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ABSTRACT

This note is a revised version of the research announcement [8] on a com-
plexity of a spatial graph. In a research of proteins, molecules, or polymers,
it is important to understand geometrically and topologically spatial graphs
possibly with degree one vertices including knotted arcs. In this article, we
introduce a concept of a complexity and related topological invariants for a
spatial graph without degree one vertices, called the warping degree and re-
lated concepts of γ-, (γ, Γ)-warping degrees as well as the unknotting number
and related concepts of γ-, Γ-, (γ, Γ)-unknotting numbers generalizing the usual
unknotting number of a knot. These invariants are used to define geometric
invariants for a spatial graph with degree one vertices, meaningful even for a
knotted arc.
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1. A spatial graph without degree one vertices and its diagram

For general references of knots, links and spatial graphs, we refer to [6]. First, we
consider a finite graph Γ which does not have any vertices of degrees 0 and 1 and,
for simplicity, has at most one component with vertices of degrees = 3. A spatial
graph of Γ is a topological embedding image G of Γ into R3 such that there is an
orientation-preserving homeomorphism h : R3 → R3 sending G to a polygonal graph
in R3. We consider a spatial graph G by ignoring the degree two vertices which are
useless in our argument. When Γ is a loop, G is called a knot, and it is trivial if it is
the boundary of a disk in R3. When Γ is the disjoint union of finitely many loops,
G is called a link, and it is trivial if it is the boundary of mutually disjoint disks. A
spatial graph G is equivalent to a spatial graph G′ if there is an orientation-preserving
homeomorphism h : R3 → R3 such that h(G) = G′. Let [G] be the class of spatial
graphs G′ which are equivalent to G. It is well-known that two spatial graphs G and
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G′ are equivalent if and only if any diagram DG of G is deformed into any diagram
DG′ of G′ by a finite sequence of the generalized Reidemeister moves, where the moves
necessary only for links are called the Reidemeister moves (cf. [6]). Let [DG] be the
class of diagrams obtained from a diagram DG of G by the generalized Reidemeister
moves, which is identified with the class [G].

Figure 1: Monotone edge diagrams

2. Monotone diagram, warping degree and complexity

Our spatial graph G is obtained from a maximal tree T (containing all the vertices
of degrees = 3 of G) by adding the remaining edges or loops αi (i = 1, 2, · · · ,m).
Clearly, T = ∅ if G is a link, and T is one vertex if G has just one vertex of degree = 3.
Let D be a diagram of G. Let DT and Dαi be the subdiagrams of D corresponding
to T and αi, respectively. The diagram D is a based diagram (on a based tree T )
and denoted by (D; T ) if there are no crossing points of D belonging to DT . We can
deform every diagram into a based diagram by a finite sequence of the generalized
Reidemeister moves. Let (D; T ) be a based diagram of G with the remaining edges
or loop diagrams Dαi (i = 1, 2, · · · ,m). An edge diagram Dαi is monotone if there
is an orientation on αi such that a point going along the oriented diagram Dαi from
the origin vertex meets first the upper crossing point at every crossing point (see
Figure 1). A loop diagram Dαi is monotone if there is an orientation on αi such that
a point going along the oriented diagram Dαi from the vertex point (if αi meets T )
or a non-crossing point (if otherwise) meets first the upper crossing point at every
crossing point. The based diagram (D; T ) is monotone if Dαi is monotone for every
i and the diagram Dαi is upper than the diagram Dαj for any j > i with respect to
an oriented ordered sequence of Dαi (i = 1, 2, · · · ,m). The warping degree d(D; T )
of a based diagram (D; T ) is the least number of crossing changes on the edge or loop
diagrams Dαi(i = 1, 2, · · · ,m) needed to obtain a monotone diagram from (D; T ).
For T = ∅, we denote d(D; T ) by d(D). When the edges or loops αi (i = 1, 2, · · · , m)

are previpously oriented, we can also define the oriented warping degree d⃗(D; T ) (or

d⃗(D) for T = ∅) of D by considering only the crossing changes on the edge or loop
diagrams Dαi (i = 1, 2, · · · ,m) along the specified orientations. The warping degree
d(G) of G is the minimum of the warping degrees d(D; T ) for all based diagrams
(D; T ) ∈ [DG].

The complexity of a based diagram (D,T ) is the pair cd(D; T ) = (c(D; T ), d(D; T ))
together with the dictionary order. This notion was introduced in [7] for an oriented
ordered link diagram. A. Shimizu also observed that the dictionary order on cd(D; T )
is equivalent to the numerical order on c(D; T )2 + d(D; T ) by using the inequality
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d(D; T ) 5 c(D; T ). The complexity γ(G) = (cγ(G), dγ(G)) of G is the minimum (in
the dictionary order) of the complexities cd(D; T ) for all based diagrams (D; T ) ∈
[DG], where the topological invariants cγ(G) and dγ(G) are called the γ-crossing
number and the γ-warping degree of G, respectively. The minimal crossing number
c(G) = minD∈[DG] c(D) of G has the inequality c(G) 5 cγ(G). The following properties
(1) and (2) on G give a reason why we call γ(G) the complexity of G:

(1) If dγ(G) > 0, then there is a crossing change on G to obtain a spatial graph G′

with γ(G′) < γ(G). The spatial graph G is equivalent to G′ with a monotone diagram
(D′; T ′) with c(D′; T ′) = cγ(G) if and only if dγ(G) = 0.

(2) If cγ(G) > 0, then there is a spatial graph G′ with cγ(G
′) < cγ(G) by any splice

on G, so that γ(G′) < γ(G). The crossing number cγ(G) = 0 if and only if c(G) = 0,
i.e., G is equivalent to a graph in a plane.

Similar notions around the complexity were earlier introduced by W. B. R. Lick-
orish and K. C. Millett in [9], S. Fujimura [3], T. S. Fung [4], M. Okuda [12] and M.
Ozawa [13] as the ascending number of an oriented link, by the author in [7] as a
notion of a complexity of an oriented link, and by A. Shimizu [14] as the minimum
of the sum of two oriented warping degrees of a minimal crossing diagram of a knot.
In particular, A. Shimizu characterized the alternating knot diagrams by establishing

the inequality d⃗(D) + d⃗(−D) 5 c(D) − 1 with c(D) the crossing number of D where
the equality holds if and only if D is an alternating diagram.

Figure 2: An unknotted plane graph with a Hopf constituent link

3. Uunknotting number

Figure 3: An edge reduction
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A spatial graph G is unknotted if d(G) = 0, and γ-unknotted if dγ(G) = 0. Let
γ(Γ) = (cγ(Γ), dγ(Γ)) be the minimum of γ(G) for all spatial graphs G of Γ. Then
dγ(Γ) = 0. A spatial graph G is Γ-unknotted if G is a spatial graph of Γ with
γ(G) = γ(Γ). Then by definitions,

“Γ-unknotted” ⇒ “γ-unknotted” ⇒ “unknotted”.

A link L is unknotted if and only if L is a trivial link, and a spatial plane graph
G is Γ-unknotted if and only if G is equivalent to a graph in a plane. A constituent
link of G is a link contained in G. The spatial graph in Figure 2 is an unknotted but
non-Γ-unknotted graph since it is a plane graph with a constituent Hopf link. In spite
of the Conway-Gordon Theorem in [2] stating that every spatial 6-complete graph K6

contains a non-trivial constituent link and every spatial 7-complete graph K7 contains
a non-trivial constituent knot, we have the following properties on unknotted graphs:

(1) For every graph Γ, there are only finitely many unknotted graphs G of Γ up to
equivalences.

(2) By a sequence of edge reductions illustrated in Figure 3, an unknotted connected
graph G is deformed into a maximal tree.

(3) An unknotted connected graph G is equivalent to a trivial bouquet of circles after
some edge contractions.

As a corollary of (2), we see that every edge of G is contained in a trivial con-
stituent knot. Let O be the set of unknotted graphs of Γ. Let OG

γ be the set of
unknotted graphs with monotone diagrams obtained by crossing changes from the
based diagrams (D; T ) ∈ [DG] with cd(D) = γ(G). Let OΓ be the set of Γ-unknotted
spatial graphs. The sets OG

γ and OΓ may be disjoint in general. For example, the spa-

tial graph G in Figure 2 has OG
γ ∩OΓ = ∅ since γ(G) = (2, 0), for G has a Hopf link as

a constituent link, and OΓ consists of only a graph G0 in a plane with γ(G0) = (0, 0),
for the abstract graph Γ of G is a planar graph. This example motivates us to define
the number

dΓ
γ (G) = dγ(G) + ρ(OG

γ , OΓ),

called the (γ, Γ)-warping degree of G, where ρ(, ) denotes the x-distance (i.e., Gordian
distance) function on the spatial graphs of Γ. The unknotting number u(G) and the
Γ-unknotting number uΓ(G) of G are respectively defined by the identities:

u(G) = ρ(G, O), and uΓ(G) = ρ(G,OΓ).

Let [DG]γ = {(D; T ) ∈ [DG] |c(D; T ) = cγ(G)}. The γ-unknotting number uγ(G) and

(γ, Γ)-unknotting number uΓ
γ (G) are defined by the identities:

uγ(G) = ρ([DG]γ , O),

uΓ
γ (G) = ρ([DG]γ , OΓ).

We have the following theorem:
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Theorem 2.1 The topological invariants u(G), uΓ(G), uΓ
γ (G), d(G), uγ(G) and

dΓ
γ (G) satisfy the following inequalities and are mutually distinct topological invari-

ants:
u(G) 5 uΓ(G) 5 uΓ

γ (G) 5 dΓ
γ (G)

∨∥ ∨∥
uγ(G) 5 dγ(G)
∨∥ ∨∥

u(G) 5 d(G)

For proof, the inequalities are easily obtained by definitions and the mutual dis-
tinctions of these invariants can be seen from several calculations on the concrete
examples, which we suggest as follows:

The spatial graph G in Figure 2 has u(G) = d(G) = uγ(G) = dγ(G) = 0 and
uΓ(G) = dΓ

γ (G) = 1. For the knot K = 52 which is a twist knot, we have u(K) =

uΓ
γ (K) = d(K) = 1 since T. S. Fung [4] and M. Ozawa [13] showed that a knot with

d = 1 is characterized by a twist knot, and dγ(K) = dΓ
γ (K) = 2 by A. Shimizu [14].

For K = 62, we have u(K) = uΓ
γ (K) = 1, but d(K) = dΓ

γ (K) = 2 since K is not any

twist knot. For K = 108, we have u(K) = uΓ(K) = 2 < uγ(K) = uΓ
γ (K) = 3 by a

result of S. A. Bleiler [1] and Y. Nakanishi [11]. The Kinoshita θ-curve in Figure 4
has cγ(G) = 7 (cf. H. Moriuchi [10]) and u(G) = uΓ

γ (G) = 1 < d(G) = dΓ
γ (G) = 2.

Also, we need the following result obtained by using a technique in [5]: For every
graph Γ and any integer n = 0, there are infinitely many spatial graphs G of Γ such
that

u(G) = uΓ(G) = uγ(G) = uΓ
γ (G) = d(G) = dγ(G) = dΓ

γ (G) = n.

Figure 4: Kinoshita’s θ-curve

4. A spatial graph with degree one vertices

Let Γ be a finite graph with degree 1 vertices which has, for simplicity, just one
connected component with vertices of degrees = 3. Then spatial graphs of Γ are
similarly considered. Let V be the set of degree one vertices of G. For the line
segment [a, b] between a, b ∈ R3 and x ∈ G, let Sv(x) = [v, x] ∪ (

∪
v,v′∈V [v, v′]) be a

star with origin v. Assume that Gv(x) = G∪ Sv(x) is a spatial graph without degree
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one vertices for every v ∈ V and x ∈ G. Then the warping degree d(G, x) and the
unknotting number u(G, x) of (G, x) are defined by

d(G, x) = max
v∈V

d(Gv(x)) and u(G, x) = max
v∈V

u(Gv(x)),

which are the warping degree and the unknotting number of G. When x ∈ V , we
denote them by d(G) and u(G), respectively. An example is illustrated in Figure 5.
In a similar way, the γ-warping degrees dγ(G, x), dγ(G), the (γ, Γ)-warping degrees
dΓ

γ (G, x), dΓ(G), the γ-unknotting numbers uγ(G, x), uγ(G) and the Γ-unknotting

numbers uΓ(G, x), uΓ(G) and the (γ, Γ)-unknotting numbers uΓ
γ (G, x), uΓ

γ (G) are de-
fined. Different invariants taking the minimum or the average in place of the maxi-
mum are also defined.

Figure 5: Knotted arcs
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