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Abstract. A knitting pattern is a tangle diagram in the square and a knitting
is a tessellation of a knitting pattern in the plane. In this paper, a classification
of the knitting patterns is done in terms of virtual links and some complexities
of a knitting pattern by some topological invariants are studied. Generaliza-

tions to a chain pattern and a graph-tangle pattern are also discussed.

1. Introduction

A knitting pattern is constructed from a link diagram in the torus with every
component essential by cutting along the meridian and the longitude of the torus,
which is defined in Section 2. A knitting is the lift of the link diagram to the
universal covering plane of the torus, namely, a tessellation of the knitting pattern
by the covering transformation group of the plane. Thus, a knitting is determined
uniquely by a knitting pattern. 10 examples of knitting patterns and knittings
are given in Section 2. In Section 3, equivalence of a knitting pattern is defined
and stated in terms of virtual link diagrams (see Theorem 3.3) and the virtual
number of a knitting pattern is defined. In Section 4, the crossing number, the
(enhanced) warping degree, the (enhanced) unknotting number, the cross-index and
the linking degree are introduced to investigate a complexity of a knitting pattern.
The calculation results on the 10 examples of knitting patterns in Section 2 are list
in the end of Section 4. In Section 5, we state how to construct a knitting pattern
as Theorem 5.1. As related patterns, a chain pattern and a graph-tangle pattern
are discussed in Sections 6 and 7, respectively.

2. A knitting pattern

Let S1 = R1/Z be the circle, and T 2 = S1 × S1 the torus. Let Q = [0, 1]2 be
the square obtained from the torus T 2 by cutting along the meridian S1 × 0 and
the longitude 0 × S1 (see Fig. 1). Let KT denote a link diagram in the torus T 2.
Let m and n be nonnegative integers with m+ n > 0.

Definition 2.1. A (m,n)-knitting pattern is a tangle diagram K in the square Q
obtained from a link diagram KT in T 2 by cutting along S1 × 0 and 0 × S1 such
that
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Figure 1. From the torus T 2 to the square Q

(1) any component of KT is essential (that is, not null-homotopic in T 2), and
(2) the link diagram KT meets 0×S1 and S1×0 (avoiding (0, 0)) transversely with
m and n points, respectively (see Fig 2).

Figure 2. From a link diagram in T 2 to a (m,n)-knitting pattern

An example of the procedure from a link diagram in T 2 to a (2, 2)-knitting
pattern is illustrated in Fig. 3.

Figure 3. From a link diagram in T 2 to a (2, 2)-knitting pattern

Definition 2.2. A periodic knitting (or simply a knitting) is the lift K̃ of a link di-
agram KT to the universal covering plane R2 of the torus T 2, namely, a tessellation
of the knitting pattern (Q,K) by the fixed covering transformation group Z2.

Here are examples on (m,n)-knitting patterns K with 0 ≤ m ≤ n ≤ 3 and
m+ n ≥ 2.

Example I. The knitting K̃ of a (1, 1)-knitting pattern K = is given in

Fig. 4.



KNITTING PATTERN 3

Example II. The knitting K̃ of a (0, 2)-knitting pattern K = is given in

Fig. 5.

Example III. The knitting K̃ of another (0, 2)-knitting pattern K = is

given in Fig. 6.

Example IV. The knitting K̃ of another (1, 1)-knitting pattern K = is

given in Fig. 7.

Example V. The knitting K̃ of a (1, 2)-knitting pattern K = is given in

Fig. 8.

Example VI. The knitting K̃ of another (1, 2)-knitting pattern K = is

given in Fig. 9.

Example VII. The knitting K̃ of a (1, 3)-knitting pattern K = is given in

Fig. 10.

Example VIII. The knitting K̃ of a (2, 2)-knitting pattern K = is given

in Fig. 11.

Example IX. The knitting K̃ of another (2, 2)-knitting pattern K = is

given in Fig. 12.

Example X. The knitting K̃ of a (2, 3)-knitting pattern K = is given in

Fig. 13.

Figure 4. Knitting of a (1, 1)-knitting pattern

3. Equivalence of a knitting pattern.

Two classical link diagrams are equivalent if one is moved into the other by a
finite number of Reidemeister moves in the 2-sphere S2 (namely, by the relations
R1, R2 and R3 in Fig. 14). Two link diagrams KT and K ′

T in T 2 are TR-equivalent
if there is an orientation-preserving diffeomorphism g of T 2 such that g(KT ) is
moved into K ′

T by a finite number of Reidemeister moves in T 2 , namely by the
relations R1,R2 and R3 in Fig. 14 in T 2. We put the following definition.
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Figure 5. Knitting of a (0, 2)-knitting pattern

Figure 6. Knitting of another (0, 2)-knitting pattern

Figure 7. Knitting of a (1, 1)-knitting pattern

Definition. A (m,n)-knitting pattern K and a (m′, n′)-knitting pattern K ′ are
equivalent if KT is TR-equivalent to K ′

T in T 2.

In the universal covering space R2 of T 2, this definition is interpreted that the
knitting K̃ of K is Z2-equivalent to the knitting K̃ ′ of K ′, meaning that the image
g̃(K̃) by a Z2-equivariant diffeomorphism g̃ of R2 is moved into K̃ ′ by a finite
number of Z2-equivariant Reidemeister moves. Let T 2[−1, 1] be the product of T 2

and the interval [−1, 1]. Let KT [∗] be a geometric realization of the link diagram

KT in the interior of T 2[−1, 1]. A geometric realization of a knitting K̃ is the lift
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Figure 8. Knitting of a (1, 2)-knitting pattern

Figure 9. Knitting of another (1, 2)-knitting pattern

Figure 10. Knitting of a (1, 3)-knitting pattern

K̃[∗] of KT [∗] to the universal covering R2[−1, 1] of T 2[−1, 1]. The following lemma
clarifies the definition of the equivalence of a knitting pattern.

Lemma 3.1. A (m,n)-knitting pattern K is equivalent to a (m′, n′)-knitting pat-
tern K ′ if and only if there is an orientation-preserving, boundary-preserving Z2-
equivariant diffeomorphism f̃ : R2[−1, 1] → R2[−1, 1] sending K̃[∗] to K̃ ′[∗].

Proof. If a (m,n)-knitting pattern K is equivalent to a (m′, n′)-knitting pattern
K ′, then there is an orientation-preserving, boundary-preserving diffeomorphism f :
T 2[−1, 1] → T 2[−1, 1] sending KT [∗] to K ′

T [∗], which is equivalent to that there is
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Figure 11. Knitting of a (2, 2)-knitting pattern

Figure 12. Knitting of another (2, 2)-knitting pattern

Figure 13. Knitting of a (2, 3)-knitting pattern

an orientation-preserving, boundary-preserving Z2-equivariant diffeomorphism f̃ :
R2[−1, 1] → R2[−1, 1] sending K̃[∗] to K̃ ′[∗] by lifting T 2[−1, 1] to R2[−1, 1]. Since
an orientation-preserving, boundary-preserving diffeomorphism f : T 2[−1, 1] →
T 2[−1, 1] sending KT [∗] to K ′

T [∗] means that KT is TR-equivalent to K ′
T in T 2

(see [6, 8, 13]), the desired result is obtained. □

A virtual link diagram is a link diagram with additional virtual crossings like

which was introduced by Kauffman [11]. The virtual link is the equivalence

class of a virtual link diagram divided by the equivalence relation generated by
the virtual Reidemeister moves on virtual link diagrams illustrated in Fig. 14. In
other words, two virtual link diagrams are VR-equivalent if one is obtained from
the other by a finite number of the virtual Reidemeister moves. A virtual link
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diagram is classical if it is VR-equivalent to a classical link diagram. Otherwise,
non-classical.

Figure 14. Virtual Reidemeister moves

We construct a virtual link diagram KV from a (m,n)-knitting pattern K as
shown in Fig. 15, where the product mn is the number of virtual crossing points in
the virtual link diagram KV and called the virtual number v(K) of K. See Fig. 16
for a concrete example.

Figure 15. Constructing a virtual link diagram KV with virtual
number v(K) = mn from a (m,n)-knitting pattern K

Figure 16. Constructing a virtual link diagram KV with virtual
number v(K) = 4 from a (2, 2)-knitting pattern K
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From the following lemma (whose proof is omitted since it is easily obtained),
we see that every string of a knitting is a proper line in the plane.

Lemma 3.2. Let K be a tangle in Q with the same antipodal points in ∂Q, and
KT and KV the link diagram in T 2 and the virtual link diagram, obtained from K
by connecting the antipodal points in ∂Q, respectively. Then the following (1)-(3)
are mutually equivalent.

(1) Any component of a link diagram KT is not null-homotopic in T 2.
(2) Any oriented loop obtained from strings inK by connecting the antipodal points
in ∂Q has a non-zero intersection number with one of the 4 edges of ∂Q.
(3) Any oriented component of the virtual link diagram KV has a nonzero inter-
section number with one of the 4 edges of ∂Q.

Two link diagrams KT and K ′
T in T 2 are AR-equivalent if KT and K ′

T are
moved into link diagrams KA and K ′

A in annuli A and A′ in T 2 by a finite number
of Reidemeister moves, respectively such that KA is sent to K ′

A by an orientation-
preserving diffeomorphism gA : A → A′.

Theorem 3.3. For a (m,n)-knitting pattern K and a (m′, n′)-knitting pattern K ′,
we have the following (1) and (2).

(1) If KT is AR-equivalent to K ′
T , then the virtual link diagrams KV and K ′

V

are VR-equivalent and classical.
(2) K is equivalent to K ′ if and only if either KT is AR-equivalent to K ′

T or
KV and K ′

V are VR-equivalent and non-classical.

Proof. (1) is obtained from [2, 7] since KT and K ′
T belong to a stably equivalence

class of a classical link. (2) is obtained by [19] stating a relationship between a
virtual link and a minimal stable equivalence of a link under an interpretation of a
virtual link in [2, 7]. □

Note that there are many computable topological invariants for the VR-equivalence
of virtual link diagrams, e.g., Jones polynomial ([10]), Miyazawa polynomial ([21],
Writhe polynomial ([3, 4, 5, 27]), etc. Also, we mention that a classification of
knots with at most 5 crossings in T 2 were made in [1].

4. Topological complexities of a tangle diagram

In this section, the square Q = [0, 1]2 is regarded as a disk. An r-string tangle
diagram is the union K of r arcs αi (i = 1, 2, . . . , r) properly immersed and trans-
versely intersected in the disk Q whose double point singularities are in the interior
of Q and have over and under information. Two tangle diagrams are equivalent
if one is moved into the other by a finite number of Reidemeister moves in the
interior of the disk Q , namely by the relations R1, R2 and R3 in Fig. 14. Let [K]
be the equivalence class of a tangle diagram K. Tangle diagram invariants used for
a complexity of a tangle diagram are introduced in the following (1)-(5):
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(1) Crossing number. The crossing number of a tangle diagram K is the number
c(K) of the crossing points of K. Let

c[K] = min{c(K ′)|K ′ ∈ [K]}.
A tangle diagram K in the disk Q is reduced alternating if an over-crossing and
an under-crossing appear alternately for every string of K and any 1-string tangle
diagram with a crossing is not contained in the tangle diagram (Q,K). Note that

even if K is a reduced alternating knitting pattern, the knitting K̃ need not be an
alternating diagram. For alternating knitting patterns in the exmaples of Section 2,
the knittings of Examples II, III, VIII and IX are alternating, but the knittings of
Examples I, IV and V are not alternating. We have the following observation.

Lemma 4.1. If a tangle diagram K is a reduced alternating tangle diagram, then
c[K] = c(K).

Proof. Put the tangle diagram K in the upper-half plane R2
+. Let K∗ be the

tangle diagram in the lower-half plane R2
− obtained from K by reflecting K in the

line ∂R2
+ = ∂R2

− and then changing upper and lower information on every crossing.
Then the tangle sum K+K∗ is a reduced alternating link diagram in the plane R2.
By the Murasugi-Kauffman theorem [10, 22], the crossing number c(K ∪ K∗) of
the reduced alternating link diagram K∪K∗ in S2 is a Reidemeister move invariant
and equal to 2c(K), showing that c[K] = c(K). □

Figure 17. Monotone arc diagrams

(2) Warping Degree. This notion is discussed in many papers [14, 15, 16,
20, 23, 24, 25, 26], where we use the string version in [14, 15]. Let K =
α1 ∪ α2 ∪ · · · ∪ αr be an r-string tangle diagram in Q. An arc component diagram
αi is monotone if a point going along αi from one of the end points meets first
the upper crossing point at every crossing (see Fig. 17). For any strings αi and αj

with i ̸= j, it is denoted by αi > αj that αi is upper than αj at every crossing.
The tangle diagram K is monotone if every 1-string tangle diagram is monotone
and αi1 > αi2 > · · · > αir for a permutation (i1, i2, . . . , ir) of (1, 2, . . . , r). The
warping degree of an r-string tangle diagram K is the minimal number d(K) of
crossing changes on K needed to transform K into a monotone tangle diagram.
Let d[K] = min{d(K ′)|K ′ ∈ [K]}.

(3) Unknotting number. This notion is introduced in [15, 16] as a generaliza-
tion of the usual unknotting number of a link. An r-string tangle diagram K is
unknotted if d[K] = 0. The unknotting number of an r-string tangle diagram K is
the minimal number u(K) of crossing changes on K needed to obtain an unknotted
tangle diagram. Let u[K] = min{u(K ′)|K ′ ∈ [K]}. Let us(K) =

∑r
i=1 u(αi), and

us[K] = min{us(K ′)|K ′ ∈ [K]}. We have u[K] ≥ us[K].
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Figure 18. The elementary cross-index

(4) Cross-index. This notion is introduced in [16, 18]. The elementary cross-
index of any strings αi and αj with i ̸= j of an r-string tangle diagram K is the
number ε(αi, αj) being 0 or 1 according to whether or not the set ∂αj is contained
in one component of ∂Q \ ∂αi (see Fig. 18). The cross-index of K is the number

c∗(K) =
∑
i<j

ε(αi, αj),

which is independent of a finite number of Reidemeister moves on K and thus, let
c∗[K] = c∗(K).

A warping crossing point set of K is a set p = {p1, p2, . . . , pd} of crossing
points of K such that the cross changes on the set p make K a monotone tangle
diagram. For any strings αi and αj with i ̸= j, let d(αi, αj ;p) be the number of
crossing points between αi and αj belonging to the set p, and ds(K;p) the number
of self-crossing points belonging to the set p. Let

d+(K;p) = ds(K;p) +
∑
i<j

max{d(αi, αj ;p), ε(αi, αj)}.

The enhanced warping degree of K is the minimal number d+(K) of d+(K;p) for
all warping crossing point sets p.

An unknotting crossing point set of K is a set q = {q1, q2, . . . , qu} of crossing
points ofK such that the crossing changes on the set qmakeK an unknotted tangle
diagram. For any strings αi and αj with i ̸= j, let u(αi, αj ;q) be the number of
crossing points between αi and αj belonging to the set q, and us(K;q) the number
of self-crossing points belonging to the set q. Let

u+(K;q) = us(K;q) +
∑
i<j

max{u(αi, αj ;q), ε(αi, αj)}.

The enhanced unknotting number of K is the minimal number u+(K) of u+(K;q)
for all unknotting crossing point sets q of K.

Let d+[K] = min{d+(K ′)|K ′ ∈ [K]}, u+[K] = min{u+(K ′)|K ′ ∈ [K]}. Then
we have d+[K] ≥ d[K] and u+[K] ≥ u[K].

(5) Linking degree. For any strings αi and αj with i ̸= j of an r-string tangle
diagram K, let λ(αi, αj) be the absolute value of the sum of the signs ±1 of the
crossing points between αi and αj for any orientation of K. The linking degree of
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K is the integer

λ(K) = ⌈λ(αi, αj)

2
⌉ (⌈ ⌉ denoted the ceiling function),

which is independent of a finite number of Reidemeister moves on K, and thus,
let λ[K] = λ(K). By definition, we have λ[K] ≥ c∗[K]. On these tangle diagram
invariants, we have the following inequalities.

Lemma 4.2. c[K] ≥ d+[K] ≥ u+[K] ≥ us[K] + λ[K] ≥ us[K] + c∗[K].

Proof. The inequalities c[K] ≥ d+[K] ≥ u+[K] are obtained directly from the
definitions. To see that u+[K] ≥ us[K] + λ[K], let us(K;q) be the number of
self-crossing points in an unknotting crossing point set q with u+(K;q) = u+(K).
Then since us(K;q) ≥ us(K), we have u+(K)− us(K) ≥ λ(K) = λ[K] and hence
u+(K) ≥ us[K] + λ[K], so that u+[K] ≥ us[K] + λ[K]. Since λ[K] ≥ c∗[K], the
desired inequalities are obtained. □

The calculation results on the knitting patterns K of Examples I-X are given in
Calculation Table, where c, v, d+, u+, λ, us and c∗ denote the values the crossing
number c[K], the virtual number v(K) considered as v[K], the enhanced warping
degree d+[K], the enhanced unknotting number u+[K], the linking degree λ[K],
the self-unknotting number us[K] and the cross-index c∗[K].

Calculation Table on Examples I-X

c v d+ u+ λ c∗ us total
I 2 1 1 1 1 0 0 6
II 4 0 1 1 1 1 0 8
III 4 0 2 2 1 1 1 11
IV 4 1 2 2 2 0 0 11
V 4 2 2 2 2 0 0 12
V I 4 2 2 2 2 0 0 12
V II 4 3 2 2 2 0 0 13
V III 4 4 3 3 3 2 0 19
IX 4 4 4 4 4 4 0 24
X 4 6 4 4 4 4 0 26

5. Constructing a knitting pattern

As a standard terminology on a tangle (see [13]), we say that a tangle diagram
K in Q is not prime if one of (1)-(3) is satisfied.

(1) After Reidemeister moves R1, R2, R3 on K, there is a proper arc in Q which is
disjoint from K and separates K into two tangle diagrams.
(2) K is the connected sum of a tangle K ′ and a non-trivial knot diagram.
(3) After Reidemeister moves on K, there is a proper arc in Q which meets K in a
single point and separates K into two tangle diagrams K ′ and K ′′ with c[K ′] > 0
and c[K ′′] > 0.
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Otherwise, K is prime. In the following theorem, we explain how to construct
a knitting pattern.

Figure 19. The standard (m,n)-knitting pattern

Theorem 5.1. Every (m,n)-knitting pattern K in the square Q = [0, 1]2 is con-
structed from the standard (m,n)-knitting pattern K0 illustrated in Fig. 19 by a
finite number of the following operations:

(OP1) A permutation on the ends of K0 in ∂Q.
(OP2) A Reidemister move R1, R2 or R3 in intQ.
(OP3) A crossing change in intQ.

Further, let n,m, e, f be any non-negative integers such that m + n ≥ 2,
(m+n)(m+n−1)

2 ≥ e, g ≥ e and f + g > 0. Then we have (1) and (2).

(1) There is a prime (m,n)-knitting pattern K∗ in Q such that

c∗[K∗] = e, us(K∗) = f, λ[K∗] = g, c[K∗] ≥ d+[K∗] ≥ u+[K∗] = f + g.

(2) There is a prime reduced alternating (m,n)-knitting pattern K∗∗ in Q such that

c∗[K∗∗] = e, us(K∗∗) = f, λ[K∗∗] = g, c[K∗∗] ≥ d+[K∗∗] ≥ u+[K] ≥ f + g.

Proof. Let K be any given (m,n)-knitting pattern. Transform the end of every
string of the standard (m,n)-knitting pattern K0 to coincide with the end of every
string of K by (OP1). Then by (OP2) and (OP3) the resulting (m,n)-knitting
pattern K ′

0 is deformed into K, showing the first half of the theorem. To see (1) and
(2), first notice that a (m,n)-knitting pattern K(O) without crossing is constructed
from K0 by (OP1) and (OP2). Then construct a (m,n)-knitting pattern K ′ with
c∗(K ′) = e and d(K ′) = 0 from K(O) by (OP1). In fact, if 1 ≤ e ≤ m + n − 1,
then c∗(K ′) = e and d(K ′) = 0 is easily obtained by moving an end of one string of
K(O). In general, by iterating this operation, we obtain c∗(K ′) = e and d(K ′) = 0

because for every integer e such that m + n − 1 < e ≤ (m+n)(m+n−1)
2 , there are

non-negative integers s, e′ such that

e = (m+ n− 1) + · · ·+ (m+ n− s− 1) + e′ and 0 ≤ e′ ≤ m+ n− s− 2.

Next, let K ′′ be a local connected sum of a string of K ′ and the f -fold connected
sum of a 3-crossing trefoil knot diagram. Then the (m,n)-knitting pattern K ′′ has
c∗(K ′′) = e and us(K ′′) = f . Further, construct a (m,n)-knitting pattern K ′′′ from
K ′′ by making a g-full twists locally on any two strings ofK ′′ so thatK ′′′ is a (m,n)-
knitting pattern with c∗[K ′′′] = e, us[K ′′′] = f , λ[K ′′′] = g and u+[K ′′′] = f + g.
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Note that K ′′′ is non prime for f > 0. To obtain (1), for u+[K ′′′] = f + g > 0
there is a technique in [12] deforming K ′′′ with a prime (m,n)-knitting pattern K∗

with c∗[K∗] = e, us[K∗] = f , λ[K∗] = g and u+[K∗] = f + g. To obtain (2), we
can construct a prime reduced alternating K∗∗ with λ[K∗∗] = g from K ′′′ by using
distinct strings of K ′′′. Then c∗[K∗∗] = e, us(K∗∗) = f and u+[K∗∗] ≥ f + g. □

6. Other related patterns (1): A chain pattern

A (m,n)-chain pattern is a (m,n)-tangle diagram K in Q obtained from a link
diagram KT in the torus T 2 by cutting along S1 × 0 and 0× S1 such that

(1) every knot component of KT meets S1 × 0 and/or 0× S1, and there is a knot
component of KT which is null-homotopic in T 2, and
(2) KT meets S1× 0 and 0×S1 (avoiding (0, 0)) transversely with m and n points,
respectively.

A chain is the lift K̃ of a link diagram KT in T 2 to the universal covering plane
R2 of T 2, determined uniquely from the knitting pattern K. For a complexity of
a (m,n)-chain pattern K, the equivalence, the crossing number c[K], the warping
degree d[K], the unknotting number u[K] and the cross-index c∗[K] are similarly

defined. For example, the chain K̃ of the (2, 4)-chain pattern K = is given

in Fig. 20.

Figure 20. Chain of a (2, 4)-chain pattern

7. Other related patterns (2): A graph-tangle pattern

A (m,n)-graph-tangle pattern is a graph-tangle diagram K in Q obtained from
a spatial graph diagram KT in T 2 by cutting along S1 × 0 and 0× S1 such that

(1) every spatial graph component of KT meets S1 × 0 and/or 0× S1, and
(2) KT meets S1× 0 and 0×S1 (avoiding (0, 0)) transversely with m and n points,
respectively.

A graph-tangle is the lift K̃ of a spatial graph diagram KT in T 2 to the universal
covering plane R2 of T 2, determined uniquely from the graph-tangle pattern K. For
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example, the graph-tangle K̃ of the (2, 2)-graph-tangle pattern K = is given

in Fig. 21. For a complexity of a (m,n)-graph-tangle pattern K, the equivalence,
the crossing number c[K], the warping degree d[K], the unknotting number u[K]
and the cross index c∗[K] are defined by using an idea coming from [16]. For this
explanation, let (S2,KS) be the connected spatial graph diagram obtained from
the graph-tangle pattern (Q,K) by shrinking the boundary circle ∂Q to a vertex
(which may be of degree 2). Then the crossing number c[K], the warping degree
d[K], the unknotting number u[K] and the cross-index c∗[K] of the (2, 2)-graph-
tangle pattern K in Fig. 21 is defined to be the minima of c[K ′], d[K ′], u[K ′] and
c∗[K ′] for the equivalence classes [K ′] of all the tangle patterns K ′ obtained from
(S2,KS) by deleting the interior of a regular neighborhood of a maximal tree of
KS in S2 (see Fig. 22).

Figure 21. Graph-tangle of a (2, 2)-graph-tangle pattern

Figure 22. Graph-tangles K ′

Acknowledgements. The author would like to thank the referee for pointing out
lots of careless mistakes.
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