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0. Introduction

For an oriented link L, we denote by Pr(¢,m) the skein (= two variable
Jones, HOMFLY or FLYPMOTH) polynomial (cf. [5]) in the convention of Lick-
orish/Millett [14]. Let r denote the component number of L. We consider

Py(L; £, m) = (¢m) "1 PL(£, m).

Then Pg(L;£,m) can be written as
+o00
Z pzn(L; e)mz".
n=0

where p2n(L;€) is a Laurent polynomial in £2 and 0 except a finite number of
n. We denote —¢2 and —m? by z and y, respectively, and then Pyg(L;£, m) and
pan(L; €) by Cu(L;z,y) and cn(L; z)(—2)", tespectively. Clearly, c,(L;z) is a
Laurent polynomial in £ and we have

+ 00
Cy(Liz,y) =Y cn(L;z)(zy)™.

n=0

We define cn(L;z) = 0 for n < 0. We call the polynomial ca(L;z) the n-th
coefficient polynomial of the skein polynomial Pr(L;£,m) (or simply of the link
L). In this paper, we investigate these coefficient polynomials ¢,(L;z), n € Z. In
particular, we consider the following integral invariants of L:

(L) = Cn(L; 1),

pn(L) = nen(L; 1) + ¢ (L; 1),
(L) = ea(L; 1),

pr(L) = —nea(L; —1) + cp(L; -1),

where ¢/, (L; £1) denotes the derivative of ca(L;z) at & = 1. Clearly, m,(L) =
(L) (mod 2) and pn (L) = py (L) (mod 2). It turns out that among the c,(L; z)’s,.
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7a(L), pn(L) give informations on local relations, but 7;(L), p;(L) give informa-
tions on global relations. We shall observe that 7(L) = 61 s, po(L) = b3,r, Where
8; ; denotes the Kronecker’s delta, and for n > 0, 7,(L) and p,(L) are determined
by the cx(L;z)’s for all k with ¥ <n—1. When r =1, thatis, Lis a knot K, we
shall show that the conditions 7o(K) = 1 and po(K) = 0 characterize the zeroth
coefficient polynomial ¢o(K; ). As a consequence, we can characterize the zeroth
coefficient polynomial co(L; z) for all links L. For any knot K, we have

B (K)—1=0 (mod 4).

It is shown that the Arf invariant of K is trivial, that is, 71(K) = 0 (mod 2) if
and only if

(K)—1=0 (mod 8).
Further, it is shown that if the Z;-Alexander polynomial of K is trivial, that is,
1.(K) = 0 (mod 2) for all n > 1, then

75(K)—=1=0 (mod 16).

A canonical Seifert surface for a link L is a Seifert surface of L obtained from
a link diagram of L by Seifert’s algorithm. The canonical genus of L, denoted
by gc(L), is the minimal genus of connected canonical Seifert surfaces for L.
The genus of L, denoted by g(L), is the minimal genus of connected Seifert
surfaces for L. Clearly, g.(L) > g(L). It is known that g.(L) = g(L) when L is
an alternating link (cf. Murasugi [22], [3, p.228]). We see from a result of Moriah
[17] considering the free genus that for any positive integer s, there exists a knot
(in fact, a twist knot along a knot) K’ with g.(K') — g(K') > s. By a technical
reason, the Alexander polynomial of the knot K ! considered by Moriah must be
non-trivial. In this paper, we shall construct a knot K’ with trivial Alexander
polynomial such that g.(K’) — g(K’) = 2s for any positive integer s. By a basic
result, we show that if K’ is any finitely many iterated (twisted or untwisted)
double of a knot K with 75(K) # 1, then g(K’) =1 but g.(K') > 3.

Before concluding this introduction, we note the relation of the coefficient
polynomials ¢, (L; z) with Conway polynomial (cf. Conway 4D

V(L;2) = P(L;vV-1,-V~-1z)
and Jones polynomial (cf. [6]) '
V(L;t) = P(Liv=1t~, —V/=1(t = Vt-1)).

Letting

Va(L;2) = Py(L;V=1,—V-12) = "7 'V(L; 2)
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and

Vi (L;t) = Pp(LivV=1t7", —V=1(Vi - V171)),

we have the following:

+o00 + o0
(0.1) Va(L;2) = z en(L; 122 = Z m(L)2?",
+o00
0.2) Va(Lit™) =) en( L")t (¢ — 1)
n=0

We discuss some properties of the coefficient polynomials in §1 and 7,-, pn-
invariants in §2 and 7*-, pi-invariants in §4. In §3, we characterize the zeroth
coefficient polynomial. In Appendix A, we show that a Z[Z]-homology equiva-
lence for links induces an S-equivalence for Seifert matrices. In Appendix B, we
establish a natural relation between the homologies of the infinite cyclic covering
and any finite cyclic covering of a link.

1. Properties of the coefficient polynomials

Let Ly, L and Lo be oriented links, identical except near one point being
- P . . .
/\' , ‘/\ , ) ( , respectively. Then we have the identity

¢P(Ly;8,m)+ £ P(L_;¢,m)+ mP(Lo;¢,m) = 0.
This is equivalent to the identity
—2Py(Ly;£,m) — Pg(L_;£,m) = (£2m?)° Pg(Lo; ¢, m)

with 6 = (r4 — ro+ 1)/2(= 0 or 1), where r, ro denote the component numbers
of L, Lo, respectively. Since Pg(O";4,m) = (=1)7"1(€2 + 1)7~! for a trivial
r-component link O”, we see that Pg(L;£,m) can be written as

+o00

> pan(L; )m*"

n=0 )
for Laurent polynomials pan(L;£) in €2 which are 0 except a finite number of n
(cf. [14]). Writing —£2 —m?, Py(L;£,m) and paq(L;£) as z,y, C4(L + z,y) and
en(L; z)(—2)", respectively, we have

400
Ce(Liz,y) =) calL;z)(z)",

n=0
2Cy(Ly;2,y) — Cp(L-;z,y) = (2y)’Cg(Lo; 2, v),
Cy(07;z,y) = (z = 1)1
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The existence of the skein polynomial P(L;¢,m) is equivalent to saying the
following:

THEOREM 1.1. For each oriented link L, there is a set of Laurent polynomial
invariants in z, {c,(L;z) | n € Z} of L, determined uniquely by the following

identities:
0 forn#0,
1.1.1 Ol:z)= {
( ) e (0752) 1 forn=0.

(1.1.2) zcn(Ly;z) — cn(Lo;z) = cn—s(Lo; z) with 6§ = (ry —ro +1)/2.

Since the following (1.2)—(1.5) are easy exercises on the known properties of
P(L;£,m) (cf. [5], [14]), we omit the proofs. (We can deduce them directly from
Theorem 1.1.)

(1.2). Let K;, i =1,2,...,r, be the components of L, and X the total linking
number of L, i.e., A=), ; Link(Kj;, Kj;). Then

co(L;z) = (2 — 1) tz7*co(K1; 2)co(K2; T) - - - co( Ky T).

(1.3). Let Lyo Ly and Li#L> be a split union and a connected sum of links
Ly, Ly, respectively. Then

cn(Ly o La;z) = (2 — 1)ea(Li#L2; z),
cn(L1#La;z) = Z cp(L1;x)ce(La; ).

ptg=n
(1.4). Let L be the mirror image of L. Then
en(T;z) = (1) 12712, (L2 Y).

(1.5). For any r-component link L, we have

400
Zc,,(L; 2)(1-2) = (z - 1) .
n=0

The identity in (1.5) is equivalent to the Lickorish/Millett identity P(L; ¢, —
(£+ £-1)) = 1. J. Praytycki proposed the identity P(L;£,£+ £71) = (=1)""1.
Writing it in terms of c,(L; z), we see that it is also equivalent to (1.5). For our
estimate of the difference g.(K)— g(K), we shall use an inequality of Morton [18]

implying the following;:
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(1.6) ea(L;z)=0 for n>g.(L)+r—1.

For any integers g(> 0), r(> 1), there is an r-component link L with g.(L) =
g and cg4r—1(L; z) # 0, showing that (1.6) is best possible. For example, let L be
a connected sum of an (r — 1)-fold connected sum of the Hopf link Ly and the
g-fold connected sum of the trefoil knot K(31). By changing the space orientation
if necessary, we have

z(z—1) forn=0,

ea(Lyg;z) =< —1 for n =1,
0 otherwise,
and
z(2—z) forn=0,
en(K(31);2) = { 1 for n =1,
0 otherwise.

Then we see that the link L has r components and by (1.3) cg4r—1(L;2) =
(=1)-! and g (L) = ¢. For this link L, we see also from (1.3) that cn(L;z) is
divided by (z—1)"~1~" but not divided by (z—1)"~" for any n with 0 < n < r—1.
This means that the following lemma is best possible:

LemMa 1.7. For any r(> 1)-component link L and any integer n with 0 <
n<r—1,(z—1)"1"" divides c.(L; ).

Proor. Regard L as Ly or L_ at a crossing point of two components
of L. Then we have zc,(Ly;z) — cn(L-;2) = ¢n-1(Lo; z). By induction on
r,(z — 1)r=D=1=(=1) = (g — 1)7=1=" divides cn_1(Lo; z). Hence (z = 1)1
divides c,(L4;z) if and only if (z — 1)r=1-" divides ¢,(L_;z). This implies
that (z — 1)7=1=" divides ca(L;z) if (z — 1)7~17" divides ¢n(L2; z) of the split
union L° of the components, K;, i = 1,2,...,r, of L. By (1.3), en(L02) =
(z — 1) ten (Ki#Ko#t - #Kr;x). Ths completes the proof.

The reversing formula for the Jones polynomial in [16], [19] is translated by
(0.2) as follows:

(1.8). Let L' be a link obtained from a link L by reversing the orientation of a
component K of L and X be the linking number of K and L — K. Then

n=0

+o00 +o00
Y (TNt - 12 =3 ca(Lit?)tn(t — 1),
n=0
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2. The 7,- and p,-invariants

For a link L in $3,let N(L) be a tubular neighborhood of L in $3, and E(L)
the exterior (i.e., E(L) = $3—int N(L)). Let E(L) be the infinite cyclic covering
space of E(L) (associated with the epimorphism my(E(L)) — (t) sending each
meridian of L to t).

DEFINITION. A map f : (S3,L*) — (S3,L) for links L*, L is a Z[Z]-
homology equivalence if all of the following (1)—(3) are satisfied:

(1) f preserves the orientations on S3, L* and L,
(2) For some tubular neighborhoods N(L*), N(L) of L*, L and the exteriors

~

E(L*), E(L), the restriction f | N(L*) gives a diffeomorphism N(L*) =
N(L) and f(E(L*)) = E(L).

(3) The infinite cyclic covering lift f5 : E(L*) — E(L) of fg = f | E(L*):
E(L*) — E(L) induces a homology isomorphism fee  Hi(E(L*); 2) =
H,(E(L); Z).

For example, any link imitation map discussed in 7], [8] is a Z[Z]-equivalence.

LEMMA 2.1.
(1) If there is a Z[Z]-homology equivalence f : (S, L*) — (S3,L), then
Ta(L*) = (L) for all n,
(2) Ifn<r—lorn>g(L)+r—1, then 1,,(L) = 0, so that
9(L)+r-1

Ve(liz)= Y. m(L)2"

n=r—1

ProoF. In Appendix A, it is shown that any Seifert matrices M*, M asso-
ciated with connected Seifert surfaces for L*, L are S-equivalent (See [3, 13.34]
for the definition of S-equivalence). Let z = /2 — ¢t~1/2, Then

V(L*;z) = det(t~/2M* — t1/2 M)
= det(t"}/2M — t'/2M") = V(L; 2).
Hence Vg(L*,z) = Vu(L;z), showing (1). We show (2). For n < r -1,
7a(L) = 0 follows from Lemma 1.7. Let M be a Seifert matrix associated with a
connected surface of genus g = g(L). Then

+o00 .
Va(L;2) = Z (L)t +t"1 = 2)"
n=0

- (t1/2 _ t-—l/2)r—1 det(t_lﬂM _ t1/2MI)



On coefficient polynomials of the skein polynomial of an oriented link 55
=797 (¢ ~ 1)" "L det(M — tM').
This implies that 7,(L) = 0 for n > g(L) + r — 1. This completes the proof.
The following (2.2) follows from (1.3):

(22) Tn(L]_ o Lz) = O,
ta(Li#l) = pa(L1o Ly) = Y mp(L1)7e(La),
pte=n
pr(Li#L2) = Z (Po(L1)7e(L2) + 7p(L1)pg(L2))-
ptq=n

The following (2.3) follows from (1.4):

(2.3) (D) = (-1)" (L),
pa(L) = (=1)pa(L) + (=1)" " (r = Dra(L).

Let ¢¥)(L; ) be the k-fold derivative of ca(L; z), and di(L) = ci(L; 1)/k!.
Note that dﬁ,k)(L) is an integer and 7,(L) = dO(L), and pn(L) = ndg.o)(L) +
d(L). The following lemma shows that 70(L) = 61, and po(L) = 63,-, and
Ta(L), pa(L) (n > 0) are determined by the cx(L; z)’s for all k with k¥ <n —1.

LEMMA 2.4.
n—1 ot
(L) = — Z dgczn_ )(L) + b2n41,r
k=0

n—1
pn(L) = = S (nd"7(L) + dP* L) + nbanirr + Santar
k=0

Proor. Consider the Tayler expansion
+o0
en(Liz) =Y dP(L)(z = 1)
k=0
around z = 1. By (1.5), we have

400 ,+00
a-1t=3 (E dB(L)(z - 1)k)(z 1y

n=0 ‘“k=0

=+f( > &)=

3=0 “2n+k=s
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That is,

3 dP(L) = bipo1 = buprr (s=0,1,2,..).
2n4-k=s -

Hence _ .
dSIO)(L) == Z diZn—Zk)(L) + b2n41,r,
k=0

n—1 )
dD(L) == Y d (L) + o

k=0
Then we obtain the desired identities, completing the proof.
For a knot K, we have 7(K) = 1, po(K) = 0 by Lemma 2.4. For the knot
connected sum K;#K>, we obtain from (2.2) that
n(K1#Ks) = (K1) + 1(K2), pi(K1#K2) = p1(K1) + p1(K3).
By (2.3), we note that
T(K) = m(K), pa(K) = —pn(K).
By Lemma 2.4, we have the following two identities:

n(K) = —¢(K;1)/2 = pi(K;V=1)/8,
pi(K) = —c5(K;1)/2 - cg'(K;1)/6.

The first identity was observed by Lickorish/Millett in [14]. Azuma [1] observed
(without establishing this second identity) that the right hand side of the second
identity is additive on connected sum operation and (—1)-multiplicative on mirror
image operation. The following is obtained from (1.8) with ¢ = —1 taken and

Lemma 2.1(2):

(2.5). Let L' be a link obtained from a link L by reversing the orientation of a
component K of L and X be the linking number of K and L — K. Then we have

g(L)+r-1 g(L)+r-1
Yo Cyrm@) = (-1 Y (-4 m(D).

3. A characterization of the zeroth coefficient polynomial

By Lemma 2.4, any knot K has 70(K) = co(K;1) =1, po(K) = ¢5(K;1) = 0.
The following theorem shows that these conditions on ¢y(K; z) are complete:
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THEOREM 3.1. For any Laurent polynomial f(z) with f(1) =1 and f'(1) =
0, there ezists an unknotting number one knot K with co(K;z) = f(z).

Lemma 2.4 also means that 7;(K) = 0 if and only if ¢j(K; 1) = 0 for any knot
K. The following corollary to Theorem 3.1 gives a characterization of ¢o(K; z)
for all knots K with r(K) = 0:

COROLLARY 3.2. For any Laurent polynomial f(z) with f(1) =1, f'(1) =
f"(1) = 0, there ezists an unknotting number one knot K with m(K) = 0 and

co(K;z) = f(2)-

One may ask whether every Laurent polynomial f(z) with f(1) =1, f'(1) =
f"(1) = 0 is realizable as co(K; z) of a knot K with trivial Alexander polynomial
(ie., Ta(K) = 0 for any n > 1), but the answer is negative because for any such
knot K, it will be shown in Lemma 4.9 that co(K;—1) = 75(K) = 1 (mod 16).
For an r-component link L, we see from (1.2) that ¢o(L;z) can be written as
(z — 1)""1g(z) for some Laurent polynomial g(z) with g(1) = 1. The following
gives a characterization of ¢o(L; z) for r(> 2)-component links L.

COROLLARY 3.3. For any r > 2 and any Laurent polynomial g(z) with
9(1) = 1, there ezists an r-component link L with co(L;z) = (z — 1)71g(z).

ProoF. Let A = ¢’(1) and f(z) = z~*¢g(z). Then f(1) =1 and f'(1) = 0.
By Theorem 3.1, there is a knot K with co(K; ¢) = f(z). We take an r-component
link L which is a union of K and r — 1 trivial knots with total linking number

—). By (1.2), we have co(L; z) = (z = 1)"'e* f(z) = (2 — 1)""1g(x), as desired.

COROLLARY 3.4. For any r > 1 and any Laurent polynomial h(z), there
ezists an r-component link L such that

+o0 _ (z —1)""2h(z) for r>2,
seWr — n-2 _
'; ea(Liz)(z ~1) { h(z) for r = 1.

ProoF. By Theorem 3.1 and Corollary 3.3, we have an r-component link
L such that
(z=1)""11—(z~1)h(z)] forr>2,
co(L;z) =
1—(z—1)2h(z) for r = 1.

Combining this identity with the identity (1.5), we obtain the desired identity,
completing the proof.
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We shall provide two lemmas to prove Theorem 3.1. For any Laurent polyno-
mial f(z), we denote the integer —f”(1)/2 by d(f) and the Laurent polynomial
degree by deg f.

LEmMa 3.5. Let f(z), g(z) and h(z) be Laurent polynomials and d be an
integer such that

f(z) = zg(z) — (= — 1)z*h(2).
Then the following three conditions are equivalent:
(1) f)=g(1)=1, f/(1) =¢'(1) =0 and d = d(f) — d(9),

(2) f(1)=h(1)=1 and f'(1) = h'(1) =0,
(3) g(1)=h(1)=1 and ¢'(1) = K'(1) = 0.

ProoF. These equivalences are proved by the following identities (easily
obtained by taking derivatives at z = 1): f(1) = g(1), f'(1) = g(1) +¢'(1) — h(1)
and d(f) = —g'(1) + d(g) + h(1)d + h’(1). This completes the proof

a a)

Fig. 1 Fig. 2

LEMMA 3.6. For any knots K', K", K" and any integer d, there ezists a
knot K such that

co(K:2) = zea(K'52) — (2 — Dadeo( K" 2ol K" 2).

ProoF. By a result of Kinoshita in [11], [12], there is a f-curve agUa; Uas
in S® with dag = da; = day such that a; Uay, agUay, ap Ua; are isotopic to the
knots K’, K", K", respectively (cf. Fig. 1).

Choose a 3-ball neighborhood B of ag such that BN (agUa; Uay) is a
trivial H-graph (cf. Fig. 2). Replace this H-graph by a 2-string tangle with 2e+2
crossings indicated in Fig. 3 to obtain an oriented knot K so that if K is regarded
as K_ at the point p indicated in Fig. 3, then K is isotopic to K’ and Ko is a
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2-component link with components isotopic to K " K'"™. We choose the full twist
number e in Fig. 3 so that the linking number of the components of Ky is —d.
By (1.1.2) and (1.2), we have

co(K;z) = zeo(K's 2) = (2 — 1)zlco(K"; 2)eo( K™ 2).

This completes the proof.

OG22

e full twists/‘

Fig. 3

PrOOF of THEOREM 3.1. We first prove the existence of K whose unknot-
ting number u(K) may be greater than one by induction on deg f. If deg f = 1,
then f(z) is written as (1+ b)z® — bz®*! for an integer b. Taking K () to be the
torus knot of type (2,—2b — 1), we have co(K(b);z) = f(z). lf deg f = 2, then
f(z) is written as

¥ ztt? — (2 + bzt + (1 + ¥ + )2’
= bt — (b= 1)a?] — (2 — D=V [(1+ ¥)z¥ — bzt
for integers b, ¥'. Since co(K (b — 1);z) = bz>! — (b 1)zb and co(K(¥');2) =
(14¥)z¥ —¥'z¥+!, we obtain from Lemma 3.6 with K’ = K(b—1), K" = K(¥),
K" = O, d = b—b aknot K(bb) with co(K(b,b');2) = f(z). Assume that
deg f > 3 and write

f(z) =byz" +b 2" 44 b2* (n—523)

for integers by, bn—1,..-,bs- We consider a Laurent polynomial g(x) determined
by

f(z) = zg(z) — (z = 1)z"co(k(=1,=bs); 2),
where note that co(K(—1,—bn); ) = (1+2bs) — bn(z + z71). Since n—3 > s, it
follows that deg g < deg f — 1. By Lemma 3.5, we have g(1) = 1 and ¢’(1) = 0.
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By induction, we have a knot K’ with co(K’;z) = g(x). Applying Lemma 3.6
with K’ = K', K" = K(-1,-b,), K" = 0, d = n — 2, we obtain a knot
K with co(K;z) = f(x). Next, we show that we can choose as such a knot
an unknotting number one knot. If f(z) = 1, then for example the knot 8,4
is a desired knot. Assume f(z) # 1. Using f(l) = 1, we consider a Laurent
polynomial k(z) determined by

flz)=z-1—(z- 1)z°‘(f)h(x).

By Lemma 3.5, h(z) has h(1) = 1 and A’(1) = 0. We have a knot K with
co(Kn;z) = h(z). Applying Lemma 3.6 with K’ = O, K” = O, K" = K,
d = d(f), we have a knot K with co(K;z) = f(z) and u(K) = 1. This completes
the proof of Theorem 3.1. '

4. The 7;- and p}-invariants

The following are obtained from (1.3):

(41) T:;(Ll o Lz) = —21’;([;1#[42),
m(Li#L) = Y 13(L1)7)(La),
p+g=n

Pn(L1 0 L2) = Th(L1#L2) — 2p5(L1#Ls),
Prli#la) = Y (pj(L1)7(La) + 73 (L¥1)pk(L2)).

pPtg=n
The following are obtained from (1.4):
(4.2) (L) = 1(L),
(4.2) pu(L) = —(r = 1)7(L) = p(L).
The following are obtained from (1.5):

400

(4.3) D o2m(L) = (-2)7,
+00

(4.3) D o27pn (L) = (r—1)(-2) %
n=0

Let (L) be 1if L is a proper link with trivial Arf invariant and —1 if L is
a proper link with non-trivial Arf invariant and 0 if L is not a proper link. For
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a knot K, it is well-known that e(K) = (—1)"®), so that e(K) = (—1)7).
Let S3(L)s be the 3-fold cyclic covering space of S* branched along L and let
y(L) = (1/2) dimz, H1(S3(L)s; Z2). In Appendix B we shall discuss this number
v(L) (which is in fact an integer) and its generalization. The following (4.4) and
(4.5) are obtained from results of H. Murakami [20], [21] and Lickorish/Millett
[15]): '

+o0

(4.4) Yo 2nr(L) = «(L)(-2)
+o00

(4.5) S = (=2)D),
n=0

We show the following:

THEOREM 4.6. For any integer ¢ > 0, we have the following identity:

i(”” — 2720+ - 2 (L)

n=0

400
+ Y @ -2ty - 27t)Ti(L)
n=q¢+3
= 92083(=2) D — 3121 (-2 + (-2

PROOF. By (4.4) x 2912 — (4.3), we have

g+1 +o00
(4.7) Yo 2reet? - 2ri(L) + 3 2t - 2M)r(D)

n=0 n=g¢+3
= (e(L)292 = 1)(-2)" .

By (4.5) x 29%2 — (4.4), we have

+1 +00
(48) 42:(2#2 — ML)+ Y @ -2Mri(L)
n=0 n=¢+3

= (-2 @2 _ (L) (-2,

By (4.8) x 2971 — (4.7), we have

(@ - )@ — ) (D)

n=0
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+o00
+ Y @ -2ttt - 27 (L)
n=g¢+3

- (_2),,(1,)22”3 _ e(L)(—?)"12q+1 — (e(L)2“’2 - 1)(_2)r—1
— 22q+3(_2)u(L) _ 3€(L)2‘1+1(_2)r—1 + (_2)r-1.

This completes the proof.

If a knot K has the unknotting number u(K) = 1 (or more generally, the
weak unknotting number (cf. [13], [9]) uy(K) = 1), then we have »(K)=0or 1
(See Appendix B). The following corollary obtained from Theorem 4.6 by taking
g = 0 shows that a knot K with 75(K) # 1,5,—7,—3 constructed in Theorem
3.1 has 7;(K) # 0 for some n > 3.

CoOROLLARY 4.9. Assume that 7(K) = 0 for alln > 3. If v(K) = 0, then
3(K) =3 — 2¢(K) end if v(K) = 1, then 15(K) = =5 — 2¢(K).

Applying this corollary to a double of a knot, we obtain the following:

CoOROLLARY 4.10. Let K' be any finitely many iterated (untwisted or twisted)
double of a knot K with 75(K)# 1. Then g(K') =1 but g.(K') > 3.

ProoF. Let K’ be a double of K. Clearly, g(K') = 1. The identity 75 (K') =
—11273(K)? is easily established. Using 73 (K) = 1 (mod 4) and 75(K) # 1, we
see that |3 (K’)| > 17. Since u(K') = 1, we have 7;;(K') # 1 for some n > 3. By
(1.6), g.(K') > 3. By induction on the iteration number, we complete the proof.

Fig. 4
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ExaMpLE 4.11. Let K’ be any double of the trefoil knot K(3;). Directly, we
can see that g(K’) < 3 (See Fig. 4). Clearly, g(K’) = 1. Since 75(K(31)) = -3,
we see from Corollary 4.10 and (1.6) that 73(K) # 0. Hence g.(K) = 3. Let K,
be the n(> 2)-fold connected sum of this knot K'. By the additivity of genus,
g(K.) = n. Clearly, g.(Kn) < 3n. By (41), 73,(K;) = (r3(K’))" # 0, so that
ge(K.) = 3n. Thus, we have a knot K}, such that g.(Ky) — g(K!) = 2n for any
positive integer n. In particular, if K’ is an untwisted double of K (31), then the
knot K’ has the trivial Alexander polynomial and g.(Ky) — 9(Ky) = 2n.

On the value of 75 (K), we have the following:

THEOREM 4.12.

(1) 73(K)=1 (mod 4) for all knots K,

(2) For a knot K, 73(K) = 1 (mod 8) if and only if n(K) = 0 (mod 2)
(e, «(K) =1),

(38) If a knot K has t,(K) = 0 (mod 2) for alln > 1, then (K)=1
(mod 16),

(4) If a knot K has 75(K) # 1 and 15(K) =1 (mod 16), then (K)#0
for some n > 3.

PRoOF of THEOREM 4.12. Since 1(K) = 1, po(K) = 0, there is a Laurent
polynomial f(z) with co(K;z) = 14 (z—1)?f(z), so that (1) is obtained. Further,
by Lemma 2.4, ri(K) = —c{(K;1)/2 = —f(1). Then (K)—-1=4f(-1) =
—4f(1) = 4n(K) (mod 8) and (2) is proved. For (3), (4), we use Theorem 4.6.
Taking ¢ = 0 in Theorem 4.6, we have

+o00
3r3(K)+ Y (2" - 29)(2" - )7 (K) = 8(—2)") — 6¢(K) + 1.
n=3
Since 7,(K) = 0 (mod 2) for all n > 1, we see from Appendix B that v(K)=0.
We have also ¢(K) = (—1)7(X) = 1. Using that (2" — 22)(2" — 2) = 0 (mod 8)
and 7 (K) = 7(K) = 0 (mod 2) for all n > 3, it follows that

373 (K)=3 (mod 16).

Hence 73 (K) = 1 (mod 16). For (4), suppose that 7, (K) =0 for all n > 3. Then
we have 373 (K) = 8(—2)"X) — 6e(K) + 1. If »(K) > 1, then 375(K) = 6 +1
(mod 16), contradicting that 75 (K) = 1 (mod 16). Hence »(K) = 0 and 75(K) =
1 or 5, which is impossible. Thus, 7;(K) # 0 for some n > 3. This completes the
proof. '

REMARK 4.13. (1) Let K be the 4m-fold connected sum of the trefoil knot
K(3;) with m a positive integer. Then 75(K) = B (K(31))* = (=3)* =1
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(mod 16). But, by (1.3), cam(K; 2) = c1(K(31); z)*™ = 1, since ¢, (K(3,1);z) = 1
(if n = 1) or O (if n > 2). This means that the converse of Theorem 4.12(3) is
not true.

(2) Let Kkt be the Kinoshita-Terasaka knot illustrated in Fig. 5. Then we
have V(Kkr;z) = 1 and co(Kkr;z) = 1+ 2z(z — 1)* and hence 75(Kkr) =
1+ 16. Let K be the knot illustrated in Fig. 6. Then we have V(K;z) = 1 and
co(K;z) = 1 + 2(z — 1)® and hence 7§ (K) = 1 — 16. However, we do not know
whether 14+16m for every integer m is realizable by 75 (K) of a knot K with trivial
Alezander polynomial. This is related to a question: Is every Laurent polynomial
f(z) with f(1) =1, f/(1) = f'(1) =0, f(—1) = 1 (mod 16) reakizable by co(K; z)
of a knot K with trivial Alezander polynomial?

@ oD\ — [
=4 @&

Fig. 5 Fig. 6

Appendix A. In this section, we show the following.

THEOREM A.l1. If there is a Z[Z]-homology equivalence f : (S3,L*) —
(S3,L), then any Seifert matrices A*, A associated with any connected Seifert
surfaces for L*, L are S-equivalent.

ProoF. Let F be a connected Seifert surface for L. It is known that any two
Seifert matrices associated with any two connected Seifert surfaces for L are S-
equivalent (cf. [10]). By t-regularity, F* = f~1F can be assumed to be a (possibly
disconnected) surface with boundary L*. The restriction f | F* : F* — F is a
d-diffeomorphic degree one map and induces an epimorphism H;(F*,8F"; Z) —
Hy(F,0F;Z) and an isomorphism Hy(0F*;Z) = Hy,(0F; Z). Using that F is
connected, we see that F* has just one bounded component. Hence a Seifert
matrix associated with F* is a Seifert matrix associated with a connected Seifert
surface obtained from F* by piping the components of F*. Let E(F*) = cl(S3 -
N(F*)), E(F) = ¢l(S® — N(F)) for regular neighborhoods N (F*), N(F) of F*,
F in S3, respectively, with N(F*) = f~'N(F). Let f' : Hi(F;Z) — H(F",Z2)
be the composite
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Hi(F; 2) 25 Hy(S3, F; Z) = Ha(S3, N(F); Z) = Hy(E(F),0E(F); 2)
D7 g\(E(F); 2) L HY(E(F*); 2) 2 Hy(E(F*),0E(F*); Z)
= H,(S3, N(F*); Z) = H(S%, F*; Z) 2, (F*; 2),

where 8 denotes the boundary isomorphism and D denotes the Poincaré duality
isomorphism and = denotes the inclusion isomorphism or its inverse. Then we
see that the composite of f' with f. : Hi(F*; Z) — Hi(F; Z) is the identity on
Hy(F;Z). Let Si(F*;Z) = f'(H1(F;Z)). Then the restriction fuo | S1(F*2) :
S1(F*; Z) — Hy(F; Z) is an isomorphism. Let K (F*;Z) = Ker f,. Then H\(F*;
Z) = S1(F*;Z) ® K\(F*;2). Let F{,Fy C S2 be slight translations of F*, F
in a positive normal direction, respectively, and F*, F_ C S3, in a negative
normal direction. Let L} : Hi(F*;Z) x Hi(F*;Z) — Z be the Seifert linking
form on F* such that L%i(z,y) = Link(z,ys) for z,y € H,(F*;Z) where yt+
denotes a copy of y in Hy(F}; Z). Similarly, let Ly : Hi(F; Z) x H\(F;2)—> 2
be the Seifert linking form on F. Then we have that L+(fi(z), f«(y)) = Li(z, )]
for £ € S1(F*;Z), y € Hi(F*;Z). In fact, let u € HY(E(F); Z) correspond to
the element f.(z) € H1(F;Z) for z € S1(F*;Z) in the above diagram. Then
f*(u) € H'(E(F*); Z) corresponds to z in the above diagram. Hence L% (z,y) =
(F*(u),yx) = (u, fu(ys)) = Li(f.(z), f«(y)), as desired, where we regard that
y+ € H1(E(F);Z). In particular, Ly(S1(F*;2),K1(F*;Z)) = 0. Let A, Ax
be matrices representing L} | S1(F*; Z) x S1(F*; Z), Ly associated with a basis
for S1(F*;Z) and a basis for H(F;Z) obtained from the basis for S;(F*; Z)
by applying f., respectively. Then we have A} = Ax. Let AX be a matrix
representing L% | K1(F*; Z) x K1(F*; Z) associated with a basis for K1(F*; Z).
Note that AKX & A} and A are Seifert matrices of L*, L and the transpose
matrices (AX),(4%}) = (A4) are equal to AK A* = A_, respectively. Let A
be the integral group ring of (t). Since (tAX — AX) @ (1A} — A%), and LA, —
A_(= tA%, — A*) are A-presentation matrices of the A-modules Hy(E(L*); Z),
Hy(E(L); Z) which are A-isomorphic, it follows from the Noetherian property
of A that det(tAX — AX) is a unit £t™ (m € Z) of A. By Trotter [24], AK is
S-equivalent to the zero matrix. Hence Af @ A} and A, are S-equivalent. This
completes the proof.

Appendix B. Let S3(L); be the d(> 2)-fold cyclic covering space of S3
branched along a link L. Let Lg be the lift of L. Let E; be the lift of E = S3—L to
S3(L)4. Let pa : Eq — E be the covering projection. The infinite cyclic covering
p: E — E factors into the infinite cyclic covering p? : E — E, and the covering
pa: Eq — E. Let f: E— S3(L)q be the composite of p% and the inclusion

EqC S3(L)a. Let Ca(t) = (1 —t%)/(1 = 1t).
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THEOREM B.1. The map f: E— S3(L)4 induces an isomorphism
fo s Hi(E; 2) [Ca() HA(E; Z2) = Hi(S*(D)a; 2).

Sakuma [23] has established an isomorphism from the inverse direction in a
more general setting. It is a merit of our proof that this identification is seen to
be natural.

ProoF of THEOREM B.1. Note that the homomorphism f, : Hl(E';Z) —
H,(5%(L)4; Z) is t-invariant. By a transfer argument (2, p.119], we have (4(¢) = 0
on H,(S3*(L)a; Z). Hence Ker f. D Ca(t)H1(E; Z). Let the covering p? : E — E4
be associated with an element v¢ € HY(Ey; Z) = Hom(H,(E4; Z), Z). Let v = 41.
Let L;, i = 1,2,...,r, be the components of L and L¢ be the correspond-
ing component of L¢. Let m;, m¢ be fixed meridians of L;, L¢ in E, Ey, te-
spectively. Let ¢ € H1(S3(L)g; Z). Since v4{md} = 1, we see that z is repre-
sented by a cycle ¢ in Ey such that y¢{c} = 0. Clearly, ¢ is homologous to a
simple closed curve ¢/ in E4. For any component c) of (p?)~1¢/, we have that
p?| ¢y ch — ¢’ is a homeomorphism. Hence f.{cj} = z and f, is surjective. For
y € Hi(E; Z), assume that f.(y) = 0. Then (p?).(y) = 31, a;{m¢} for some
integers a;, i = 1,2,...,r, with Y7_, a; = 0. Note that (pa)«{m¢} = d{m.}.
Let z = 37, ai{m;} € H1(E; Z). Since ¥(z) = 0, we have z = p.(Z) for some
zZ€E HI(E'; Z) by the V\iang exact sequence for the infinite cyclic covering p. Let
¥ = y— C(t)Z € Hi(E; Z). Then fu(y') = 0 and pu(¥') = (pa)«(p?)x(¥/) = 0.
Then we have (p?).(y) = 0 in Hi(E4; Z). By the Wang exact sequence for
the infinite cyclic covering p?, there is an element y” € Hy(E; Z) such that
Yy = (19— 1)y”. Thus, y = G()((t - 1)y + %) € Ca(t)H1(E; Z) and we have
Ker f, = C4(t)H1(E; Z). This completes the proof.

For an integer s > 0, let Z, = Z/sZ (thus, Zo = Z). Let my(L; Z,) be the
minimal number of abelian generators of H;(S3(L)g4; Z,). Note that the number
v(L) introduced in §4 is equal to mg(L; Z2)/2. Let m(L;Z,) be the minimal
number of A-generators of the A-module Hi\(E; Z,). Let m(L) = m(L; Zo). Tt is
known in [9] that the weak unlinking number wu,,(L) of any r-component link L
has uy (L) + 7 —1 > m(L). We have the following.

CoroLLARY B.2. m(L) > m(L; Z,) > ma(L; Z,)/(d - 1).

ProoF. The left-hand inequality is obvious. Let m = m(L; Z,). Then there
is a A-epimorphism A™ — H,(E; Z,), inducing a A-epimorphism (A/¢4(t)A)™ —
Hl(E‘;Zs)/Cd(t)Hl(E'; Z,). By Theorem B.1 and the universal coefficient theo-
rem, we have an isomorphism

Hi(E; Z,)/Ca(t) Hi(E; Z,) = Hi(S3(L)a; Zy).
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Since A/C4(t)A has d—1 abelian generators, it follows that mq(L; Z,) < (d—1)m.
Hence the right-hand inequality is obtained. This completes the proof.

Since (s(t) = 1+t +12 =0 in H1(S3(L)3; Z2), we see that t + 1 =t? =¢~*
is an automorphism of H;(S3(L)s; Z2). Assume that z1,tzy,...,%i—1,t%i—1,%;
are Zy-linearly independent elements of H1(S3(L)3; Z2). Then we can see eas-
ily that z1,t21,...,2i—1,txi_1, T, tx; are Zy-linearly independent. By induction,
H;(S3(L)3; Z») has a Zj-basis of the type: z1,tz1,...,Zm,tzm. Hence v(L) =
mgz(L; Z2)/2 is an integer.
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