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The pivotal purpose of the notes is to understand the general configu-
ration of a closed oriented surface F piecewise-linearly and locally-
flatly embedded in the oriented euclidean 4-space }?L+ up to ambient iso-
topies in Ru. The method which we shall adopt to describe the configu-
ration of F in R' is usually called the motion picture method. (See
Fox [1].) Roughly speaking, this method is to cut & by the parallel
hyperplanes Ra[t] = Bxt« R xRt = RL‘L, -© < ¢t < +o, for example, after
having deformed F into a suitable form that we will call a normal form
SO0 as to become easy to conce‘ive the configuration of F in Ru.

The first attempt of describing the configuration of F in R by the
motion picture method was made by R.H.Fox and J.W.Milnor in their unpub -
lished paper [2] in a somewhat unsatisfactory form in 1957. |

The most important concept of the motion picture method is‘ the hyper-
bolic transformation for links that corresponds to the concept of ahyper-
bolic critical point of a surface in the Morse Theory, which will be dis-

cussed in Section 1. 1In particular, the normal form of a surface in &'
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will be stated as the closed realizing surface of a sequence of fusions
and fissions that are the special types of the hyperbolic transformations
for links, originally introduced by F.Hosokawa [5] in 1967 ina restricted
form.

In Section 2, we will show that any closed surface F can be deformed
into a normal form by an ambient isotopy of Ru. In the case of 2-spheres,
this responds to a question of R.H.Fox [1, p.134]. Section 3 will be
devoted to a normalization of cobordism surfaces between links.

Throughout the notes, spaces and maps will be considered in the piece-
wise linear category. (Refer to Hudson [7], Rourke-Sanderson [10], etc.)

These notes are based on lectures by the first author in the topology
seminar at the Kobe University in 1975. The authors would like to grate-
fully acknowledge a number of valuable advices from Professor Fujitsugu
Hosokawa, and are grateful to Dr.Takeshi Kaneto for having read the first
manuscript.
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0. Notation and Definitions

0.1. We denote by 34, Int(X) and Cl(X), respectively, the boundary,
the interior and the closure of a manifold X. We say that a submanifold
X of a manifold Y is properly embedded (or proper) if XndY = 8X.

The following notation is fixed throughout the note



R : the set of all real numbers,

I={zeR|0 <a <1} : the closed unit interval,
A= {(ml,xQ,---,xn) |mi ¢ R} : the euclidean n-space,

n
R = {(xl,x ee,w,) e A !xn > 0},

2’
n 7
R = {[xl,xz,---,xn) €R |xn < 0},

jL/Qsl}

D = {(xl,xz,-",xn) e’ |{xf+x§+---+mi) : the n-disk,

gt {(ml,x2,°--,xn] e 7 ](xf+xg+-'-+x§)1/2=1} : the (n-1)-sphere,
S = Mg,z 97 e 2 0),

gt - Uy iz, ,z) e g1 |z, < ol

We always assume that Eﬂ, 7" and Sn_1 have the standard piecewise
linear structures which are compatible with the affine structures, and we
. . noo. 74+ -
identify & with the subspace of R having all components after the

nth equal to O.

0.2. For a subset A4 of R3 and an interval J of Rl, we denote

by AJ the subset {(x,t) A | zed, ted} of R = ROxR'. If J con-

sists of one point to, then the notation A[to] = A Xto will be used.
0.3. Definitions. Let X and Y he topological spaces.
(1) Two homeomorphisms (or embeddings) f, g : X » Y are isotopic iff
there exists a homeomorphism (or embedding) B 1 XxTI » ¥YxI such that
(i) level preserving (that is, H(x,t) = (ht(x),t), where ht :
X > Y is a homeomorphism (or embedding) for all teI ), and
(i1) ho = £ and hl = g.
(2) An isotopic deformation of Y 1is a homeomorphism H : YxI » yx7T
such that

(i) level preserving (that is, H(y,t) = (ht(y),t), where ht :
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Y > Y is a homeomorphism), and
(ii) starts with the identity ; hO = ly.
(3) Two embeddings f,g : X > Y are ambient isotopic iff there exists

an isotopic deformation H : ¥x7 > ¥yx7I of ¥y with hlf =g.

(4) Two subspaces X, and X, of Y are ambient {sotopic iff there

exists an isotopic deformation #:Yx T » YxI of Y with hl(Xl) = XZ'
In the cases (3) and (4), we will call the isotopic deformation H or

{ht}te'I the ambient isotopy of Y between f and g (resp, X, and X5 !

1
Throughout the note, an ambient isotopy of a space will mean an isotopy

with compact support, unless otherwise stated.

0.4. Definitions. (1) A subspace £ = hl Uese uhu in R3 (or SS) is '

an (oriented) Iink with w components iff £ is homeomorphic with a

- . 1 . . 3
disjoint union & U"'l)Sl of uw (oriented) l-spheres. An (oriented)

link with 1 component is called an (oriented) knot.

(2) Two (oriented) knots or links £, L' are equivalent én‘of‘the‘same

- . . . . . 3
type)lff there exists an (orientation preserving) homeomorphism ¥ : R -

RS (or S3 > 53) such that $(£) = £' (and ng is also orientation
preserving). The ‘equivalence class of a knot or link is called its knot .
type or link type. . |

(3) An (oriented) link £ = kl U ses Uku in R3 (or SS) is called i
trivial (or unknotted) iff there exists a disjoint union DfLJ"' uDi of !
2-disks in Rz (or SS) with BDE = hi’ Z=1,+++,U. Trivial links consti-
tute the trivial type.

. . X 2
(4) A link £ 1is said to be splittable iff there is a 2-sphere S” <

m- £ such that both components of RS-SZ contain points of £. More

precisely, we say that £ is splittable into A sublinks Kl, ee ’KA’

e o P
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iff there are A disjoint 3-disks Df Uees uDi in R3 such that Int(Di)

=3 Ki for i=1,+++,h ; and & is denoted by £ = El'o--- °£x' If Ki is

a knot for all ¢, £ = kyo=-: oku is said to be completely splittable.
Other terminology in Knot Theory 1is refered to, for example, Rolfsen

[9] and Suzuki [11].

0.5. Definition. For a subcomplex P of a manifold M, by N(P; M)
we denote a regular neighborhood of P in M, that is, we construct its
second derived and take the closed star of P.

Let F be a proper 2-manifold in a 4-manifold M. For a point ZeF,
we have a knot dWN(x ; F) in the 3-sphere AN(x ; M). The knot type K (a)
of this knot ON(x ;F) in dN(x ;M) 1is called the singularity or local
knot type of F at x. When k(x) 1is of trivial type, we may say that
P is locally flat at x. We say F 1is locally flat in M iff it is
locally flat at each point. When k(x) 1is of non-trivial type, we may
say that F is locally knotted at z. It should be noted that the local-
ly knotted points occur only at the vertices of [F.

For the local knots, we refer the reader to Fox-Milnor [3].

0.6. Throughout the note, by a surface we mean a compact, oriented
(and connected or not) 2-dimensional manifold F, with boundary which may

be empty, Locally flatly embedded in the oriented R4.

1. Hynerbolic Transformations and the Realizing Surfaces in H4

Let £ be an oriented link in the oriented RS. An oriented band (=
2-disk) B in B> is said to span the link £ by the attaching arecs

{a,a'}, if o and o' are disjoint connected arcs on £ such that’
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Bnl =3Bnl =gua' and if the link Cl(£Lu3B- (aua')) has the orien-

tation compatible with that of £-(ava') and 3B- (nwva'), see Fig. 1.

I t I

L8 = —

Fig. 1

Q

In general, let Bl’-..’Bm be mutually disjoint oriented hands in RS 3

such that each Bi spans £ by the attaching arcs {ai,u%}.

[}
|
1.1. Definition. The oriented link jt

. ces - . - T '
h(L ’Bl’ ,Bm) CI(ELJBBlu uBBm (ulLlalU UumtJdm))

is called the link obtained from L by the hyperbolic transformations w

along the bands Bl,---,Bm. |

Consider the sequence KO - ZI > oees > En of oriented links such that

£i+1 is obtained from Zi by the hyperbolic transformations along the

bands B® = {Bi,o--,B; s £i+1 = h(ﬁi :BY)  for 1=0,1,+++,n-1.
s

For a closed interval [a,b], let a =t, < t, < +ve < tn = b be the

0 1

finite subdivision with ¢, ., -, = ta-—b}/n , 1=0,1,+<+,n-1. Now, we
7+1 1 ‘
‘41 t, 1 . 3 j

i+l _ L1+ Cply s

construct a proper surface Fti = Fti (Ki L., 3B in R [t; ’ti+1] \
as follows !
: . i
< N
Zi[t] for by St < (ti +ti+1)/2’ i
bl 3 i i |
- vee = . . 2 :
Fti n R [t] (ﬂilJBl v UBmi)[t] for t (tl +tz+1)/ s |
7:+1[t]’ for (ti +ti+1)/2 < t < t'L’*’l. ;

].

2 3
Clearly, Ftl+1 is a locally flat orientable surface in & [ti ’ti+]
7
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t.
We will take such orientations on Ft%+l and Rs{ti ’ti+1] as induce

1z
. . 3 .

the orientations of £i+1[ti+1] and R [ti+1]’ respectively, under the

. P . 3 _ 3

identification (£i+1[t7ﬁ+1] < R [ti«tl]) = (£i+l c R7).
Fb tl tz t?’[ -

Then the union =F uUF “usscuF is a locally flat, proper

a to tl tn-l

oriented surface in the oriented Rs[a , b].

1.2. Definition. The oriented surface Fb = Fb[Z LA e L 3B,
a a 0 1 43
s ,Bn_l) is called the realizing surfoce in the oriented Rs[a , b] of

the sequence £ > £ ~» «+« > £ of links.
0 1 n

It is obvious that, given a sequence ZO - 11 > oeee > Kn of hyperbolic
transformations, the realizing surface Fs in the oriented Rs[a ., b] is
uniquely constructed.

Now suppose further ZO and En are trivial links with Hy and M,
components, respectively. Then there exist mutually disjoint Uy 2-disks

Doy ==+, D in E° with (D, ue=-uD ) =4&
1 Hg 1 Ho

M 2-disks D!, -« , D' in }i’3 with 3(D!u=-«+uD') =2 .
n 1 un 1 un n

0 and mutually disjoint

We define a closed oriented surface ?ﬁ in Rs[a , bl as

Fs - FS U (DIU ...UDUO)[a] U (D{U -..uDﬁn)[b],

. . . . . . b
so that its orientation is coherent with that of oriented Fa'

1.3. Definition. The oriented closed surface fi is called the closed
realizing surface in the oriented Rs[a ,b] of the sequence EO - Kl >

+e« > £ with trivial links £, £ .
n 0 n

It should be noted that the closed realizing surface f;j is not in
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general uniquely determined up to isotopies of Rs[a ,'b]. (That is, flf

depends upon the choices of 2-disks D, +++ , D , D) .

1.4, Example. Let Dl’ D{ be 2-disks in R3 such that Dl nD{ = 8D1

= BD{ = Cl is a l-sphere. Since DllJDi is a 2-sphere, there exists a

3-disk 33 in H3 whose boundary is DILJD{. Let D2 be a 2-disk in

the interior of 33, and let 8D2 = 02. Now we consider the following

closed surfaces in R3[0 , 1], as shown in Fig. 2.

&l
1

‘ 0 (@,[0)ve {0, 1] uD 1) v (0,[0] v e, [0, 1] u D, (1),

~
t

= (0 [01uc [0, 1]uDi[1]) v (D,0] ue,0,1]uD,01]).

Sl

D, (1] D,[1] DI[1) 1)
1
O O = O O
e 3 o8] ezl C,04]
D v - U
Dl[O] Dz[o] Dl[o] D2[0]
Tl N
0 0

Fig. 2

It is impossible to carry FJ’ onto f‘;’_ by. isotopies of RS[D ,17.

In fact, f&' bounds disjoint two 3-disks Dl[O , 1] uD2[0 , 11 in RS[O, 1],

but f'g‘ never bounds disjoint two 3-disks in RS[O ,1]. To see this,
let p : RS[O ,1]-02[0 , 1] > RS[I]-—CZ[I] be the natural projection.
The induced homomorphism p, : HZ(R3[0 ,1]-02[0 , 11,0 » Hz(Rs[l]—CZ[l];

7) sends the homology class represented by the 2-sphere Dl[O] uCl[O , 1]
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U D{[l] to the homology class represented by the 2-sphere (DIIJD{)[ll.
Since (DILJD{)[I] represents a non-zero homology class in HZ(RS[I] -
Cz[l] ; 1), we obtain that the 2-sphere Dl[O]lJCl[O ,l]lJD{[l] is not
homologous to zero in R3[0 ,1]-02[0 ,1]. In particular, Dl[O]lJcl[O,l]
u D{[l] does not bound any 3-disk in R3[0 , 1] _(DZ[O] u02[0 , 1] uDz[l])

c RS[O ,11-¢,{0,1]. This implies that f']' does not bound disjoint
2 J

0
two 3-disks in RS[O , 1], as desired.

However, we can obtain the following :

1.5. Lemma. The closed realizing surface Fj) 1s uniquely determined

up to isotopies of RS(—w,+m) = R4 keeping Rs[a-+e,b-’e] fixzed for a

sufficiently small positive number t.

This lemma is mainly based on the following Horibe-Yanagawa’s lemma ,

which will be found in the Horibe’s master thesis [4].

1.6. Lemma (Horibe and Yanagawa). Let S, **° ’Sn be mutually dis-
joint 2-spheres in HB[O , 11 defined by Si = Di[O] u(BDi)[O ,l]tJDé[l],
i=1,++,n , where Di and Dé are 2-disks in R3 with BDi = SDé. Then

we can find mutually disjoint 3-disks Bis =0t B, in R3[0 , +) such

that 3B, = 5., i=1,++=,n.
Z 7

To prove Lemmas 1.5 and 1.6 precisely, it seems necessary to notice
the following Cellular Move Lemma obtained from a general theory of the
piecewise-linear topology.

Consider two locally flat n-manifolds M., M in a q—manifold & with

1 72
q > n. We say that M, and M, differ by an (n+1)-disk D, iff D <

Int(®) so that Cl(MltJMz-(erwMz)) = 9D and Deri f BDerz is an
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n-disk (i=1, 2); see Fig. 3.

VI/ ///In»

&

Fig. 3
1.7. Proposition. (Cellular Move Lemma). Let Mq, MZ c @ differ by
an (n+1)-disk D. There exists an ambient isotopy of @ carrying Mﬁ
onto Mg and keeping §-N(D; Q) fixed. (For the proof, see for example
Rourke-Sanderson [10, p.55].)
=b =,b 3
1.8. Proof of Lemma 1.5. Let Fa , F g < RF'{a ,b] be two closed real-

izing surfaces obtained from the same realizing surface Fﬁjc Rs[a , bl.

Given a small positive number ¢, let €' be a number with 0 < &' < ¢,

—p-g! .
Consider a closed realizing surface E;f £ Rz[a+€' ,b-€'] obtained

+£!
from Fa n R3[a+E' »b-£'] by attaching suitable 2-disks in RS[a+€'] and

3 . =b =b-g! —=b =b-e!' . C e "
R7[b-e']. Then ClﬁFﬁ U Fﬁ+€, - [F& n Fa+€' )} consists of disjoint 2-

spheres contained in either Rs[b—e' ,b] or Rs[a ,a+€']. The situations

of the 2-spheres in Rs[b~£' , bl or Rs[a ,a+c'] are the same as in
Horibe and Yanagawa’s Lemma (Lemma 1.6), although the interval [0, 1]
has been replaced by [b-£' ,b] or [a,a+e']. Hence there exist dis-
joint 3-disks in Rs[b—e' , +®)  or RS(—oc ,a+c']. whose boundaries are

all of the above 2-spheres. Then the Cellular Move Lemma implies that

pa— e P Y
Fg? is isotopic to ﬂjl;i by an ambient isotopy of Rs(-w , +®)  keep-

— —bh-g!
ing Rs[a+e , b-¢] fixed., We apply a similar argument to FZ7 and Fa+;1'
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=b . . : . =, b . -
Therefore Fa is ambient 1sotopic to F'a by an ambient isotopy of

RB(—w, +x)  keeping H3[a+8 ,b-g] fixed. This completes the proof. [J

1.9. Proof of Lemma 1.6. It suffices to show that there exists a 3-disk
3

Bn c F7[0, +»®) such that BBn = Sn and Bnn (Sl VRN Usn—l) =@. [In
fact, the Cellular Move Lemma, then, assures that the union S1 U e uSn_1
U Sn is ambient isotopic to the union Sl U e uSﬂ_1 u B(DH[O ,e]) for a
sufficiently small positive number €. Next, appeal to the induction on

the number »n of connected components, ]

Consider D and D!, +++« ,D'. Note that D!, «++« ,D! are mutually
n 1 n 1 n

15701 ! LN ' = ro=
disjoint and (aDlu uBDn_l) nDn @ and 8Dn aDn.
By a transversality argument, there is a sufficiently small isotopic

: 3 . .o . ’ -
deformation {ht}teI of R” keeping 3D  fixed with ht(Dn) naD! = 9,
1=1,+++,n-1, so that the 2-disk ZNDn = hl(Dn) intersects the union Di U
sue uD}é transversally. Now, DLE nﬁn consists of only finite number of
simple loops for <=l,+-+,n-1, and Démbn consists of simple loops and

proper simple arcs, see Fig. 4.

a proper simple arc

Fig. 4
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Let v be the number of the components of (D{ Ues- UEZ) niz .
S =D D! . i “sa i i
Let M n[O] u(BDn)[O , 2] u n[2] Since Sl u US% is ambient
isotopic to S1 U"'(JSn 1 US; » 1t suffices to constructs a 3-disk Bé s
3
R i ' =gt ' ‘en = Q. -
[0, +2) with aBn Sn and Bn n(S1 u USn—l) P. We shall const
ruct Bé by specifying the cross-sections Bér\Rs[t].
Divide the interval [0, 1] into the subintervals [0 ,El], [81,62],
s, [ev, 1], where €; = 2/(Vv+1), i=1,%04,v .
3
t i <t < i "'nR = .
For any with 0 < ¢ €1» We define Bner [¢] ht/e (Dn)[t]
Thus, the part BéerS[O ,El] is constructed. It will be noticed that
4 3 :"“ ’ [ = oo 1
BanR [81] Dn[al], and each Di[gl]’ =1, » , has only the simple
loops or simple arcs of ((Diu sae uDé]rwﬁn)[el] as the intersection
with bn[el]. Let vy c (D{LJ"' uDé) nf% be an innermost loop or arc on

some Dé, and let A c E; be the 2-disk cut off by Yy with IntArwﬁn =
@. We perform the orientation-preserving cut on ﬁn along this A. By

this modification, Bn is divided into one 2-disk 5;1) and one 2-sphere
%, see Fig. 5. Now, B};n}?s[sl ,£,] is roughly defined by the realization

of this modification into RS[E1 ,EZ]. To be precise, let

~

D [t] - for e <t < (e, +e,)/2,

3
r
Bnr\R [t]

B! 0 R°[£) (B umt ;B8] for t - (€, +€,)/2 , where W(A; R)

is a 3-disk obtained by thickenning the disk A so that N(A ;Rs)rwbn =

W ;R D = N(3A ;D ), and
(3 n

B R [t] = CL(D, v aN(A 5 B) - aN(s 5 B) nD)[t] - (5}5” UI)[¢] for

(61 +€2)/2 < t

A

€2.

We can continue the orientatiop-preserving cut so as to obtain one 2-

disk B(v) and v 2-spheres I , e+ , I so that the union b(v) UL
7 1 V] n 1
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a proper simple are

Fig. 5

U e UZV no longer intersects the union Di U"'lJDénl uInt(Dé). Note
L . ~ ~ (v .

that the modifications from Dn to Dé ) uZl Uess UZv have precisely v

times.

Realize these modifications into RS[Ei’€i+l] and Rs[av ,1] in good
order. Thus, we can construct Bé|ﬁR3[O , 1] which is homeomorphic to a
3-disk with v open 3-disks removed. Notice that (Bér1R3[0 , 11 nSi =

9 = R3(1 s @) NS, i1, e e n-l.
~ (V)

Since Dn LJDé, ) see 1 are mutually disjoint 2-spheres in RS,

1’ v

from ¥ see Zv we can enumerate the 2-spheres, say Zl, e, ZX (v

1’
> A 2 0), which contained in the interior of 5(v)u

DI '.. . 3_
» n (i.e. the open
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disk bounded by 57(1\’) uD! in R,
Divide the interval [1,2] into the subintervals [1, nl], [nl,nz] ,
¢ = 3 ) = cee ee e
[nx,u], wbere n; 1 + 2/(A+1), =1, AL In Zl, ,Z)\ , We
choose an innermost 2-sphere, say 21, which bounds a 3-disk A?CRS not

meeting other Z.. Then, we define B;lnRs[l y nz] as follows :

(D(\))UZ uLyueseuL)[t] for 1<t < (1+n,)/2,

B'nR [t] = (D(\))UA UZ Uus*reul )[ ] for ¢ (1+n1)/2,

L( N(\)) uZ Ueee Ul )[t] for (1+n1)/2 < t < Ny-

For R3[n2,n3], e, Rs[nx 1’”>\]’ we repeat this process. Thus, we

. , 23 oS - (pV)
obtain BnnR [0, n)\] such that BnnR [n>\] = (Dn UZA+1U UZ\)) [n)\].

Since the 2-sphere 572\)) UD}’1 does not contain I VIREXS UZ\) in the

A+l

interior, we can obtain a 3-disk A e B> with 3A3 = Dr(l\)) uD’; and

3 _ . ’ 3 .
A" n (ZMlU UZ\)) = P. Now we define Bnr\R [n)\,2] as follows :

~(v
(Dé ) UZ>\+1U"' UZ\))[t] for Ny < t < (nx+2)/2,

' 3 _ 3 ... _
Bnr\R [t] = (A" vl u UZ\)) [t] for t = (n)\+2)/2,

A+l

k(Dé”zxu Uoeee uZ\)][t] for (n)\+2]/2 <t <2,
Next, in , =+ ,Z , we choose an innermost one, say z , which
A+l v A+l
. 3 3 ... 3 ~
bounds a 3-disk A>\+1c R with A>\+1 n (ZX+2 u UZ\)) =@P. Let &, and

£, be numbers with 2 < & < £,, and we define B;LnRS[F,hEZ] as follows:

(% uz U-HUZ\))[t] for 2 <t < &y,

A+l A+2
BrarS[¢] = 4(a5 vE _uesuE )[t] for t=E
n A+l T A2 v 1>
(Z>\+2 U uZ\))[t] for & <t < &7,

This process can be continued to eliminate the 2-spheres ZM"’ VERENV Z\)'
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Then we obtain a 3-disk BT’L in R3[0 , +°) whose boundary coincides with

S! and which is disjoint from S., <<+ ,S .
n 1 n-1

This completes the proof of Lemma 1.6, [

Consider an oriented link £ < R3 and mutually disjoint oriented bands

Bys +* B, Bl, o+ B!, (m,m’ > 1) which span £. Let B = {5 -,

Bm}, B' = {B’,---,Bn[l,} and B =BuB'. Ifwelet &' =h(£;B) and L=

h(L';B'), then it is easy to see that £ = k(£ ;B). For the realizing

surfaces Fab and F'ab in Rs[a,b] of the sequence £ ~ £ and £ »

£' - £, respectively, we can obtain the following lemma :

1.10. Lemma. Fab and F'ab are ambient igotopic in Rs[a,b] keep-

ing the boundary aRs[a , bl  fixed.

Proof. Divide the interval [a,b] into three subintervals [to,%1],
[ty,t2] and [ta,t3), where a = ty < t; < t, < t3 = b, By an isotopic
deformation of Rs[a , b] keeping BRS[a ,b] fixed, we can assume that

b

Fa and F’ab are defined as follows :

Fabn Rs[t] = L[t] = F’abn Rs[t] for to £t < ti1,

b 3 ‘_ r 13
FanR[tl] = (KUBIU uBmuBlu uBm,)[tl],

b 3
F’a n R [t1] = (ZuBlu---uBm)[tl],

Fabn BO[¢] = T[t] and F'abn Blt] = L'[¢] for £ < t < to,
b 3 5 b 3
FUo Blt2) = Lltal, F')0 B [t2] = (8" uBfu-=-uBl ) [¢t2],
Fabn R3[t] = 2[#] = F’abn Rs[t] for ty < t £ ts.
It is easily checked that Fab and F'ab differ by 3-disks Bl'[tl,tz],

e Bn;,[tl,tz]. So by Proposition 1.7 (The Cellular Move Lemma), Fab
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and F”a? are ambient isotopic in Rs[a , b] keeping BRS[a , b] fixed,
which completes the proof. [

1.11. Definition. An isotopic deformation (ambient isotopy) {hs}s .
of Rs(-00 »*®) is said to be level-preserving for each se¢l and ¢
with -= < ¢ < 4o, hS[Rs[t]) = Rs[t] holds, and [a,b]-vertical-line-
preserving if for each se¢I and .a:e}?3 there exists a unique point

X, ERS such that hs(x[t]) = xs[t] holds for all tef{a,b].

1.12. Lemma. Let Kl’ Zi be links obtained from an oriented link KO
by the hyperbolic transformations along bands {Bi} and {Bj}, respec-
tively. If the links with bands (i.e. complexes) KO U (Ui B.) and
KO U (Uj B;) are ambient isotopic in RS, then the realizing surfaces

Flj, F’;) c Rs[a » b]  of the sequences EO > El’ KO - Ki, respectively,

a
are ambient isotopic by a level-preserving and 01,07 ]~vertical-line-pre-
serving isotopic deformation of RS(-oo » +°), where 1, P2 are arbitrary
numbers with p1 < a £ b < p,. Furthermore, if the ambient isotopy of R3
carrying EO ] (Ui Bi) to 20 U (Uj Bé) keeps the link EO fized set-
wise , then the isotopic deformation of RS(—w , ¥°)  may be asserted to
be level-preserving and [€1,82)-vertical-line-preserving for a < &, <

(a+b)/2 < b <&, and to keep Rs(-w ,al  fized.

Proof. Let {hs}se I R+ R be the ambient isotopy sending EO

U (Ui Bi) to KO U (Uj B;). For a sufficiently small positive number ¢,

. RS(_OO , 0} > RS(_oo

the desired isotopic deformation {j } :
g'sel

» +°) s
defined as follows :
f;(x[t])

f;(x[t]) = h¢(t,s)(x)[t] for x[t] ¢ Rs[pl-e ,P1], where ¢ is a

R (@)[¢] for =z[t] € R'[py,p,l,




91

piecewise linear map from [p;-€,01]*([0,1] to [0,1] defined by
{0 if t+es-p, <0,

d(t,8) =
(t+es-p1)/e if t+es-p; > 0,

B 3 .
fs(x[t]) = hll)(t,s) (x)}[t] for «x[t] € R'[p2,p,+€], where Y is a
piecewise linear map from [p,,p,+€]x[0,1] to [0,1] defined by

0 if es-t+p; 0,
V(t,s) =

(es -t +ps)/e if es-t+p; > 0.

Finally, let fs |R3(m°o , P1-€] UR3[02+€ , +°) be the identity map.

This completes the proof. O

1.13. Remark. Let £ be a link and B a band spanning £. If we
slide the attaching arcs of the band B along the link £ or deform the
band B itself, then the link with band £uUB 1is ambient isotopic to
the link with band £ uyB', B' being the resulting band, in RZ keeping

the link £ fixed setwise.

The following is a sort of converse of Lemma 1.10.

1.14. Lemma. Comsider the sequence £ = £ - 1’,1 > oeee > P.n = L' of

b}
oriented links in R with £. = h(£,;B. ) fora band B. .,i=0,1,+++,
2+l z 7+1 T+l
n-1. Then there exist mutually disjoint bands Bl" ’BT’L in B span-

ning £ such that the realizing surface 1-’2(1. AL {Bl’,---,Bé}) CRS[a,b]

with £" = h(L; {Bl'""’B;;}) is ambient isotopic to the realizing surface
2 ‘ . . 3

Fa (!LO,f.l,---,ﬂn : Bl’BZ"“’Bn) by an ambient isotopy 0f R (-w,+s) keep-

ing R3(—w,a] fixed, level-preserving on R3 [b,+) and [b,p]-vertical-

line-preserving for a sufficiently large number p.

Proof. We prove our lemma by induction on »n. I[f #n=1, the assertion
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is obvious. Let n 2 2 and assume that the assertion holds for the sequ-
ence £ = KO +'£1 > oese > ﬂnal' From the construction, we can find a
3 14
< ! vee .
level R°[t'], a < t' < b, such that the surface FS(ZO,Zl, ,Kn ’Bl’BZ’
3 !
---,Bn)r\R [a,t'] 1is ambient isotopic to the realizing surface Fz(ﬂn,ﬂl,
sy 3 BpBy B

ambient isotopy of B’Z)(J° , +®)  keeping RB(—m ,al uRs[t',+WJ fixed.

-+,B ) of the sequence ZO > ﬂl > ovee > En-l by an

. . . ! ) .
From the inductive assumption, Fa(ZO,Kl, ’Kn—l ’Bl’BZ’ ’Bn—l) is de-

: : ) t ! n . r ’ 2 n -

formed into a realizing surface Fa(ﬁo,ﬂn_l ,{Bl, ’Bn-l}) with Kn—l =
. [B! ees B! isioi ' ee. B!

h([o ,{Bl, ’Bn-l}) for mutually disjoint bands By, By by an

ambient isotopy of RB(-w , +°)  keeping RS[—oo ,a) fixed, level-preserv-

ing on Rs[t',+m) and [t' , p]-vertical-line-preserving for a large num-
. . . b .

ber p . This ambient isotopy assures that Fa(ﬁo,ﬂl, . ,En ’Bl’BZ’ s

roeee,B! ) én) by an

y . - . n 3 .
B ) is ambient isotopic to Fi(ﬂo, Kn_l,ﬁn ’{Bl M

n

ambient isotopy of RS[—oo , +*) keeping Rs(—m ,a] fixed, level-preserv-
ing on Rs[b ,+0) and [P , p]-vertical-line-preserving for a large num-

ber o, where ﬁn is the band obtained from Bn by the ambient isotopy

of R3 carrying Kn-l to Eg_l and Zn = h([;_l ;En).

Let o, ' be the attaching arcs of ﬁn to Z;_l. We can transform

B, so that (cua') n(B{ VRER] UBé-l) = @ by sliding «, a' along the

link Z; 1 and by deforming o, o' into smaller subarcs, if necessary,

see Fig. 6.

(I,




In general, the transformed ﬁn intersects Bi [ uBé By trans-

1

versality, we can assume that the intersection Enrw(B{ TR uBé 1) is a

1-manifold ; that is, it consists of simple loops and simple arcs. Choose
a proper simple arc 8 in En starting from o to a' such that B

intersects the interior of the l-manifold §n n(B{ Usee uBé ) transver-

1
sally ; see Fig. 7(a).

ot 61 oL

(a) B (b) Pew B
4 n
Fig. 7

Replace én by a sufficiently small regular neighborhood WN(f ;En)'

Then for the replaced én’ the intersection §n n(Bi U e uBé 1) consists

of only proper simple arcs, illustrated in Fig. 7(b). In particular,

7 ! o e ! =
Bnrw(aBlu UaBn-l) .

Let ai be one of the attaching arcs of Bé to ZO, and let Ni be
the regular neighborhood of Cl(BBé - ui) in Bé such that Nitwén = .
Notice that Di = Cl(Bé - Ni) is a 2-disk. It is easy to construct an
ambient isotopy of R3 deforming Ni to Bé keeping RS- N(Df Rs) fix-
ed. Using this ambient isotopy, we can transform §n so that EnrwBé =
P ; this transformation is illustrated in Fig. 8.

Thus, the link with band 22_1 u§n is ambient isotopic to a link with
band Z;_lthé, such that Bé n(Bi U s UBé—l) = @ by an ambient isotopy
of & keeping Z;_l fixed setwise. Let £" = h(ﬂ;_l ;Bé]. By Lemma

12 A 7 s {B!, e B!
1.12, F§(£0 zn—l ﬂn { 1 B

B is ambient isotopic to
MELEL:® p
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Fig. 8

3
Fb " "o, ! ves B! ' : : _ -
a(ﬂo, Kn-l’ L ’{Bl’ ’Bn—l} ,Bn] by an ambient isotopy of R (-®, +=)

3
keeping R (-»,a] fixed, level-preserving and [b , p]l-vertical-line-pre-
serving for a large number p. Let Rs[tl] and Hs[tzl, ty < tz, be the

critical levels such that Rs[tl] mﬁi(ﬂo, K;_l, en ;{B{""’Bé-l} ,Bé] =

! RO Y ' 3 " " - ! “« s ' !
(KO uBJu uBn_l)[tl] and R [tz) nEi(KO, zn-l’ £ ,{Bl, ’Bn—l} »B))
= (K;_l UBé)[tz]. Note that the realizing surfaces Fi(ﬂo, Ez_l, £ ;{B{,
“ns ! 4 "o. I wee ? . _di '

’Bn-l} ,Bn] and Fi(lo, L ,{Bl, ,Bn}) differ by the 3-disk B}
[t1,t2], where we assume that the critical level of Fi(ﬂorﬂ” ;{B{,---,
Bé}) is Rz[tl]. So, by applying the Cellular Move Lemma (Proposition

n " ., P e r 12 - . : .
1.7), Fz(to, En_l, L"y {B!, ’Bn—l} ’Bn) js ambient isotopic to FZ(EO,
. 3 3 . o .

YA {B',---,B;L}) keeping R (-, a)uR [b,+°) fixed. Combining with

the ambient isotopies deforming

eee . cen > 4 7 . ! e
Py 2o 5 BpenB) > e £ s BBl b B

n-1° "n 1 n-1""n
" " . P oues RY '
> Fi(zo’ O s B By )b B

b " . F' eue
> Fa(ﬂo, £ (B, ,Bé}),

the desired ambient isotopy is obtained, and completing the proof. g
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Now we would like to introduce two specific types of the hyperbolic
transformstions, called fusion and fission.

Consider an oriented link £ c RS and mutually disjoint oriented bands
Bys "t s Bm (m = 1) which span £ and let &' = h(d ;Bl,"',Bm)- Let
£ and £' have u and ' components, respectively,( u,u' 2 1).

1.15. Definition. £' is said to be obtained from £ by wm-fusion
(along Bl’ LR Bm) if u' = p-m. Dually, &' is said to be obtained
from £ by m-fission (along Bl’ e Bm) if p' = pu+m. The 1-fusion
and 1-fission are often called the simple fusion and the simple fission,
respectively. We also say that {' 1is obtained from £ by complete
fusion (along B, =+, Bm) or by complete fission (along Bl’ see Bm)
1

according as W' = p-m = or W =u'-m=1, (See Fig. 9.)

\-fugion (stmple fusion, complete fusion)

(D 8 S5

|- fission (simple fission, complete [ission)

2-fusion

___

2-fission

Fig. 9
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Clearly, if a transformation £ > £' is m-fusion, then the inverse
transformation £' + £ is m-fission and conversely. Hence the fusion

and fission are dual concepts each other.

1.16. Lemma. If an oriented knot k' <is obtained from an oriented
knot k by a hyperbolic transformations along bands Bl’ e, Bn’ then
n is necessarily even, say n = 2m, and there exist new mutually disjoint

n  bards ?r n-,ilumwhsmm k  and such that the realizing surfaces
". (g -] B
Pk, £, k" (BB ), B

m+1’

o BN and Frk, k' (B
n a

1,---,Bn}) are

ambient isotopic by an ambient isotopy of RS(—m , +®)  keeping Rs(—m , al

fixed, where XL is the link obtained from k by complete fission along

Bl’ ---,Eﬁ and k" is the knot obtained from L by complete fusion

along Eﬁ see ,EZ. This ambient isotopy may be level-preserving on

+1’

Rs[bﬁﬂd and [b,pl-vertical-line-preserving for an arbitrary o > b.

1.17. Remark. 1In Lemma 1.16, the knot with bands htJBl Use- UBZm is

in general not ambient isotopic to the knot with bands liEi Us*UR

2m
in Rs. For if so, then the m bands, say Bl, e ,Bm, corresponding
to the m bands Ei, oo ,E& would play the role of complete fission on
k. However, the trivial knot with bands O\JBl UB2 UB3 UB4, illustrated

in Fig. 10, gives a counter-example to this ; that is, no two bands in

{Bl, BZ’ BZ’ B4} play the role of complete fission on O.

Fig. 10




1.18. Proof of Lemma 1.16. Let £ pe h(k ;Bl). Since AR

a link with two components and k' = k(k ;Bl,---,Bn) = h(ﬂ(l) ;Bz,--o,Bn)
is a knot, we can find a bhand, say B,, in {BZ’ ce ’Bn} such that k(z)
= h(k; B, B = pe™) ;5 is a knot. Since e® - ne® By isa
link with two components and k' = h(ﬂ(s) ;B4,---,Bn) is a knot, we can
find a band, say B,, in {B4, oee ’Bn} such that RS h(ﬂcs) ;B4) is
a knot, e*---.

Since #n 1is finite, the above procedures must be finished by a finite
number of times. So, n  becomes necessarily even, say 7 = 2m, and we

may find a sequence £k = h[o) > h(z) > oeee > h[zm) = k' of knots with

(22) _ ,,.(2i-2) .
k = nik $Bys )

Let Il’ e ,Im be mutually disjoint small connected arcs contained

Bzi)’ T=l,eee,m.

in k- (B1 VIERR) UBn]. Slide the attaching arcs of B1 and B2 along
h(o) = k and deform BI\JBZ themselves into thinner disjoint bands, so

that the attaching arcs of the resulting bands B. and B, are contained

1 2
in Il' Let E(z) be h[k(o) ;él, §2)' Since k(O)LnglJéz is ambient
isotopic to R(O) uB uB, by an ambient isotopy of B> keeping (O
fixed setwise E(z) is a knot. Let Bgz), Biz), e, Béi) be the
bands obtained from BS’ B4, e, BZW by the isotopic deformation k(o)
u Bl UBZ > h(O) Uél uéz. Slide the attaching arcs of B§2), Biz) along
E(z) and deform Bgz) uBiz) into thinner disjoint bands, so that the

~ ~ ~

attaching arcs of the resulting bands BZ’ B4 are contained in I2. BS’

54 should be chosen to be disjoint from B , B.. Let E(4) be h(E(z);

1 2
>~ 3 : (2 % % i ; ; ; (2 L2 p(2)
B3, B4). Since kR uB3 uB4 is ambient isotopic to k uB3 uB4
. . 3. . 7(2) . . E(4) .
by an ambient isotopy of 2 keeping k fixed setwise , is a

knot.
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By continuing this modification, we obtain mutually disjoint bands 3

B eee B B ; (0)
Bz, A BZm~1’ BZm , which span &

1!
and such that for each < the

attaching arcs of §2i—1 and §2i are contained in Ii (see for example

Fig. 11), and a sequence £k = k(o) - E(O) > 5(2) > oeee > E(Zm) of knots

: (22) _ , p(2i-2) 5 5 ——
with k = h(k By 1 By)s A=l eeim

By applying Lemma 1.12 inductively, the realizing surface F(llf of
the sequence kR = RO 5 (D L ORIy
p(2)b

a

is ambient isotopic to

the realizing surface of the sequence k = E(O) > E(z) s >

E(Zm) = k" by an ambient isotopy of Rs(—oo » *®) level-preserving, [b,p]-

vertical-line-preserving for an arbitrary p> b and keeping R3(~w ,al

fixed,
From Lemma 1.10, it follows that F(I{f and F(Zlf are ambient iso-
topic, respectively, to the realizing surfaces Fg(k , R' ;{Bl,---,BZm})

and Fz(h, k" {51,---,§2m}) by ambient isotopies of Rs(-m,+W) keeping

Rz(—m ,a]LJRs[b, +0)  fixed.

B =~ =~ . ;= e = -B’-c.,
Now let Bé BZi—l and Bi+m le, =1, om, and £ = h(k; ]

Bm). It is easy to check that £ is a link with (m+1) components

5

|
|
|
|
|




that is, £ is obtained from R by complete fission along the bands 51,

e, E&. Also, note that k" is obtained from £ by complete fusion

= .o = i "' B L) B 1
along Bm+l’ , B, . By Lemma 1.10 again, Pa(h , k ’{Bl’ ’BZW}) is
. R . Fb "D Wee B B ««« B
ambient isotopic to a(h JE LR ’{Bl’ ,Bm} ,{Bm+1, B

ambient isotopy of R°(-e,+®) keeping F-(-%,a] uRS[b, +=) fixed.

}) by an

Combining these ambient isotopies of Rs(-w,+m), we have a required ambient
. b ) — -

t . e P (h " e
isotopy between Fa[h , k ,{Bl, ’Bn}) and a( A ,{Bl, ,Bm},

{Bm+1’."’32m})’ and completing the proof of Lemma 1,16. [

Consider trivial links O, 0', knots &, k' and a link £ in R

such that k is obtained from 0 by complete fusion, £ is ohtained from
by complete fission, k' is obtained from £ by complete fusion and

0' is obtained from k' by complete fission.

1.19. Definition. The closed realizing surface Fg? in Rs[a , bl of
the sequence 0+ k +~ L ~ k' > 0" is called a (connected) surface in the
normal form. The link £ is called the middle cross-sectional link of
?;), and the knots k and k' are called the Zower and upper cross-sec-
tional knots, respectively.

In case that 0 or 0' is a knot (i.e. connected), we have 0=k or
0" = k' in the above sequence 0 + k ~ £ + k' + 0', respectively; and in
case that £ is a knot, we have k = £ = k' and sometimes we call the

knot fk =4£ = k' the equatorial cross-sectional knot of flf.

2. Deforming a Surface into a Surface in the Normal Form

The main purpose of this section is to show the following theorem :
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2.1. Theorem. Any locally flat, comnected, closed and oriented surface
in R3(~m, +») can be deformed into a surface in the normal form by an
ambient isotopy of RS(-“’,+ﬁ0 (with compact support). Further , the
middle cross-sectional link of this deformed surface has the genus plus

one components.

The proof will be done in 2.13.

Now we consider the situation that a loeally flat, closed, oriented and
polyhedral surface F is given in the oriented 4-space Rs(-M, +o) . To
prove Theorem 2.1, we must deform F by an ambient isotopy of RS(-W,+M]
so that the intersections of F with parallel hyperplanes Rs[t], -0 < f
< +@, come to be as simple as possible and then must describe the changing
of the configuration as £ increases from -« to +=,

An intersection Frsz[t] is an ordinary cross-section of F c Fif
Fr\RZ[t] is an empty set or a link in Rs[t]. If Fr\RS[t] is a link,
then the orientation of the link will be chosen so as to be induced from
that of the bounded oriented surface FnRs(—co ,t]. The orientation of
the hyperplane Rs[t] will be chosen so as to be induced from RS(—m,t].

An intersection Frsz[t] is an exceptional cross-section of F < R4
if it is not an ordinary cross-section.

It will be noticed that the exceptional cross-sections of F appear
for a finite number of hyperplanes ; more concretely, at most for those
hyperplanes which pass through a vertex of a triangulated F ( as a sub-
complex of a triangulated R4 = RS(—w , +@)). In fact, if for a level
Rz[to], Fr\HS[tO] is non-empty and does not contain any vertex of the

triangulated F, then let [al,az,as] be a 2-simplex of F such that

3 . .
[al,az,as]rwR [to] 9. Let t., 2=1,2,3, be the fourth coordinate of a..




0’ t2 > to and t3

< to. It is directly checked that [al,az,aS]ers[tO] is a 1-disk line-

Without loss of generality, we may assume that tl > ¢

arly and properly embedded in [al,az,as]. Since F has no boundary and

Frsz[tO] is compact, it follows that FrwRS[to] is a closed 1-manifold

i.e. the disjoint union of a finite number of l-spheres.

2.2. lemma. F ig ambient 1sotopic to a triangulated surface in Al

RS(—m, +®) by a sufficiently small deformation, so that any two vertices

of ©t have neither the same coordinate (ml,xz,xs) nor the same fourth

coordinate t.

Proof. Choose a large 4-cube C4 c R"(—oo » *®)  containing F in its

interior. Let J be a triangulation of 04 having a triangulation X

of F as a subcomplex. Let ul, see Ur be the vertices of X and

Vs ttt s v, Vpe1? 7 s v be the vertices of .

Select points vi, e | U; in the interior Int(04) so that

(1) Ué is sufficiently close to Ui’ T=1,%00,pr

(2) the half-open segment (Ui ,Dé] = {(l—u)ui +uv£ IO <u=<1}
intersects with no affine hyperplane of RS(—Do , t®) = R4 generated by
subsets of {vl,‘-f- ,vs} u{vi, ‘e ’Ué—l

(3) any two points of v!, «++ , v’ have neither the same coordinate
y P M

}, i=l,+¢¢,», and

(xl,xz,xs) nor the same fourth coordinate %.
Now we define a piecewise linear homeomorphism hu J > 04, 0<usl,
tti v.,) = - . !, isl,eee,pr, d h ) =v,, f f=
by putting hu( 7,) (1 u)vl + uvl, 7=1 r an M(UJ) g or
r+l,s¢+ 5. Notice that the piecewise linear homeomorphism hl and the

complex o give a simplicial complex structure on ¢t so that hl(.K)

is a subcomplex of the complex h1(<f) = ¢ having only v/, ... ,v; as
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the vertices of hl(K).

By letting hu IRS(—W, +00) - 04 be the identity map, the family

{hu}u .7 glves a required ambient isotopy of RS(-w , +@) carrying F =

| k| onto Ihl( K)|, and completing the proof of Lemma 2.2. 0

Let F be a deformed surface as in Lemma 2.2. If Frsz[tO] is an

exceptional cross-section, then it is easy to see that FrwRS[tD] is a

polygonal graph with just one exceptional point z, which has no neigh-

borhood in FWst[tO] homeomorphic to an interval ; this point T is,

so called, a eritical point of F.

To examine exceptional cross-sections, we introduce the following

three simple types of critical points, called elementary critical points.

2.3. Definition. In the change of the local configuration of Frsz[t]

as t 1increases past the exceptional level ¢ = tO’ if a small unknotted

simple closed polygon shrinks to a point Ty and disappears, then the

point x, is called a maximal point of F ; see Fig. 12.

0

Fig. 12

Similarly, if nothing, just before to, a point z at t = to and a

small unknotted simple closed polygon appears just after ¢ = to, then

the point z is called a minimal point of F ; see Fig. 13,




Fig. 13
If two polygonal arcs approach each other and cross at a point x and
then two arcs go away just as in Fig. 14, then the point o is called
a saddle point of F.

XK

= >
0 0 vt

Fig. 14

2.4. Examples. Here are a few examples of critical points which are

| not elementary critical points. (Fig. 15 (a), (b), (c) ).

//< ></ <

>
t tO

> O

0 0
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t < to t = tO

Fig. 15

Y ~\ /-
>/\< 2 j)?

Note that in each example the critical point % is certainly a

locally flat point.
2.5. lLemma. F <s ambient i{sotopic in R (-, +o0) by a sufficiently

small deformation to a surface, which has only elementary critical points

in distinct levels.

Proof. Let Vs Tt Y, be vertices of a triangulated F. By Lemma

2.2, we can assume that no two points in {ul, see ’Ur} have the same
coordinate (xl 2 ,xz) or the same fourth coordinate ¢. Now we take

sufficiently small cylindrical neighborhoods Ni[a; ’bi] of the vertices

T

: . . . . 3
vi in RS(—w, +») . where each Ni is a convex linear 3-disk in A~ such

that the bottom: Ni[ai] and the top N{[bi] are disjoint from 7. For
each 7, we remove the 2-disk F1ﬂA%[ai ’bi] and replace it by a cone
Vs « {F na(A%[ai ’bi])}’ where v, 1is an interior point of Ni[bi]'
The resulting surface F can be triangulated by introducing new vert-
K.

ices ﬁ;, ee ﬁiL on the polygonal curve FrwB(Ni[ai ’bi]) for each .
We may choose Ni so that no two vertices of ﬁ;, e, ﬁii have the

same fourth coordinate, by using Lemma 2.2. It is eaily checked that F
is ambient isotopic to F. in RS(—W , +9) by a sufficiently small defor-

mation and that each vertex 5; is a maximal point of F.




Since for each j, 1 s 4 < k., the closed star neighborhood St(ﬁi,F)

is a 2-disk consisting either of four convex linear 2-disks or of one

(not necessarily convex) linear 2-disk and two convex linear 2-disks (2-

simplexes) according as Sz is in the 1-skeleton F(l) of F or not,

it follows that the number n(ﬁg) of the intersection points Lk(Si , F)

3.4 ; -
n R [tg] is 0, 2 or 4, where tg is the fourth coordinate of ug.

(Note that no other vertex of F lies in Rs[ti].) If the number n(ﬁg)
is 0, then this vertex 5? is clearly a minimal (or maximal) point. If
n(ﬁi) = 2, then it is easy to see that FrwRS[tg] is an ordinary cross-

section. If n(ag) = 4, then the only two possibilities described in the

following Fig.l6 occur, since 2% is a locally flat point.

s

o

(a)

)

t = ¢ t >
A 1

For’|t]
(bet)

Fig. 16
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Now we shall show that the case (b) can be reduced to the case (a). In
fact, this follows from the Cellular Move Lemma (Proposition 1.7), since
the configuration of the case (b) and the following configuration differ

by a 3-disk.

(NN NN
/ /é/é/g/?/\/\

Fig. 17

The 3-disk is illustrated in the following Fig. 18

3332390

Fig. 18
of the case (a) is, by definition, a saddle

Since the vertex ai

point, and we complete the proof of Lemma 2.5. []

From the combinatorial point of view, it is often convenient to think

of elementary critical bands instead of elementary critical points.

2.6. Definition. 1In the change of the local configuration of a surface
at ¢ passing the exceptional level ¢ = to increasingly, if an unknot-
ted, oriented, simple closed polygon comes to bound an oriented 2-disk B
and disappears, then the oriented 2-disk B 1is called a maximal band ;
see Fig. 19 below.

If an oriented 2-disk B appears at ¢t = tO and an unknotted simple




closed polygon is left just after ¢ = tO’ then the oriented 2-disk B is

called a minimal band ; see Fig. 20.

Q\

< = >
t to t t t t

Fig. 19 : A Maximal Band B

)

t < to t = to t > to

Fig. 20 : A Minimal Band B

[
<

AN\

If two arcs approach each other and an oriented band B comes to span
two arcs and then two arcs are left as in Fig. 21, then this oriented

band B is called a saddle band.

) ( E/ N
t(f; t=t\ /75?\

Fig. 21 : A Saddle Band B

2.7. Lemma. F <is ambient isotopie in Rs(-w , +°) by a sufficiently
small deformation to a surface, which has only elementary critical bands

in distinet levels.

Proof. By Lemma 2.5, we can assume that F ¢ R3(—oo , +®) has only

elementary critical points at distinct levels. Let v be a maximal point
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of F at a level RE[tO]. By definition, for a sufficiently small €> 0,
an unknotted simple closed polygon SE occurs in the level Rs[tO - €]
such that the cone C(v) = v *SE is a part of F, Let BE be a 2-disk
in Rs[to - ¢] bounded by S€ with BE n(F-—SE) = . Since the surfaces
F and {F-C(@)} uBE differ by a 3-disk v*ZB_, F is ambient isotopic
to {P’-C(UJ}LJBE by the Cellular Move Lemma (Proposition 1.7). It is
easily checked that B€ is a maximal band of the surface {F-—C(U)}LJBé
We may perform this deformation on all of the maximal points of F. For
minimal points of F, the same argument may be applied, if we use a suffi-
ciently small €' < 0 instead of e > 0.

Let v be a saddle point of F at a level Rs[tn]. For a sufficient-

+

. 3
ly small € > 0, we choose points w_, w' e FnR [to -el, w,, w' e Fn

v, € Frsz[t as illustrated in Fig. 22,

17 Y20 V3 Uy ol

3
in a neighborhood of v in RS(—w , +©). Consider four 3-simplexes Al

Rs[to +e] and v

Fig. 22

3, 3 3 _
[w_,vl,vz,u],Az—[w_,vs,u4,v],A3—[w+fu1,v4,u] and A4

[wl ,vz ’US ,v]. By applying the Cellular Move Lemma to these four 3-

simplexes one by one, F can be deformed to the surface

3

3 .3 3 , ,
(F--A1 —Az-A3 Ay) u([w_,vl,vz] u[w_,vs,v4] u[w+,vl,u4] u[w+,vz,u3]) uB,

where B = [vl,vz,u] U[Uz,U ,wluifv,,v, ,v] U[UA,UI,U]. It is easy to sec

3 U3V
that B 1is a 2-disk in Rs[to] and that B is a saddle band of this




resulting surface. We may perform this deformation on all of the saddle

points of F,

This completes the proof of Lemma 2.7. [J
Lemma 2.7 can be also stated as follows :

2.8. Lemma. F <{s ambient isotopic in RS(-m , +®)  to the closed real-
izing surface F;) c Rs[a , bl of a sequence 0 - Kl + Ly e Km - 0',
such that 0 and 0' are trivial links and each of the transformations

0~ Zl, Zl -+ Zz, oo Em + 0" 1s either a gimple fusion or a simple

fission,

Proof. By Lemma 2.7, we may consider that F has only elementary cri-
tical bands in distinct levels. Without loss of generality, we can assume
that for given a, b (a < b), F 1is contained in Rs(a , b).

Let BI, vee B; be the maximal bands of F in the levels Rs[tz],

s Rs[t;], respectively, with t; < eee < t;. Choose mutually disjoint

3-disks BS, e, 33 such that
1 r
3 3.+ 3 + + .
(N Bi c K [ti , b] and Bi(w(F —B1 “ees —BP) =@, =1, ,r

B

(2) For each ¢ and any ¢t ¢ [t; , b, BirwRS[t] is a 2-disk and,
in particular, B> n R [t7] = 8.
7 T 7
One can easily obtain these 3-disks by choosing for each < a poly-
gonal simple arc from Bz to HS[b] which intersects Rs[t] in a single
point for all te [t; ,b]. (Note that Es[tz ,b] -F 1is connected.)
By applying the Cellular Move Lemma (Proposition 1.7) to these 3-disks
Bf, ee Bi, F is ambient isotopic to a surface in Hz(a , b], which has

the maximal bands in the level Hs[b] and the other elementary critical

bands in Rs(a , b).
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We can also apply the similar deformation to the minimal bands of F,
and so we may assume that the maximal bands of F are all contained in
the level Rs[b] and the minimal bands of F are all contained in the
level Rs[a] and the saddle bands are contained in R3(a ,b) atdistinct
levels.

To complete the proof, we neced the following sublemmas :

2.8.1. Sublemma. Let o < B. Assume that FCRS(-OO,+°°) 18 a surface
such that for any te [a, B8], FrwRS[t] is an ordinary cross-section. Then
there extists an ambient isotopy {hs}s«:I of RS(-w,+m) keeping R3(Ja
a]  fixed, level-preserving on R3(-m,+M) , [B, pl-vertical-line-preserv-
ing for an avbitrary o 2 B, such that hl(Frsz[a , BN = Eu[a , B], where
Zu < R3 is the link obtained from the Llink FrwRS[u] < Rs[u] under the

projection Rs[u] - RS, (x,0) » x

2.8.2. Sublemma. Assume that F < R3(-w,+m) is a surface such that

FrwRS[Y] is an exceptional cross-section with a single saddle band B
3

.
be the Link obtained from the link C1(FnR>(-,Y] -5 ) n

RS[Y] in RS[YI by projecting Rs[y] to RS.

Let £ <R
Y

Then for a sufficiently small € > 0, there exists a level-preserving
ambient isotopy {hs}s eI of RS(-w,+m) keeping RS(-w,Y-Ze] uRs[y+2€,+w)
fized, so that hl(FWWRS[Y—e,Y+€]) is the realizing surface in Rs[y-e,

! A L' =h B* h B#* =B .
v+€] of the sequence KY > EY with v (ZY . Y), where Y[y] .

By assuming these sublemmas, we proceed the proof of Lemma z.8. Let
a < Yl < eee < Ym < b be,such that the saddle bands of F occur only at

the level Rs[yi], Z=1,++»,m . Let F' be the compact surface obtained



by removing all minimal and maximal bands. Let E1r 200 s €y be suffici-

ently small positive numbers. By Sublemma 2.8.2, we may assume that for
. 3 . .. . 3
each 1, FnQR [Yi_gi ’Yi+€i] is the realizing surface in R [Yi-ei,yi+ei]

of some hyperbolic transfromation of a link along a single band.

By Sublemma 2.8.1, there exist level-preserving ambient isotopies

)L i=0,1,0e e, of BP(ee,e%) such that

(0) héo) is [Yl—e , bl-vertical-line-preserving and

1

0 mr | 03 -
hl (F'nR [a ,Yl—el]) = Ea[a ’Yl*el]’

. (z) . . . . 3
(1) hs is [Yi+1‘€i+1 , b]-vertical-line-preserving and keeps R

o . (), ., 3 _
X (- ’Yi+€i] fixed, and hl (F'nR [Yi+8i’Yi+1 €i+1]) = Z[Yi+€i)[Yi+Ei’

Y _EY:"'].]’ 7,=1,"‘,7ﬂ—1,

7+1
(m) 3 .
(m) hs keeps R (- ,Ym+€m] fixed and

(m) ' 3 _
hyO (BT aRTY ve D)) = L by, +€, - bl

(Ym+€m)

_ 0,
8 S

Then the composite ambient isotopy {hs}se.I with hs

ses -hém) sends F to the desired surface. This proves Lemma 2.8. []

Now we must prove, Sublemmas 2.8.1 and 2.8.2. The proofs will be mainly

based on the following Isotopy Extension Theorem and Sublemma 2.8.3.

2.9. Proposition (Isotopy Extension Theorem). Let M be a closed
manifold and @ a manifold without boundary. Given an isotopy G : M X
[oo, B] » @x[a, B] such that for all s, t with o <8 <t < B the
(proper) manifolds pair (Q><[s ,t]l, GMx [s ,t])) 18 locally flat, then
there exists an ambient isotopy H : @x[a, B8] » @x[o,B] with Ha::idQ

and G = H -(Ga Xid[q,ﬁ])' (For the proof, see Hudson [7, p.147].)
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2.8.3. Sublemma. Let a < B. Assume that EW:RS(—m,+m) 18 a surface
such that for any te [a, B], Fers[t] is an ordinary cross-section.
Then there exists an isotopy G : £a><[a , Bl » Rs[a, Bl with G(£u><t) =
FrwRS[t] for any te [a,B]), such that @ I£ xey :£u><a > Rs[a] 18 the

a

inclusion map.

Proof. Let K be a triangulation of Fers[a , Bl, and let o = to <
tl < see < tm = B be numbers such that any vertex of X is contained in
some Rs[ti]. By adding new vertices to Kr\Rs[ti], we can assume that
Kr\RS[ti], i=0,1,+++,m, are subcomplexes of X. Hence it suffices to
prove Sublemma 2.8.3 for the case that the vertices of the simplicial
complex K are contained in either Rs[a] or Rs[B]. So, we shall
consider such a case. Further, without loss of generality, we can assume
that any vertex of K is contained in just n l-simplexes of KX, where
n=3 or nz5, Let v be a vertex of KrwRS[a] contained in »n 1-

simplexes with 7 = 5. 1In these n 1-simplexes, there are just (n-2)

l-simplexes intersecting RS[Y] in single points, where Yy = (a+R)/2.

Let Ugs Ups "m0 un_z be these (n-2) points, as in Fig. 23. Also,
t =y N0 Al fof o s
//
/
/
/
/
/!
/
’
/
/
/L
t =0
U’ ) U"
Fig. 23

. : . 3 . .
we choose two points v', »" in KnFk [a] close to v as in Fig., 23.

Given a point x e [v',v], then we write x = sv' + (1 -8)v with sel.




Let a' = suy + (1-8)v and x” = suy + (1-8)u,. Let 2 be a simple

polygon defined by the union [x,x']ulx’,x"]. Next, we choose a point
1 . 1

i 2 . . n-5 n-6

u, in (v ,us), points Uy, Uy iN (v ,u4), -+« , and points Uy Uz
1 . 1 1 2 1 2

TRts Uy g in (v ,un_s) so that t2 > tz > t2 > wes > tn-A > tn—S > eee

> tg—é > tg_s, where ti is the fourth coordinate of ug. Further, let

3 " s Vg be points in (v, v”) in good order. For the case

n =7, we illustrated these choices in Fig. 24,

@) u wof U3/ 4
=y X
\\\ 1 \\‘
Y2 1
o
E \
i \
: !
t = +-
14 n
v v 1)2 US (%
Fig. 24

+

Given a point xe [v ,UZ], we write x = gv (l—s)v2 with ge . By

the same way, let mn 5 = 3V + (l-s)uz's, sv + (1—3)u2—4, LRI

1

= gv + (l-s)u; and x' = suy * (l—s)uz. Let i; be a simple polygon

defined by the union [z, ,x'].

For any &« in [v2 , U v"], the simple

J

polygon E& is defined analogously.

[UT’Z-4 »

Thus for any e [v',v]u[v,v"] the simple proper polygon lx in

Rs[u ,Y] 1is defined. Let B(v) = Um If we remove

e[v',u]u[v,v"]ii'
B(v) for all wve KFIRS[Q] with n 2 5 from Frsz[a ,Yl, then the
remaining surface consists of only convex-linear 2-disks with four ver-
tices. So, for any xssFrwéS[a] contained in one of these convex-linear

2-disks, we can define E; to be the linear 1-disk in an obvious manner.
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Thus we defined simple polygons Ea: for all =xe¢ FnRS[(x]. It should be
- - 3 —
= 1 r =
noted that ILx n Rx' @ if x#x' and FnR’[a, Y] Ux . FnRa[a]S&x .
Now we define a (piecewise linear) isotopy

', 5 3 [N -7 3
G .EuX[a,Y] Rla,y] by ¢'(z Xt]—l(x,[a])n}? [£].

It will be noted that ¢! |£u><ot is a natural injection and G'(f_axt)

3
= FnR7[t]. Analogously, we can define a (piecewise linear) isotopy
rn 3
6" L X[y, B] > ROy, ]

with @7 | KY XY being the natural injection and G”(EYX t) = Fn]?s[t].

Let G : f.ax[cx , Bl ~» Rs[a » B} be an isotopy defined by

GlE,*Ta, Yl = 6" and Gle x[y,8) = orloyxidy, g

where GY' : ﬂu > KY is defined by G'(xzxy) = G\;(.’L‘] [v].

This proves Sublemma 2.8.3, [J

2.10. Proof of Sublemma 2.8.1. Since by Sublemma 2.8.3 there is an
isotopy & :ZOL x [a, B] » Rs[oc , B] with ¢ [l’_axot the natural injection,
from the Isotopy Extension Theorem (Proposition 2.9) we obtain an ambient
isotopy # : RS[Q » B} > Rs[cx » Bl with # | Rz[a] = the identity map and
Hlﬂu[a,ﬁ] = G.

The desired ambient isotopy {hs}s e T of RS(-m,+°°) is, then, defined
as follows

h, |R3(—°°,0t] = id, for sel,
hs(x[t]) = f{_l(x[ous(t—oc)]) [Z] for x[%] sRs[a ,B] and sce1,

-1 .
where #H denotes the composite

- -1 . .
% 1 . Rs[a, 8] H' N RS[Q 8] projection RS

b

h(@lt]) = B @lovs (B-a)1)[£] for =(¢] < A[8,p] and ser,




h (e []) - Tl lasu(t,e) (B-a)]) [¢]  for :Jc[t]c—:}?s[p,p+€] and sel,

where ¥ : [p,p+e] x[0,1] »~ [0,1] is defined by
0 if es-t+p £0,
vt , e} =
(es-t+p)/c if es-t+p > 0,

hs |R3[p+€ ,+0) =1d. for secl, [1

2.11. Proof of Sublemma 2.8.2. For a sufficiently small positive num-
ber €, CLFNR (-, v] «BY)ORS[t] is a link for y-£ <% <y. So,
as in Sublemma 2.8.1, we can deform Cl(Fr\RS[Y—e , Y] - By) into the
product ZY[Y-Q ,¥] by a level-preserving ambient isotopy of RS(—w , +°)
keeping Rs[Y , +) fixed. Similarly, we may assume that Cl(FlﬁRs[y,Y+E]
- BY) is the product ﬂ;[y , Y+e], where ﬂ; = h(ﬂY ;B¢). Now the result

follows. [

The following follows from the Morse’s inequality of a surface in the

Morse Theory. (See, for example, Milnor (8, pp.28-31].)

2.12. Proposition. Suppose a closed (possibly disconnected) surface
Fc RS(—w » *®)  has only elementary critical points, and let e, s, c_
and X be the nutbers of maximal points, saddle points, minimal points

and the Buler characteristic of F. Then the equality c, - s + c_ =X

holds., 0

2.13. Proof of Theorem 2.1. By Lemma 2.8, F is ambient isotopic in

Rs(—w, +0)  to the closed realizing surface f;?c Rs[a , b] of a sequence

L. =0 + £ L8 > oo >l >0 =14 with 0, 0 trivial links and
0 - 1 2 m + m+1 - +
Zi+1 = h(ﬂi ;Bi)’ 1=0,1,ve0;m.

Then from Lemma 1.4 we can further deform f;) into the closed real-
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izing surface f's of a sequence (0 ~ OL with Oi = h(0 ;{B{,---,Bé}]
a trivial link. Let 0_, O, have u_, u_ components, respectively.

Using that Eif is connected, we can find {u -1) bands Bi, R

- . . I eee ' . T .ee BT =
B“__1 in the collection {Bl’ ,Bm} so that #(0_ ’{Bl’ ’Bu_—l})
k_ is a knot (i.e. connected). [Proof : Note that the realizing surface

b

. . =,b .
F;l of the sequence 0 =~ OL is connected, since F; is connected.

Hence the link with bands 0 UB{ U s uBé is connected. Pick (u -1)

bands B., *+* , B in {B!, +++ ,B'} so that the link with bands
1 -1 1 m

0 UB  ues+UB_ is also connected. Let 0 =0 ue+++u0 , where 0.

- 1 u_-l - 1 U 7

is a connected component of ( . By changing the subscripts of Oi and

B; suitably, we may assume inductively that the link with bands 01 Uses

U O, UB U+ UB, and the component O, are connected by a band B,
71 -1 7+1 7z

i=1,+++,u -1. This implies that h(0 ;{BI,---,BU _1}) =k is a knot.]

Dually, we can also find (u+ -1) bands BI, oo ,B; 1 in the rema-

+
ined subcollection {B!, +++ ,B'} - {B7, +++ ,B° .} so that k_= h(0';
1 m 1 + +

M o-1
+ + . - + +
{Bl,---,BLl _1}) is a knot, where we regard the bands B, -+ .5 as

-1
+ +
i i ' - . ! LECE ] ! - - .o w =
the spanning bands of the link O+ h(k_; {Bl’ ,Bm} {Bl, ’Bu_—l})'
Using Lemma 1.10, ?é? is ambient isotopic to the closed realizing

surface fZ? of the sequence 0 -k - k+ -+ Ol. Then by Lemma 1.16,

fnb

p is ambient isotopic to a surface in the normal form. By Proposition

2.12, the middle cross-sectional link has certainly (g+1) components,

where g is the genus of F. This completes the proof of Theorem 2.1. fl

2.14. Remark. It should be remarked that, in the sequence O +~k > £
> k' + 0' used in the definition of the normal form, any of the link
type £, knot types Fk, k' and the components of 0, the link 0' is

not uniquely determined by the surface up to ambient isotopy of RS(-W,+mL



although the number of the components of the middle cross-sectional link

is the invariant of the surface.

2.15. Examples. Here are a few examples.
(a) The standard 2-sphere : The normal form of the simplest 2-sphere
in RS(-W, +®) is the following, which has only one minimal band and one

maximal band.

000080

Fig. 25

In general, a (locally flat) 2-sphere K2 in Rs(-w,+w) is said to be
unknotted, if there exists a 3-disk 33 c RS(—w,+w) with BB3 = KZ. By
the well-known homogeneity theorem of manifolds (cf. Rourke-Sanderson [10,

. L. 4
p.44] etc.), any two unknotted 2-spheres are ambient isotopic in K .

It is easy to see that the above standard 2-sphere is unknotted.

(b) J.Stalling's unknotted 2-sphere (Fig. 26) : This example (b) is,
perhaps, the first example, which notices the fact that the middle cross-

sectional knot of an unknotted 2-sphere in the normal form may be knotted.

More generally, for any knot £k, it can be shown that the composition
(= the so-callecd sum of knots) k # (-k*) <5 a middle crose-sectional_
knot of some unknotted 2-sphere in the normal form, where -k* denotes
the mirror image of k with reversed orientation of k. 1In fact, Zeeman
[13] showed that for any knot k the l-twist-spun 2-knot (=2-sphere) is

unknotted. With a slight modification of this 2-knot, we obtain an un-
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knotted 2-sphere in the normal form whose middle cross-sectional knot is
k # (-k*), We are going to give a detail of the matter in the forthcoming
paper [14].

(¢) H.Terasaka and F.Hosokawa's unknotted 2-sphere [12] (Fig. 27) :

Note that in the example (c) the middle cross-sectional knot is prime.

2 <2 v T2 e

. /-——‘——\

[}
(&3]

%
b

:
815

L

I
i

L

I
§§

0
J
0

Fig. 26 Fig. 27



(d) An unknotted surface of genus 1 (Fig. 28)

Fig. 28
This surface of genus 1 actually bounds a solid torus of genus 1 in

RS(-w,+M), as illustrated in the following Fig. 29.

8888

Fig. 29

A connected surface in RS(—m,+w) is said to be unknotted , if it
bounds a solid torus of the same genus in RS(-m,+W).

Hosokawa-Kawauchi [6] showed that any two unknotted surfaces of the
same genus in Rs(-w,+M) are ambient isotopic, {(cf. [14]). Hence the
above surface is ambient isotopic to the following standard surface of

genus 1.

008GE

Fig. 30
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In Theorem 2.1 we treated a connected surface, However, it is easy
to see that this assumption was never essential in the proof. We may

also derive the following corollary :

2.16. Corollary. Let F < RS(-M,+w) be a closed oriented (and discon-
nected) surface of (total) genus g with c¢ connected components, and
let a < b. Then F 4is ambient isotopic in RS(-m,+w) to the closed
realizing surface ?Z?c Hs[a » bl of some sequence 0 ~2 ~ 8~ £+ - O+,
suéh that 0_ > £ is a fusion from a trivial link 0 toa link L
with c¢ components, £ » L is a g-fission, £ + L, is a g-fusion, and
L, >0, is a fission to a trivial Iink 0,- In particular, the middle

cross-gectional link L has (g +e) components. [

The disconnected surface f;g in Corollary 2.16 is also called a

surface in the normal form and the link £ 1is called the middle cross-
sectional link of ﬁ;) and the links £  and £+ are called the lower

and upper cross-sectional links, respectively.

Let £ = £1<3--' OZA be an oriented link in R° which splits into A

sublinks Kl’ ves ZA' (Recall Definitions 0.4(4).) If one can find

mutually disjoint convex-linear 3-disks DfLJ"' uDi in R3 such that
Int(Df) > Ei, 2=1,+++,A, then the link £ is said to be convexly

splittable into 21, LN KA. Then the following is obvious

2.17. Lemma. Suppose that an oriented link £ = £1 EER OKA < R3 ig

obtained from an oriented link KO c R3 by the hyperbolic transformations

along bands B TN Bm s £ o= h(ZO ;Bl,---,Bm). Then there exists an

1’

isotopic deformation {h} ., of R° so that L' - nn (0g) 5 1y (B,



---,hl(Bm)) is convexly splittable into &£!, +«- , ﬂi with &' = hl(ﬂ)

and Z"L = hl(ﬂi), Z=1,++o,4. 0O

Let 0> h>L >k +2% =004 = (Jlo-"oO)\oklo---oku be a
sequence such that 0 >~ k is a complete fusion from a trivial link (¢ to
a knot k, R > £ 1is a complete fission to a link £, £ -+ k' 1is also a
complete fusion to a knot k' and k' > £* = 0'o £' is a complete
fission to a convexly and completely splittable link £* = 0'o £', where

0' = 01 REE oO)\ and £' = klo oku are the parts of unknotted and

knotted components of £*, respectively.

For this sequence, the closed realizing surface ﬁab in R3 [a, b+1]
is constructed as follows : First, construct the realizing surface Fb

a
in R3[a ,bl, and let ?'__ab be a lower closed realizing surface of Fab
by choosing arbitrary mutually disjoint 2-disks bounded by the trivial

link 0 as usual in RS[O]. Secondly, we take mutually disjoint convex-

linear 3-disks Di’, LEE IR Di, Dl’s, e Dlis in RZ' such that Int(Di)

> 07," i=1,=++,A, and Int(DJ’.s) > kj, J=l,*+*,u. For each 7, we take a

2-disk D. c D? with 3D, = 0,, and for each j we take a point v. ¢
7 i Z 7 J

~

Int(DJ'.S). Now the closed realizing surface Fab is defined by

~b =b
Fa = Ea U (Dlu---uDA)[b] U (Diu---uDﬂ) ,

where DJ’. is the cone with, as the vertex, vj[b,ﬂ] eRs[b+1] and, as the
base, kj[b] c Rs[b], for each g=1,¢++,1 .

It should be noted that Zgab is a closed, connected, oriented and nown-
locally flat surface locally knotted at vl, IR such that the
local knot type K'(Z)J.) is the knot type of kj’ g=1,++*+,u , and that the

~

Fa is uniquely determined by the sequence up to ambient isotopy of
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Rs(—w,+°°). [Note that the non-empty intersection of two convex-linear 3-

disks is also a convex-linear 3-disk.] This non-locally flat surface E’ab

is also called a surface in the normal form, and the link £ 1is called

the middle cross-sectional link of ?ab , and the knots k and k' are
ab

called the lower and upper cross-sectional knots of F ~, respectively.

As a corollary to Theorem 2.1, we also have the following :

2.18. Corollary. Any closed, comnected, oriented and non-locally flat
sur}‘ace F c RS(-w,+m) ig ambient isotopic in RS(-W,H»J to the closed
realizing surface ﬁab of some sequence 0+ h > L2 > k' +0'0 L' = 0. 0
*** 00,0k 00k , degcribed as above, where 0,0 +++00. ok. o +++ ok

A 1 N 1 A 1 u
is convexly and completely splittable. Further, the middle cross-sectio-
nal link & has the genus of F plus one components, and the link type

of &' = kjoees oku 18 uniquely determined by the given surface F. []

3. Normalization of Cobordism Surfaces between Links.

We think of arbitrary two oriented links ﬂic}?s, 2=0,1. The union
KO[O] ) (—Zl)[l] c RS[O » 1], then, necessarily bounds a locally flat, con-
nected, oriented proper surface F in RS[O »1]. We will do a normali-

zation of this surface F.

3.1. Theorem. If this surface F has genus ¢ = 0, then there exist
trivial links O}l cR (splitted from the links L) i=0,1, knots k, k'c
R and a link with (g+1) components LR accompanied with a sequ-

ence 20 0030 k>l >k > (21 0 Oi\l)rb of complete fusions and complete

fissions, where (l’.l o 0;‘1)% is ambient isotopic to ﬂl 0 0;1.




Proof. By the arguments of Lemmas 2.2, 2.5 and 2.7, one can prove

that Fc:Rs[D , 11 is sufficiently small ambient isotopic to a surface
having only elementary critical bands in distinct levels. [Note that the
deformations in the proofs of these Lemmas are all local.] Then as stated
in Lemma 2.8, by an ambient isotopy of RS(—w,+w) keeping KO[O] u(-ﬂl)[l]
fixed, F is deformed to a surface with only critical bands in R3[0 , 1]
having the maximal bands in the level Rs[l] and the minimal bands in
RS[O] and the saddle bands in R3(0 » 1), Let i be the proper surface
in Rs[O,l] obtained from the new F by removing the interiors of the
maximal and minimal bands. Let £0<>Oéo and £1<)0?1 be the links repre-
senting the links F0r1R3[0]<:R3[0] and -FOrlRS[l]EZRS[l], respectively.
By applying Sublemmas 2.8.1 and 2.8.2, FOCIRS[O,I] is ambient isotopic
to the realizing surface F;'<:R3[0,l] of a sequence EotaOéo -> Ei > eee
> Z% - (21()0;1)' of simple fissions or simple fusions, where (£1<3011)'
is ambient isotopic to £1<JO?1 in RS. Since FJ' is connected, the

result now follows from an analogous argument of 2.13. This completes

the proof. [

3.2. Corollary. ‘A link £ c R3 = RS[O] bounds a connected orientable
surface of genus 0 1in R3[0,+m) if and only if there exist trivial
links 0™ and 0M and q knot k with a sequence 20005 p » 0M of

a complete fuston and a complete fission. [J

3.3. Remark. One can also obtain a suitable version of 3.1 or 3.2
to a result on a disconnected cobordism surface or a non-locally flat

cobordism surface. (cf. 2.16° and 2.18.)
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