from the chords αf ′

to the chords α′ in R3 relative to the based loops o. □

Figure 25: How to eliminate a simple branch type singularity

This corollary and the following lemma complete the proof of Theorem 4.1.

Lemma 4.8. If the chords α are homotopic to the chords α′ in R3 by a homotopy
relative to the based loops o, then the chord diagram C(o;α′) is obtained from the
chord diagram C(o;α) by a finite number of the moves M0, M1 and M2.

Proof of Lemma 4.8. By the move M0, the loops α′ ∪ −α bound piecewise-linear
immersed disks D∗ whose singularities consist of simple clasp type singularities with
end points in the interiors of the chords α and α′ and of simple branch type singular-
ities with branch points on the based loops o. The simple clasp type singularities are
eliminated by M0 and M2. To eliminate the simple branch type singularities, split off
the endpoints ∂α of the chords α from the endpoints ∂α′ of the chords α′ by sliding
slightly the endpoints ∂α of the chords α along o to obtain piecewise-linear immersed
disks D∗∗ avoiding the overlaps of the branch points in D∗. Then every simple branch
type singularity is eliminated as it is shown in Fig. 25. In fact, the dotted loop in
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the left figure of Fig. 25 is a loop surrounding a chord in α or α′. Since the dotted
chord in the left figure of Fig. 25 with this loop as a based loop is created by using
the chord slide move M1.1, the birth-death move (in M1) and the chord move M2, the
right figure of Fig. 25 is obtained by the fusion-fission move (in M1). By continuing
this process, every simple branch type singularity is eliminated. This completes the
proof of Theorem 4.1. □

5. Smooth unknotting of a ribbon surface-knot

Two surface-links F and F ′ in R4 are TOP-equivalent if there is an orientation-
preserving homeomorphism f : R4 → R4 sending F to F ′ orientation-preservingly.
Two ribbon surface-links F (o;α) and F (o′;α′) are faithfully TOP-equivalent if there is
an TOP-equivalence f : R4 → R4 sending F 2

−2(o;α) to F
2
−2(o

′;α′) and every meridian
of the 1-handles h(α) to a null-homotopic curve in F 2

−2(o
′;h(α′)). The faithful TOP-

equivalence is also an equivalence relation.
By examining our argument of Section 4, the following theorem can be seen.

Corollary 5.1. If two ribbon surface-links F (o;α) and F (o′;α′) are faithfully TOP-
equivalent, then the chord diagram C(o′;α′) is obtained from the chord diagram
C(o;α) by a finite number of the moves M0, M1, M2.

The following corollary is direct from Corollary 5.1.

Corollary 5.2. Two ribbon surface-links are faithfully TOP-equivalent if and only
if they are faithfully equivalent.

A surface-knot F in R4 is DIFF-trivial or TOP-trivial respectively, if F bounds
a handlebody embedded in R4 by a smooth embedding or a locally-flat topological
embedding. It is proved in [4] and [13] that a surface-knot F in R4 is TOP-trivial
if the fundamental group π1(R

4 \ F ) is an infinite cyclic group. By an argument of
[4], a TOP-trivial ribbon surface-knot is faithfully TOP-equivalent to a trivial ribbon
surface-knot F (o, α) with a chord diagram C(o, α) without crossings. More generally,
every TOP-equivalence from a ribbon surface-knot to a trivial ribbon surface-knot is
made a faithful TOP-equivalence by composing a self-equivalence R4 → R4 of the
trivial ribbon surface-knot preserving the spin structure of the surface-knot (see S.
Hirose [5]). Then, we have the following corollary.

Corollary 5.3. A ribbon surface-knot F is DIFF-trivial if the fundamental group
π1(R

4 \ F ) is an infinite cyclic group.

This proof corrects an erroneous proof of T. Yanagawa’s paper [27] (cf. T. Ya-
jima [25]).
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