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ABSTRACT

The torsion Alexander polynomial, the reduced torsion Alexander polyno-
mial and the local signature invariant of a cross-section of an immersed sphere-
link are investigated from the viewpoint of how to influence to the immersed
sphere-link. It is shown that the torsion Alexander polynomial of a symmet-
ric middle cross-section of a ribbon sphere-link is an invariant of the ribbon
sphere-link. A generalization to a symmetric middle cross-section of an im-
mersed ribbon sphere-link is given.
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1 Introduction

An immersed sphere-link, namely an immersed S2-link with r components in the 4-
space R4 is the image L of the disjoint union rS2 of r copies of the 2-sphere S2 into
the 4-spaceR4 by a smooth immersion. When L is connected, it is called an immersed
S2-knot inR4. Assume that the singularity set S(L) of an immersed S2-link L consists
of transverse double points, whose number is called the double point number of L and
denoted by c = c(L). When c = 0, the immersed S2-link L is just an S2-link. Two
immersed S2-links L and L′ in R4 are equivalent if there is an orientation-preserving
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diffeomorphism f : R4 → R4 sending L to L′ orientation-preservingly. For a subset
F ⊂ R3 and an interval I ⊂ R1, let

FI = {(x, t) ∈ R4|x ∈ F, t ∈ I}.

A cross-section of an immersed S2-link L is an oriented link ℓ with s components
in the 3-space R3[0] obtained by the transverse intersection ℓ = L′ ∩ R3[0] for an
immersed S2-link L′ equivalent to L with S(L′)∩R3[0] = ∅. For our argument, assume
that L′ = L and R3[0] = R3. Let L− = L ∩ R3(−∞, 0] and L+ = L ∩ R3[0,+∞).
The double point singularities S(L−) and S(L+) of L− and L+ are called the lower
and upper double points of the immersed S2-link L separated by the cross-section ℓ,
whose numbers c− = c(L−) and c+ = c(L+) are called the lower and upper double
point numbers, respectively. Then c = c− + c+. Every double point singularity is
constructed by a cone over a Hopf link and the linking number ±1 of the Hopf link
is called the sign of the double point. The sums of the signs of the lower and upper
double points are called the signed lower and upper double point numbers and denoted
by ξ− and ξ+, respectively. Then the sum ξ = ξ+ + ξ− is called the signed double
point number of L. By definition, we have

|ξ−| ≦ c− and |ξ+| ≦ c+.

A cross-section ℓ of L is regular if the natural homomorphism

H1(R
3 \ ℓ;Z) → H1(R

4 \ L;Z)

induces an isomorphism sending every meridian of ℓ to a meridian of L. For an
irregular cross-section ℓ of L, it is assumed that the natural homomorphism

H1(R
3 \ ℓ;Z) → H1(R

4 \ L;Z)

induces an epimorphism sending every medidian of ℓ to an meridian of L, so that
every meridian of L is the image of a meridian of ℓ. It is noted that if ℓ is a (possibly
irregular) cross-section of an immersed S2-link L such that ℓ has at most two compo-
nents or a regular cross-section of an immersed S2-link L with any component, then
the link ℓ is immersed concordant to a trivial link in the sense of [14]. In § 2, finer no-
tions of a regular cross-section of an immersed S2-link, namely a middle cross-section
of an immersed S2-link and a symmetric middle cross-section of an immersed ribbon
S2-link are introduced.

The purpose of this paper is to study a relationship between an immersed S2-link
L and a link ℓ which is a cross-section of L. Although it has not been well studied
on before, this setting is general and natural because a generic smooth map

sS1 → R3
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is an embedding and a generic smooth map

rS2 → R4

is an immersion. This research is discussed from two viewpoints, namely a viewpoint
of the immersed link concordance in [14] where a result of the torsion Alexander
polynomial has been given and an earlier viewpoint of the quadratic form of a link in
[6, 13] where a result on an irregular cross-sections of an S2-link (without singularity)
has been given. Let Λ = Z[Zr] = Z[t1, t

−1
1 , t2, t

−1
2 , . . . , tr, t

−1
r ] and Λ̃ = Z[Z] = Z[t, t−1]

denote the free abelian group Zr of rank r and the integral group ring of the infinite
cyclic group Z, respectively. The following invariants of an immersed S2-link L and
a cross-section ℓ of L are used to state our main results (Theorems 1.1 and 1.2).

• The linking sum invariant |Link|(ℓ) of ℓ which is defined to be the sum of the
absolute values of pairwise linking numbers of ℓ.
• The local signature invariant sJ(ℓ) of ℓ for every subset J ⊂ [−1, 1].
• The torsion Alexander polynomials

∆T (L) = ∆T (L; t1, t2, . . . , tr), ∆T (ℓ) = ∆T (ℓ; t1, t2, . . . , tr) ∈ Λ

of L and ℓ and the reduced torsion Alexander polynomials

∆̃T (L) = ∆̃T (L; t), ∆̃T (ℓ) = ∆̃T (ℓ; t) ∈ Λ̃.

• The κ-invariants
κ(ℓ), κ(L±), κ(L)

and the reduced κ-invariants

κ̃(ℓ), κ̃(L±), κ̃(L)

of ℓ, L± and L.

Some detailed explanations of these invariants are made in § 3. It is standard to
use the notation

f
.
= f ′

for elements f, f ′ ∈ Λ or f, f ′ ∈ Λ̃ in the sense that f and f ′ are equal up to
multiplications of units of Λ or Λ̃, respectively. The notation

f
.≡ f ′

for elements f, f ′ ∈ Λ or f, f ′ ∈ Λ̃ are used in the sense that f and f ′ are equal up
to multiplications of units of Λ and the elements ti − 1 ∈ Λ (i = 1, 2, . . . , r) or equal
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up to multiplications of units of Λ̃ and the element t − 1 ∈ Λ̃, respectively. For an
element f = f(t1, t2, . . . , tr) ∈ Λ or f = f(t) ∈ Λ̃, let

f ∗ = f(t−1
1 , t−1

2 , . . . , t−1
r ) or f ∗ = f(t−1),

respectively. The following theorem is obtained from the viewpoint of the immersed
link concordance in [14].

Theorem 1.1. The following (1)-(4) are obtained.

(1) The inequality 2κ(L) ≦ c holds. If 2κ(L) = c, then for any (regular or irregular)
cross-section ℓ of L, the identity

∆T (ℓ)
.≡ ff ∗

holds for an element f ∈ Λ.

(2) If ℓ is a regular cross-section of L, then the inequalities

max{2κ(L+)− c+, 2κ(L−)− c−} ≦ κ(ℓ) ≦ min{c−, c+}

holds. Further, if κ(ℓ) = max{2κ(L+) − c+, 2κ(L−) − c−} or min{c−, c+}, then the
identity

∆T (ℓ)
.≡ ff ∗

holds for an element f ∈ Λ.

(3) If ℓ is a middle cross-section of L and κ(ℓ) = c− = c+, then 2κ(L) = c and the
identities

∆T (ℓ)
.≡ ∆T (L+)∆T (L+)∗

.
= ∆T (L−)∆T (L−)∗

.
= ∆T (L)∆T (L)∗gg∗

hold for an element g ∈ Λ.

(4) If L is an immersed ribbon S2-link with 2κ(L) = c and ℓ is any symmetric middle
cross-section of L, then

κ(ℓ) = c− = c+ and ∆T (ℓ)
.≡ ∆T (L)∆T (L)∗.

The following theorem is obtained from the viewpoint of the quadratic form of a
link in [13].

Theorem 1.2. The following (1)-(4) are obtained.

(1) If ℓ is a regular or irregular cross-section of L, then

max{|s(a,1](ℓ)|+ κ̃(L), 2κ̃(L)} ≦ c
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for every a ∈ (−1, 1). Further, if 2κ̃(L) = c, then

ξ = 0, sa(ℓ) = 0, |s1(ℓ)| ≦
c

2
and ∆̃T (ℓ)

.≡ ff ∗

for every a ∈ (−1, 1) and an element f ∈ Λ̃.

(2) If ℓ is a regular cross-section of L, then |Link|(ℓ) ≦ min{c−, c+},

max{2κ̃(L+)− κ̃(ℓ), |s(a,1](ℓ) + ξ+|+ κ̃(ℓ)} ≦ c+,

max{2κ̃(L−)− κ̃(ℓ), |s(a,1](ℓ)− ξ−|+ κ̃(ℓ)} ≦ c−

for every a ∈ (−1, 1). Further, if κ̃(ℓ) = 2κ̃(L+) − c+ or κ̃(L+) = c+ (or κ̃(ℓ) =
2κ̃(L−)− c− or κ̃(L−) = c−, respectively), then we have s(a,1](ℓ) = −ξ− (or s(a,1](ℓ) =
ξ−, respectively) for every a ∈ (−1, 1) and

∆̃T (ℓ)
.≡ ff ∗

for an element f ∈ Λ̃.

(3) If ℓ is a middle cross-section of L and κ̃(ℓ) = c− = c+, then we have ξ = 0,
2κ̃(L) = c and

∆̃T (ℓ)
.≡ ∆̃T (L+)∆̃T (L+)∗

.
= ∆̃T (L−)∆̃T (L−)∗

.
= ∆̃T (L)∆̃T (L)∗gg∗

for an element g ∈ Λ̃.

(4) If L is an immersed ribbon S2-link with 2κ̃(L) = c and ℓ is any symmetric middle
cross-section of L, then

κ̃(ℓ) = c− = c+ and ∆̃T (ℓ)
.≡ ∆̃T (L)∆̃T (L)∗.

It is noted that the linking sum invariant |Link|(ℓ) can be taken sufficiently large
for an irregular cross-section ℓ of an S2-knot L (see S. Satoh [21]). Also, there are
many examples of immersed ribbon S2-links L with 2κ(L) = c(L) or 2κ̃(L) = c(L),
which will be discussed in § 5. As a consequence of Theorem 1.2 (2), we obtain the
following corollary.

Corollary 1.3. If ℓ is a regular cross-section of an immersed S2-link L, then we have

|s(a,1](ℓ)| ≦ min{c− + |ξ−|, c+ + |ξ+|} ≦ min{2c−, 2c+}

for every a ∈ (−1, 1).
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For example, let ℓ be the n-fold connected sum of the trefoil knot. If ℓ is a cross-
section of an immersed S2-knot L, then we have c ≧ 2n by Theorem 1.2 (1) and
c± ≧ n by Corollary 1.3 since s(−1,1](ℓ) = s(ℓ) = ±2n. Further, an immersed S2-knot
L with this link ℓ as a regular cross-section such that ξ+ = n, ξ− = −n and c = 2n is
easily constructed. From Theorem 1.1 (4), the following corollary is obtained.

Corollary 1.4. Let L be an immersed ribbon S2-link of r components with 2κ(L) =
c(L), and ℓ a symmetric middle cross-section of L. The torsion Alexander polynomial
∆T (ℓ) ∈ Λ up to multiplications of units of Λ and the elements ti − 1 (i = 1, 2, . . . , r)
is an invariant of L under the immersed S2-link equivalences.

From Theorem 1.2 (4), the following corollary is obtained.

Corollary 1.5. Let L be an immersed ribbon S2-link with 2κ̃(L) = c(L), and ℓ

a symmetric middle cross-section of L. The reduced torsion Alexander polynomial
∆̃T (ℓ) ∈ Λ̃ up to multiplications of units of Λ̃ and t− 1 is an invariant of L under the
immersed S2-link equivalences.

Let L be an S2-link (i.e., an immersed S2-link with c = 0). A (possibly irregular)
cross-section ℓ of L is also called a sphere-slice link. This cross-sectional link was
first considered by R. H. Fox in [3]. It is noted that if ℓ is a (possibly irregular)
cross-section of L such that ℓ has at most two components or a regular cross-section
of L with any component, then the link ℓ is concordant to a trivial link, which is
much investigated until now by many researchers. By Theorems 1.1 (1) and 1.2 (1)
and Lemma 3.3 (3), we have

κ(L) = κ̃(L) = 0 and ∆T (L; 1, 1, . . . , 1) = ±1, ∆̃T (L; 1) = ±1.

If ℓ is a (regular or irregular) cross-section of L, then Theorem 1.2 (1) means that
s1(ℓ) = 0, so that by [13, Lemma 5.7] κ(ℓ) ≡ 0 (mod 2) and the multiplicity of t− 1
in ∆̃T (ℓ) is even and hence

∆̃T (ℓ)
.
= pp∗

for an element p ∈ Λ̃. Furthermore, since the double branched covering space Y +
2 of

(B4)+ branched along L+ is embedded in the double branched covering space Y2 of S
4

branched along L which has the trivial second rational homology H2(Y2;Q) = 0, it is
seen that the signature sign(Y +

2 ) is 0, which implies that the signature s(ℓ) is 0 by [13,
Lemma 6.1]. By combining it with Theorem 1.2 (1), we have the local signature sa(ℓ)
is 0 for every a ∈ [−1, 1]. The linking matrix V (ℓ) of ℓ with Seifert surface framing is
an even symmetric matrix with signature sV (ℓ) = 0. The evenness and the vanishing
signature of the linking matrix V (ℓ) are known by [19, 21] and [13, Theorem 8.2],
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respectively. For completeness, a unified simple topological proof of this fact is given
in Lemma 3.4. Then the Arf invariant Arf(ℓ) is well-defined, and taken 0 (mod 2)
since ℓ bounds a genus zero surface in the 4-ball (see [12, Corollary 12.3.9]). If ℓ is a
regular cross-section of L, then by Theorems 1.1 (2) and 1.2 (2) and Lemma 3.3 (3),
we have

κ(ℓ) = κ̃(ℓ) = 0 and ∆T (ℓ; 1, 1, . . . , 1) = ±1, ∆̃T (ℓ; 1) = ±1.

Then the following unique normalizations

∆T (ℓ) = ∆T (ℓ)∗, ∆T (ℓ; 1, 1, . . . , 1) = 1, ∆̃T (ℓ) = ∆̃T (ℓ)∗, ∆̃T (ℓ; 1) = 1

can be made by some unit multiplications of Λ̃ and Λ, respectively. By combining
the arguments above with Theorems 1.1 and 1.2, we obtain a detailed version of [13,
Theorem 8.2] as the following corollary, where the normalizations of ∆T (ℓ) and ∆̃T (ℓ)
are used in the assertions (2)-(4).

Corollary 1.6 (Sphere-slice Theorem). Let L be an S2-link. Then the following
(1)-(4) are obtained.

(1) For every (regular or irregular) cross-section ℓ of L, the linking matrix V (ℓ) is
even and the identities

sV (ℓ) = sa(ℓ) = σa(ℓ) = 0, ∆T (ℓ)
.≡ ff ∗,

∆̃T (ℓ)
.
= pp∗, κ̃(ℓ) ≡ Arf(ℓ) ≡ 0 (mod 2)

hold for every a ∈ [−1, 1] and elements f ∈ Λ and p ∈ Λ̃.

(2) If ℓ is a regular cross-section of L, then the following identities

∆T (ℓ) = ff ∗ and ∆̃T (ℓ) = pp∗

hold for an element f ∈ Λ with f(1, 1, . . . , 1) = 1 and an element p ∈ Λ̃ with p(1) = 1
without ambiguity of unit multiplications.

(3) If ℓ is a middle cross-section of L, then the following identities

∆T (ℓ) = ∆T (L+)∆T (L+)∗ = ∆T (L−)∆T (L−)∗ = ∆T (L)∆T (L)∗gg∗,

∆̃T (ℓ) = ∆̃T (L+)∆̃T (L+)∗ = ∆̃T (L−)∆̃T (L−)∗ = ∆̃T (L)∆̃T (L)∗qq∗

hold for an element g ∈ Λ with g(1, 1, . . . , 1) = 1 and an element q ∈ Λ̃ with q(1) = 1
without ambiguity of unit multiplications.

(4) If L is a ribbon S2-link and ℓ is a symmetric middle cross-section of L, then the
following identities

∆T (ℓ) = ∆T (L)∆T (L)∗ and ∆̃T (ℓ) = ∆̃T (L)∆̃T (L)∗
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hold without ambiguity of unit multiplications. In particular, the torsion Alexander
polynomial ∆T (ℓ) and the reduced torsion Alexander polynomial ∆̃T (ℓ) are invariants
of L under the equivalences of S2-links.

For example, if a possibly irregular cross-section ℓ of an immersed S2-link L is the
Hopf link, then we have c(L) ≧ 1 and by a direct construction the equality is realized
by an irregular cross-section. If a possibly irregular cross-section ℓ of an immersed
S2-link L is the Whitehead link or the Borromean rings, then we have c(L) ≧ 2 and by
a direct construction the equality is realized by a regular cross-section or an irregular
cross-section, respectively. This inequality is shown from the fact that Arf(ℓ) ̸= 0
(mod 2), implying that ℓ cannot bound any genus zero surface in the 4-ball by [12,
Corollary 12.3.9]. The following corollary is direct from Corollary 1.6.

Corollary 1.7. For every ribbon link ℓ, only finitely many elements of Λ and Λ̃
up to unit multiplications which are factors of ∆T (ℓ) and ∆̃T (ℓ) can be the torsion
Alexander polynomials ∆T (L) and ∆̃T (L) for all S2-links L with ℓ as a middle cross-
section, respectively.

For r = 1, the torsion Alexander polynomial ∆T (ℓ) and the reduced torsion
Alexander polynomial ∆̃T (ℓ) of ℓ are just the Alexander polynomial ∆(ℓ; t) of the
knot ℓ which is equivalent to the Conway polynomial ∇(ℓ; z). Thus, the following
corollary is also direct from Corollary 1.6:

Corollary 1.8. The Conway polynomial ∇(ℓ; z) of every symmetric middle cross-
section ℓ of every ribbon S2-knot L is an invariant of L under the equivalences of
S2-knots.

Corollary 1.8 can be also derived from the Fox calculus (see [2]) on a ribbon band
calculation done by H. Terasaka [24] and the author’s recent result in [15] on the
ribbon moves of a ribbon S2-knot. This result has been applied to a recent joint
paper with Y. Joung, S. Kamada and S. Y. Lee in [4].

In § 2, an immersed S2-link is explained from the viewpoint of a motion picture.
In § 3, some invariants of a link and an immersed S2-link are explained. In § 4,
the proofs of Theorems 1.1 and 1.2 are done. In § 5, a symmetric construction of
immersed ribbon S2-links is considered to explain some examples.
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2 A motion picture of an immersed S2-link

A band surgery on an oriented link ℓ in the 3-space R3 is a transformation of ℓ into
an oriented link ℓ′ by a finite family of mutually disjoint bands βi (i = 1, 2, . . . ,m)
spanning ℓ such that

ℓ′ = cl(ℓ \ ∪m
i=1ℓ ∩ βi) ∪m

i=1 cl(∂βi \ ℓ ∩ βi).

In particular, the band surgery ℓ → ℓ′ is called a fusion or fission respectively accord-
ing to whether |ℓ|−m = |ℓ′| or |ℓ|+m = |ℓ′|, where |ℓ| and |ℓ′| denote the component
numbers of the links ℓ and ℓ′, respectively. The realizing surface in R3[a, b] for a
band surgery ℓ → ℓ′ on finitely many mutually disjoint bands βj (j = 1, 2, . . . , s) is a
surface F b

a in R3[a, b] defined by the following identity:

F b
a ∩R3[t] =


ℓ′[t] (a+b

2
< t ≦ b),

(ℓ ∪ β1 ∪ β2 ∪ · · · ∪ βs)[t] (t = a+b
2
),

ℓ[t] (a ≦ t < a+b
2
).

For a division a = a0 < a1 < · · · < am = b of the interval [a, b] and a band surgery
sequence ℓ0 → ℓ1 → · · · → ℓm, the realizing surface F b

a in R3[a, b] is constructed by

F b
a = F a1

a0
∪ F a2

a1
∪ · · · ∪ F am

am−1
.

An H-trivial link is a split union of a finite number of trivial knots and Hopf links.

For non-negative integers c−, c+, a normalized surface with c− lower Hopf links
and c+ upper Hopf links is the realizing surface F = F 1

−1 in R3[−1, 1] for a division
−1 < 0 < 1 of the interval [−1, 1] and a band surgery sequence

θ− → ℓ → θ+

which has the following additional conditions:

(1) The link θ− and θ+ are H-trivial links such that θ− and θ+ have c− and c+ Hopf
links, respectively.

(2) The band surgery θ− → ℓ is a fusion and the band surgery ℓ → θ+ is a fission.

Let θ be an H-trivial link with trivial knot components oi (i = 1, 2, . . . , so) and
Hopf link components Hj (j = 1, 2, . . . , sH). For an interval [a, b], let θ∨[a, b] be
the disjoint union of a disjoint disk system di (i = 1, 2, . . . , so) for the trivial knots
oi (i = 1, 2, . . . , so) in R3[b] and a disjoint Hopf link cone system Cj (j = 1, 2, . . . , sH)
in R3[a, b] such that Cj is a cone with Hopf link base Hj[b] and vertex vj ∈ R3[a]
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for every j. Similarly, let θ∧[a, b] be the disjoint union of a disjoint disk system
di (i = 1, 2, . . . , so) for the trivial knots oi (i = 1, 2, . . . , so) in R3[a] and a disjoint
Hopf link cone system Cj (j = 1, 2, . . . , sH) in R3[a, b] such that Cj is a cone with
Hopf link base Hj[a] and vertex vj ∈ R3[b] for every j. Then the union

L = θ−∨ [−2,−1] ∪ F 1
−1 ∪ θ+∧ [1, 2]

is an immersed S2-link in R4 with a regular cross-section ℓ. This immersed S2-link L
is said to be in a normal form and the regular cross-section ℓ of L is called a middle
cross-section of L. It is noted that the vertices of θ−∨ [−2,−1] and θ+∧ [1, 2] correspond
to the lower and upper double points of L separated by the link ℓ, respectively, so
that L has the lower and upper double point numbers c− and c+, respectively. It
is shown by an argument on a normal form of a cobordism surface in [16, 17] that
every immersed S2-link is equivalent to an immersed S2-link L in a normal form
whose lower and upper double points are given by any previously given division of
the double points and the equivalence of L is independent of any choices of the disk
systems used to construct θ−∨ [−2,−1] and θ+∧ [1, 2]. It is noted that a more general
immersed ribbon surface-link is studied by Kamada and Kawamura in [5]. A main
difference between a regular cross-section and a middle cross-section of an immersed
S2-link L is that the natural homomorphisms

π1(R
3 \ ℓ, x0) → π1(R

3[−∞, 0] \ L−, x0),

π1(R
3 \ ℓ, x0) → π1(R

3[0,+∞) \ L+, x0)

for any base point x0 ∈ R3 \ ℓ are always onto for a middle cross-section ℓ of L,
but it is not true for a general regular cross-section ℓ of L. For example, for a
middle cross-section ℓ of an immersed S2-link L in a normal form, take the connected
sum LK = L#K for an S2-knot K with non-abelian fundamental group so that the
operation is done in the upper open half 4-space R3(0,+∞). Then the link ℓ is a
regular cross-section of the immersed S2-link LK such that the natural homomorphism
π1(R

3 \ ℓ, x0) → π1(R
3[−∞, 0] \ L+

K , x0) is not onto. If the fission ℓ → θ+ is just
the inverse of the fusion θ− → ℓ, then the immersed S2-link L in R4 is called an
immersed ribbon S2-link and the link ℓ is a symmetric middle cross-section of L. By
construction, we have ξ = ξ+ − ξ− = 0. Unless confusion might occur, an immersed
S2-link equivalent to this immersed ribbon S2-link is also called an immersed ribbon
S2-link. We observe the following lemma.

Lemma 2.1. (1) Every immersed S2-link admits infinitely many (up to equivalences
of links) middle cross-sections.

(2) Every immersed ribbon S2-link admits infinitely many (up to equivalences of links)
symmetric middle cross-sections.
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(3) For every previously given link ℓ, there is an immersed ribbon S2-link with ℓ as a
symmetric middle cross-section.

Proof. For (1), let kn (n ≧ 1) be the n-fold connected sum of the connected sum
knot k#(−k∗) for any non-trivial knot k and the inversed mirror image −k∗ of k.
This knot kn is a regular cross-section of a trivial S2-knot O by Zeeman’s 1-twist
spinning in [26] (see also [23]) which is in fact shown to be a middle cross-section
of a trivial S2-knot O (see [16]). Let L be any given immersed S2-link, and ℓ any
middle cross-section of L. A connected sum L#O is equivalent to L and admits a
connected sum ℓ#kn as a middle cross-section of L#O, making an infinite family for
n = 0, 1, 2, . . . of mutually inequivalent middle cross-sections of L, showing (1).

For (2), let kn be the n-fold connected sum of the Kinoshita-Terasaka knot kKT

for any n ≧ 1 which is a symmetric middle cross-section of a trivial S2-knot O (see
for example [11]). For any given immersed ribbon S2-link L and any symmetric
middle cross-section ℓ of L, a connected sum L#O is an immersed ribbon S2-link
equivalent to L and admits a connected sum ℓ#kn as a symmetric middle cross-
section of L#O, making an infinite family for n = 0, 1, 2, . . . of mutually inequivalent
symmetric middle cross-sections, showing (2).

For (3), let ℓ be any link in R3[0], and γ a singular disk system with only simple
clasp singularities in R3[0] bounded by ℓ. Push the interior of γ into an immersed
disk system L+ in R3[0,+∞) and then take the image L− of L+ in R3(−∞, 0] under
the homeomorphism R3[0,+∞) → R3(−∞, 0] sending (x, t) to (x,−t). The union
L = L− ∪L+ is an immersed ribbon S2-link with ℓ a symmetric middle cross-section,
showing (3). □

3 Some invariants of links and immersed S2-links

Let L be an immersed S2-link with r components, and ℓ a cross-section of L. The
pair (L, ℓ) in the (4, 3)-space pair (R4,R3) is often regarded as it is in the (4, 3)-
sphere pair (S4, S3) obtained from the (4, 3)-space pair (R4,R3) by the one-point
compactification. Let X = cl(S4 \N(L)) be the compact exterior of L, where N(L)
is a regular neighborhood of L in S4. Let X0 = cl(S3 \N(ℓ)) be the compact exterior
of the link ℓ in S3 with N(ℓ) = S3 ∩ N(L) a tubular neighborhood of ℓ in S3. The
inclusion X0 ⊂ X induces an epimorphism H1(X

0;Z) → H1(X;Z) on the free abelian
groups sending every meridian of the link ℓ to an meridian of the S2-link L, which
is an isomorphism when ℓ is a regular cross-section of L. Let X+ and X− be the
compact connected oriented 4-manifolds obtained from X by splitting along X0. In
other words, for the 4-balls (B4)± obtained S4 by splitting along S3, let X± be the
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compact exteriors of the immersed 2-disk knots L± = L∩ (B4)± in the 4-balls (B4)±.
By the assumption of the cross-section ℓ of L, the inclusions X0 ⊂ X± ⊂ X induce
epimorphisms

H1(X
0;Z) → H1(X

±;Z) → H1(X;Z)

sending the meridians to the meridians. Let (X̄, X̄+, X̄0) and (X̃, X̃+, X̃0) be the
maximal abelian covering and the infinite cyclic covering of (X,X+, X0) belonging to
the isomorphism H1(X;Z) → Zr sending every meridian of L to the standard basis
and the epimorphism H1(X;Z) → Z sending every meridian of L to 1, respectively.
The homology groups

Hd(X̄;Z), Hd(X̄
+;Z), Hd(X̄

0;Z) and Hd(X̃;Z), Hd(X̃
+;Z), Hd(X̃

0;Z)

form finitely generated Λ-modules and Λ̃-modules, respectively. By using that Λ is
a unique factorization domain, the characteristic polynomial invariants for a finitely
generated Λ-module are defined as follows (cf. [7, 12, 14]). For a finitely gener-
ated Λ-module H, let A be a finite Λ-presentation matrix of H, namely a matrix A

representing the Λ-homomorphism λ in a Λ-exact sequence

Λm′ λ→ Λm → H → 0 (m′ ≧ m).

This Λ-exact sequence is always constructed for every H since Λ has the Noetherian

property. For a non-negative integer d, the dthcharacteristic polynomial ∆(d)(H) ∈ Λ
of H is defined to be the g.c.d. of all (m− d)-minors of the matrix A if d ≦ m and 1
if d > m. The characteristic polynomial invariants are unique up to multiplications

of the units of Λ. The 0th characteristic polynomial ∆(0)(H) is called the Alexander
polynomial of H and denoted by ∆(H). For the Λ-torsion part TH of H, which
is also finitely generated over Λ by the Noetharian property, let ∆T (H) = ∆(TH)
which we call the torsion Alexander polynomial of H. The null Λ-submodule of H
is the Λ-submodule DH of TH consisting of all elements x such that fix = 0 for
coprime elements fi ∈ Λ (i = 1, 2, . . . , s) for some s ≧ 2. Let BH = H/TH be
the Λ-torsion-free part of H. Let β(H) denote the Λ-rank of H, namely the Q(Λ)-
dimension of the Q(Λ)-vector space H

⊗
ΛQ(Λ) for the quotient field Q(Λ) of Λ.

Then β(H) = β(BH). The following known properties are very often used (see [7]
for the proof):

Lemma 3.1 (Properties on the characteristic polynomials).

(1) For every short Λ-exact sequence 0 → T ′ → T → T ′′ → 0 of finitely generated
torsion Λ-modules T ′, T, T ′′, we have ∆(T )

.
= ∆(T ′)∆(T ′′).

(2) For every finitely generated Λ-module H, we have ∆(d)(H) = 0 for all d < β(H)
and ∆(d)(TH)

.
= ∆(d+β(H))(H) ̸= 0 for all d ≥ 0.
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(3) For the null Λ-submodule DH of every finitely generated Λ-module H, we have
∆(DH)

.
= ±1.

(4) Let (P̄ , P̄ ′) be a regular Zr-covering of a compact polyhedral pair (P, P ′). If
Hd(P, P

′;Z) = 0, then the Λ-module H = Hd(P̄ , P̄ ′;Z) is a finitely generated torsion
Λ-module with ∆(H)(1, 1, . . . , 1) = ±1.

By Property (2), we have the identity

∆T (H)
.
= ∆(β(H))(H),

whose non-zero property is useful in our argument. Let (P̄ , P̄ ′) be a regular Zr-
covering of a compact polyhedral pair (P, P ′) (possibly with P ′ = ∅). Then let

∆T (P̄ , P̄ ′) = ∆T (H1(P̄ , P̄ ′;Z)) ∈ Λ, βd(P̄ , P̄ ′) = β(Hd(P̄ , P̄ ′;Z)).

In particular, the torsion Alexander polynomials

∆T (ℓ) = ∆T (X̄0), ∆T (L±) = ∆T (X̄±), ∆T (L) = ∆T (X̄)

are called the torsion Alexander polynomials of ℓ, L± and L, respectively. Also, let

βd(ℓ) = βd(X̄
0), βd(L

±) = βd(X̄
±), βd(L) = βd(X̄).

For an immersed S2-link L with r components and its a cross-section ℓ with s com-
ponents of L, the κ-invariants κ(ℓ) and κ(L) are defined by the following identities

κ(ℓ) = s− 1− β1(ℓ) and κ(L) = r − 1− β1(L).

It is noted that the properties in Lemma 3.1 are still true for a finitely generated
Λ̃-module by taking r = 1.

For an infinite cyclic covering (P̃ , P̃ ′) of a compact polyhedral pair (P, P ′) (possibly
with P ′ = ∅), let

∆T (P̃ , P̃ ′) = ∆T (H1(P̃ , P̃ ′;Z)) ∈ Λ̃, βd(P̃ , P̃ ′) = β(Hd(P̃ , P̃ ′;Z)).

The following lemma is a consequence of the Fox calculus in [2].

Lemma 3.2 For a compact connected polyhedron P , assume that there is an epi-
morphism Zr → Z for the covering transformation group Zr of P̄ and the covering
transformation group Z of P̃ . Then

β1(P̄ ) ≦ β1(P̃ ).

13



Proof of Lemma 3.2. Let φ : Λ → Λ̃ be the ring epimorphism sending ti to t
for every i. By the Fox calculus in [2] (see also [12, Chapter 7]), there is a finite
Λ-presentation matrix A = (aij) of the Λ-module H1(P̄ , x̄0;Z) and φ(A) = (φ(aij)) is
a finite Λ̃-presentation matrix of the Λ̃-module H1(P̃ , x̃0;Z), where x̄0 and x̃0 denote
the preimages of a base point x0 ∈ P under the coverings P̄ → P and P̃ → P ,
respectively. Then we obtain that

β1(P̃ ) + 1 = β(H1(P̃ , x̃0;Z)) ≧ β(H1(P̄ , x̄0;Z)) = β1(P̄ ) + 1.

Thus, the desired inequality holds. □

For an immersed S2-link L with ℓ as a cross-section, the reduced torsion Alexander
polynomials

∆̃T (ℓ) = ∆T (X̃0), ∆̃T (L±) = ∆T (X̃±), ∆̃T (L) = ∆T (X̃)

are called the reduced torsion Alexander polynomials of ℓ, L± and L, respectively.
Also, let

β̃d(ℓ) = βd(X̃
0), β̃d(L

±) = βd(X̃
±), β̃d(L) = βd(X̃).

For an immersed S2-link L with r components and its a cross-section ℓ with s com-
ponents of L, the reduced κ-invariants κ̃(ℓ) and κ̃(L) are defined by the following
identities

κ̃(ℓ) = s− 1− β̃1(ℓ) and κ̃(L) = r − 1− β̃1(L).

Then we have the following lemma.

Lemma 3.3. For a regular cross-section ℓ of an immersed S2-link L with r compo-
nents, the following (1)-(3) are obtained.

(1) 0 ≦ β1(ℓ) ≦ β̃1(ℓ) ≦ r − 1,

0 ≦ β1(L
±) ≦ β̃1(L

±) ≦ r − 1,

0 ≦ β1(L) ≦ β̃1(L) ≦ r − 1,

β1(L) ≦ β1(L
±) ≦ β1(ℓ),

β̃1(L) ≦ β̃1(L
±) ≦ β̃1(ℓ).

(2) 0 ≦ κ̃(ℓ) ≦ κ(ℓ) ≦ r − 1,

0 ≦ κ̃(L±) ≦ κ(L±) ≦ r − 1,

0 ≦ κ̃(L) ≦ κ(L) ≦ r − 1,

κ(ℓ) ≦ κ(L±) ≦ κ(L),

κ̃(ℓ) ≦ κ̃(L±) ≦ κ̃(L).
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(3) If κ(ℓ) = 0, κ(L±) = 0 or κ(L) = 0, then

∆T (ℓ)(1, 1, . . . , 1) = ±1, ∆T (L±)(1, 1, . . . , 1) = ±1 or∆T (L)(1, 1, . . . , 1) = ±1,

respectively. If κ̃(ℓ) = 0, κ̃(L±) = 0 or κ̃(L) = 0, then

∆̃T (ℓ)(1) = ±1, ∆̃T (L±)(1) = ±1 or ∆̃T (L)(1) = ±1,

respectively.

Proof of Lemma 3.3. The reduced κ-invariant κ̃(ℓ) = r − 1 − β̃1(ℓ) coincides
with the κ1-invariant in [13] which is the Z-rank of the kernel of the homomorphism
1− t : TH1(X̃

0;Z) → TH1(X̃
0;Z). Hence β̃1(ℓ) ≦ r− 1. By Lemma 3.2, 0 ≦ β1(ℓ) ≦

β̃1(ℓ) ≦ r − 1 is shown. By the same method, the second and third inequalities are
obtained. Since

H1(X,X±;Z) = H1(X
±, X0;Z) = 0,

it follows from Lemma 3.1 (4) that the fourth and fifth inequalities are obtained, and
thus (1) is shown. Then (2) is direct from (1) by definition.

For (3), first assume that κ(ℓ) = 0, i.e., β(ℓ) = r − 1. Let G = ∪r
i=1(mi ∪ αi)

be a bouquet in X0 such that mi is a meridian of the ith component ℓi of ℓ and
αi is a simple arc in X0 joining a based vertex v and a point of mi for every i.
Then the homology group H1(X

0, G;Z) of the pair (X0, G) is 0. Let (Ḡ, v̄) be the
preimage of (G, v) under the maximal free abelian covering X̄0 → X0. By Lemma 3.1
(4), the Λ-module T = H1(X̄

0, Ḡ;Z) is a finitely generated torsion Λ-module with
∆(T )(1, 1, . . . , 1) = ±1. The pair (Ḡ, v̄) induces an exact sequence

0 → H1(Ḡ;Z) → H1(Ḡ, v̄;Z) → Kerφ∗ → 0,

where Kerφ∗ denotes the kernel of the epimorphism φ∗ : Λ → Z sending ti to 1 for
every i. Since H1(Ḡ, v̄) ∼= Λr and Kerφ∗ is a torsion-free Λ-module of rank one, the
Λ-module H1(Ḡ;Z) is a torsion-free Λ-module of Λ-rank r− 1. By combining it with
β(ℓ) = r − 1, the pair (X̄0, Ḡ) must induce an exact sequence:

0 → H1(Ḡ;Z) → H1(X̄
0;Z) → T → 0,

so that the Λ-torsion part TH1(X̄
0;Z) of the Λ-module H1(X̄

0;Z) is embedded in
T and hence we have ∆T (ℓ; 1, 1, . . . , 1) = ±1 by Lemma 3.1 (1). By using similar
bouquets G in X± and X in place of X0, the identities ∆T (L±; 1, 1, . . . , 1) = ±1
and ∆T (L; 1, 1, . . . , 1) = ±1 are shown similarly. Next, assume that κ̃(ℓ) = 0, i.e.,
β̃(ℓ) = r−1. Let H̃ = H1(X̃

0;Z) be a finitely generated Λ̃-module. Then ∆(d)(H̃) = 0
for d < r − 1 and ∆(r−1)(H̃) = ∆T (H̃) ̸= 0 by Lemma 3.1 (2). Let η : Λ̃ → Z be the
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ring epimorphism sending t to 1. Let Ã be a finite Λ̃-presentation matrix of H̃. Then
η(Ã) is a Z-presentation matrix of the Z-module H̃ ⊗η Z ∼= Zr−1. This means that

η(∆T (H̃)) = ∆T (H̃; 1) = ∆̃T (ℓ; 1) = ±1.

By applying the same method forX± andX in place ofX0, the identities ∆̃T (L±; 1) =
±1 and ∆̃T (L; 1) = ±1 are shown similarly. □

Next, the local signature invariant sJ(ℓ) for every subset J of [−1, 1] of an oriented
link ℓ in S3 is explained. For x ∈ (−1, 1), let ωx = x +

√
1− x2

√
−1, which is a

complex number of norm one. For a Seifert matrix S of a link ℓ, we can consider the
signature signS(ωx) of the Hermitian matrix

S(ωx) = (1− ωx)S + (1− ω̄x)S
T

which is a step function on x (see [8, 9]). This signature invariant is called the Tristram
signature of ℓ (see [25]). Let s(ℓ) be the ordinary signature sign(S+ST ) of ℓ. By using
the Tristram signature and the ordinary signature, the signature invariants s[a,1](ℓ),
s(a,1](ℓ) of ℓ for a ∈ [−1, 1] are defined as follows:

s[a,1](ℓ) = lim
x→a−0

S(ωx) for a ∈ (−1, 1],

s(a,1](ℓ) = lim
x→a+0

S(ωx) for a ∈ [−1, 1),

s[−1,1](ℓ) = s(ℓ).

Then the integer invariant sa(ℓ) (a ∈ [−1, 1]) of ℓ is defined by the difference sa(ℓ) =
s[a,1](ℓ) − s(a,1](ℓ) for a ∈ [−1, 1) and s1(ℓ) = s[1,1](ℓ), which is 0 except for a finite
number of a. For every subset J of [−1, 1], we define

sJ(ℓ) =
∑
a∈J

sa(ℓ).

Let ΛR be the real polynomial ring R[t, t−1]. In [13], the local signature invariant
σa(ℓ) (a ∈ [−1, 1]) of a link ℓ is defined from the quadratic form

q : TH1(X̃
0;R)× TH1(X̃

0;R) → R

on the ΛR-torsion part TH1(X̃
0;R) of the ΛR-module H1(X̃

0;R) by restricting to
the pa(t)-primary component for every a ∈ [−1, 1], where pa(t) is defined by pa(t) =
2a − (t + t−1) for a ∈ (−1, 1) and p±1(t) = 1 − (±t). For a link ℓ with components
ℓi (i = 1, 2, . . . , s), let V (ℓ) = (vij) be the symmetric matrix of size s such that
vij = Link(ℓi, ℓj) for every pair (i, j) with i ̸= j and

∑s
j=1 vij = 0 for every i. Since
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the diagonal entry vii is the self-linking number of the component ℓi with Seifert
surface framing given the link ℓ, we call the matrix V (ℓ) the linking matrix of ℓ (with
Seifert framing) (see [13]). Let sV (ℓ) be the signature of V (ℓ) which is called the
linking signature invariant of ℓ. When ℓ is a knot, we understand that V (ℓ) is the
zero matrix with sV (ℓ) = 0. Then the identities

σa(ℓ) = sa(ℓ) (a ∈ (−1, 1)) and σ1(ℓ) = s1(ℓ)− sV (ℓ)

are established in [13, Theorem 5.3]. For example, if oH be a positive Hopf link, then

σa(o
H) = 0 (a ∈ [−1, 1]) and s1(o

H) = sV (o
H) = −1.

A unified simple topological proof of the following lemma is promised in the in-
troduction.

Lemma 3.4. The linking matrix V (ℓ) of every (regular or irregular) cross-section ℓ
of every S2-link L is a symmetric even matrix with signature sV (ℓ) = 0.

Proof of Lemma 3.4. Let L± be the planar surfaces in the 4-balls B± with ∂L± = ℓ

obtained from L by splitting along the 3-sphere S3. Let ki (i = 1, 2, . . . ,m) be mutu-
ally disjoint simple loops in the interior of L+ representing a Z-basis for H1(L

+;Z).
Give the framings determined by collars in L to ki (i = 1, 2, . . . ,m). The 4-manifold
obtained from S4 by the 2-handle surgeries along the framed loops ki (i = 1, 2, . . . ,m)
is homeomorphic to the 4-manifoldM = #m(S2×S2) and contains, as a submanifold,
the 4-manifold Y obtained from the 4-ball B− by attaching 2-handles to S3 along the
link ℓ with Seifert surface framing. Since the 4-manifold M is spin, the 4-submanifold
Y is spin. By construction, we may consider that the image Im(i∗) of the natural
homomorphism i∗ : H2(Y ;Q) → H2(M ;Q) contains a half basis yi (i = 1, 2, . . . ,m) of
H2(M ;Q) such that yi = [S2×pi] for the connected summands S2×S2

i (i = 1, 2, . . . ,m)
of M and a point p ∈ S2. Since the Q-intersection number Int(yi, yj) = 0 in M for
all i, j, there is a re-indexed Q-basis yi (i = 1, 2, . . . ,m), y′j (j = 1, 2, . . . , s(≦ m)) for
the image Im(i∗) such that Int(yi, y

′
j) = δij for all i, j. Since the kernel Keri∗ of the

natural homomorphism i∗ : H2(Y ;Q) → H2(M ;Q) contributes the Q-intersection
number 0 in M , it is seen that the signature sign(Y ) = 0. Hence the matrix V (ℓ) is
a symmetric even form with signature sV (ℓ) = 0 since it is an intersection matrix of
this spin 4-manifold Y with sign(Y ) = 0. □

The following lemma is useful to compute this signature invariant for a link ℓ:
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Lemma 3.5. (1) If the reduced torsion Alexander polynomial ∆̃T (ℓ) does not contain
the polynomial pa(t) for a number a ∈ [−1, 1] as a real polynomial factor or contains
p1(t) = 1− t without multiplicity, then sa(ℓ) = σa(ℓ) = 0 or σ1(ℓ) = 0, respectively.

(2) If the reduced torsion Alexander polynomial ∆̃T (ℓ) contains the polynomial pa(t)
for a ∈ (−1, 1) as a real polynomial factor without multiplicity, then sa(ℓ) = σa(ℓ) =
±2.

Proof of Lemma 3.5. The assertion of (1) for σa(ℓ) is direct from the definition
of the local signature in [13]. Then by [13, Corollary 5.4], sa(ℓ) = 0 for a ∈ [0, 1).
To see that s1(ℓ) = 0, it is noted that the assumption ∆̃T (ℓ; 1) ̸= 0 means that
the homomorphism 1 − t : TH1(X̃

0;Z) → TH1(X̃
0;Z) is injective and κ̃(ℓ) = 0 by

the proof of Lemma 3.3, so that ∆̃T (ℓ)(1) = ±1 by Lemma 3.3 (3). Then, by [13,
Lemma 3.3], all the pairwise linking numbers of ℓ are 0 and hence sV (ℓ) = 0. By [13,
Corollary 5.4], we have s(ℓ) = σ1(ℓ) = 0. The assertion of (2) is direct from from the
definition of σa(ℓ) in [13] (see J. W. Milnor [18]) since sa(ℓ) = σa(ℓ) for a ∈ (−1, 1).
□

4 Proof of Theorems 1.1 and 1.2

Throughout this section, the proofs of Theorems 1.1 and 1.2 will be done. The proof
of Theorem 1.1 is done as follows.

Proof of Theorem 1.1. To see (1), the Euler characteristic χ(X) = 2+c−2r is used,
which is obtained from the computations that χ(L) = 2r − c and χ(X) + χ(L) =
χ(S4) = 2. It is noted that the boundary ∂X of X is the union of the product
3-manifold F × S1 for an r-component compact planar surface F and c Hopf link
exteriors pasting along tori, so that the homology group Hd(∂X̄;Z) forms a finitely
generated torsion Λ-module. Since

β4(X̄) = β0(X̄, ∂X̄) = β0(X̄) = 0,

β3(X̄) = β1(X̄, ∂X̄) = β1(X̄)

by Blanchfield duality in [1], the definition of theQ(Λ)-Euler characteristic χ(X̄;Q(Λ))
means that

β2(X̄)− 2β1(X̄) = χ(X̄;Q(Λ)) = χ(X) = 2 + c− 2r.

Hence the following identities

β2(X̄) = c− 2(r − 1− β1(X̄)) = c− 2(r − 1− β1(L)) = c− 2κ(L)
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are obtained. Thus, 2κ(L) ≦ c. Assume that 2κ(L) = c. Then β2(X̄) = 0. For
any cross-section ℓ of L, this means that the Λ-intersection form IntΛ on H2(X̄

+;Z)
vanishes, so that the natural homomorphism

BH2(X̄
+;Z) → BH2(X̄

+, ∂X̄+;Z)

must be trivial by the Poincaré duality on X̄+. Using this triviality, we see that the
semi-exact sequence

(#) TH2(X̄
+, ∂X̄+;Z)

∂∗→ TH1(∂X̄
+;Z)

i∗→ TH1(X̄
+;Z)

is exact. Thus, we have a short exact sequence

0 → Im∂∗
⊂→ TH1(∂X̄

+;Z)
i∗→ Imi∗ → 0.

By Lemma 3.1 (1) and [7, Theorem 3.1], we have

∆(TH1(∂X̄
+;Z))

.
= ∆(Im∂∗)∆(Imi∗) and ∆(Im∂∗)

∗ .
= ∆(Imi∗).

By an argument of [14, Lemma 3.3], it is seen that

∆T (ℓ) = ∆T (H1(X̄
0;Z))

.≡ ∆T (H1(∂X̄
+;Z))

.
= ∆(Imi∗)∆(Imi∗)

∗,

showing (1) by taking f = ∆(Imi∗).
To see (2), the homology H∗(X

+;Z) is computed as follows:

Hd(X
+;Z) =


Zc+ (d = 2),
Zr (d = 1),
Z (d = 0),
0 (others).

Hence χ(X+) = c+ + 1 − r. By Blanchfield duality in [1], we have β3(X̄
+) =

β1(X̄
+, ∂X̄+) = 0, so that

βd(X̄
+) = 0 (d = 3, 4), β2(X̄

+)− β1(X̄
+) = c+ + 1− r.

Note that β1(ℓ) = β1(∂X̄
+) by the argument of (1). Since β2(X̄

+) = β2(X̄
+, ∂X̄+)

and β1(∂X̄
+) ≦ β2(X̄

+, ∂X̄+) + β1(X̄
+), we have

β1(ℓ) ≦ β2(X̄
+) + β1(X̄

+) = c+ + 1− r + 2β1(X̄
+) = c+ − κ(L+) + β1(L

+).

Hence 2κ(L+)− κ(ℓ) ≦ c+. On the other hand,

c+ − κ(ℓ) = c+ + 1− r + β1(∂X̄
+) = β2(X̄

+) + β1(∂X̄
+)− β1(X̄

+) ≧ 0,
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because the vanishing β1(X̄
+, ∂X̄+) = 0 means that β1(∂X̄

+)− β1(X̄
+) ≧ 0. Hence

the inequality κ(ℓ) ≦ c+ is obtained. By a similar argument on X−, the inequalities
2κ(L−)− κ(ℓ) ≦ c− and κ(ℓ) ≦ c− are obtained. Thus, the first half of (2) is shown.

Assume that κ(L+)− c+ = κ(ℓ). Then we have

β1(∂X̄
+) = β2(X̄

+, ∂X̄+) + β1(X̄
+).

This means that the sequence (#) in (1) is exact. Assume that κ(ℓ) = c+. Then
β2(X̄

+) = 0 and β1(∂X̄
+) = β1(X̄

+). This also means that the sequence (#) in (1)
is exact. The conclusion of (2) is obtained from the argument of (1).

For (3), assume that ℓ is a middle cross-section of L and κ(ℓ) = c− = c+. By
Lemma 3.3 and (1), we have

c = 2κ(ℓ) ≦ 2κ(L±) ≦ 2κ(L) ≦ c

meaning that
κ(ℓ) = κ(L±) = κ(L) = c− = c+.

Hence we obtain
β1(ℓ) = β1(L

±) = β1(L).

The natural homomorphism H1(X̄
0;Z) → H1(X̄

+;Z) is onto since ℓ is a middle
cross-section of L. By the identity β1(ℓ) = β1(L

+), the natural homomorphism
BH1(X̄

0;Z) → BH1(X̄
+;Z) induces a Λ-isomorphism. Hence the natural homo-

morphism TH1(X̄
0;Z) → TH1(X̄

+;Z) is onto, so that Imi∗ = TH1(X̄
+;Z) and

hence
∆(Imi∗)

.
= ∆(TH1(X̄

+;Z))
.
= ∆T (L+).

Also using X− instead of X+, we can conclude that

∆T (ℓ)
.
= ∆T (L+)∆T (L+)∗

.
= ∆T (L−)∆T (L−)∗.

The natural homomorphism H1(X̄
+;Z) → H1(X̄;Z) is also onto. By the identity

β1(L
+) = β1(L), the natural homomorphism

BH1(X̄
+;Z) → BH1(X̄;Z)

induces an isomorphism. Hence the natural homomorphism TH1(X̄
+;Z) → TH1(X̄;Z)

is onto, so that ∆T (L) is a factor of ∆T (L+) and hence ∆T (L+) = ∆T (L)g for an
element g ∈ Λ. Thus, the conclusion of (3) is shown.

To see (4), use the fact that the 4-manifoldX is the double ofX+ pasting along the
3-manifold X0. Let r : X → X+ be the retraction, i.e., the composite ri : X+ → X+

is the identity for the inclusion i : X+ ⊂ X. Then the induced homomorphism
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i# : π1(X
+, x0) → π1(X, x0) for a base point x0 ∈ X0 is a monomorphism. On

the other hand, by the definition of a symmetric middle cross-section, the inclusion
i′ : X0 ⊂ X+ induces an epimorphism i′# : π1(X

0, x0) → π1(X
+, x0) so that the

inclusion ī : X0 ⊂ X induces an epimorphism ī# : π1(X
0, x0) → π1(X, x0). Thus,

the induced homomorphism i# : π1(X
+, x0) → π1(X, x0) is an isomorphism, giv-

ing a Λ-isomorphism H1(X̄
+;Z) ∼= H1(X̄;Z). Similarly, there is a Λ-isomorphism

H1(X̄
−;Z) ∼= H1(X̄;Z). If 2κ(L) = c, then we have β2(X̄) = 0, because β2(X̄) =

c − 2κ(L). On the other hand, since β1(X̄
±) = β1(X̄), the Mayer-Vietoris exact

sequence

H2(X̄;Z) → H1(X̄
0;Z) → H1(X̄

+;Z)⊕H1(X̄
−;Z) → H1(X̄;Z) → 0

implies that
β1(ℓ) = β1(X̄

0) = β1(X̄) = β1(L),

so that 2κ(ℓ) = c and κ(ℓ) = c− = c+. By the Λ-isomorphismH1(X̄
+;Z) ∼= H1(X̄;Z),

we have ∆(L+)
.
= ∆(L) and the identity on ∆T (ℓ) in (4) is obtained from (3). □

The proof of Theorem 1.2 is done as follows.

Proof of Theorem 1.2. To see (1), use the Euler characteristic χ(X) = 2 + c− 2r
given by the argument in the proof of Theorem 1.2 (1). Moreover, the homology
group Hd(∂X̃;Z) forms a finitely generated torsion Λ̃-module and by using the zeroth
duality of [10] instead of the Blanchfield duality and the Q(Λ̃)-Euler characteristic
χ(X̃;Q(Λ̃)) instead of χ(X̄;Q(Λ)), we have

β4(X̃) = β0(X̃, ∂X̃) = β0(X̃) = 0,

β3(X̃) = β1(X̃, ∂X̃) = β1(X̃),

β2(X̃) − 2β1(X̃) = χ(X̃;Q(Λ̃)) = χ(X) = 2 + c− 2r.

Hence the following identities

β2(X̃) = c− 2(r − 1− β1(X̃)) = c− 2κ̃(L)

are obtained. In particular, the inequality 2κ̃(L) ≦ c is obtained. Let F be a proper
planar surface in a 4-disk B4 obtained from the pair ((B4)+, L+) by removing regular
neighborhoods of αi (i = 1, 2, . . . , c). It is noted that the boundary ℓH+ = ∂F of the
surface F is a connected sum of the link ℓ and c+ Hopf links oHi (i = 1, 2, . . . , c+) in
S3 and the exterior cl(B4\N(F )) is homeomorphic to X+. Let β̂2(X̃

±) be the Λ̃-rank
of the Λ̃-intersection form

IntΛ̃ : BH2(X̃
±;Z)×BH2(X̃

±;Z) → Λ̃
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(where ± is taken with the same sign). Then

β̂2(X̃
+) + β̂2(X̃

−) ≦ β2(X̃).

By [13, Lemma 6.1], we have the inequality

|s(a,1](ℓH+)| ≦ β̂2(X̃
+)

for every a ∈ (−1, 1). Here, it is noted that

s(a,1](ℓ
H+) = s(a,1](ℓ) + ξ+.

By a similar consideration for X−, we can conclude that

|s(a,1](ℓ) + ξ+|+ | − s(a,1](ℓ) + ξ−| ≦ β2(X̃) = c− 2κ̃(L),

so that

|s(a,1](ℓ)| ≦
c

2
− κ̃(L) +

|ξ+|+ |ξ−|
2

≦ c− κ̃(L)

for every a ∈ (−1, 1), showing the first half of (1). For the second half of (1), assume
that 2κ̃(L) = c. Then β2(X̃) = 0 and s(a,1](ℓ) = −ξ+ = ξ− for every a ∈ (−1, 1). In
particular, ξ = 0, sa(ℓ) = 0 for a ∈ (−1, 1) and |s1(ℓ)| ≦ c

2
. Since β2(X̃) = 0, by an

analogous proof of Theorem 1.1 (1) the identity ∆̃T (ℓ)
.≡ ff ∗ for an element f ∈ Λ̃

is obtained, showing the second half of (1).

For (2), since the identity

Link(ℓ1, ℓ2) = ±Int(C1, C2)

holds for any disjoint knots ℓi (i = 1, 2) in R3[0] bounding compact oriented surfaces
Ci (i = 1, 2) in R3[0,+∞), the inequality |Link|(ℓ) ≦ min{c−, c+} holds. By the
Q(Λ̃)-version χ(X̃+;Q(Λ̃)) of the Euler characteristic χ(X+) = c+ + 1− r, we have

βd(X̃
+) = 0 (d = 3, 4), β2(X̃

+)− β1(X̃
+) = c+ + 1− r.

Hence, β2(X̃
+) = c+ − κ̃(L+). As an analogy of the proof of Theorem 1.1 (2), we

have 2κ̃(L+) − κ̃(ℓ) ≦ c+ and 2κ̃(L−) − κ̃(ℓ) ≦ c−. On the other hand, as they are
shown in (1), we have

|s(a,1](ℓ) + ξ+| ≦ β̂2(X̃
+) ≦ c+ − κ̃(L+)

meaning that

|s(a,1](ℓ) + ξ+|+ κ̃(L+) ≦ c+

22



for every a ∈ (−1, 1). Similarly,

| − s(a,1](ℓ) + ξ−|+ κ̃(L−) ≦ c−

for every a ∈ (−1, 1). Since κ̃(ℓ) ≦ κ̃(L±), the first half of (2) is shown. Assume that
2κ̃(L+)− κ̃(ℓ) = c+. Since

β1(∂X̃
+) = β2(X̃

+, ∂X̃+) + β1(X̃
+),

we have β̂2(X̃
+) = 0. Hence s(a,1](ℓ

H+) = s(a,1](ℓ) + ξ+ = 0 for every a ∈ (−1, 1). In
this case, the semi-exact sequence

(#̃) TH2(X̃
+, ∂X̃+;Z)

∂∗→ TH1(∂X̃
+;Z)

i∗→ TH1(X̃
+;Z)

is exact, to which a similar argument of Theorem 1.1 (2) using the first duality for
an infinite cyclic covering (see [10]) is applied to see ∆̃T (ℓ)

.≡ ff ∗ for an element
f ∈ Λ̃. Assume that κ̃(ℓ) = c+. Then it is direct to see that s(a,1](ℓ) = −ξ+ for every
a ∈ (−1, 1). Further, we have β2(X̃

+) = 0 which implies also that the sequence (#̃)
is exact and we have a desired splitting of ∆̃T (ℓ). Thus, (2) is shown.

For (3), if κ̃(ℓ) = c− = c+, then we have s(a,1](ℓ) = −ξ+ = ξ− by (2), so that
ξ = 0. Furhter, the identity 2κ̃(L) = c and the identities on ∆̃T (ℓ) are obtained by
a similar consideration to Theorem 1.1 (3), showing (3). (4) is also obtained by a
similar consideration to Theorem 1.1 (4). □

5 A symmetric construction of immersed S2-links

Every link ℓ0 in R3 bounds an immersed disk system L+ in R3[0,+∞). The double
L of L+ in R4 is an immersed S2-link with ℓ0 as a regular cross-section, which is
called an immersed symmetric S2-link with ℓ0 as the regular symmetric cross-section.
We have c(L) = 2c(L+). The 4-dimensional clasp number c4(ℓ0) of the link ℓ0 is the
minimal number of the double point number c(L+) for all immersed disk systems L+

with ∂L+ = ℓ0 (see [14]). By definition, we have c(L) ≧ 2c4(ℓ0) for all immersed
symmetric S2-links L with ℓ0 the regular symmetric cross-section and the equality
is realized by some L. Let u(ℓ0) be the unlinking number of a link ℓ0, namely the
minimal number of crossing changes needed to obtain a trivial link o from ℓ0. Then
it is seen from [14] and Lemma 3.3 that

u(ℓ0) ≧ c4(ℓ0) ≧ κ(ℓ0) ≧ κ̃(ℓ0).

A unique immersed disk system L+ can be constructed from every unlinking operation
on a link ℓ0. The resulting immersed symmetric S2-link L is an immersed ribbon S2-
link L with the symmetric middle cross-section ℓ0. This immersed ribbon S2-link L is
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called an immersed ribbon S2-link associated with an unlinking operation on ℓ0. Then
c(L) ≧ 2u(ℓ0) for immersed ribbon S2-links L associated with all unlinking operations
on ℓ0 and the equality is realized by some L by taking an unlinking operation with the
minimal number of operations on ℓ0. It is noted that once the places of an unlinking
operation on a link ℓ0 are specified, the immersed ribbon S2-link L associated with
the unlinking operation on ℓ0 is uniquely constructed from ℓ0 since any choice of disk
systems bounded by a trivial link is independent of the equivalence of L by Horibe-
Yanagawa’s lemma in [16]. A lassoing on a link ℓ0 is to construct a link ℓ1 with a
local addition of a trivial loop from the link ℓ0 by the operation given in Fig. 1 (see
[22]). The link ℓ1 depends heavily on a choice of a crossing in diagrams of ℓ0. By
a crossing change in the loop in Fig. 1, the link ℓ1 changes into a split sum of the
link ℓ0 and a trivial knot o1. This means that if an immersed symmetric S2-link L
with regular symmetric cross-section ℓ0 is given, then this crossing change produces
an immersed symmetric S2-link L′ with c(L′) = 2 + c(L) such that the lassoed link
ℓ1 is a regular symmetric cross-section of L′. The immersed symmetric S2-link L′

is called a lassoed immersed symmetric S2-link of the immersed symmetric S2-link
L. If L is an immersed ribbon S2-link associated with an unlinking operation on ℓ0,
then the lassoed immersed symmetric S2-link L′ is just an immersed ribbon S2-link
with the lassoed link ℓ1 as the symmetric middle cross-section. We have the following
theorem.

Figure 1: The lassoing operation

Theorem 5.1. For every link ℓ0, let L be an immersed symmetric S2-link with
regular symmetric cross-section ℓ0, and L′ a lassoed immersed symmetric S2-link of
L with the lassoed link ℓ1 of ℓ0 as the regular symmetric cross-section. Let c(L) = c
and c(L′) = c′ = c + 2. For every regular symmetric cross-section ℓ of L and every
regular symmetric cross-section ℓ′ of L′, there are rational numbers δ, δ′, δ̃, δ̃′ ≧ 1
such that

δ(c− 2κ(L)) = c− 2κ(ℓ) = c′ − 2κ(ℓ′) = δ′(c′ − 2κ(L′)),

δ̃(c− 2κ̃(L)) = c− 2κ̃(ℓ) = c′ − 2κ̃(ℓ′) = δ̃′(c′ − 2κ̃(L′)).
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Further, if c = 2c4(ℓ0) = 2κ(ℓ0) (or c = 2c4(ℓ0) = 2κ̃(ℓ0)), then we have

c− 2κ(L) = c− 2κ(ℓ) = c′ − 2κ(ℓ′) = c′ − 2κ(L′) = 0

(or c− 2κ̃(L) = c− 2κ̃(ℓ) = c′ − 2κ̃(ℓ′) = c′ − 2κ̃(L′) = 0, respectively).

The following corollary is direct from Theorem 5.1.

Corollary 5.2. For every link ℓ0, let L be an immersed ribbon S2-link associated
with an unlinking operation on ℓ0, and L′ a lassoed immersed symmetric S2-link of
L with the lassoed link ℓ1 of ℓ0 as the symmetric middle cross-section. Let c(L) = c
and c(L′) = c′ = c + 2. For every symmetric middle cross-section ℓ of L and every
symmetric middle cross-section ℓ′ of L′, there are rational numbers δ, δ′, δ̃, δ̃′ ≧ 1
such that

δ(c− 2κ(L)) = c− 2κ(ℓ) = c′ − 2κ(ℓ′) = δ′(c′ − 2κ(L′)),

δ̃(c− 2κ̃(L)) = c− 2κ̃(ℓ) = c′ − 2κ̃(ℓ′) = δ̃′(c′ − 2κ̃(L′)).

Further, if c = 2u(ℓ0) = 2κ(ℓ0) (or c = 2u(ℓ0) = 2κ̃(ℓ0)), then we have

c− 2κ(L) = c− 2κ(ℓ) = c′ − 2κ(ℓ′) = c′ − 2κ(L′) = 0

(or c− 2κ̃(L) = c− 2κ̃(ℓ) = c′ − 2κ̃(ℓ′) = c′ − 2κ̃(L′) = 0, respectively).

The proof of Theorem 5.1 is given as follows.

Proof of Theorem 5.1. By Theorem 1.1 (1) and Lemma 3.3, it is noted that
c ≧ 2κ(L) ≧ 2κ(ℓ), so that c = 2κ(ℓ) implies c = 2κ(L). Assume that 2κ(L) = c.
Then we can show that c = 2κ(ℓ) by a slight generalization of an argument in the
proof of Theorem 1.1 since H1(X,X±;Z) = 0 imply that H1(X̄, X̄±;Z) are torsion
Λ-modules by Lemma 3.1 (4) and hence the retraction r : X → X+ is used to show
that the identities β1(X̄

±) = β1(X̄) still hold as it is in the case of an immersed
ribbon S2-link. Further, 2κ(L) = c means β2(X̄) = 0 and hence we have

β(ℓ) = β1(X̄
0) = β1(X̄) = β1(L)

by the Mayer-Vietoris exact sequence on (X;X+, X−;X0) as it is desired. Thus, we
can find a rational number δ ≧ 1 such that δ(c − 2κ(L)) = c − 2κ(ℓ). Similarly,
we can find a rational number δ′ ≧ 1 such that δ′(c′ − 2κ(L′)) = c′ − 2κ(ℓ′). By
Theorem 1.2 and Lemma 3.3, we can also find rational numbers δ̃, δ̃′ > 1 such that
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δ̃(c− 2κ̃(L)) = c− 2κ̃(ℓ) and δ̃′(c′ − 2κ̃(L′)) = c′ − 2κ̃(ℓ′). To complete the proof of
Theorem 5.1, it suffices to show that

c− 2κ(ℓ) = c′ − 2κ(ℓ′) and c− 2κ̃(ℓ) = c′ − 2κ̃(ℓ′).

Since c′ = c+ 2, it suffices to show the following lemma:

Lemma 5.3. β1(ℓ) = β1(ℓ
′) and β̃1(ℓ) = β̃1(ℓ

′).

Proof of Lemma 5.3. Let X0 and X1 be the compact exteriors of the links ℓ and
ℓ′ in S3. Let T 0 be the one crossing tangle, and T 1 the lassoed tangle, which are
illustrated in Fig. 1. Both T 0 and T 1 are in the same 3-ball V in S3, whose compact
exteriors E0 and E1 are assumed to be 3-submanifolds of X0 and X1, respectively. It
is noted that for the 3-ball V c = cl(S3\V ), the compact proper 1-manifold T = ℓ∩V c

coincides with the compact proper 1-manifold ℓ′ ∩ V c. Let E be compact exterior of
T in V c. Then for i = 0, 1, the 3-manifold X i is obtained from E and Ei by pasting
along a compact 4-punctured sphere S(4)(⊂ ∂E). Let Ē, Ēi and S̄(4) be the lift
of Ē, Ēi and S(4) under the covering X̄ i → X i, respectively, where it is noted that
Ē and S̄(4) are independent of i. Since the fundamental group π1(S(4), x0) for any
base point x0 is a free group of rank 3, it is noted that dimQ(Λ) H1(S̄(4);Q(Λ)) = 2.
We also have dimQ(Λ) Im(iĒ

S̄(4)
)∗ = 1 for the image Im(iĒ

S̄(4)
)∗ of the natural Q(Λ)-

homomorphism (iĒ
S̄(4)

)∗ : H1(S̄(4);Q(Λ)) → H1(Ē;Q(Λ)). In fact, consider the exact
sequence

H2(Ē, ∂Ē;Q(Λ))
∂∗→ H1(∂Ē;Q(Λ))

i∗→ H1(Ē;Q(Λ)).

The image Im∂∗ is self-orthogonal with respect to the non-singular Q(Λ)-intersection
form

Int∂Ē : H1(∂Ē;Q(Λ))×H1(∂Ē;Q(Λ)) → Q(Λ).

In fact, Int∂Ē(∂∗(x), y) = 0 for all x ∈ H2(Ē, ∂Ē;Q(Λ)) if and only if IntĒ(x, i∗(y)) = 0
for all x ∈ H2(Ē, ∂Ē;Q(Λ)) with respect to the non-singular Q(Λ)-intersection form

IntĒ : H2(Ē, ∂Ē;Q(Λ))×H1(Ē;Q(Λ)) → Q(Λ).

By Blanchfield duality in [1], the last condition is equivalent to i∗(y) = 0, namely
y ∈ Keri∗ = Im∂∗. Thus, we have

dimQ(Λ)H1(∂Ē;Q(Λ)) = 2 dimQ(Λ) Im∂∗.

Because H1(∂Ē, S̄(4);Q(Λ)) = 0 by the excision isomorphism, the natural Q(Λ)-
homomorphismH1(S̄(4);Q(Λ)) → H1(∂Ē;Q(Λ)) is aQ(Λ)-isomorphism. This means
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that dimQ(Λ) Im(iĒ
S̄(4)

)∗ = 1. Similarly, we have dimQ(Λ) Im(iĒ
i

S̄(4)
)∗ = 1 for the natural

Q(Λ)-homomorphism

(iĒ
i

S̄(4))∗ : H1(S̄(4);Q(Λ)) → H1(Ē
i;Q(Λ)) (i = 0, 1).

Since the fundamental group π1(E
0, x0) for any base point x0 is a free group of rank 2,

it is noted that dimQ(Λ) H1(Ē
0;Q(Λ)) = 1. It is also shown that dimQ(Λ) H1(Ē

1;Q(Λ)) =
1. In fact, a suitable tangle sum of the one crossing tangle T 0 and the lassoed
tangle T 1 gives the Borromean rings 632 (see Example 5.4 (1) later) whose com-
pact exterior X ′ has H1(X̄

′;Q(Λ)) = 0. Hence H1(Ē
1, S̄(4);Q(Λ)) = 0, so that

dimQ(Λ) H1(Ē
1;Q(Λ)) = 1. Let m be a simple loop in S(4) which bounds a disk in

V separating the two strings of T 0. Let m̄ be a connected lift of m in S̄(4), which
represents a non-zero element in H1(S̄(4);Q(Λ) and represents zero in H1(Ē

0;Q(Λ)).
It is also shown that m̄ represents zero in H1(Ē

1;Q(Λ)). In fact, a suitable tan-
gle sum of the one crossing tangle T 0 and the lassoed tangle T 1 with two copies of
m identified gives a split sum of the Hopf link and a trivial knot whose compact
exterior X ′′ has dimQ(Λ) H1(X̄

′′;Q(Λ)) = 1. If m̄ represents a non-zero element in
H1(Ē

1;Q(Λ)) = Q(Λ), then the Mayer-Vietoris sequence on (X̄ ′′; Ē0, Ē1; S̄(4)) shows
that dimQ(Λ) H1(X̄

′′;Q(Λ)) = 0, which is a contradiction. Thus, the simple loop m̄

represents zero in H1(Ē
1;Q(Λ)). If m̄ represents zero in H1(Ē;Q(Λ)), then we have

dimQ(Λ) H1(X̄
0;Q(Λ)) = dimQ(Λ) H1(Ē;Q(Λ)) = dimQ(Λ) H1(X̄

1;Q(Λ))

by the Mayer-Vietoris sequences on (X̄0; Ē, Ē0; S̄(4)) and (X̄1; Ē, Ē1; S̄(4)). If m̄ rep-
resents zero in H1(Ē;Q(Λ)), then the Mayer-Vietoris sequences on (X̄0; Ē, Ē0; S̄(4))
and (X̄1; Ē, Ē1; S̄(4)) show that

dimQ(Λ) H1(X̄
0;Q(Λ)) = dimQ(Λ) H1(Ē;Q(Λ))− 1 = dimQ(Λ) H1(X̄

1;Q(Λ)).

Therefore, we have β1(ℓ) = β1(ℓ
′). By an analogous infinite cyclic version argument

of this argument, we also have β̃1(ℓ) = β̃1(ℓ
′). □

This completes the proof of Theorem 5.1. □

Here are examples of immersed ribbon S2-links associated with an unlinking op-
eration on the links ℓ0 illustrated in Fig. 2 together with the notation of “linkinfo”1

in the bracket, whose Alexander polynomials are given in [20] and whose unlinking
number information is in [14].

1http://www.indiana.edu/ linkinfo/.
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Figure 2: Links used in Example 5.4

Example 5.4. (1) Let ℓ0 = 632 (L6a4) (the Borromean rings) which is a lassoed link
of the Hopf link H with ∆(H)

.
= 1. Note that κ(H) = κ̃(H) = 1. Then β1(ℓ

0) =
β̃1(ℓ

0) = 0 and u(ℓ0) = κ(ℓ0) = κ̃(ℓ0) = 2 for any orientation of ℓ0. By Theorem 5.1,
the immersed ribbon S2-link L = Lℓ0 has the identities 2κ̃(L) = 2κ(L) = c = 4.
Further, for every symmetric middle cross-section ℓ of L, 2κ̃(ℓ) = 2κ(ℓ) = c = 4.
Since ∆(ℓ0)

.
= (t1 − 1)(t2 − 1)(t3 − 1)

.≡ 1 and ∆̃(ℓ0)
.
= (t− 1)4

.≡ 1, we have

∆(ℓ)
.≡ 1 and ∆̃(ℓ)

.≡ 1

by Theorems 1.1 (4) and 1.2 (4). Further, by Theorem 1.2 (2), Lemma 3.5 and the
signs of the unlinking operation, sa(ℓ) = 0 for every a ∈ [−1, 1) and s1(ℓ) = −ξ+ =
0,±2 whereas sa(ℓ

0) = 0 for every a ∈ [−1, 1].

(2) Let ℓ0 = 721 (L7a6). Then β1(ℓ
0) = β̃1(ℓ

0) = 0 and κ(ℓ0) = κ̃(ℓ0) = 1 for any
orientation of ℓ0 and u(ℓ0) ≦ 2. The Alexander polynomial

∆(ℓ0)
.
= 1− t1 − t2 + (1− t1 − t2)t1t2 + (t1t2)

2,

∆̃(ℓ0)
.
= (1− t)(1− 2t− 2t−1 + t2 + t−2) or (1− t)(3− 2t− 2t−1)

cannot be written as ff ∗ up to multiplications of units of Λ and ti − 1 (i = 1, 2) or
up to multiplications of units of Λ̃ and t− 1, respectively. Hence by Theorem 1.1 we
obtain

2κ̃(ℓ0) = 2κ(ℓ0) = 2 < c = 2u(ℓ0) = 4.
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By Theorem 5.1, κ(L) = κ̃(L) = 1. By Theorem 1.2 (2), for every symmetric middle
cross-section ℓ of the immersed ribbon S2-link L = Lℓ0 , we have

κ̃(ℓ) = κ(ℓ) = κ̃(L) = κ(L) = 1,

so that |sa(ℓ) + ξ+| ≦ 1 for every a ∈ (−1, 1).

(3) Let ℓ0 = 722 (L7a5). Then we have β1(ℓ
0) = β̃1(ℓ

0) = 0 and u(ℓ0) = κ(ℓ0) = κ̃(ℓ0) =
1 for any orientation of ℓ0. By Theorem 5.1, the immersed ribbon S2-link L = Lℓ0

has the identities 2κ̃(L) = 2κ(L) = c = 2. Further, for every symmetric middle
cross-section ℓ of L, 2κ̃(ℓ) = 2κ(ℓ) = c = 2. Since ∆(ℓ0)

.
= (t1 + t−1

2 − 1)(t−1
1 + t2 − 1)

and ∆̃(ℓ0)
.
= (t− 1)(t+ t−1 − 1)2 or (t− 1)(2t− 1)(2t−1 − 1), we have

∆(ℓ)
.≡ (t1 + t−1

2 − 1)(t−1
1 + t2 − 1), ∆̃(ℓ)

.≡ (t+ t−1 − 1)2 or (2t− 1)(2t−1 − 1)

by Theorems 1.1 (4) and 1.2 (4). Further, by Theorem 1.2 (2) and Lemma 3.5,
sa(ℓ) = 0 (a ∈ [−1, 1)) and s1(ℓ) = ±1.

(4) Let ℓ0 = 835 (L8a16) which is a lassoed link of the (unoriented) torus link T (2, 4)
of type (2, 4) with ∆(T (2, 4))

.
= t1t2+1. Note that κ(T (2, 4)) = κ̃(T (2, 4)) = 1. Then

β1(ℓ
0) = β̃1(ℓ

0) = 0 and κ(ℓ0) = κ̃(ℓ0) = 2 for any orientation of ℓ0 and u(ℓ0) ≦ 3.
The Alexander polynomial

∆(ℓ0)
.
= (t1 − 1)(t2 − 1)(t3 − 1)(t1t2 + 1),

∆̃(ℓ0)
.
= (1− t)4(t2 + 1) or 2(1− t)4

cannot be written as ff ∗ up to multiplications of units of Λ and ti − 1 (i = 1, 2) or
up to multiplications of units of Λ̃ and t− 1, respectively. Hence by Theorem 1.1 we
obtain

2κ(ℓ0) = 2κ̃(ℓ0) = 4 < c = 2u(ℓ0) = 6.

By Theorem 5.1, κ(L) = κ̃(L) = 2. By Theorem 1.2 (2), for every symmetric middle
cross-section ℓ of the immersed ribbon S2-link L = Lℓ0 , we have

κ̃(ℓ) = κ(ℓ) = κ̃(L) = κ(L) = 2,

so that |sa(ℓ) + ξ+| ≦ 1 for every a ∈ (−1, 1).

(5) Let ℓ0 = 939 (L9a54). Then β1(ℓ
0) = β̃1(ℓ

0) = 0 and κ(ℓ0) = κ̃(ℓ0) = 2 for any
orientation of ℓ0 and u(ℓ0) ≦ 3. The Alexander polynomial

∆(ℓ0)
.
= (t1 − 1)(t2 − 1)(t3 − 1)(t21 − t1 + 1),

∆̃(ℓ0)
.
= (1− t)4(t2 − t+ 1)
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cannot be written as ff ∗ up to multiplications of units of Λ and ti − 1 (i = 1, 2) or
up to multiplications of units of Λ̃ and t− 1, respectively. Hence by Theorem 1.1 we
obtain

2κ(ℓ0) = 2κ̃(ℓ0) = 4 < c = 2u(ℓ0) = 6.

By Theorem 5.1, κ(L) = κ̃(L) = 2. By Theorem 1.2 (2), for every symmetric middle
cross-section ℓ of the immersed ribbon S2-link L = Lℓ0 , we have

κ̃(ℓ) = κ(ℓ) = κ̃(L) = κ(L) = 2,

so that |sa(ℓ) + ξ+| ≦ 1 for every a ∈ (−1, 1).

(6) ℓ0 = 9312 (L9a53) which is a lassoed link of the 2-component 4-crossing link 521
with ∆(521)

.
= (t1−1)(t2−1). Note that κ(521) = κ̃(521) = 1. Then β1(ℓ

0) = β̃1(ℓ
0) = 0

and u(ℓ0) = κ(ℓ0) = κ̃(ℓ0) = 2 for any orientation of ℓ0. By Theorem 5.1, the
immersed ribbon S2-link L = Lℓ0 has the identities 2κ̃(L) = 2κ(L) = c = 4. Further,
for every symmetric middle cross-section ℓ of L, 2κ̃(ℓ) = 2κ(ℓ) = c = 4. Since
∆(ℓ0)

.
= (t1 − 1)(t2 − 1)(t3 − 1)(t1 − 1)(t−1

1 − 1) and ∆̃(ℓ0)
.
= (t− 1)6, we have

∆(ℓ)
.≡ 1 and ∆̃(ℓ)

.≡ 1

by Theorems 1.1 (4) and 1.2 (4). Further, sa(ℓ) = 0 (a ∈ [−1, 1)) and s1(ℓ) = −ξ+ =
0,±2 by Theorem 1.2 (2) and Lemma 3.5 although sa(ℓ

0) = 0 (a ∈ [−1, 1]) by the
signs of the unlinking operation.

(7) Let ℓ0 = 9321 (L9n27) which is a lassoed link of the 2-component trivial link o2

with ∆T (o2)
.
= 1. Note that κ(o2) = κ̃(o2) = 0. Then β1(ℓ

0) = β̃1(ℓ
0) = 1 and

u(ℓ0) = κ(ℓ0) = κ̃(ℓ0) = 1 for any orientation of ℓ0. By Theorem 5.1, the immersed
ribbon S2-link L = Lℓ0 has the identities 2κ̃(L) = 2κ(L) = c = 2. Further, for every
symmetric middle cross-section ℓ of L, 2κ̃(ℓ) = 2κ(ℓ) = c = 2. Since ∆T (ℓ0)

.
= t1 − 1

and ∆̃T (ℓ0)
.
= (t− 1)3, we have

∆T (ℓ)
.≡ 1 and ∆̃T (ℓ)

.≡ 1

by Theorems 1.1 (4) and 1.2 (4). Further, by Theorem 1.2 (2) and Lemma 3.5,
sa(ℓ) = 0 for every a ∈ [−1, 1) and s1(ℓ) = ±1.
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