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Abstract. A chord graph in 3-space is constructed from a ribbon surface-
link in 4-space. In an earlier paper, the three moves on the diagrams of chord

graphs (namely, the chord diagrams) are introduced to correspond them to the
faithful equivalences of ribbon surface-links by a canonical bijection, suggesting

a relaxed spatial graph theory in 3-space. Links, virtual links and welded

virtual links are also considered as chord graphs of ribbon torus-links in 4-
space by Satoh’s correspondence. At the level of diagrams, the image of this

transformation of every (virtual) link diagram is a chord diagram without base

crossing. In this paper, the three moves on the chord diagrams are modified
into the 16 moves on the chord diagrams without base crossing to relate welded

virtual links to the faithful equivalences of ribbon surface-links more efficiently.

1. Introduction

A chord graph is a trivalent graph (o;α) in R3 consisting of a trivial link o,
called the based loops, and finitely many, mutually disjoint arcs α spanning o, called
the chords. A chord diagram is a spatial graph diagram D = D(o;α) of a chord
graph (o;α) in R2. Two chord diagrams D and D′ are equivalent if D is deformed
into D′ by a finite sequence of moves in the set of fundamental moves defined by
the following three moves M0, M1 and M2.

Move M0. This move is called the Reidemeister move which consists of the Rei-
demeister moves R1, R2, R3, gR4, gR5 by regarding a chord graph as a spatial
trivalent graph diagram, illustrated in Fig. 1 where the roles of the based loops and
the chords are not changed although a distinction of a based loop and a chord is
omitted.

Move M1. This move is called the fusion-fission move, illustrated in Fig. 2, where
the fusion operation is done only for a chord between different based loops.
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Figure 1. Move M0: Reidemeister moves R1, R2, R3, gR4, gR5

for trivalent graph diagrams

Figure 2. Fusion-fission M1

Move M2. This move is called the chord move which consists of moves on chords,
illustrated in Fig. 3.

Figure 3. Chord moves M2

It is proved in [Kaw]1 that the equivalence class of a chord diagram corresponds
to the faithful equivalence of a ribbon surface-link in 4-space R4 by a canonical
correspondence, which is explained in § 2. This suggests a relaxed spatial graph
theory in 3-space. It is also observed in [Kaw] that under the use of the move M0,
the moveM1 is equivalent to the combination move of the elementary fusion-fission

1A full proof of Corollary 4.7 of [Kaw] is given in [Kaw’].
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move M1.0, the chord slide move M1.1 and the chord pass move M1.2 illustrated
in Fig. 5. The birth-death move illustrated in Fig. 4 is obtained from these moves,
unless a closed chord is involved.

Figure 4. The birth-death move

By convention, a closed chord is regarded as a chord with a based loop con-
structed from the birth-death move.

Figure 5. Elementary fusion-fission M1.0, Chord slide M1.1 and
Chord pass M1.2

A chord diagram without base crossing is a chord diagram such that the disks
bounded by the based loop system in R2 do not overlap and meet the chords with
mutually disjoint proper simple arcs. Every chord diagram is deformed into a chord
diagram without based loop crossing by the Reidemeister move M0, because the
based loop diagram is a diagram of a trivial link.

By an argument in [Kaw] using the result of Satoh [S], every (virtual) link
diagram is canonically transformed into a chord diagram without base crossing of
a ribbon torus-link which induces a mapping from the set of (virtual) link onto the
set of faithful equivalence classes of ribbon torus-links.

The purpose of this paper is to relpace the moves M0,M1,M2 on the chord
diagrams the 16 moves mi (i = 0, 1, 2, . . . , 15) on the chord diagrams without base
crossing, which serves to relate welded virtual links to the faithful equivalences of
ribbon torus-links more efficiently.
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In § 2, it is explained how to transform a (welded virtual) link diagram into
a chord diagram without base crossing. In § 3, it is explained how to transform
a chord diagram into a ribbon surface-link in 4-space. In § 4, it is explained how
to modify the moves M0,M1,M2 into the 16 moves mi (i = 0, 1, 2, . . . , 15) on the
chord diagrams without base crossing.

2. 2. How to transform a (welded virtual) link diagram into a chord
diagram without base crossing

Figure 6. Transforming a neighborhood of a real crossing point
into a part of a chord diagram

A transformation τ from a virtual link diagram D (see [Kau]) into a chord
diagram CD without base crossing is defined by replacing a neighborhood of every
real crossing with either one of the two diagrams in the right hand of Fig. 6 and
then by replacing a neighborhood of every virtual crossing by either one of the two
diagrams in the right hand of Fig. 7.

Figure 7. Transforming a neighborhood of a virtual crossing
point into a part of a chord diagram

It is noted that every based loop of CD is passed through by one chord. In
general, such a chord diagram is called a regular chord diagram. Further, if every
chord of CD is oriented as it is given in Fig. 8, then every chord of CD is compatibly
oriented. In general, such a regular chord diagram is called an oriented regular
chord diagram. For an oriented regular chord diagram, an orientation to one chord
is sufficient to specify the orientations on all the chords. The chord system of a
chord diagram is simple if there is no crossings between the chords 2. If D is a link
diagram, then the chord diagram CD is an oriented regular chord diagram with
simple chord system, and if D is a virtual link diagram, then the chord diagram
CD is an oriented regular chord diagram.

To avoid ambiguities on an oriented regular chord diagram CD constructed
from a virtual link diagram D, we also use the replacements given in Fig. 9. Then
the diagram resulting from CD is called the flat chord diagram of CD and denoted

2By general position any crossings among three or more chords can be resolved into double

crossings
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Figure 8. An oriented chord diagram

by C̄D. It is noted that the flat chord diagram C̄D recovers the virtual link diagram
D uniquely by taking the upper arcs on the based loops of any chord diagram CD

inducing C̄D and then by replacing the crossing points on the chords of C̄D with
virtual crossing points.

Figure 9. Transforming a neighborhood of a crossing point and
a virtual crossing point into a flat chord diagram

Let D be the set of link diagrams, and DV the set of virtual link diagrams.
Then we have D ⊂ DV. Let C̄D be the set of flat chord diagrams obtained from the
set D of link diagrams, and C̄V the set of flat chord diagrams obtained from the set
DV of virtual link diagrams. Then we have C̄D ⊂ C̄V. Let

τ̄ : (DV,D) → (C̄V, C̄D)

be the bijection defined by sending every D to C̄D. The Reidemeister moves of
classical, virtual and welded virtual link diagrams are transformed into moves on
the flat chord diagrams as they are given in Fig. 10, where the Reidemeister moves
Ri (i = 1, 2, . . . , 8) change into the moves cRi (i = 1, 2, . . . , 8) on the flat chord
diagrams, where orientations of the chords, naturally preserved are omitted.

The sets of links, virtual links and welded virtual links are by definition given
by the quotient sets D/(R1, R2, R3), DV/(Ri (i = 1, 2, . . . , 7)) and DV/(Ri (i =
1, 2, . . . , 8)), respectively. The following lemma is direct from construction.

Lemma 2.1. The bijection τ̄ induces bijections:

τ̄∗ : D/(R1, R2, R3) → C̄D/(cR1, cR2, cR3),

τ̄∗ : DV/(Ri (i = 1, 2, . . . , 7)) → C̄V/(cRi (i = 1, 2, . . . , 7)),

τ̄∗ : DV/(Ri (i = 1, 2, . . . , 8)) → C̄V/(cRi (i = 1, 2, . . . , 8)).
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Figure 10. Replacements of the Reidemeister moves

The following lemma is known by [GPV] for (1) and [R] for (2).

Lemma 2.2. (1) The quotient map

D/(R1, R2, R3) → DV/(Ri (i = 1, 2, . . . , 7))

is injective.
(2) The composite quotient map

D/(R1, R2, R3) → DV/(Ri (i = 1, 2, . . . , 7)) → DV/(Ri (i = 1, 2, . . . , 8))

is injective.

It is known that the quotient map

DV/(Ri (i = 1, 2, . . . , 7)) → DV/(Ri (i = 1, 2, . . . , 8))

is not injective, so that the quotient map

C̄V/(cRi (i = 1, 2, . . . , 7)) → C̄V/(cRi (i = 1, 2, . . . , 8))

is not injective. For example, see [Kaw, Fig.15] for how a non-trivial virtual knot
diagram in DV/(Ri (i = 1, 2, . . . , 7)) is equivalent to a trivial knot in DV/(Ri (i =
1, 2, . . . , 8)) in the flat chord diagram level. On the other hand, it is noted by
Lemma 2.2 that the composite map

C̄D/(cR1−cR3) → C̄V/(cRi (i = 1, 2, . . . , 7))
non−injective→ C̄V/(cRi (i = 1, 2, . . . , 8))

is injective. Let CD be the set of chord diagrams obtained from the set D of link
diagrams, and CV the set of chord diagrams obtained from the set DV of virtual link
diagrams. Then we have CD ⊂ CV. The elementary move m0 in Fig. 11 identifying
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the two diagrams of the right hand sides in Fig. 6 and in Fig. 7 is introduced to
obtain the following natural bijective transformation

τ : (C̄V, C̄D) → (CV/(m
0),CD/(m

0))

defined by Fig. 6 and Fig. 7, by which the pair (C̄V, C̄D) is identified with the
quotient pair (CV/(m

0),CD/(m
0)). Let C be the set of full oriented chord diagrams,

and C[0] the set of full oriented chord diagrams without base crossing. Then we
have

CD ⊂ CV ⊂ C[0] ⊂ C.
Since the elementary move m0 is in the moves M0 and M2, the following lemma
is checked without difficulty by comparing the moves cRi (i = 1, 2, . . . , 8) with the
moves M0,M1,M2.

Figure 11. Move m0

Lemms 2.3. The moves cRi (i = 1, 2, . . . , 8) on the set CV of oriented chord
diagrams are the consequences of the moves M0,M1,M2 on C.

By Lemms 2.3, the induced map

τ∗ : CV/(cRi (i = 1, 2, . . . , 8)) → C/(M0,M1,M2)

is obtained. It is noted that this map τ∗ is not injective. For example, if a link ℓ is
not equivalent to the reflected inverse −ℓ∗ of ℓ, namely ℓ is a negative amphicheiral
link, then the links ℓ and −ℓ∗ are not equivalent in C̄V/(cRi (i = 1, 2, . . . , 8)), but
equivalent in C/(M0,M1,M2). See [Kaw, Proposition 3.4] for this fact.

Problem. Introduce new relations {cR∗} to the set C̄V/(cRi (i = 1, 2, . . . , 8)) so
that the map

τ∗ : C̄V/(cRi (i = 1, 2, . . . , 8)) → C/(M0,M1,M2)

induces an injection

τ∗∗ : C̄V/(cRi (i = 1, 2, . . . , 8), {cR∗}) → C/(M0,M1,M2).

As it will be noted in § 3, the induced map

τ∗ : C̄V/(cRi (i = 1, 2, . . . , 8)) → C/(M0,M1,M2)

is not surjective. On this problem, the main result (Theorem 4.1) of this paper will
show that the set C with the relations M0,M1,M2 can be replaced by the subset
C[0] with the relations mi (i = 0, 1, 2, . . . , 15).
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3. 3. How to transform a chord graph into a ribbon surface-link in
4-space

A surface-link in R4 is a closed oriented (possibly disconnected) surface F em-
bedded in R4 by a smooth embedding or a piecewise-linear locally flat embedding.
When F is connected, it is called a surface-knot in R4. Two surface-links F and
F ′ in R4 are equivalent if there is an orientation-preserving smooth or piecewise-
linear homeomorphism f : R4 → R4 sending F to F ′ orientation-preservingly. A
surface-link F in R4 is trivial If F is equivalent to a surface standard embedded in
the 3-subspace R3 ⊂ R4. Let F be the set of equivalence classes of surface-links.
An embedded 1-handle on a surface-link F in R4 is the image h = im(ψ) of an
embedding

ψ : D2 × I → R4

such that
F ∩ h = ψ(D2 × {0, 1}),

where D2 is the unit disk and I = [0, 1]. The surface-link obtained from F by
surgery along the embedded 1-handle h is the surface-link

F ′ = cl(F \ F ∩ h) ∪ cl(∂h \ F ∩ h)
in R4. A surface-link F in R4 is ribbon if F is obtained from a trivial S2-link

O = S2
0 ∪ S2

1 ∪ · · · ∪ S2
n

in R4 by surgery along embedded 1-handles hj (j = 1, 2, . . . , s) on O. Let Fr be
the set of equivalence classes of ribbon surface-links which is a subset of the set F
of all surface-links.

For the real line R, 4-space R4 is considered as

R4 = {(x, t)|x ∈ R3, t ∈ R}.
For a subset A ⊂ R3 and an interval J , we use the notation

AJ = {(x, t)|x ∈ A, t ∈ J}.
The transformation from a chord graph (o;α) in R3 to a ribbon surface-link

F (o;α) in R4 is constructed as follows: Let d be a disk system for the trivial link
o in R3. Let O = d[−2] ∪ o[−2, 2] ∪ d[2] be a trivial S2-link in R4. Let β(α) be
the disjoint union of bands in R3 spanning o and thickening the chords α, where
the bands β(α) should have their orientations coherent to the orientations of o, but
any full twisting ambiguities are granted. Let h(α) = β(α)[−1, 1] be the embedded
1-handles on O. Then the desired ribbon surface-link F (o;α) in R4 is obtained
from the trivial S2-link O by surgery along the embedded 1-handles h(α) on O. It
is noted that the ribbon surface-link F (o;α) is uniquely obtained from the chord
graph (o;α) in R3 up to equivalences. In fact, the independence on choices of a disk
system d is given by Horibe-Yanagawa’s lemma in [KSSI] and the independence
on choices of full twists of the bands β(α) is given [?, Theorem 1.2]. Thus, the map

κ : C → Fr

from a chord diagram C(o;α) to the equivalence class of the ribbon surface-link
F (o;α) is obtained. This map κ is surjective, since it is shown in [KSSII, Lemma 4.11]
that every ribbon surface link in R4 is equivalent to F (o;α) for a chord graph (o;α).
Let F (o;h(α)) = F (o;α) ∪ h(α). A ribbon surface-link F (o;α) is faithfully equiva-
lent to a ribbon surface-link F (o′;α′) if there is an equivalence f : R4 → R4 from
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F (o;α) to F (o′;α′) sending every meridian (i.e., belt 1-sphere) of the 1-handles h(α)
to a null-homotopic curve in F (o′;h(α′)). The faithful equivalence is an equivalence
relation on ribbon surface-links (see [Kaw]). Let Ffr be the set of faithful equiva-
lence classes of ribbon surface-links. There is a natural surjection

Ffr → Fr,

but it is unknown whether or not this map is a bijection for all ribbon surface-links.
The following lemma is the main theorem of [Kaw].

Lemma 3.1. The map κ : C → Fr defines a bijection

κ∗ : C/(M0,M1,M2) → Ffr.

The image of the composite map

κ∗τ∗ : CV/(cRi (i = 1, 2, . . . , 8)) → C/(M0,M1,M2) → Ffr

is directly seen to consist of the faithful equivalence classes of ribbon torus-links,
which is earlier given by Satoh [S] by a different method replacing the faithful
equivalence by the equivalence. This means that the map

τ∗ : CV/(cRi (i = 1, 2, . . . , 8)) → C/(M0,M1,M2)

is not surjective, as was announced in § 2. Let Ffr
1 be the subset of Ffr consisting

of the faithful equivalence classes of ribbon torus-links, and C1 the subset of C
such that κ(C1) consists of ribbon torus-links. Then the map τ∗ : CV/(cRi (i =
1, 2, . . . , 8)) → C/(M0,M1,M2) defines a surjection

τ1∗ : CV/(cRi (i = 1, 2, . . . , 8)) → C1/(M0,M1,M2)

and the map κ : C → Fr defines a bijection

κ1∗ : C1/(M0,M1,M2) → Ffr
1 .

4. 4. How to modify the moves on a chord diagram into the moves on
a chord diagram without base crossing

For the set C of chord diagrams, let C[0] be the subset of C consisting chord
diagrams without base crossing. Then the inclusion C[0] ⊂ C induces a surjection

ι : C[0] → C/(M0,M1,M2)

which is seen from the move M0. We provide the moves mi (i = 1, 2, . . . , 7) on
C[0] illustrated in Fig. 12 and the moves mi (i = 7, 8, . . . , 15) on C[0] illustrated
in Fig. 13. It is noted that in these figures, the based loop without indication of
an orientation can have any orientation which is preserved by the move. Then we
show the following theorem.

Theorem 4.1. For the 16 moves mi (i = 0, 1, 2, . . . , 15) on C[0] illustrated in
Fig. 11, Fig. 12 and Fig. 13, the surjection ι : C[0] → C/(M0,M1,M2) induces a
bijection

ι∗ : C[0]/(mi (i = 0, 1, 2, . . . , 15)) → C/(M0,M1,M2).

Proof of Theorem 4.1. Let C = C(o;α) and C ′ = C(o′;α′) be chord diagrams
without base crossing such that C ′ is obtained from C by a finite number of the
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Figure 12. The movesm1,m2, . . . ,m7 on chord diagrams without
base crossing

M0,M1,M2 moves. Assume that in every step of the moves, any self-attaching
chord (i.e., any chord attaching to only one based loop) is not contained if necessary,
by increasing a based loop and that the chord graph is non-splittable by using M2-
moves. Then, by using the moves on M0, it is assumed that every move on M1 or
M2 is performed on the set C[0] of chord diagrams without base crossing. Assume
that C and C ′ are chord diagrams without base crossing such that C ′ is obtained
from C by a finite number of theM0-moves. Then there is an orientation-preserving
piecewise-linear homeomorphism h : R3 → R3 sending the trivalent graph (o;α) to
the trivalent graph (o′;α′) preserving o to o′. Let d and d′ be disk systems bounded
by o and o′ in R3 and embedded in the plane R2. Assume that a neighborhood
annulus system A(o) of o in d is sent to a neighborhood annulus system A(o′) of
o′ in d′ by h. Further, assume that the chord systems α and α′ transversely meet
the disk systems d and d′ in A(o) and A(o′), respectively. Consider a transverse
intersection of h(d) and d′ consisting simple loops in h(d\A(o)) and d′\A(o′). Then
the disk system h(d) is deformed so that h(d) ∩ d′ = h(o) = o′ by a finite sequence
of a 3-cell collapsing not meeting h(α) = α′ in the 3-sphere compactification S3 =
R3 ∪ {∞}. This means that in a diagram level, only the chord move M2, a disk
system replacement not meeting h(α) = α′ and a move called the chord diagram
pass and illustrated in Fig. 14 where the box denotes a subdiagram including some
based loops are needed to make h(d) = d′.

Now, assume that h(d) = d′ and h(α) = α′. Let G(α) and G(α′) be the spatial
graphs inR3 obtained from the complexes α∪d and α′∪d′, respectively by shrinking
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Figure 13. The moves m8,m9, . . . ,m15 on chord diagrams with-
out base crossing

Figure 14. A chord diagram pass

every disk in d and d′ into a point. The homeomorphism h is modified to be
an orientation-preserving piecewise-linear homeomorphism h′ : R3 → R3 sending
G(α) to G(α′). Since h′ is ambient isotopic to the identity, it is seen from [Kauf]
and [KKM, Corollary 1.4] that any diagram of the spatial graph G(α) is deformed
into any diagram of the spatial graph G(α′) by the generalized Reidemeister moves
on spatial graphs. However, since every edge of G(α) and G(α′) comes from a chord
and hence homotopically changeable by the chord move M2, so that in a diagram
level only a move illustrated in Fig. 15 and called the base pass is needed up to the
chord move M2.

It is noted that the move mi (i = 0, 1, 2, . . . , 7) correspond to the M1 and M2

moves. Since the disk bounded by a based loop is splitted by disks by the moves
m4,m5,m6 such that every disk in the member meets the chords either in one point
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Figure 15. A base pass

in the interior and at most 2 points in the boundary or only in at most 3 points in
the boundary, we see that the chord diagram pass and the base pass are generated
by mi (i = 8, 9, . . . , 15). Thus, the conclusion is obtained. □
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