MATHEMATICS SEMINAR NOTES
VoL. 11 (1983), 31-69

-DESCRIPTIONS ON SURFACES IN FOUR-SPACE, 11

SINGULARITIES AND CROSS-SECTIONAL LINKS

By Akio KawaucHi, Tetsuo SHiBuYA and Shin’ichi Suzuki
(Received March 12, 1983)

This is a continuation of our previous paper [I]. We retain the definitions
and notation in [I], and refer to, for example, Theorem 2.1 of [I] as Theorem
L.2.1.

The main purpose of this paper is to give a condition for a link to be the
middle, upper or lower cross-sectional link of a surface in the 4-dimensional
euclidean space R* in the normal form (recall Definition 1.1.9.). This paper
divides into six sections. Section | is preliminaries on normal singular surfaces in
the 3-dimensional euclidean space R3. In Section 2 we will determine the cross-
sectional links of locally flat surfaces in R* in the normal form. In particular,
we shall show the following (A) and (B):

(A) The followings are equivalent:

(a;) A link £ <R3 with u components is a ribbon link in the weak sense,

(a;) A link ¢<R3[0] is the middle cross-sectional link of a closed
(possibly disconnected) orientable surface F<R* in the normal
Jorm such that the (total) genus of F plus the number of the com-
panents of F is equal to u,

(az) A link ¢ <R3[0] is the middle cross-sectional link of a conncted
orientable surface F = R* of genus u—1 in the normal form.

(B) The followings are equivalent:
(by) Alink <R3 with u components is a ribbon link in the strong sense,
(bz) A link ¢<R3[0] is the upper (or lower) cross-sectional link of a
surface F < R* with u components in the normal form,
(b3) A link ¢<=R3[0] is the middle cross-sectional link of a surface
F cR* consisting of p 2-spheres in the normal form.

The definitions of ribbon links in the weak sense and in the strong sense are
given in 2.2. In Section 3, we shall investigate the cross-sectional links of non-
locally flat surfaces in R* in the normal form. Section 4 is a construction of a
3-manifold in R* bounded by a locally flat surface F < R4, in particular, a ribbon
surface. In Section 5, we shall give some topics of 2-knots related to our theme.
Final Section is a geometric approach to exploring a difference between a slice
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link in the weak (strong) sense and a ribbon link in the weak (strong) sense.
In particular, we shall characterize a slice link in the weak (strong) sense in terms
of a normal singular 2-disk in R® bounded by the link. This characterization was
suggested to the authors by F. Hosokawa and T. Yanagawa.

The authors would like to express their gratitude to the members of Kobe
Topology Seminar for numerous discussions.
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1. Preliminaries on Normal Singular Surfaces in R3

Let D* be a compact, orientable and oriented surface (possibly disconnected)
with boundary dD*=\U% K S!. Consider a piecewise-linear map f: D*—R3
such that the restriction f|,pe: 6D*—R3 is injective; let ¢=f(0D*)=\U%, f(SH.
The image f(D*)=D is called a singular surface bounded by the link 4. In
particular, if the genus of D* is 0 and D* contans no 2-sphere as a component,
then D is called a singular disk bounded by the link ¢. The orientation of D is

chosen so as to be induced from that of D* and f. The set
Z(f) ={xeD*|f~1f(x) contains at least two points}

is called the singu~larity of the map f: D*-R? and the image X=f(Z(f)) is
called the singularity of the singular surface D. Tt is easily checked that the
singularities X(f) and X are polyhedra. (See Hudson [24, p. 90].) It should be
noticed that the closures of X(f) in D* and of X in D are subpolyhedra of D* and
D, respectively, but neither Z(f) nor £ is in general a subpolyhedron of D* and D.
See for example, Fig. 2(d) or (e) below. The points of CIZ(f))—Z(f) and
CUD)~Z=f(CIZ(f)—Z(f)) will be called the branch points of the map f:
D*—R3 and the singular surface D=f(D*), respectively,

In general the singularities X(f) and ¥ are too much complicated, but in many
case it suffices to treat somewhat simple singularities, called the normal singu-
larities defined as follows: '

1.1. DerNITION. The singularity Z of the singular surface D<R3 is said
to be normal, iff each point xeX has a small cubic neighborhood V(x) in R3
such that the quadruplet
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(V(x), V(x) n D, V(x) n Z, x)

corresponds to one of the following cases (1), (2) and (3):

(1) V(x)nZ is a proper simple arc in V(x), and f “}¥(x) n D) consists of
two sheets ST and S} such that S, =£(S¥) and S, =f(S%) are proper sheets in
V(x) with V(x)n D=8, U S, crossing with each other along the arc V(x)n X, as
shown in Fig. 1 (1),

(2) V(x)nZ consists of three proper simple arcs, say Ay, A;, As, in V(x)
with 4, N 4, N A;=x, and f~1(V(x) n D) consists of three sheets S¥, S% and S%
such that §,=f(S%), S;=/(S%) and §,=/(S%) are proper sheets in V(x) with
V(x)N D=8, U S, U S; and each two sheets of S,, S, and S, crosses each other
along A4, A, or A3, as shown in Fig. 1(2),

(3) x belongs to the link £=0D, and V(x)n X is a simple arc having x and
a point in ¢¥(x) as the end points, and f~'(V(x) n D) consists of two sheets 5%
and S% such that S, =f(S}) is not proper in V(x) and S, =f(S%) is proper in V(x)
with ¥(x) n D=S, U S, crossing with each other along the arc V(x)n %, asin Fig. 1
(3), and

(B) each branch point be C(Z)—~ZX has a small neighborhood V(b) in R?
such that 0V (b) n Z consists of two points; see Fig. 2(d), (e) below,
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Fig. 1

The singularity X(f)=f~1(Z) of the map f: D*—R? is said to be normal
iff Z is normal,

By the general position argument and obvious modifications, we have the
following well-known result:

1.2. PROPOSITION. In the above notation, f is homotopic to a piecewise-
linear map f': D*—R3 relative to D* whose singularity 2(f') is normal. O

Suppose that the singularity £ of the singular surface DcR?® is normal.
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Clearly, a point x of ¥ as in Case (2) of Definition 1.1 occurs only at finite times.
Such a point x is called a triple point of the normal singular surface D,

Let 9" =.7(D) be the set of triple points of D; and set =T (D)=, J?
with J7 a connected component.  Clearly, for each i, J¢
If J? and J; (i#j) have a triple point x as the common
two points x;&J; and x; € J§ sufficiently near to
and A4; in (2) of Definition 1.1, then we join J?
perform this modification for all triple points
curves Jy, J,,..., J,, with JyuJu-ud,=2.
point of D corresponds to a self-intersection point of some Ji or an intersection
point of some J; and some J ; (i#)). 1t is clear that the normal singular surface
D determines the set Z2(D)={J,, J,,..., Ju} uniquely; and each Ji is called a
double line of D. From the construction of J;, we may canonically specify two
curves J; and J7 in the preimage S7NWJ;) in D*,

Let Je 2(D)={J,, Ja,...s Ju} be a double line of D. J must correspond to
one of the curves in the following four cases:

(1) A closed curve J whose preimage f~'(J) consists of two closed curves
J" and J” that lie in the interior Int (D*) of D*, see, for example, Fig. 2 (a).

(2) An arc J whose preimage f~1(J) consists of an arc J’ that spans the
boundary 4D* of D* and an arc J” that lies in Int (D*), see, for example, Fig. 2 (b).

(3) An arc J whose preimage f ~'(J) consists of two arcs, each of which has
one end point in @D* and another in Int (D¥), see, for example, Fig. 2 (c).

(4) An arc J whose preimage f ~1(J) consists of two arcs J" and J” such that
the closures J' and J” in D* have a common end point, which is a branch point of

is a simple arc or loop.
boundary point and if
X are on the same one of A,, A,
and J7 with the point x; and we
of D. Then we obtain distinct
It will be noticed that each triple

Fig. 2
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f, and

(4,) J' and J” have just one common end point, see for example, Fig. 2
(d), or

(4,) J’ and J” have two common end points, see Fig. 2 (e).

1.3. DErINITION. A double line J e (D) of (1), (2), (3) or (4) is called
the loop singularity, the ribbon singularity, the clasp singularity or the branch
singularity of D, respectively.

1.4. DErINITION. A double line J € 2(D) is said to be simple, iff J has no
self-intersection points.

From the construction of the double lines, the following two lemmas are
obvious:

1.5 LeEMMA. A double line Je 2(D) is simple if and only if two curves
J" and J" of f~1(J) are simple curves and J' nJ"=0. |

1.6. LemMmA. Let 2(D) be the set of double lines of D, and let J¥ < D* be
one of the curves f~Y(J), J;€ Z(D). If J¥ nJ*¥#0 with i+ j, then Jf and J}
cross each other (that is, interesect transversally) in D* at any point of J¥ n J¥.

a

1.7. DEFINITION. Let DcR3 be a singular surface whose singularity X
is normal, and let 2(D)={J,, J,,.-., J,,} be the set of double lines of D. For
each J e (D), let J' uJ"=f"1(J).

In the cases (2) and (4,), J' or J” that has an end point in dD* is called a
b-line, and the other that has no end points in dD* is called an i-line.

In the cases (1), (3) and (4,), we call any one of J' and J” a b-line and the
other an i-line.

Suppose that the b-line and the i-line are specified for the preimage of any
double line of D. A crossing point of two b-lines, a b-line and an i-line, or two
i-lines is called a point of type (b, b), (b, i) or (i, i), respectively.

1.8. DEeFINITION. Let D<= R3 be a normal singular surface, and we suppose
that the b-line and the i-line are specified for the preimage of any double line
Je 2(D). Let pe (D) be a triple point of D with double lines J,, J, and J,
cutting at p. (It may happen that J,=J,, J,=J; or Jy=J3, if J;,J, or J;3 is
not simple.) Let p*, p'* and p"* be the three points forming the preimage of p.

A point pe 7 (D) is called a triple point of type I, iff all of the points p*, -
p'*, p"* are of type (b, i). See, for example, Fig. 3(I). A point pe 7(D) is
called a triple point of type 11, iff the points p*, p'* and p"* are of type (b, b),
(b, i) and (i, i), respectively. See, for example, Fig. 3(II).

Since the preimage of each double line of D necessarily consists of one b-line
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and one i-line, we obtain the following:

1.9. ProOPOSITION. In 1.8, every triple point pe 7 (D) is of either type 1
or type Il [}

1.10. ReMark. In the preimage of a loop singularity (1), a clasp singularity
(3) or a branch singularity of (4,), the types of related triple points depend on the

choices of b-lines and i-lines. See Fig. 4.
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GER3 ()7 ()
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We record here two existence results of normal singular surfaces in R3
without proofs.

1.11. PROPOSITION. (SHIBUYA [53, Lemma 1], etc) Any link ¢<R?
bounds a singular disk D<=R3 whose singularity T consists of only mutually
disjoint, simple clasp singularities. O

Such a singular disk is called an elementary disk, Nakagawa [47]. In
general, a knot may bound various elementary disks. The uniqueness of some
classes of elementary disks was discussed in Seifert [52] and Nakagawa [47].

1.12.  PrOPOSITION. (KAPLAN [29]) Any knot #=R?® bounds a normal
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singular disk DcR® whose singularity X consists of only simple ribbon sin-
gularities and which contains only triple points of type L. O

2. Cross-Sectional Links of Surfaces in the Normal Form

Let DeR? be a normal singular disk given by a piecewise-linear map f:
D*—R?3, f(D*)=D. By the component number (D) of D, we will mean the
number of the components of D*. Since D* is a compact surface of genus O con-
taining no 2-sphere as a component, ¢(D) does not exceed the number of the
components of the link £ =£(éD*)=0D.

2.1. DepNITION. A normal singular disk D<= R? is called a ribbon, iff the
singularity X of D consists of mutually disjoint, simple ribbon singularities alone.
Further, a ribbon D is a ribbon in the weak sense, iff ¢(D)=1, and a ribbon in the
strong sense, iff ¢(D) is equal to the number of the components of the link £=aD.

2.2. DerINITION. A link ¢ <R3 is called a ribbon link iff £ bounds a ribbon
in R3. Further, a link ¢ is a ribbon link in the weak (resp. strong) sense iff £
bounds a ribbon in the weak (resp. strong) sense. In particular, if ¢ is con-
nected, ¢ is simply called a ribbon knot.

The following theorem is essential in this section.

2.3.  THEOREM. The followings are equivalent:

(1) A link £<R?3 bounds a ribbon Dc R?® with ¢(D)=p,

(2) There exists a sequence {—4'—0 of hyperbolic transformations of
links, such that £—¢' is a fusion from a link ¢ to a link &' with u components
and &' —0 is a-fission from ¢’ to a trivial link 0.

ProOF. (1)=(2): Consider a ribbon D R3 with ¢(D)=p given by a piece-
wise-linear map f: D*—R3, f(D*)=D, and bounded by the link 4. We suppose
that D has m mutually disjoint, simple ribbon singularities a,...,,. Let «f,
..., a* be the corresponding i-lines in D* and we choose a small regular neigh-
borhood N;=N(a*; D*) of af in D* for each j=1,...,m. Then Do=f(CID* -
\U"., N})) is a non-singular disk with new resulting boundary components O, =
f(@N)),..., 0,,=f(éN,,) as well as the boundary éD=¢. We note that Dy has
just g components, say Doy,..., Doy Let 4,=£4Nn0dDy;, and let ¢;>1 be the
number of the components of ¢, For each i with ¢;>1, we choose mutually
disjoint (c;—1) bands, say &%, on Dy, that span the link £, so that the union
@\ ¢; is connected. By performing the fusion along these bands &;, the link
¢ is transformed into a link, say #4', with u components. Let k; be the component
of ¢' obtained from £, and let Dj; be the corresponding disk obtained from
Dy by splitting Dy, along &, if ¢;> 1.
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Next, let ¢;=(0, U - UOn)NéDy,;, and let ¢;>0 be the number of the
components of ¢, For each i with ¢;>1, we choose mutually disjoint (c;—1)
bands, say %}, on D}, that span the knot k; so that Cl(Dy,— @) consists of
mutually disjoint ¢; annuli and the boundary of each annulus has just one com-
ponent of @, By performing the fission along these bands @/, the link ¢’ is
transformed into a trivial link, say @, since O,U--U0,<R? is a trivial link.
Thus we obtain a desired sequence £—£'—0.

(2)=(1): We may assume that the bands # used for the hyperbolic trans-
formations of ¢—¢’ >0 are mutually disjoint, see Lemma 1.1,14. We suppose
that ¢ has 1 components, and let & be the union of mutually disjoint 4 2-disks
in R* with é6=0. Since ¢—¢ is also the hyperbolic transformation along
4, the union & U # may be a ribbon, say D, if necessary, by deforming the bands
# into sufficiently narrow bands. (See, for example, Fig. 7 of [I].) Since
0— ¢’ is a fusion and ¢’ has # components and £'-+¢ is a fission, c(D)=p.
The boundary 0D is clearly of the same type as the link #.

This completes the proof. ]

We have the following three corollaries to Theorem 2.3.

2.4, COROLLARY. The followings are equivalent:

(1) A link ¢<R3 with components is a ribbon link in the weak sense,

(2) A link £<R3[0] is the middle cross-sectional link of a locally fiat,
closed (possibly disconnected) surface FcR* in the normal Sorm such that the
(total) genus of F plus the number of the components of F is equal to u,

(3) A link £cR3[0] is the middle cross-sectional link of a connected,
locally flat, closed surface F = R* of genus u—1 in the normal form.

PROOF.  (1)=(3) follows from Theorem 2.3. In fact, a required surface
FcR* is obtained as the closed realizing surface of O— &4~ 6 0'>0, where
£—¢'>0 is the sequence in Theorem 2.3(2) and 0—¢'- ¢ is its inverse.  Since
(3)=>(2) is obvious, it suffices to show (2)=(1). By Theorem 2.3, ¢ bounds a
ribbon D’ with ¢(D)>1. If ¢(D')>1, then we connect the components of D’
by ¢(D")— 1 pipes to obtain a ribbon D with ¢(D)=1; this implies (2)=(1). O

2.5. COROLLARY. The followings are equivalent:

(1) A link ¢<=R3 with u components is a ribbon link in the strong sense,

(2) A link £<R3[0] is the upper (or lower) cross-sectional link of a locally
Sfat, closed surface F = R* with # components in the normal form,

(3) A link ¢<R3[0] is the middle cross-sectional link of a locally flat,
closed surface F < R* consisting of u 2-spheres in the normal form.

ProOOF. The proof is straightforwards from Theorem 2.3. O
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2.6. COROLLARY. The followings are equivalent:

(1) A knot #=R3is a ribbon knot,

(2) A knot £<=R3[0] is the upper (or lower) cross-sectional knot of a
connected, locally flat, closed surface F = R* in the normal form,

(3) A knot £cR3[0] is the middle cross-sectional knot of a locally flat
2-sphere Fo< R* in the normal form. O

2.7. ExampLes. The link in Fig. 5(a) is a ribbon link in the strong

Fig. 5
sense, and the link in Fig. 5(b) is a ribbon link in the weak sense, since these links
certainly bound in R?® ribbons in the strong sense and in the weak sense, re-
spectively. From Corollaries 2.4 and 2.5, it is easily seen that every ribbon link
in the strong sense is a ribbon link in the weak sense. However, the converse is
not true. In fact, the link in Fig. 5(b) is not a ribbon link in the strong sense,
To see this, we need the following sublemma:

277.1. SUBLEMMA. For any oriented link &=k, U--Uk,< R3[0], the
linking number lk(k;, k;)=0 for 1<i# j<p if and only if there exist mutually
disjoint proper (posssibly non-locally flat) surfaces Fy U - U F,< R3[0, c0) with
OF =k, for i=1,..., u.

It follows from Sublemma 2.7.1 and Corollary 2.5 that the link in Fig. 5(b)
is not a ribbon link in the strong sense.

The link in Fig. 5(c) is not a ribbon link in the weak sense. To see this,
suppose the link in Fig. 5(c) is a ribbon link in the weak sense. Then by
Corollary 2.4 this link bounds a connected, locally flat surface of genus O in
R3[0, o0). This implies that the trefoil knot bounds a locally flat 2-disk in
R3[0, w0). (Such a knot is called a slice knot, Fox-Milnor [10], Fox [7]. See
Section 6 later.) However, it is known that the trefoil knot never bounds a locally
flat 2-disk in R3[0, o) by using algebraic invariants, e.g., the Alexander polynomial
(Fox-Milnor [10]), the signature (Murasugi [46]), etc. Thus, the link in Fig. 5(c)
is not a ribbon link in the weak sense, 0

2.7.2. ProoOF. of Sublemma 2.7.1. Suppose that lk(k;, k;)=0 for 1<is#
J<p. We can easily find a surface F, in R*[0] with O0F, =k, and F, n k;=0 for
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Jj=22. Pushing the interior of F 1 into R3[0, ©), we have a proper, locally flat
surface F, < R3[0, o). Inductively, we can obtain desired surfaces F, U ...y
F,=R3[0, ) with oF;=k, Conversely, we assume that there exist mutually
disjoint, proper surfaces Fyu---UF, <R30, o) with dF,=k, Since k; bounds
the surface F; in R3O0, ©)—=F,, i, k, is homologous to 0 in R3[0, ©)—F;.
By using the inclusion isomorphism H{(R[0]—k;; Z)~H, (R0, w)—-F;; Z),
k; is homologous 0 in R[0]~k;. Hence, lk(k, k;)=0 for i J. This proves
Sublemma 2.7.1. 0

2.8. REMARK. For a ribbon link ¢<=R3[0] in the weak (resp. strong) sense,
we have a locally flat, closed surface F < R* in the normal form by Corollary 2.4(2)
or (3) (resp. Corollary 2.5(2) or 3). his easily seen that such a surface is not
unique up to ambient isotopy of R4 In particular, Nakanishi-Nakagawa [49]
showed the following:

For any integer nz1, there exists a prime ribbon knot £#<R3[0] such
that £ is the middle cross-sectional knot of n distinet locally flat 2-spheres
F;cR*in the hormal form, i=1,..., n. |

3. Cross-Sectional Links of Non-Locally Flat Surfaces

As described in [I, pp 121-122 and Cor. 2.18],a non-locally flat, closed surface
(with m components) F<R* in the normal form is understood as the disjoint
union F, § --- y F, such that, for some fixed a<b, each F, is the closed realizing
surface in R3[aq, b+1] of some sequence @i-»,éi—»&-—né;—n’ﬁ,fokilo---okim of knots
41, #1 and links @, ¢, Oiokygoroky,, i=1,...,m. The links \m, £, U, ¢
and \JIL, #4; are called the lower, middle and upper cross-sectional links of the
surface F<R* in the normal form, respectively. The knots ki, i=1,..., m;
J=L,..., u;, represent the types of the locally knotted points of F in R4

In this section, we shall give a survey of cross-sectional links of non-locally
flat, closed surfaces F = R4 in the normal form.

3.1. PROPOSITION. A link 4 <R3 is the lower cross-sectional link of a non-

locally flat, closed surface F<R% in the normal form if and only if ¢ isaribbon
link in the strong sense.

PrROOF. If ¢ is the lower cross-sectional link, then there exist a fusion
0— ¢ from a trivial link @ to £, which implies that the inverse £~ 0 is a fission.
By Theorem 2.3, ¢ is a ribbon link in the strong sense.

Conversely, suppose that ¢ <R?[0] is a ribbon link with m components in
the strong sense. Let kyo---ok, be an arbitrary, convexly and completely split-
table link. One can find a locally fiat, proper surface F 1U--UF, in R3O, 1]
such that, for each i, F,n R3[0] is one component, say k¢, of £[0]<R3[0] and
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t=q+c’ t=a+¢e'!

t=a+€" O \ t=a+€"

t=q-gl t=a-ce"

8 0 0 0

S )

(0 <elh<el<eg)
Fig. 6

FinR3[1]=kf1]. As in Lemma 1.2.7, we may assume that F, u---U F,, has
only elementary critical bands. Further, by using a modification illustrated in
Fig. 6, we can assume that F, y .-y F,, does not contain minimal bands. (It
should be noticed that, by this modification, the genus of the resulting surface
becomes greater than the original one.) Therefore, by Lemma 1.1.14 and Lemma
1.2.8, we can find a locally fiat, proper surface F 1U-UF,, in R3[0, 1] such that
each F; is the realizing surface in R3[0, 1] of a sequence kf— 4;—k;—0,0k; of
complete fissions and a complete fusion, where k[0]=F;n R3[0], ¢, is a link,
ki is a knot and ¢, is a trivial link. In particular, \JT., 0pk; is a convexly and

i=1

completely splittable link. Thus, the ribbon link ¢ in the strong sense is the lower
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cross-sectional link of a non-locally flat surface in the normal form. |

Scrutiny of the proof of Proposition 3.1 shows the following more detailed
result:

3.2. PROPOSITION. Given a ribbon link <R3 with m components in the
strong sense and an arbitrary, convexly and completely splittable link \U,
(kigor--oky,) with each k;; knotted, there exists a locally knotted surface F=
FiU - UF,cR* withm components in the normal form, such that ¢ is the lower
cross-sectional link of F, and for each i, the local knot types of F; are represented
by the knots k;,,..., ki,,. O

Any oriented link ¢ < R3[0] always bounds a proper, locally flat, connected
and oriented surface in R3[0, c0). The minimum genus of such a surface is called
the 4-dimensional genus of ¢ (Fox [3]), and is denoted by g*(¢). According
to 3.2, for a ribbon link 4=k, U -:- Uk, <R? in the strong sense and a convexly
and completely splittable link ‘U, (k;yo---ck;,) with each k;; knotted, let
g-(ky U Uk,; Ky,..., K,) denote the minimum of the genera of the locally
knotted surfaces F’s in R* that appear in Proposition 3.2, where K;= {k;,,..., ki)
fori=1,..., m.

3.3. PROPOSITION. [In the above notation, it holds that
g-(ky U Uky; Ky,ooo, Kp) = 30 g*(ky ¥4k,
where ¥ denotes the usual composition of knots (Fox [7]). O

3.4. ReMARK. Obviously, in 3.3, there exists a ribbon link k, U---Uk,
establishing the equality for an given, convexly and completely splittable link
\ey (kiporeroky,).  However, the inequality can not always be replaced by the
equality. Let k= R3 be a knot with g*(k)=0 (i.e. a slice knot) and with non-
trivial Alexander polynomial A(z). [Take, for example, the stevedore’s knot 6,
or the square knot 3;#-3% etc.] For a trivial knot O<R3, it follows that
g-(0; ky=1. [For example, g_(0; 6,)=¢g_(0; 3,4—3%)=1.] In fact, this is
established by using the following proposition:

3.5. PROPOSITION. Let d=kjo ok, =R? be a completely splitiable link.
If the Alexander polynomial A'(t) of some complete fusion ¢' of ¢ is trivial,
then the Alexander polynomial A(t) of each component k, must be trivial.

Proor. It follows from the equality A'(f)= +tsF()F(t~)4,(t)---4,(t) for
some integer a and some integral polynomial F(t) with F(1)=+1. (cf. Terasaka
[57], Fox-Milnor [10].) ]

3.6. LeMMA. For any link £ <R?* with m components, there exists a col-
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lection of mutually disjoint bands B=1{B,,..., B,,.1} in R, so that the complete
fusion £=h(¢; B) is a non-trivial knot.

ProoOF. It suffices to prove this lemma in the case m=2. Let 4 be a regular
projection of £=R? in a suitably chosen hyperplane R3=R3, and we take an
over path on each component of 4(¢), as in Fig. 7(0). Let k,, k, and k; be three
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Fig. 7

fusions of ¢, illustrated in Fig. 7(1), (2) and (3), respectively. From these dia-
grams, we have the following finite presentations:

3 X1s X35 Y15 V2 |T 1505 Frpsts
(R ) = (1 1 R E—
Zyseeny Zp Rl =y1x2 ,Rz =x2y2 X1X2
|
3 X1s X20 V1 yﬂrls'-'rrﬁh .
(R —k) = (2) oo LR 1 ’
Ziyeens 2 {RYY = x7'yxx3! RY = )2 ity
(R3 k ) <x1: x25 yla .sz v’wlrli"'a Fa+1s \
nl —K3) = . »
zl"", z" l R'(13), 'R(23)9 R(33), R(43)/
with R{® = y v twoyrx3!, R® = y,x, v two lwloy7?,

RP = x,p wiow v lwxz!, R = xaw lowxy lyzlx,x3t.

The Alexander matrices of k,, k, and k; are as follows:
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l Zlyrevy In

|
Xy ‘ X2\ W1 ‘ Y2 l Ziyeey Zn X1 l X2 Y1 Y2
41 r ! [
: M| a |a: | b | b, ; M| a | a| b |b,
Fria Fasy
R® - 01| 1], R® =t =1+ | 0
0 o
R{Y 1H 0} 0|_y R$? Pt 01— -1
|
b Zygeeey Zn X1 X2 V1 Y2 v w
ry
M| a, | a, | b | b 0 0
Yo+t
R® 0 | -1 1—: 0 t~—1 1
R o t 0 0 0 |1-2¢ | ¢~1
R 0 0 ! 0 |t—1 |1-2¢
R® 1—¢ 0 0 | -1 1 t—1

Hence the Alexander polynomials 4,(1), 4,(f) and As(f) of ky, k, and k;, re-
spectively, are as follows:

4,(0) = o(r) + (1),
A,(t) = oft) + 1(t) + (2—1)x(0),
A5(t) = 22 =5+ 2)a(t) + (2-30)p(t) + 2((1—1)p(1),

where a()=det [|Ma,||, f(t)=det [Mb,]| and y(f)=det [Mb,|. We shall show
that at least one of 4,(t), 4,(f) and 45(f) is not of the form +¢*. Suppose that
all of A,(f), 4,(t) and A44(t) are of the form 2. Let &=4(-1), i=1,2,3.
Clearly, || =1, i=1, 2, 3, and we have;

& =a(=1+ (-1,
& = a(—1) = B(=1) — 29(=1),
&3 = 9u(—1) + 5p(—1) — 4y(—1).

Hence &;—26&,="Ta(—1)+ 73(—» 1)=7¢,. This is a contradiction, since
|&l=1, i=1,2, 3. This completes the proof. O

From Corollary 2.4 and Lemma 3.6, we have the following:

3.7. ProrosITION. Let é <R3 be a link that is not a trivial knot. ¢ is
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a ribbon link in the weak sense if and only if ¢ is the middle cross-sectional
link of a connected, non-locally flat, closed surface F<R* in the normal form.

g

3.8. ProrosiTION. A link ¢=k, U --- Uk, <R3 is the upper cross-sectional
link of a locally knotted, closed surface F=F, U --- U F,,=R* in the normal form
such that the types of the locally knotted points of each component F, are given
by knots k;,..., ki, if and only if £ is a fusion of a convexly and completely
splittable link

(0*1k, 1orerokyy Jorness °(0Am°km1°'”ck"""")

transforming each sublink @*iok; o-- ok,

i, 0o kyy i=1,..., m.

SKETCH PROOF. If £=k, U - Uk,=R?® is a fusion of the completely
splittable link \UfL; (0*ck;yo--w0k;, ), it is casily checked that Ik(k;, k;)=0 for
i# j. Hence £[0] bounds a locally fiat surface with m components in R3(— o0, 0]
containing no maximal bands, (cf. Sublemma 2.7.1 and Fig. 6). Hence £ is the
upper cross-sectional link of a desired locally knotted surface in the normal form. -

The converse is easy. O

The minimal genus of the surface that appears in Proposition 3.8 is denoted
by gi(k U -~ Uky; Ky,..., K,), where K;={K,,..., k;,.}.

3.9. PROPOSITION. In the above notation, it holds that
g+(ky U Uk, Ky, Kp) 2 21 g*(ki %k, .

Further, there exists a link k3 U --- U kg, establishing the equality for any given
collection of knots K;={k;,,..., ky,.}, i=1,..., m. O

Proposition 3.8 asserts that every knot k<R3 is the upper crosssectional
knot of a (possibly locally knotted) connected, closed surface F < R* in the normal
form. The minimal genus of such a surface is called the 4-dimensional ribbon
genus of k and denoted by g¥(k). More generally, for an arbitray link ¢ <R3,
we define gf(¢) to be the minimal genus of locally flat, connected surfaces in
R3[0, o) bounded by the link £[0] and having no minimal bands (or points).

The relations among g*(£), g*(¢) and other numerical invariants were
studied in Shibuya [53], cf. Murasugi [46], eic.

3.10. ProPOSITION. For any link ¢ <R® with u components, we have:

2 (1o(6)| —u+1)<g*(6) and
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g*(4) < gX¥(¥) < g(¥)

IA IA IA
c*(l) < e¥(8) < c(8)
IA I v

u*(8) < u}(8) < u(f)

Here, o(4)=the Murasugi signature of 4,

g*(€)=the 4-dimensional genus of £,
97 (£)=the 4-dimensional ribbon genus of ¢,
g(£)=the (3-dimensional) genus of ¢,
c*(¢)=the clasp number in the 4-dimensional sense,
cy(£)=the clasp number in the 4-dimensional ribbon sense,
c(£)=the clasp number (in the 3-dimensional sense), cf. (1.11),
u*(£)=the unlinking number in the 4-dimensional sense,
uf(£)=the unlinking number in the 4-diemnsional ribbon sense,
u(£)=the unlinking number (in the 3-dimensional sense).

See Shibuya [53] for the details and the proof.

3.11. Remarx. If a link <R3 is the upper cross-sectional link of a
(possibly non-locally flat) closed surface F = R* in the normal form, then each two
components of £ has the linking number 0 by Sublemma 2.7.1. However, every
link with linking number 0 on each two components is not the upper cross-
sectional link of a (possibly non-locally flat) closed surface in R* in the normal
form. For example, consider the link bo=k;Uk,<=R?® in Fig. 8, called the
Whitehead link.

—
Doy
- )

Fig. 8; the Whitehead link

1t is obvious that Ik(k, k,)=0, but we can prove that 44 never bounds in R3[0, oo)
disjoint (piecewise-linearly embedded) proper two 2-disks. In fact, if not, by
Kawauchi [33, Corollary 4.8] the Alexander polynomial A(¢) of £, (in the sense
of [33]) would satisfy A(1)#0. However, ¢, has A(t)=(t—1)* and so A(1)=0.
The same conclusion can be also derived from calculating the nullity of £, defined
by Murasugi [46], since the nullity is an invariant of topological (and hence
piecewise-linear) link concordances, Kauffman-Taylor [28]. (Note that the
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nullity n(£4)=1, and for the trivial link @2 with 2 components, n(¢0?)=2.) O

4. 3-Manifolds Bounded by Surfaces in R*

Throughout this section, a surface in R*=R3(— oo, + o0) will mean a locally
flat, closed, orientable and oriented surface.

First, we consider a surface of a special type, called a ribbon surface. This
concept was studied by Yajima [58], [59] and Yanagawa [62].

By Corollary [.2.16, a (possibly disconnected) surface F<R3(—o0, + )
is ambient isotopic to a surface F'< R3(—c0, + o) in the normal form given by
a sequence @ _—{¢_—{¢—{, -0, of oriented links.

4.1. DEerINITION, . A surface FoR3(— w0, 4+ ) is called a ribbon surface
iff F is ambient isotopic to a surface F' < R3(— oo, + a0) in the normal form given
by a sequence ¢@_—{_—{—¢, -0, such that the sequence O_—4_—¢ is
precisely the converse of the sequence -4, -0 .

4.2. LemMMmA. A ribbon surface F=F,U:-UF,cR¥—o0, +0) of r
components bounds a 3-manifold in R3(—oc, + o) homeomorphic to the con-
nected sum T #---#T,#q(S? x 52) of solid tori T; of genus g(F}), i=1,..., r, and q
copies of S x 82 for some q=0.

PrOOF. We may identify F with the closed realizing surface F_in R3[—a, a]
of a sequence 0—¥¢' —»¢—4¢ —0, where 7—¢'—{ is the converse of £—
¢'—0. From the proof of Theorem 2.3, we can assume that the image
po(Fe, N R3O0, a])=D of the projection p,: R0, a]>R3 p.(x,y,z,t)=
(x, y, ), is a normal singular disk whose singularity X consists of mutually disjoint

a D, B, D.
Co i+l !
A/ M

DO —

K
=3

Fig. 9
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simple ribbon singularities. Clearly, D consists of mutually disjoint, oriented
2-disks, say Dy,..., D,, with @D, U --- U 6D »=0, and mutually disjoint bands, say
B,,..., B,, which span the trivial link ¢ with By U+ UB, related to £— ¢’ and
BiiyU - UB,related to ¢'—@. It should be noted that the b-line of each simple
ribbon singularity of D is in B, U -+ B,. Foreachi,i=1,.., m, let o and o
be the attaching arcs of B, to @. Then we can give a sign to each simple ribbon
singularity of D as in Fig. 9. We can assume that the bands B,,..., B, are satisfied
with one additional condition that, for each i, i=1,..., m, the sum of the signs of
simple ribbon singularities of D along B; is zero. (See, for example, a modification
shown in Fig. 10 below.)

Fig. 10

The additional condition guarantees us that, by removing from D, U --- U D,
small neighborhoods 4,,..., d4,, of simple ribbon singularities, we can attach
tubes (=annuli), say A4,,..., A,, surrounding  B,,..., B,, to the new resulting
boundaries of CiD, y -y D,—(4,U---U4,,) to obtain an oriented surface
G=(D—=(4,U--Ud,)U(4 U - UA,) bounded by the link ¢. See Fig. 11
for an illustration of this modification. We now re-index {d4,,..., 4,,} as {4,,

1reees Ay, A4}, s0 that 84,=04,U 04}, i=1,..., I

If G is disconnected, ther} we choose mutually disjoint 3-disks, say Viy..., B,
in R3 such that, for each j, j=1,..., v, GN I_7j=G n 65} consists of two 2-disks,
say 4;U 4}, and 4, and 4’ are contained in the interiors of distinct components
of G, and the resulting surface

G =CG~(4,ud,u-- vd,ud)yu (A, n--ud,)
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is an orientable, oriented and connected surface. Here, 4 j=Cl(6fj—G n l7j)=

CoV;~4;~ A%, j=1,..., v.

Let 0<t, <1, <t;<t,<ts<a, where the bands of the fusion ¢— ¢’ and the
bands of the fission £’—¢ occur at the levels t=1r, and I=t,, respectively. We

define a 3-manifold W, < R3[0, w) as follows:

G[1] for
(GU P U--UP)[1] for
GI1] for

W. n R3[t] = ( CAG—(B, U+ U BY)[1] for
CAG~(ByU - UB)[1]

( U4 U= Ud4)[]  for

0St<t1,
t=t,
t<t<t,,

t2<tgt3,

=(CI(Dy U UD; = (4, U4} U~ U4, U 4)

ty <t <ty

Next, we choose an innermost 2-sphere, say 4, U Ay U 45, in the 2-spheres
A UA UA, 4, U A, 0 45, 4,UA,U4,. The 2-sphere A, U A, U4, then,
bounds a unique 3-disk F; in R3 with F, n(4,U - U A)=8. Let O<e <e,

be sufficiently small numbers. We define:

(CI(D, U+ UD,~(4,Ud}u U 4,U4.)

U(A, U= U 4[] for 1, <t<t,+ e,
Wy 0 R[] = ( (CL(Dy U+ UD,—(4, U 45U -+ U4, U 4)
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U(d2 U~ UA4)u P[] for t=1, + &,
(Cl(DIu---UD,1~(A2UA’2U---UAHUA,’,))
U4z U--UuA)[r] for t,+e <t<t,+e,.

By the repetition of the procedure, we obtain, at the level t=t5, W, n R3ts]=
(D U--UD)[t]. So, we define W, as follows:

(D, U UDY[A] for ¢, <t<a,
Wi n R[] =
%} for t>a.

From this construction, we have: dW, =(F 2, N R3[0, a]) u G[O].

Similarly, we can obtain a 3-manifold W_ in R3[—a, 0] which is a copy of
W, with OW_=(F2,n R3[—a, 0]) UG[0]. Then, the union W= W, U W_ is an
orientable, connected 3-manifold oriented and bounded by the surface Fo,. It is
casily seen that W is homeomorphic to the connected sum Ti%- ¥T,#9(S' x §?)
of solid tori T; of genus g(F)), i=1,..., r, and q (=0) copies of S! x §2,

This completes the proof of Lemma 4.2. O

4.3. DerINITION. Let W be a 3-manifold in R+ homeomorphic to the
connected sum T, #---#T,#q(S! x $2) of solid tori T; of genus g;, i=1,...,r, and
g copies of S'x 82 W is said to be semi-unknotted iff W contains mutually
disjoint 2-spheres S, S7,..., S,, Sg, with s=r-+q, such that

(1) the surface S, US, U - US, U S, is unknotted in R*, that is, there exist
mutually disjoint 3-disks D3, D7,..., D3, D”® in R* with oD}=S,, éD;'=8S,,
i=1,..., s, (See Definition 4.7 below.),

(2) S;U S} bounds a spherical shell A}=S82x[0, 1] in W such that A?n
A¥=g for i# j,

(3) CI(W—\Ui., 4}) is the disjoint union of T4,...,T? and S3, where T¢
is homeomorphic to T; with a finite number of open 3-disks removed and S3 is a
3-sphere with a finite number of open 3-disks removed.

4.4. THEOREM. A surface F<R*isa ribbon surface if and only if F bounds
a semi-unknotted 3-manifold W in R4.

The proof of Theorem 4.4 will be given in (4.12) below.

4.5. COROLLARY. (YANAGAWA [62]) A 2-sphere K*cR* is q ribbon
2-sphere if and only if K2 bounds a semi-unknotted 3-manifold of a type
D3%q(S* x 82) (¢ =>0) with D? g 3-disk. O

Let FcR* be a (possibly disconnected) surface. An oriented 3-disk B? in
R* spans F as a 1-handle, iff B®n F=(0B%)nF consists of two 2-disks and the
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surface CI(F U dB®—(0B®) n F) can have an orientation compatible with both the
orientations of F—(0B%) n F and 0B3—(0B¥) n F.

4.6. DerNiTioN. (Hosokawa-Kawaucur [22]) IfB3,..., B3 are mutually
disjoint, oriented 3-disks in R* which span F as 1-handles, then the resulting closed
surface h'(F; B},..., B3)=ClF UéB}U - U@B3—F n(@B3U -+ U 0B3)) with the
orientation induced from that of F—Fn (8B} U - U 0B3) is called the surface
obtained from F by the hy perboloidal transformations along 1-handles B},..., B3,

4.7. DEFINITION. Let F=F,U--UF,<R* be a closed surface with F,;
a component of genus g(F;). F is said to be unknotted, iff there exist mutually
disjoint 4 solid tori Ti,..., T, in R* of genus g(F,) with OT;=F,;, i=1,...,A If
such a collection of solid tori does not exist, then F is said to be knotted in R*.

This definition is justified by the following:

4.8. LemMa. (Hosokawa-KAwaucHi [22, THEOREM 1.2]) F<R* is un-
knotted if and only if F is ambient isotopic to the boundary of a regular neigh-
borhood of a 1-complex L=L, U ---UL? in R3[0] such that the 1-dimensional
Betti number of L; is g(F)), i=1,..., L. ]

To prove this lemma, we need the following lemma:

4.9. LemMA. (Hosokawa-KawaucHr [22, Lemma 1.4]) Let a 1-sphere
S be contained in a 2-sphere S? and consider a proper surface Y in S? x [0, 11,
homeomorphic to S'x[0,1]. If YN (S2x0)=S'x0 and Y n (S?2x1)=S8'x1,
then Y is ambient isotopic to S' x [0, 1] by an isotopic deformation of S2x [0, 1]
keeping S2x0U S?x 1 fixed. O

See Hosokawa-Kawauchi [22] for the proof and some topics of unknotted
surfaces. We only record the following:

4.10. PROPOSITION. If a surface F<R* with A components is unknotted,
then the fundamental group n,(R*~F) is a free group of rank A. O

4.11. LeMMA. Let F<R* be an unknotted (possibly disconnected) surface.
If F'<R* is obtained from F by the hyperboloidal transformations along 1-
handles, then F’ is a ribbon surface.

Proor. We deform F so that F is the closed realizing surface F 2, of a se-
quence 0'—>¢— 0" with 0'—¢ a fission of trivial links ¢ and ¢ and ¢0—¢' the
converse of @' —~0. Let B,,..., B,, be 1-handles used for the hyperboloidal trans-
formations F—F" and let ay,..., «,, be simple, proper unknotted arcs in B,...., B,,
respectively, with (B, o;)=(D!x D2, D1xo0) for i=1,....,m. We can assume
that, for each i, the two attaching points du; of o; to F 2, are in the middle cross-



52 Akio Kawaucsr, Tetsuo SHiBUYA and Shin’ichi Suzuxr

section F2,n R3[0]. Since the inclusion homomorphism m(R3[0]— R3[0] n
F2;)-n,(R*=F2,) is onto, «; is isotopic to an arc «) in R3[0] by an isotopic
deformation of R* keeping F2, fixed. We take a regular neighborhood of o}
of the type Bj[ —e¢, £] in R# such that B;[0] n F2, consists of two simple arcs in
the boundary of B;[0], where B; is a 3-disk in R3 and ¢ is a sufficiently small
positive number. We can assume that the I-handles B,,..., B,, are properly
embedded in Bi[-e, el,..., B,[—¢, €], respectively, such that B,nF2,=
Bi[—¢, &]nF2,. (Take triangulations of o;< B;cR* so that «; is full in both
B; and R*. Next, use the uniqueness theorem of regular neighborhood.)

Using Lemma 4.9, for a certain proper 2-disk B? in Bj, we conclude that
C1(0B;—(8B;) n F2,) is ambient isotopic to CI(d(BH[ ~e, e])—-(B¢x[—s el N
F2, by an isotopic deformation of O(Bi[ e, €]) keeping two 3-disks containing
d(Bi[—e, €]) N F2, fixed. Using a collar of &(B;[—e, &]) in R*, it follows that
Cl(0B;—(dB) n F2,) is ambient isotopic to Cl (OB —¢, e])— (B[ —s¢, e]) N
F2,) by an isotopic deformation of R* keeping F2, fixed. Hence F’ is regarded
as the surface obtained from F2, by the hyperboloidal transformations along the
1-handles B[ —e, e],..., B2[ —¢, €]. This shows that F’ is a ribbon surface, and
this completes the proof of Lemma 4.11. O

4.12. ProoF of Theorem 4.4. The 3-manifold constructed in the proof of
Lemma 4.2 is certainly a semi-unknotted 2-manifold. Conversely, we assume that
a surface F<R* bounds a semi-unknotted 3-manifold W as in Definition 4.3.
Let (6TY)nF=F; and 0T} —F;=S{P u---USY, S a 2-sphere. Let T, be a
solid torus in T; such that CI(T;— T))=F;x [0, 1]and T;n S’ =0, j=1,..., s,
Let F;=0T. We regard F as the surface obtained from the boundary 343 of a
3-simplex A7 in Int(T?) by the hyperboloidal transformations along 1-handles
Visooy Vg in Int (T9).  We choose mutually disjoint, simple, proper arcs Biseeos By,
in CI(T¢~T)) such that, for each j, B; spans 043 —(V, U --- U V,) and S'”, and
then we take in C1(T7— T)) a small regular neighborhood U j of B; meeting the
boundary regularly, with U n U= for j#k. Then Cl(T¢—T,~U,—--—U,)
is homeomorphic to F;x[0,1]. Let Fj=oCl(T¢—T,~U,—-. — U,)—F.
Since F=F, U+ UF, is ambient isotopic to F{ U -+ UF, and FyU-- U F, is ob-
tained from a trivial surface \Jf_, d43US{P U - US® by the hyperboloidal
transformations along 1-handles. By Lemma 4.11, F’ is a ribbon surface, and
completing the proof. O

From Theorem 4.4 (4.12) and Lemma 4.11, we also have the following char-
acterization of ribbon surfaces:

4.13. CoroLLARY. F<R*is a ribbon surface if and only if F is obtained
from an unknotted surface consisting of 2-spheres by hyperboloidal trans-
Sformations along 1-handles. O



Descriptions on Surfaces in Four-Spaces, 1] 53

It will be noticed that an unknotted surface in R* is a consequence of an
unknotted surface consisting of 2-spheres by hyperboloidal transformations
along 1-handles.

4.14. COROLLARY. For a ribbon surface F<R* with non-zero genus, the
inclusion homomorphism 1, (8N(F))—n,(C1(R*—N(F)) is not injective, where
N(F) is a regular neighborhood of F in R*. ]

Combining this with the following, we have infinitely many non-ribbon
surfaces in R*.

4.15. PRrOPOSITION (AsaNO [1], LIVINGSTON [39]). There exist infinitely
many surfaces F < R* (of genus 1) having the property that the inclusion homo-
morphism 1 (IN(F))—n(Cl(R*— N(F))) is injective. O

For general surfaces in R*, we have the following weaker result, corresponding
to Theorem 4.4, (cf. Suzuki [56, §5])

4.16. THEOREM (GLUCK [11]). An orientable surface F<R* bounds a
compact orientable 3-manifold in R*.

PrOOF. From Lemmas 1.1.14 and 1.2.8, we may consider that F is the closed
realizing surface F? of a sequence ¢— @' of trivial links ¢ and ¢', and let F? be
the lower closed realizing surface, that is F? is the closure of F%n R*[a, b) in R*.
We may set @' =h(0; By,..., B,). Let D be the image of Ft under the projection
p: R¥[a, b]—R3. With suitable modifications of bands (see, for example, Fig. 7
of [1]), we can assume that D is a normal singular surface whose singularity X
consists of mutually disjoint, simple, ribbon singularities. In fact, D is the union
of mutually disjoint, oriented 2-disks Dy,..., D, with \U}, dD;=0 and the bands
B,,..., B, spanning ¢. As we have seen in the proof of Lemma 4.2, we can
assume that the sum of the signs of simple ribbon singularities of D along the band
B, for each i is zero. In particular, the number of simple ribbon singularities of
D is even, say 2u. For small regular neighborhoods 4,,..., 43, of these singu-
larities in D, U --- U D,, there exist u tubes A,,..., A, attached to the new resulting
boundaries of Cl(D—4, —---—4,,) such that the union G=(D~-4,—4]——-
A,—4)U(A U UA) is an orientable surface bounded by the trivial link ¢,
where 4, 43,..., 4,, 4;, are the same as 4y,..., 4,,, but re-indexed so that 04;=
84,084), i=1,..., u. We assume that at the level t=1, with a<t,<b, the bands
of 0—@ occur. A required 3-manifold, say W, bounded by F? is constructed
as follows: Consider the mutually disjoint 2-spheres A, U4, U 4},..., 4,U4d,U
4, in R3.  Find an innermost 2-sphere, say A, U4, U 4}, in these 2-spheres, and
let 7, be the 3-disk in R® bounded by 4, U4, Ud4;. Leteg be a sufficiently
small positive number, and we take
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Wn R¥a]l=(D,U--UD,u F,)[a],
Wn R[] =(D,u-UD;—4,—4Y) U A)[1] for a<t<a-+e,.

Repeating of this procedure, we obtain, at the level ¢ with at+e<t<ty,
where g, <g, < <g,,

Wn Rt]=(D,u--U D,—Ay—A\—--—A4,—~A)U(A; U - U ANt
At t=t,, we have
W R[te]=((D—d;—A\——4,—ADU(A, U - U4 [te] = Glte].

Let Dj,..., D} be mutually disjoint v 2-disks in R® with \U}_, oD, =0,
Consider the intersection G n (D} U --- U D), which consists of mutually disjoint
simple curves. (See Fig. 4 of [I].) Let ¢, be an innermost curve on Dyu---UD),
in the interesection curves and d; =D} U --- U D/, be the 2-disk cut off by ¢, with
Int(d)n(DiU--UD))=@. Let d; be a 3-disk obtained by thickenning d,
such that d; nG=(0d;)nG is an annulus and d, u(D,U-- UD,)=d,. Let
&3> &3>0 be sufficiently small numbers. Now we define as follows:

W n R3[1] = G[f] for ty <t <ty + &,
Wn R[to+e] = (GUd))[to+ei],
W n R3] = G,[1] for to+e <t<ty+ &

where G, =(G—(0d,)nG)UCl(8d,—(0d,)n G), and it will be noticed that
G NMDLU--UDY=Gn(Dyu- U Dy)—c;.

Repeating of this procedure, we obtain the manifold W n R3[a, ty+¢7],
to<to+e <b, such that WnR3[t,+e1=G'[to+¢'], where G’ is an oriented
surface with 0G'=¢" and G’ nInt (D} U --- U D})=0.

Now we need the following proposition due to R. H. Fox [6]; compare
Proposition 4.15.

4.17. PROPOSITION. For any closed orientable (possibly disconnected)
surface f in R® with non-zero genus, there exists a 2-disk e in R® such that
2N f=0e? and this loop de? does not bound any 2-disk on f. |

We apply Proposition 4.17 to the closed surface Go=G'UDjU--UD, If
9(Go)#0, then we can find a 2-disk €2 in R3 such that 2 N G,=de? c Int (G’) and
de? does not bound any 2-disk on G’. Let & be a 3-disk obtained by thickenning
e? such that én G'=(dé) N G’ is an annulus. Let ¢3>¢71>0 be sufficiently small
numbers with #,+¢' <ty +¢] <ty+&3<b, and we define as follows:

W n R3] = G'[1] for to+¢& <t <ty+ e
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Wn R[t+e] = (G'U[Ho+eil],
W n R[] = Gi[1] for to+e] <t=<ty+ &

where G;=(G'—énGyuCl(de—(de)n G'), and it should be noted that WG =
2+7(G"), where x denotes the Euler characteristic.

Repeating of this procedure, finally we obtain the manifold Wn R3¥[a, to+&"],
to+€ <to+e'<b, such that Wn R3[to+¢&"1=G"[to+¢"], where g(GM=0 and
G’ nInt(D}U - UD,=0.

Since G4=G"U D} U - U D, consists of mutually disjoint 2-spheres in R,
we can find an innermost 2-sphere, say Z,, in Gg, which bounds a 3-disk o4 in R?
such that Int(e,)nGh=9¥. Let ef>¢ef>0 be sufficiently small numbers with
to+e" <to+e¥<to+el<b,and let

W n R3[{] = G'[1] for 1o+ €& <t<ty+ef,
W n R3[to+e¥] = (G" U a)[to+eT],
W n R3[1] = (G"—Z)[1] for to +e¥<t<to+ el

Repeating of this procedure, we obtain finally W n R3[to+e**]=0 for a
level t=t,+e** with to+¢&"<to+e**<b. By the Cellular Move Lemma (Pro-
position 1.1.7), 6W is ambient isotopic to F5. Hence F bounds a 3-manifold in
R3[a, b] ambient isotopic to W, and this completes the proof of Theorem 4.16.
O

We call a compact, oriented (connected) 3-manifold Wc R* a Seifert manifold
for the surface F < R4, provided 0W=F.

It is well-known that any compact, connected and orientable 3-manifold W3
with non-empty boundary can be represented as T U h*(D) U -+ U h*(D,) where
Tis a solid-torus, D, is a 2-disk for each i and h*(D)) ~D2x D! is a 2-handle along
the core D;. This representation will be called a Heegaard splitting for W3,
and the genus of the splitting is the genus of T and the smallest possible genus of
Heegaard splitting for W3 will be denoted by Hg(W?3).

By Theorem 4.16 and Definition 4.7, we have the following:

4.18. TaEorREM (HosokAwa-KawaucH! [22, THeEOREM 2.3]). For any
surface F in R#, there exists a finite number of 1-handles By, ..., B, such that the
surface h'(F; By,..., B,) is an unknotted surface of genus g(F)+u. O

4.19. Depnimion ([23]).  The unknotting number, u(F), of a surface F in
R* is the least number of 1-handles Bj,..., B, for F so that h\(F; By,..., B,) is
unknotted.

4.20. ProrosiTiON ([23]). Let FcR* be a connected surface of genus
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g(F), and let W be a Seifert manifold for F. Then it holds that:

0 < u(F) < HyW) — g(F) < . [

4.21. THeoREM ([23]). For arbitray non-negative integers n and u, there
exists a connected surface F in R* with g(F)=n, u(F)=u. O

See Hosokawa-Maeda-Suzuki [23] for the proof and some related topics of
unknotting number of surfaces in R*.

5. Some Topics of 2-Knots

By a 2-knot, we mean a locally flat 2-sphere in R* (or in 5*), considered from
the piecewise-linear point of view. General references to the 2-knot theory are
Fox [7], Suzuki [56] and Kervaire-Weber [35]. In this section, we shall give
some topics of 2-knots related to our theme.

We reformulate the results in §4 on ribbon 2-knots.

5.1. THEOREM. The followings are equivalent:

(1) A 2-knot K< R* is a ribbon 2-knot,

(2) A 2-knot K <R* has a semi-unknotted Seifert manifold in R,

(3) A 2-knot K<R* is obtained from an unknotted surface consisting of
2-spheres by the hyperboloidal transformations along 1-handles. O

5.2. ExaMpLes. (a) The 2-knot obtained by spinning an arbitrary knot is
a ribbon 2-knot. (See Fox-Milnor [10], etc...)

(b) The 2-knots constructed by Sumners [55] are ribbon 2-knots. (See
Omae [50] for the proof, and see also Asano-Marumoto-Yanagawa [21)

The fundamental group of the complementary domain R*—K of a 2-knot
K = R* is usually called a 2-knot group. Kervaire [34] discussed the characteri-
zation problem of knot groups. Cf. Levine [36], Suzuki [56].

5.3. TueoreM (KERVAIRE [34]). If a group G is a 2-knot group, then
(0) G is a finitely presented group,

(1) the abelianized group G|G' is infinite cyclic,

(2) there exists an element pe G with G/{up=1,

(3) the second homology group H,(G; Z)=1. ]

In fact, Kervaire [34, Theorem 1] asserted that these conditions (0), (1), 2)
and (3) are sufficient conditions for a group G to be an n-knot group with n>3.
However, the problem of characterizing 2-knot groups by algebraic conditions
remains unsolved. The following characterization of ribbon 2-knot groups was
given by Yajima [59], [60].
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5.4. TuoeoreM (Yanma [59], [60]). A group G is a ribbon 2-knot group if
and only if

(1) the abelianized group G/G' is infinite cyclic,

(4) G has a finite Wirtinger presentation of deficiency 1. O

A finite presentation {Xq,..., Xyl f'1,.-s > of a group G is called a Wirtinger
presentation iff each relator r; has the form x,wxglwil, where w; is a word in
Xyyeees Xy The condition (4) implies the conditions (0), (1) and (3) of Theorem 5.3.
Levine [36] gave a sufficient condition for a group G to be a 2-knot group, but as
Yoshikawa [69] pointed out, this condition is equivalent to Yajima’s condi-
tions and the 2-knots constructed in [36] are ribbon 2-knots.

5.5. COROLLARY. For a ribbon 2-knot group G, the abelianized com-
mutator subgroup G'/G" is a torsion-free abelian group and the fisrt elementary
ideal &, of G is principal. O

This corollary follows from Theorem 5.4 and the following somewhat general
lemma:

5.6. LemMMA. Let G be a group with a finite presentation of deficiency 1.
If G|G' is infinite cyclic, then G'|G" is a torsion-free abelian group and the first
elementary ideal &, of G is principal.

PROOF. Let {t, Xypeers Xyl Fpsees 1y bE 2 presentation of G of deficiency 1.
We can assume that the epimorphism y: G—<{t> satisfies y(x;)=1 for i=1,...,n,
and p()=t, where <f> is the infinite cyclic group generated by the symbol 1.
(Take a pre-abelian presentation of G. See Magnus-Karras-Solitar [42, pp-
140-149].) Thenthe n x n matrix ly(éri/ox ;)| obtained by the Fox free calculus
is a presentation matrix of the Z{t>-module G'/G". (See Kawauchi [32, Lemma
2.6].) Here Z{t) denotes the integral group ring of the group (. The first
elementary ideal &, of G is generated by the socalled Alexander polynomial
A(1)=det ||y(dr;/0x;)|| of G. Hence &, is a principal ideal. Further, |4(1)|=1,
since G/G' is infinite cyclic. (In fact, notice that the integral matrix [|y(0r;/0x )=
is a presentation matrix of (G'/G") ®i=1 Z=0. See, for example, Kawauchi
[32, Lemma 2.7].) This implies that G'/G" is a torsion-free abelian group by
Crowell [5, Theorem 1.3]. This completes the proof. |

57. COROLLARY. For a ribbon 2-knot group G, G/G" is a torsion-free
group.

Proor. This follows from Corollary 5.5 and the short exact sequence 1—
G'|G"—G|G"~G|G' —1. (See Marumoto [44] and Hitt [18].) O

5.8. QUESTION OF T. YANAGAWA. Is a ribbon 2-knot group necessarily
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torsion-free?

Asano-Marumoto-Yanagawa [2] discussed this question and gave an af-
firmative answer in [2, Corollary 3.8], but they did not give the proof of [2,

Proposition 3.2].

5.9. THEOREM (YaiMA [59]). There exist infinitely many 2-knots that

are not ribbon 2-knots.

Y
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Proor. Consider the 2-knots K, R*, n=1, 2, 3,..., due to Fox [7, Example
15)), illustrated in Fig. 12. The 2-knot group G,=n,(R*~K,) has a presentation
{t, b|b¥*1=1, tht"1=b"1). Hence the commutator subgroup G, is a cyclic
group of order 2n+1. Therefore, G, is not a ribbon 2-knot group by Corollary
5.5. O

5.10. REMARKs. (a) Kanenobu [27] showed that Fox’s 2-knots given in
Fig. 12 are 2-twist spun knots [70], see also Litherland [37].

(b) Kanenobu [26] asserted, under an affirmative answer to 5.8, that there
exists a non-ribbon 2-knot whose Seifert manifold is homeomorphic to
D3 (S' x §%). Recall Definition 4.3 and Corollary 4.5. O

On the second homology group H,(n(R*—F); Z) of n,(R*—F) for a closed
orientable surface F < R?, we have the following:

5.11. PROPOSITION.

(1) (MaBDA [41]) For the group Asx Z, As the alternating group of
degree 5, there exists a locally flat closed surface F<R* with n(R*~F)=
Asx Z and Hy(Asx Z; Z) has order 2.

(2) (GorpoN [13]) For any finitely generated abelian group A, there
exists a locally flat closed surface F = R* with Hy(n,(R*—F); Z)= A.

(3) (LitHERLAND [38]) For any abelian group A generated by 2g ele-
ments, there exists a locally flat closed surface F=R* of genus 2g such that
Hy(n (R*—F); Z)=A. O

We also refer the reader to Simon [54], Kanenobu [25], Hillman [17],
Yoshikawa [67], [68] for 2-knot groups.

A 2-knot K'=R* (or S%) is said to be unknotted, iff there exists a 3-disk
B3 R* (or S%) with 0B3=K; recall Definition 4.7. (This is equivalent to saying
that K is ambient isotopic to the boundary of a 3-simplex in a triangulated R* by
the Cellular Move Lemma (Proposition 1.1.7).)

The unknotting conjecture is usually stated as follows:

5.12. UNKNOTTING CONJECTURE. For a 2-knot K<=S*, the complement
S¢— K is homotopy equivalent to the circle S' if and only if K< S* is
unkotted.

REMARK. YANAGAWA [63] showed that the unknotting conjecture is true
for ribbon 2-knots, however the second-step of the proof of [63, (2.2)'] is
incorrect. Thus, the unknotting conjecture is unsettled even for ribbon
2-knots.

5.13. THEOREM (MARUMOTO [43]). Let K< R* be a ribbon 2-knot ob-
tained from an unknoted surface consisting of two 2-spheres by the hyper-



60 Akio KawaucHi, Tetsuo SHIBUYA and Shin’ichi Suzukr

boloidal transformation along a 1-handle. If n (R*— K) is infinite cyclic, then
K< R* is unknotted. ]

5.14. Fox-Hosokawa CONJECTURE FOR UNKNOTTING 2-KNoOTS. A 2-knot
K <R* is unknotted, if K is ambient isotopic to a 2-knot in the normal form
whose middle cross-sectional knot is unknotted.

REMARK. One of the simplest case of 5.14 was given by Hosokawa [20].
However, it has a gap in the proof of [20, Lemma 2].

We say that a 2-knot satisfying the assumption of 5.14 is a 2-knot of Fox-
Hosokawa type. 1t is easily seen that a 2-knot K =R* of Fox-Hosokawa type
has the infinite cyclic knot group; n,(R*—K)=n,(S"), Cf. for example, Suzuki
[56, §3].

5.15. QuEesTION. If n;(R*—K)=n(S"), then is the 2-knot K = R* of Fox-
Hosokawa type?

The Fox-Hosokawa Conjecture 5.14 is a special case of the Unknotting Con-
jecture 5.12, since the following theorem shows that, for a 2-knot K< R% of
Fox-Hosokawa type, the complement R* U {co} —K is homotopy equivalent to
a circle.

5.16. THEOREM (KAwAucH [30]). For a 2-knot K<=S* if n,(S*—K)x
m,(SY), then the complement S*—K is homotopy equivalent to S!.

Proor. Let N be a regular neighborhood of K in S*. Since K is locally
flat in §*, N is homeomorphic to §2 x D2, and so the boundary of E=CI(S*— N)
is homeomorphic to S2x S!. We take the universal cover E of E, which is
obviously an infinite cyclic cover. H,(E; Z)=0 implies that H,(E; Q) is finitely
generated over the rational number field Q. Then by the partial Poincaré duality
theorem [31], there is a duality npu: Hi(E; Z)~H,_(E,0E; Z),i=0,1. (Note
that H,(E; Z)=0, since E is simply connected.) Hence Hy(E, éE; Z)=0 and
Hy(E, 0E; Z)=Z. As shown in Theorem 4.16, one can find a compact oriented
proper 3-manifold V< E such that 0V=52xxcS$2x S'=0F for a point xe S
Let VcE be a lift of V. (Such a ¥ certainly exists, since the inclusion V< E
induces the trivial homomorphism H,(V; Z)»H(E; Z)=n,(E).) The boundary
homomorphism 0: Hy(E, 0E; Z)~>H,(0E; Z) sends the homology class [F]
onto a generator [0V] of H,(3E; Z)=~ Z. Since Hy(E,0E; Z)= Z, the boundary
homomorphism &: Hy(E, 0E; Z)-H,(GE; Z) is an isomorphism. From the
exact sequence of the pair 6E < E, it follows that A,(E; Z)=0. Since E is simply
connected, E is contractible, and hence E is homotopy equivalent to S!. This
completes the proof. O
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6. Slices and Ribbons

6.1. DEFINITION. A knot £cR3=R3[0] is called a slice knot, iff there
exists a 2-knot K2 R* with #=K?2 1 R3[0].

Equivalently, a knot #<R3=R3[0] is a slice knot, iff there is a locally flat,
proper 2-disk Ec R3[0, + o) with JE=4. By Corollary 2.6, every ribbon knot
is a slice knot. We are interested in the converse question: Is every slice knot
a ribbon knot?

Here is one criterion to this question, which follows easily from Section 3
of [I1, Cf. Fox [9].

6.2. PROPOSITION. A knot £=R3 is a slice knot if and only if for some
integer n=0, the link 40" is a ribbon link in the weak sense, where #£°0" is
the (convexly) completely splittable link consisting of the knot # and a trivial
link O™ with n components. O

Let £ < R3[0] be a slice knot and EcR3[0, 2) be a locally flat, proper 2-disk
with dE=4. From the argument in [1], we can assume that E has only elementary
critical bands in R[0, 2) such that the intersection E'=FEn R3[1, 2) is a proper
2-disk without minimal bands and the intersection E n R3[0, 1] is a proper annulus
with only minimal bands; see Fig. 13. Since £’ does not have minimal bands,
the knot £,=8E' = R3[1] is a ribbon knot. Thus, 4, is obtained by a complete
fusion from a trivial link ¢™*! with m+ 1 components for some m>0.

U U

T

FaR[1,2) = B

k

Fig. 13

Let @ =\JT, D, be a union of mutually disjoint, non-singular 2-disks D; in R3
with 02 =\Umn,8D;=0"*!. Let #=\JT-, B; be a union of mutually disjoint
bands B; in R3 used for the complete fusion ¢™"*—#,. Then we have p(E')=
2 U @, where p: R¥(— 0, +)—R? is the natural projection. We may assume
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that the minimal bands of E appear on R[1/2] at the same time. Let &=
\U%-, D; be a union of mutually disjoint 2-disks in R3? representing the minimal
bands of E, and let §"=0% =1, 6D, Let $=\r, B; be a union of mytually
disjoint bands B, in R3 used for the complete fission £,—4°0". We now consider
the singular 2-disk E=2 U & U @ U & that is the image of E under the projection
p and whose boundary JE is #. First we may assume that the singularity of E is
normal. (One can modify E by a level preserving isotopy of R3*(— oo, + o) so
that the singularity of the image E=p(E) is normal.) Further, we assume that
(0) N (22)=(84) n (8D,) and for each i, i=1,..., n, (0#) N (0D)=(0#) n (62).

— B* 'l
B*
1
h () B:
— D* D* 5
2) D* (1) l 2 r
1 o BZ
\Q ]
e N
B DO
5) -
NG B (1) B
D-jzr 2 / Dg R
Fig. 14

We suppose that the normal singular 2-disk E is given by a piecewise-
linear map f:E*—E with E* a non-singular 2-disk. Let 2*, #*, %* and 5* be
the unions of 2-disks in E* corresponding to %, @, & and 9, respectively, under
the map f; see Fig. 14 for our situation. Let us observe the singularities between
2, B, # and Z. There are six different cases. Since & is the union of bands
relating to the minimal bands of E, the intersection 2 n £ is empty. Thus, we
can reduce the types of the singularities to the following types by doing suitable
modifications of 2, #, # and 2, as in Fig. 14:

(1) 2 n # has only mutually disjoint, simple ribbon singularities,

(@ 201 % has only mutually disjoint, simple ribbon singularities

(3) 2 n <2 has mutually disjoint, simple singularities,

(4) @ n 4 is empty by taking narrow bands,

(5) % n 2 has only mutually disjoint, simple ribbon singularities,

(6) % n S has only mutually disjoint, simple ribbon singularities. We now

b
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claim that:
6.3. LemMa. E does not have clasp singularities.

PrROOF. Suppose E has a clasp singularity o with dx=pUq. As illustrated
in Fig. 15, a=f(e*)=f("*), p=f(p*)=f(p"*)
and g=f(¢®)=f(q¢'*) with p* q'*edE* and
p'*, q*€Int(E¥). Since N4 =0 and # is
the union of bands of fissions and # is the
union of bands of fusions and & n #Z=0, the
point p’* is contained in none of Z*, #* and
#*. So p'* is contained in 2* and another
point p* is not contained in 2*. Hence p*
must be in @#*uy £*. If p* € #* then pe p*
2 n %, which would imply that p is an end q'*
point of a ribbon singularity. Thus, p*d=2*
and p*e #*. We can prove that g* e 2* by
the similar way to show that p'* e 2*. Hence
a* N(@*n(#* U 2)#0. However, from the singularity of type (6) above,
we see that a*n 2*n #*=0. So a*N2*NF*#0; we take a point r¥e
a*n @*nF*. Since 2 and & are non-singular, another point r'* correspond-
ing to r* is not contained in 2*U %*. On the other hand, r'*&%*U %*,
since # and # are the unions of bands of fusions and fissions, respectively.
This is a contradiction. Therefore, E does not have clasp singularities, com-
pleting the proof. O

Fig. 15

6.4. LeMMA. Let o be a double line on E. The b-line in the preimage of
o is contained in either @% U @* or #*, and the i-line is contained in 2*
B* U F*, provided that the b-line and the i-line are suitably specified in the case
of a loop singularity of Fig. 2(a) or a branch singularity with two branch points
as in Fig. 2(e).

Proor. We say that a loop o* in the preimage of a loop singularity « is a
b-line, if a* is contained in Int(Z*). Since 2 N £=0, * contains no i-lines of
the ribbon singularity and the branch singularity with a single branch point
(Cf. Fig. 2(d)). Supposg that a double line a intersects with Int (2), but is not a
loop singularity. Then, the closure of each line f*<%* in the preimage of
« N 9 intersects with 82*, 1f (64*) n(62*)# @, it can be shown that each point
of (9f*) n (82¥) is a branch point by the similar way to the proof of Lemma 6.3.
So, f* cannot be extended into the interior of 2*. If 9f*¥<02*, then a is a
branch line with two branch points, and we say that *(=o*) is a b-line. Assume
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that B*n(0%2*—02%*) #@, and we choose a point p* in f* 0 (82*—09%),
Since #* U $* is non-singular and % n 4 =0, another point p'* e f~1(p) is con-
tained in 9*, where p=f(p*). Hence the point p is contained in Zn 9.
Therefore, f* will be extended into &* toward 3.5* —02* by the property (2), see
Fig. 14.  So this extended line «* is a b-line on E* and does not intersect with 02*,
This implies that each b-line o* is contained in either * Y &* or @*. (A b-line
contained in £* is in the preimage of & N 2 with property (1), see Fig. 14.).
Since a double line that intersects with Int (2*) is a b-line, we also have that an
i-line is contained in @* |y G* U 2* This completes the proof. 0

6.5. THEOREM. E is a normal singular 2-disk without a clasp singularity
and a triple point of type 1.

PROOF. By Lemma 6.3, E does not have a clasp singularity. Since each of
2, 9, & and @ is non-singular and @ G— @, we have a point p*e $* in the
preimage of each triple point p. By Lemma 6.4, p* is of type (b, b). So, the
other two points in the preimage of p are those of types (b, i) and (i, i), and this
completes the proof. O

6.6. SUPPLEMENTS. The points of types (b, b), (b, 1) and (i, i) in the pre-
image of a triple point in E are contained in Z% %*U %* and 9%, respectively.

The following has been suggested by F. Hosokawa and T. Yanagawa to the
authors.

6.7. COROLLARY. A knot £=R3 is q slice knot if and only if # bounds a

normal singular 2-disk without a clasp singularity and aq triple point of type I
in R3,

PrROOF. By Theorem 6.5, a slice knot certainly bounds a desired normal
singular 2-disk. Conversely, we assume that a knot #<R? bounds a normal
singular 2-disk E without a clasp singularity and a triple point of type I, where E
is given by a map f: E*—E such that E* is a non-singular 2-disk. Remove from
E* a small open 2-disk neighborhood of each point of (b, b)-type. For b-lines of
the branch singularities, further remove small open 2-disks from E* as in F ig. 16
below.

Next for a simple loop singularity, we remove from E* a small open 2-disk
neighborhood of an arbitrary point in the b-line. Then the resulting holey 2-disk
E’* gives a ribbon E’ =f(E'*). Since 0E' (=f(GE"*)) is the link £o0" for some
n, from Proposition 6.2 we conclude that ¢ is a slice knot. This completes the
proof. 0
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A\ b-1line :

E* E* = A

A branch singularity with a single branch point

— | O 0

o

E* E'*-Al-A

2

A branch singularity with two branch points
Fig. 16

6.8. REMARK. The question “Is every slice knot a ribbon knot?" asks
whether one can always eliminate the triple point of type II in E without changing
the knot type of the boundary 6E. For example, assume that a slice knot # < R?
bounds a much simplified singular 2-disk E with preimage E* as shown in Fig, 17,
E contains a single triple point of type II. This triple point can be in fact elimi-
nated. Take a simple arc w* in E* such that w* connects a point of JE* and the
point p* of type (b, b) as shown in Fig, 17. Remove from E* a neighborhood of

Fig. 17

w¥. The resulting 2-disk E'* determines a ribbon E’. Since JE’ is obviously
isotopic to the knot #, it follows that £ is a ribbon knot. O



66 Akio Kawaucy, Tetsuo Suipuya and Shin’ichi Suzuks

6.9. DrriNITION, An oriented link £ < R3[0] with # components is said to
slice link in the weak sense, iff ¢ bounds a locally fiat oriented, proper,

sense. By paralle] arguments of Theorem 6.5 and Corollary 6.7, we may also
have the following::

6.10. COROLLARY, (1) A4 link ¢=R3 is a slice link in the weak sense if
and only if ¢ bounds in R3 4 normal singulqr holey 2-disk without a clasp
singularity and g triple point of type 1.

(2) A link ¢<=R3 with u components is 4 slice link in the strong sense if
and only if ¢ bounds in R3 4 normal singular 2-disk With component number
& and without g clasp singularity and g triple point of typel. [

REMARK.  We refer the reader to Casson-Gordon [3], [4] and Fox [9] for
our problem *“Ig every slice knot a ribbon knot?’,
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