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Abstract

We consider a condition on a pair of the Alexander polynomials of knots which are realizable by a
pair of knots with Gordian distance one. We show that there are infinitely many mutually disjoint
infinite subsets in the set of the Alexander polynomials of knots such that every pair of distinct
elements in each subset is not realizable by any pair of knots with Gordian distance one. As one of
the subsets, we have an infinite set containing the Alexander polynomials of the trefoil knot and the
figure eight knot. We also show that every pair of distinct Alexander polynomials such that one is
the Alexander polynomial of a slice knot is realizable by a pair of knots of Gordian distance one, so
that every pair of distinct elements in the infinite subset consisting of the Alexander polynomials of
slice knots is realizable by a pair of knots with Gordian distance one. These results solve problems
given by Y. Nakanishi and by I. Jong.
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1. Introduction

The Gordian distance dg(J, K) from a knot J to a knot K is the least number
of cross-changes needed to obtain K from J. Then dg(J, K) = dg(K,J) and the
Gordian distance u(K) = dg(O, K) for the trivial knot O is the unknotting number
of K. Let A = Z[t,t7!] be the one-variable integral Laurent polynomial ring. For
an element a € A, an element a € A is defined by the identity a(t) = a(t™!). By an
Alezander polynomial, we mean an element a € A such that a« = @ and a(1) = 1. The



Laurent polynomial degree of an Alexander polynomial is simply called the degree.
Our problem in this paper is to know when a pair of Alexander polynomials a, b are
realizable by a pair of knots J, K with dg(J, K) = 1. Let (a1, as, ..., a,) be the A-ideal
generated by the elements a; (¢ = 1,2,...,r). Elementsa; € A(i =1,2,...,7) (r > 1)
are said to be strongly coprime if the A-ideal (ay, as, . . ., a,) coincides with A itself, and
coprime if there are only unit common divisors of the elements a; (i = 1,2,...,7).
Strongly coprime elements in A are coprime. The determinant ring of a pair of
elements a,b € A is the quotient ring D(a,b) = A/(a,b), which is a finite A-module
if @ and b are coprime (see 2.1 later). For a finite A-module D, let hom(D, Q/Z)
be the A-module consisting of all abelian homomorphisms f : D — @/Z with the
t-action defined by the identity (¢- f)(x) = f(tx) for f: D — Q/Z and x € D. For a
finitely generated A-module H, we denote by H the same A-module as H but with
the t-action by the identity ¢ - = t~'a for every x € H. The dual A-module D¥
of a finite A-module D is the same A-module as hom(D, Q/Z) but with the t-action
by the identity (¢ - f)(z) = f(t7'x) for f: D — Q/Z and x € D. Namely, we have
D# =hom(D, Q/Z)°. We shall show the following theorem:

Theorem 1.1. Let a, a’ be a pair of coprime Alexander polynomials which is
realizable by a pair of knots K, K’ with dg(K, K’) = 1. Then there is a A-submodule
R of the determinant ring D(a,a’) admitting a short exact sequence

0 — R — D(a,d’) = R* = 0.

We shall give this finite A-module R a meaning, called “the residue module of the
twist family”in §2, on the cross-change of a pair of knots of Gordian distance one
with the Alexander polynomials a,a’. The proof of Theorem 1.1 is done with this
meaning of R in §3 by using the three dualities on an infinite cyclic covering in [4]. An
application of Theorem 1.1 is done for the Alexander polynomials of degree 2 in §4,
where we find infinitely many mutually disjoint infinite sets of Alexander polynomials
such that every pair of distinct elements in each set is not realizable by any pair of
knots with Gordian distance one, solving problems given by I. Jong [1, 2, 3]. In
particular, we show that as such a member, there is an infinite set containing the
Alexander polynomials Ay = —1+ (t+t') and A_; = 3— (t+¢!) of the trefoil knot
31 and the figure eight knot 4, are not realizable by any pair of knots with Gordian
distance one, solving an earlier problem given by Y. Nakanishi in [11]. This problem
was originally caused from H. Murakami’s result in [9] that any knot with Alexander
polynomial A ; = 3 — (¢ +¢t7!) cannot be transformed into 3; by one cross-change
and then from Nakanishi’s result in [11] that any knot with Alexander polynomial
A; = —1+ (t +t7') cannot be transformed into 4; by one cross-change. We also
observe how Theorem 1.1 relates to Nakanishi’s work in [12, 13], from which we can
derive the following theorem:

Theorem 1.2. If a and &’ are the Alexander polynomials of knots K and K’,
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respectively, such that dg(O, K) = dg(K, K') = 1, then there is an element ¢ € A
such that @’ = +c¢¢ (mod a). Conversely, for any distinct Alexander polynomials
a,a’ such that o' = +c¢ (mod a) for an element ¢ € A, there are knots K, K’ with
dg(O,K) = dg(K, K') = 1 such that a and a' are the Alexander polynomials of K
and K', respectively.

In Theorem 1.2, we assume that a and a’ are coprime. Then the determinant ring
D(a,d’) is finite and equal to A/(a, c¢), which induces a short exact sequence

0 — D(a,c) — D(a,b) — D(a,¢) — 0

and D(a,c)” = D(a,¢). Thus, Theorem 1.1 is a generalization of this property
to every pair of coprime Alexander polynomials which are realizable by a pair of
knots with Gordian distance one. In [13], Nakanishi has characterized the Alexander
polynomials of the knots obtained from the trefoil knot and the figure eight knot by
one cross-change in terms of special values of the Alexander polynomials. In §5, we
explain how Theorem 1.2 is derived from [12, 13]. As a corollary to Theorem 1.2, we
shall also show in §5 that every pair of distinct Alexander polynomials ag, a such that
ag is of slice type, i.e., ag = cc for some ¢ € A is realizable by a pair of knots K, K with
dg(Ky, K) = 1. This answers positively Nakanishi’s recent question asking whether
there is an Alexander polynomial a’ # 1 such that every pair of distinct Alexander
polynomials @, a is realizable by a pair of knots K, K with dg(K', K) = 1. In [17],
Y. Uchida and M. Hirasawa constructed a set of n 4+ 1 knots K; (i = 0,1,2,...,n)
for every n > 2 such that every pair of distinct elements in the set has the Gordian
distance one. By taking the set of Alexander polynomials of slice type, we also
answers positively a relating Jong’s question asking whether there is an infinite set of
Alexander polynomials such that every pair of distinct elements in the set is realizable
by a pair of knots with Gordian distance one. In §6, we investigate the effect by one
cross-change in the classes of the 2-bridge knots of genus 2 and the 3-strand pretzel
knots of genus 2, realizing all the Alexander polynomials of degree 2. We show in
Example 6.2 that the set of Alexander polynomials with degree 2 of slice type is
directly shown to be an infinite set of Alexander polynomials such that every pair of
distinct elements in the set is realizable by a pair of knots with Gordian distance one.
In §7, Appendix A on the Mayer-Vietoris exact sequence for a certain triplet is given,
which we use for the proof of Theorem 1.1.

2. Some concepts on the knot module

For a finitely generated A-module H, let TH be the A-torsion part of H, and BH =
H/TH the A-torsion-free part of H. Let

DH = {z € H| Jcoprime ay,as,...,a, € A(r > 1) with a;z = 0(Vi)},

3



which is known to be the unique maximal finite A-submodule of H. Let TpH =
TH/DH. These concepts are indispensable in computing the extension A-modules
E'H = Ext{(H;A) (¢ > 0) needed to prove Theorem 1.1. Some properties on the
extension A-modules are stated as follows (cf. [4, §3], [8]):

2.1 Properties on the extension A-modules. We have the following properties
(1)-(5) of the type gth extension A-module E°H = Ext{(H; A) of a finitely generated
A-module H.

(1) There is a natural A-isomorphism E°H = homy(H, A) = homy(BH, A) which is
necessarily a free A-module.

(2) There is a natural exact sequence
homy (H, Q(A)) — homy(H,Q(A)/A) — E*H — 0

for the quotient field Q(A) of A, and the short exact sequence 0 - TH — H —
BH — 0 induces a natural short exact sequence [

0— E'BH — E'H — E'TH — 0.

In this short exact sequence, we have E'BH = DE'H and a natural A-isomorphism
E'E'H = TpH. Further, E'BH = 0 if and only if BH is a free A-module.

(3) There are natural A-isomorphisms

E*H = E*DH =~ hom(DH,Q/Z) and E?E’H = DH.

(4) There is a natural short exact sequence

0 — BH — E°E'BH — E’E'BH — 0.

(5) B9H =0 (¢ = 3).

For example, we have E'(A/(a)) = A/(a) and E?(A/(a)) = 0 (¢ # 1) for a non-
zero element a € A. In particular, for the ring A, = Z,[t,t7'] = A/(n) with n a
non-zero integer, we have E'A, = A,, and EA, = 0 for every q # 1. If a,b € A are
coprime, then we have E?>D(a,b) = D(a,b) and E?D(a,b) = 0 for g # 2. For a finitely
generated A-module H, we denote by H° the same A-module as H but with the action
of t by the identity ¢t-x = t~'x for every x € H. Let E = E(K) be the compact exterior
of a knot K in the 3-sphere S3. Let £ — E be the infinite cyclic connected covering

associated with H;(F) & Z.! The A-module M(K) = H,(FE) is called the module of

!'Throughout this paper, homologies will mean homologies with integer coefficients unless other-
wise stated.



the knot K. Let X = X(K) be the 0-surgery of S3 along K. Taking the infinite cyclic
connected covering X — X associated with H;(X) = H,(E) = Z, we have a natural
isomorphism H;(E) = H;(X), and thus the A-module H;(X) is also regarded as the
module M (K). We also consider the Ag-module M(K;Q) = M(K) ® @ of a knot
K for Ag = Q[t,t7]. A Ag-cyclic knot is a knot K whose Ag-module M(K;Q) is
a Ag-cyclic module Ag/(a) where we can take as a the Alexander polynomial of the
knot K in A. A A-cyclic knot is a knot K whose A-module M (K) is a A-cyclic module
A/(a). A cross-change loop of a knot K in the 3-sphere S® is a loop v C E which is
the boundary of a disk A in S® meeting K transversely in two interior points with
intersection number Int(A, K) = 0. The twist family of a knot K along a cross-change
loop 7 is the family F(K; ) of the knot K™ obtained from K by the n-full twist along
~ for any n € Z, where we take K = K. We can regard the loop 7 as a cross-change
loop of every knot K™ € F(K;+). Then we see that dg(K", K"™) < 1 for every n and
every pair of knots with Gordian distance one occurs as a pair of consecutive knots
K", K"t € F(K;~) for a knot K and a cross-change loop 7. Let 4 be the preimage
of a cross-change loop v of a knot K under the covering £ — E. The cross-change
module of a knot K on a cross-change loop 7 is a A-submodule M(vy; K) C M(K)
which is the image of the natural homomorphism H,(3) — H;(E) = M(K). The
quotient module R = R(K;v) = M(K)/M(vy; K) is called the residue module of a

knot K on a cross-change loop v. We have a short exact sequence
0— M(y;K) - M(K)—- R—0

determined uniquely by the cross-change loop v of the knot K which we call the
cross-change short exact sequence. We note that the cross-change module M (v; K) is
A-cyclic, i.e.,
M(y; K) = A/(c)

for an element ¢ € A with ¢(1) = £1. In fact, the kernel of the natural homomorphism
Hi(7) = M(K) must be a free A-module of rank one because H;(5) = A and every
A-submodule of M(K) is a torsion A-module of projective dimension < 1. Hence
M(v;K) = A/(c) for an element ¢ € A. Since t — 1 induces an automorphism of
every quotient A-module of M(K), we see that ¢ — 1 is an automorphism of every
A-submodule of M (K') and hence , in particular, of M (y; K) = A/(c). Thus, we have
c(1) = £1.

The following lemma shows that the residue module R(K;7) is independent of a
choice of a knot K™ € F(K;~).

Lemma 2.2. The residue module R(K;~y) is A-isomorphic to the residue module
R(K™;~) of every knot K" € F(K;~).

Proof. Since Hy(5) = A, we have

Hl(E7:Y) = THl(Ea;;/) @A
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by the homology exact sequence of the pair (E(K),%) and hence the residue module
R(K;~) is A-isomorphic to T H,(E, 7). Using that there is an excision A-isomorphism

H{(E(K™),75) =2 H(E(K),7), we see that the residue module R(K™;v) coincides
with the residue module R(K;+). This completes the proof.

By Lemma 2.2, we may call R = R(K;v) = R(K";~) the residue module of the twist
family F(K;~v). For the Alexander polynomial a of a knot K, we denote by a" the
Alexander polynomial of the knot K™ € F(K;~y). We state the finite condition of the
residue module R of the twist family F(K;~) in terms of the cross-change module
and the residue module as follows:

Lemma 2.3. The following conditions (1)-(3) on the twist family F(K;~y) are
mutually equivalent:

(1) The residue module R of the twist family F(K;v) is a finite A-module.

(2) The cross-change module M (v; K™) of every knot K™ € F(K;~) is A-isomorphic
to the A-cyclic module A/(a™).

(3) The cross-change module M (; K™) of a knot K" € F(K;~) is A-isomorphic to
the A-cyclic module A/(a™).

Proof. To see that (1) = (2), assume that the residue module R of every knot K™ €
F(K; ) is finite. Since the cross-change module M (; K™) is a A-cyclic module A/(c)
for an element ¢ € A with ¢(1) = £1 and induces a Ag-isomorphism M (y; K™) ® () =
M(K™; Q), we have ¢ = ra™ for a rational number r and the Alexander polynomial a"
of K™. Using that a"(1) = 1, we see that r = £1 and M (vy; K™) = A/(a"™), showing
(2). There is nothing to prove that (2) = (3). We show that (3) = (1). Since the
natural Ag-homomorphism M (v; K™) ® @) — M (K™; Q) is a monomorphism and

dimg M(v; K") ® Q = dimg M (K"; Q) = the degree of a",

we have a natural A-isomorphism M (vy; K™) ® Q = M(K™; Q) and hence we see
from the cross-change short exact sequence that R ® = 0, so that R is a Z-
torsion A-module. Using that R is finitely generated over A and admits ¢ — 1 as an
automorphism, we can see that R is finite (cf. see, for example, [4, §3]), implying
that (3) = (1). This completes the proof.

3. Proof of Theorem 1.1

We first investigate the Alexander polynomials a’, a' of the knots K, K in the twist
family F(K;v). Let X° = x(K°,0) and X! = x(K*',0) be the 0-surgery manifolds
of KY and K, respectively. We obtain the pair (S%, K') from the pair (S, K°) by
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a +1-surgery of S® along the cross-change loop . This enables us to construct a
compact oriented 4-manifold Y with 9Y = (—X°) U X! obtained from X° x [—1,1]
by attaching a 2-handle h2 = D2 x D2 so that h? = 9(D?) x D? is identified with a
tubular neighborhood N(7) x 1 of v x 1 in X° x 1 by the specified framing +1. Then
we have natural isomorphisms on infinite cyclic groups:

Hi(X°) = H(Y) +— Hy(XY).

Let (17; X0 X 1) be the infinite cyclic connected covering of the cobordism (Y; X%, X'1).
The following computations are used to prove Theorem 1.1.

Lemma 3.1. (1) If a°, a' are coprime, then the residue module R of the twist family
F(K;7) is a finite A-module.

(2) We have Hy(Y) =A@ A/(t — 1), Hy(Y, X?) = A and Hy(Y,X?) =0 for e = 0,1
and k # 2.

(3) The residue module R of the twist family F(K;~y) is A-isomorphic to Hy(Y).

(4) If H(Y) is a finite A-module, then the cokernel of the natural A-homomorphism
i& 1 Hy(Y) — Ho(Y, X®) is A-isomorphic to A/(a%) for every e =0, 1.

(5) We have H3(Y,0Y) =2 A/(t — 1). If Hy(Y) is a finite A-module, then Hy(Y,dY)
is a A-torsion-free module and there is a A-isomorphism E'Hy(Y,9Y) = H,(Y)F.

Proof. Since a* M (K¢) = 0 for every ¢ = 0, 1, we see that a*R = 0 for every ¢ = 0, 1.
If R is generated by s elements over A, we have a A-epimorphism from the s-fold direct
sum D(a’; a')® of D(a’;a') onto R. If a®,a' are coprime, then the determinant ring
D(a®, a') is finite and hence R is finite, showing (1). By the exact sequence of the
pair (Y, XY), we have an exact sequence

Hy (V) = Hy(V, X°) & H (X°) = H (V) = Hi(Y,X°).

Since H,(Y,X°) = Hy(h? h?) for the lift (A% h%) of (h? 7h?) to Y by an excision
isomorphism, we see that Hy(Y,X%) = 0 for k # 2 and Hy(Y,X°) = A with a
generator represented by a lifting of a handle core D? x 0 of h?. By considering
the dual cobordism (—Y; X', X"), we see also that H(Y,X') = 0 for k # 2 and
H,(Y, X") = A. Next, we apply the duality theorem in [4] for the triplet (Y; X X)
to see that Ho(Y') = A@A/(t—1). Since the natural homomorphism H;(X") — H;(Y)
is onto, we have

TpHL(Y,0Y) = H\(Y,0Y) = Hy(dY) = A/(t — 1).

Hence, by the first duality, TpHy(Y) = E'TpH,(Y,0Y)# =2 A/(t — 1). Using that
BH,(Y,0Y) =0 and DHy(Y,0Y) =0, we have DH5(Y) = 0 by the second duality,
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showing that T Hy(Y) :~TDH2(}~/) = A/(t —1). Since D~H1(§~/,(?l~/) = 0, the second
duality implies E'BH,(Y') = 0. This means that BH(Y) is A-free. Using that the
natural homomorphism ® : Hy(Y') — Hy(Y, X%) = A is injective whose cokernel is a

torsion A-module, we see that BH,(Y) = A, so that Hy(Y) =2 A® A/(t — 1), showing
(2). The exact sequence of the pair (Y, X°) now induces an exact sequence

Hy (Y, X% % H(X°) - H,(Y) — 0.

Here Hy(X°) = M(K®) and the image of the boundary map d : Ho(Y, X°) — H,(X°)
is equal to the cross-change module M (v; K°), we see that the residue module R of
K° on v and hence of the twist family F(K;~) by Lemma 2.1 is A-isomorphic to
H,(Y), showing (3). The exact sequence of the pair (Y, X") implies the following
exact sequence:

ASAS H{(X%) — H{(Y) — 0,

which induces a short exact sequence 0 — A/(c) — Hy(X°) — H,(Y) — 0, where
¢ =142(1). By (3), we have M(v; K°) = A/(c) and R = H,(Y). If R is finite, then we
see from Lemma 2.3 that ¢ = +a°, showing (4). By the zeroth duality, BH;(Y) = 0
implies BH3(Y,dY) = 0. By the first duality, TpH3(Y,0Y) = E'Ho(Y)? = A/(t —
1). Since BHy(Y) = DH_,(Y') = 0, we have DH3(Y,0Y") = 0 by the second duality,
implying that Hs(Y,0Y) = A/(t — 1). We note that TpHy(Y,0Y) = E'TpHy(Y)
by the first duality. Assume that H(Y’) is a finite A-module. Then we see that
TpH(Y) = 0, so that TpH,(Y,0Y) = 0. Since BH,(Y) = DHy(Y) = 0, we have
DH,(Y,0Y) = 0 by the second duality. This shows that H,(Y,9Y) is A-torsion-free.
Then, by the second duality, we have H;(Y)? = E'H,(Y,9Y), showing (5). This
completes the proof of Lemma 3.1.

The following lemma means that the coprimeness of the Alexander polynomials a”, a™
(n # m) is equivalent to the finiteness of the residue module R.

Lemma 3.2. The following conditions (1)-(3) on the twist family F(K;~) are
mutually equivalent:

(1) The residue module R of the twist family F(K;~) is a finite A-module.

(2) The Alexander polynomials a™, a" of any pair K™ K™ € F(K;~) with m # n
are coprime.

(3) The Alexander polynomials a™, a" of a pair K™ K™ € F(K;~) with m # n are
coprime.

Proof. To show that (1)= (2), we first show that a",a' is coprime. Assume that

the residue module R is finite, meaning that H;(Y") is finite by Lemma 3.1(3). We
consider the following Mayer-Vietoris exact sequence for the triplet (Y; X°, X') which
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is explained as a general setting in Appendix A of this paper.
~ ~ ~ 941 ~ ~ ~ ~
Hy(Y,0Y) — Hy(Y) — Hao(Y,X") @ Hao(Y, X7)
L Hy(Y,0Y) = Hi(Y) — Hy(YV, X% & Hy(V,X") =0.
Let J be the image of j,. Using that Hs(Y,0Y) = A/(t — 1) by Lemma 3.1 (5), we
have the following two short exact sequences (MV1) and (MV2):
~ 40_;1 ~ ~ ~ ~
(MV1) 0— BHy(Y) == Ho(Y, X% ® Ho(Y, X') — J — 0.
(MV2)  0—J = Hy(Y,0Y) — Hy(Y) — 0.
The short exact sequence (MV1) induces an exact sequence
0 017 (v WO 07 (v 1y B0 po Y 1
0— E"J — E'Hy(Y,X")® E"Hy (Y, X") E°BHy(Y) — E*J — 0,

where the map (i°)’ — (1)’ denotes the induced map of 70 —i!. The image of this map

(%) — (i)’ is just the A-ideal (a°,a') in E°BH,(Y) = E°A = A and we have
B2 A, d),

which is finite by 2.1(2) because J is A-torsion-free by Lemma 3.1(5). This means
that a®, a' must be coprime. To see that a™,a™ are coprime for m # n, we compute
the Conway polynomial V(K™;z) of K™ for all n (cf. [6]). By Conway’s identity, we
have the identity

V(K™ 2) = V(K" 2) +nzV(L; 2)

for the Conway polynomial V(L; z) of the 2-component link L from K' by splicing
the crossing point of K! caused by twisting K° along . Note that

a" = V(K";t_% - t%).

Let b= (t72 —t2)V(L;t"2 —t2) € A. Using that a°, a! are coprime, we can see that
a® is coprime to b, so that a™ = a® +mb, a™ = a® + nb (m # n) are coprime, showing
that (1) = (2). There is nothing to prove that (2) = (3). The assertion that (3) =
(1) follows from Lemma 3.1 (1) by considering a® and a'. This completes the proof
of Lemma 3.2.

The following corollary is direct from the calculation of a® — a® done in the proof of
Lemma 3.2.

Corollary 3.3. The determinant ring D(a", a"™!) for the Alexander polynomials a™
of the knots K™ € F(K;+) is independent of a choice of the integer n.
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We are ready to prove Theorem 1.1.

3.4 Proof of Theorem 1.1. We take K’ = K, K!' = K’ for a cross-change loop
7. Then we take a’ = a, and a' = a’. Since a,a’ are coprime, the residue module R

of the twist family F(K;~) is finite and R = H,(Y') by Lemma 3.1. Then we have

E'H,(Y) =0 by 2.1 (2). The short exact sequence (MV2) in the proof of Lemma 3.2
induces a short exact sequence

0— E'Hy(Y,0Y) — E'J — E*H (Y) — 0.

We have already shown that E'J = A/(a",a') = D(a’,a') in the proof of Lemma 3.2.
By 2.1(3), we have 3
E?H,(Y) = hom(R,Q/Z).

By Lemma 3.1 (5), we have E'H,(Y,dY) = R, Thus, we have an exact sequence
0 — R — D(a° a") — hom(R,Q/Z) — 0.
Since D(a’, a')? = D(a°, a'), this exact sequence is changed into an exact sequence
0 — R — D(a’ a') = R* = 0.
This completes the proof of Theorem 1.1.

If K is A-cyclic, then Theorem 1.1 may be stated as follows:

Corollary 3.5. Let a, @’ be a pair of coprime Alexander polynomials which is
realizable by a pair of knots K, K’ with dg(K, K') = 1. If K is A-cyclic, then there is
an element ¢ € A with ¢(1) any previously given integer such that D(a,a’) = D(a, cc).

Proof. Since a, a’ are coprime and K is A-cyclic, we see from Lemmas 2.3, 3.2 that
the cross-change short exact sequence is given by

0—=A/(a) = A/(a) > R—0

for the finite residue module R. Then we have R = D(a,c) for any element ¢ € A
representing the image of the class of 1 € A in A/(a) under the monomorphism e.
Then ¢ is coprime to a. For any integer m, we can replace ¢ by an element ¢ € A
with ¢/(1) = m, because the element ¢ = ¢ — (¢(1) — m)a € A has D(a,c’) = D(a,c)
and /(1) = m for a(1) = 1. The short exact sequence in Theorem 1.1 implies the
following short exact sequence (over A)

0 — D(a,¢) 2 D(a,d') -4 D(a,e) — 0.
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We show that the class [c¢] € D(a,a’) represented by the element c¢ € A is zero.
In fact, since g([¢]) = ¢g([1]) = 0 € D(a,¢), there is an element x € D(a,c) with
f(z) =1[¢] € D(a,d’). Thencx =0 € D(a,c) and [c¢] = cf(x) = f(cx) =0 € D(a,d),
as desired. Thus, there is a natural A-epimorphism D(a,c¢) — D(a,a’). Because we
have also a natural short exact sequence

0 — D(a,c) — D(a,cc) — D(a,¢) — 0,

the abelian group orders of D(a, c¢) and D(a, a’) are equal, so that D(a, c¢) = D(a,d’).
This completes the proof.

The following lemma explains when the coprime condition and the strongly coprime
condition break down.

Lemma 3.6. For the pair a,d’ of Alexander polynomials of a pair of knots K, K’
with dg(K, K') = 1, we have the following (1) and (2).

(1) If the knot K or K’ is not Ag-cyclic, then the Alexander polynomials a, a’ are not
coprime. If K is Ag-cyclic but K’ is not Ag-cyclic, then the Ag-module M (K'; Q) is
a direct sum of two Ag-cyclic modules.

(2) If the knot K or K’ is not A-cyclic, then the Alexander polynomials a,a’ are not
strongly coprime.

Proof. We take K = K°, K' = K’, " = a, and a' = o’. For (1), suppose that
a’ and a' are coprime. Then the residue module R is finite by Lemma 3.2. Since
M(v; K™) =2 A/(a™) and R®Q) = 0, we see from the cross-change short exact sequence
that M(K™; Q) = Ag(a™), contradicting that K° or K is not Ag-cyclic. Hence a°, a'
are not coprime. If K? is Ag-cyclic, then the Ag-module R ® @ is also Ag-cyclic by
the cross-change short exact sequence. Using that the cross-change-module is always
A-cyclic, we see from the cross-change short exact sequence that if the knot K* is not
Ag-cyclic, then the Ag-module M(K'; Q) is a direct sum of two Ag-cyclic modules
(since Ag is PID), showing (1). For (2), suppose that a” and a' are strongly coprime.
Then the determinant ring D(a’, a') = 0, so that R = 0 by Theorem 1.1. Hence we
have M(K™) = M(y; K™) = A/(a"), contradicting that K° or K! is not A-cyclic,
completing the proof of Lemma 3.6.

Every Alexander polynomial a is realized by an unknotting number one knot K (see
[7, 15] ). Since a is strongly coprime to 1 € A, we have M (K) = A/(a) by Lemma 3.6
taking b =1 (cf. [5, 10]).

4. The Alexander polynomial distance
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For the remainder of this paper, we often use the notation K, for a knot K with
Alezander polynomial a. The Alexander polynomial distance between Alexander poly-
nomials a, b is defined by the identity:
b) = min dg(K,, Kp).
pla,b) = min de(Kq, K)
Since there is an unknotting number one knot K, for any Alexander polynomial a, we

have p(a, 1) =< 1, so that the inequality p(a,b) < 2 holds for all Alexander polynomials
a, b, because we have

Thus, the following problem by Jong comes to mind (cf. [1, 2, 3]):

Jong’s Problem. Determine a pair of Alexander polynomials a, b such that p(a,b) =
2.

We solve this problem partially in this section. This problem was caused from a
study on an asymptotic behavior on the Alexander polynomials of alternating knots
(cf. [1, 2, 3]). To determine a pair with the Alexander polynomial distance 2, we split
the short exact sequence 0 — R — D — R* — 0 with D = D(a,b) in Theorem 1.1
into the short exact sequences

0—R,— D, — RFf -0

of the p-primary components R, and D, of R and D, respectively, for all primes p.
The following lemma is useful in applying Theorem 1.1.

Lemma 4.1. If the p-primary component D, is given in the form A/(p™,c) where
m is a positive integer and ¢ € A such that the p-reduction ¢, € A, of ¢ is a non-unit
irreducible element, then m is even and the element ¢, € A, is equal to ¢, up to units

of Ap.

Proof. Let p* be the highest order of the elements of R,. Since the A-module
R,; = {z € R,| p'x = 0} for every i (1 < i < k) is a non-trivial A-submodule of
p" A/ (p™, ) =2 A/ (p', ¢), we see that the Ay-module R, ;/R,; 1 (1 £ < k) is a non-
trivial A,-submodule of A,/(c,), where we take R, = 0. Since ¢, € A, is irreducible,
we see that R, ;/R,;_1 is A-isomorphic to A,/(c,) for every i (1 < i < k). Thus, the
abelian group order of R, is p™ where d denotes the Laurent polynomial degree(= 1)
of ¢, € A. Using that R, and Rf are isomorphic to each other as abelian groups, we
see that the group order of Rf is also equal to p%, so that the group order p™? of
D, is equal to p?*. Thus, we have m = 2k. Since D = D as A-modules, we have
D, =A/(p™,c) = DP = A/(p™, ¢) as A-modules, so that A, /(c,) = A, /(¢,), implying
that ¢, is equal to ¢, up to units of A,. This completes the proof of Lemma 4.1.

12



We observe that the p-primary determinant ring D, is calculable in principle as fol-
lows: Since a, b are coprime, there is a positive integer n such that aa’ + bb’ = n for
some a’, b’ € A. Taking the prime decomposition n = p*py*...p, we have

D = A/(”? a, b) = @leA/(p?iv a, b)
and hence D,, = A/(p;",a,b). We consider the Alexander polynomials
Ap=(1—=2n)+nt+t") (ne2).

To consider the Alexander polynomial distance d(A,,, A,,), let d(= 1) be the greatest
common divisor of m and n, and m = dm’, n = dn’. We have the identity

n'A, —mA, =n"—m’

showing that the elements A,,, A, € A are coprime when m # n. This coprimeness
is also confirmed by Lemma 3.2, because, for the Whitehead link L = O; U O,, the
polynomials A,(n € Z) are the Alexander polynomials of the knots in the twist
family of O; along the cross-change loop 7 = Oy whose residue module R is zero.
Let ' = |0/ —m/| and § = |n —m| = d¢’. Let §* = §'d’ for any factor d’ of d. Since
m = n + dd’, we have m = n (mod ¢*). Hence the determinant ring D(A,,, A,) is
given by
NS5, Ay A) = (57, Ay).

We note that there is a A-isomorphism
A/(6%,A,) — A0 Ay).

In particular, we have
A/(0,A,) 2 A/, Ay).

This is because there is an exact sequence
0— d'N/(6%, An) =5 AJ(6%, A,) = AJ(d, A,) — 0

and we have A/(0', A,)) = d'A/(6*, A,) and A/(d', A,,) = 0. The following corollary is
a result from Theorem 1.1 and Lemma 4.1 and solves in part Jong’s problem.

Corollary 4.2. Let p be any prime number, and n, ¢ integers coprime to p. If p

is odd prime, then assume that p is coprime to 1 — 4n with the Legendre symbol
1—4n

= —1. By fixing p, n and ¢, let S(n + ¢p*) be the infinite set consisting

of the Alexander polynomials A, and A, g+ for all s =0,1,2,.... Then we have
(A, Apr) = 2 for any distinet elements A,/, A, € S(n + €p*).

13



Proof. First, consider the case that n' = n and n” = n + {p?**!. The p-primary
determinant ring D, = D(A,,, A, 1g2s+1), 1s given by A/(p**!, A,), for £ is coprime to
p. When p = 2 and n is odd, the Z-polynomial A, =1+t +t"! € A, is irreducible.
By Theorem 1.1 and Lemma 4.1, we have p(A,, A, p2s+1) = 2. When p is an odd
prime number coprime to n, then the elements 2,¢ 'n,n € A, are units and we have

A, o — 1 on — 1
- = -2

1—4n
t—1n n 2n '

4n?

)2

The Alexander polynomial A,, is irreducible in A, if and only if the integer 1 —4n is a
1—4n

quadratic non-residue modulo p, that is, 1 — 4n is coprime to p and =—1.

In this case, we have p(A,, Apipes+1) = 2 by Theorem 1.1 and Lemma 3.1. Next,
consider the case that n’ = n + €p***t' and n” = n + p**! for ' > 5. Then we note
that n” = n' + ¢'p>*! with ¢’ = £(p**'~*) — 1) coprime to p. Further, n’ is coprime to

1—4n’
p, and if p is odd prime, then 1 — 4n’ is coprime to p and ( = —1. By the
p

first half argument, we have p(A,/, Ay 1pp2e1) = p(An, Apr) = 2. This completes the
proof.

For example, we obtain p(A;, A1) = 2 because A, A1 € S(1+ (—1)2*%), solving

1—4
Nakanishi’s problem. For p = 3,5,7, we see that ( L —1 if and only if

p
n = —1 (mod 3), n = 1,2 (mod 5), n = —1,43 (mod 7), respectively. For this
check, we use Euler’s criterion

(2) =n® mar

p

for an integer m coprime to an odd prime p.

5. Proof of Theorem 1.2 and its consequence
We prove Theorem 1.2 here by using Proposition 6 in Nakanishi’s paper [13].

5.1 Proof of Theorem 1.2. Let a be the Alexander polynomial of a knot K
with dg(O,K) = 1, and o the Alexander polynomial of a knot K’ a knot with
de(K,K') = 1. Nakanishi observed in [13, Proposition 6] that there are elements
b,c € A withb=b, b(1) = 1, and ¢(1) = 0 such that the matrix ( 55a ;b ) for some
g,e’ = £1 is an Alexander matrix of K’, whose determinant ec’ab — c¢ is equal to
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ee’a’. This means that @’ = £¢¢ (mod a) for an element ¢ € A. Conversely, assume
that a’ = +c¢ (mod a) for distinct Alexander polynomials a, a’ and an element ¢ € A.
Let ¢ =c—c¢(l)a€ A. Then @ =¢ —¢(1)a, (1) = ¢(1) — ¢(1)a(l) = 0 and

déd =cé— (c+e)c(l)a+c(1)*a® =cc=+d (mod a).

Thus, we have / = £d@ (mod a) and (1) = 0. By [7, 15], a is the Alexander
polynomial of a knot K with dg(O, K) = 1. Let ea’ = eab — /¢ for an element
b€ A and an € = +1. Then b is an Alexander polynomial, i.e., b(1) = 1 and b = b.

/
Nakanishi observed in [13, Proposition 6] that the matrix 6; “ ) is an Alexander

b
matrix of a knot K’ with dg(K, K’) = 1. Since the determinant of this matrix is
eab — @ = ead’, we see that o’ is the Alexander polynomial of the knot K’. This
completes the proof of Theorem 1.2.

The following corollary is obtained from Theorem 1.2, where the latter half also
answers Nakanishi’s question asking whether there is an Alexander polynomial o
except 1 such that p(a’,a) =1 for every Alexander polynomial a distinct from a’.

Corollary 5.2. If ag is of slice type, i.e., ag = cc for an element ¢ € A, then we have
plag,a) =1 for every Alexander polynomial a distinct from ay.

It is pointed out by Y. Nakanishi [14] that the knot K = 8¢ is a slice knot, but
do(K,K4,) = 2 for any knot K4, with Alexander polynomial A; = —1 + (¢t +¢71).
By Corollary 5.2, we have p(a,b) = 1 for any distinct elements a, b in the set of the
Alexander polynomials of slice type (which is an infinite set), answering a question
by Jong asking whether there is an infinite set of Alexander polynomials such that
we have p(a,b) = 1 for any distinct elements a,b in the set. We reconfirm this
result directly for the set of the Alexander polynomials with degree 2 of slice type in
Example 6.2.

6. Some examples on the Alexander polynomials of degree two

In the following example, we consider the Alexander polynomials of 2-bridge knots of
genus one.

Example 6.1. Let K(k,/) be the 2-bridge knot given by the Conway notation
C(2k,20) (see Fig. 1), whose Alexander polynomial is A_j, = (1 + 2k() — kl(t +t71).
Since the polynomial A, is realized by the knot K (1, —n) which is made a trivial knot
by one cross-change, we have p(A,, Ag) = 1 for all non-zero integers n. We note that
the knot K (k, ) is a trivial knot if k¢ = 0, the figure eight knot 4, if k¢ = 1 and the
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Figure 1: Two-bridge knots of genus one

(positive or negative) trefoil knot 3, if k¢ = —1. Since the knot K'(k,¢—1) is obtained
from the knot K (k, £) by one cross-change, we have the Alexander polynomial distance

P(A_k@—1), Aie) = 1

for all integers k, £ with k # 0. By ¢’ = 1, the elements A_j_1y, A_j; € A are strongly
coprime and the determinant ring D(A_k(g_l), A_ge) = 0. By Lemma 3.6, any knots
Ka_yy . and Ka_,, with dG(KA_W_l)a K4_,,) =1 are A-cyclic.

In the following example, we consider the Alexander polynomials of 3-strand pretzel
knots of genus one.

Example 6.2. We consider the pretzel knot K (k, ¢, m) of the three 2-string braids
of 2k + 1,20+ 1,2m + 1-half-twists (see Fig. 2)?, whose Alexander polynomial is given
by

Apom) = (1= 2[k, 6,;m]) + [k, €, m](t + ")

77/, ST
//// //////// ///
D S S

Figure 2: Pretzel knots of genus one

2A canonical Seifert surface of genus one is illustrated by a shadow in the figure.
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with [k, ¢,m] = (k+1)({ + 1)(m + 1) — kfm. Let m = —¢ 4+ i. Then we have

m' = [k{,—L+i]=k(i+1)—(+1)({—i—1) and
m" = [kt,—l+i—1]=ki—({+1)(—1).

Since K (k, ¢, m — 1) is obtained from the knot K(k, ¢, m) by one cross-change, we see
that p(A,, Ayr) = 1 or 0 according to whether ¢ > 0 or 6 = 0, where we note that
d=1|m"—m/| = [+ k+1]. Let § > 0. The determinant ring D = D(A,y, Ayr) is
given by

D=A/(0,An)=A/(d,c-¢) for c=kt—k—1,

because
A=k 4+ (k+12—k(k+1)(t+t")=—cc (mod ).

This determinant ring D admits a short exact sequence
0—+R—D-—>R* -0

with a finite A-module R = A/(d,c¢). We can check that R is in fact a common
residue module of the knots K (k,¢,m — 1) and K(k,¢,m) (which are Ag-cyclic by
Lemma 3.6) as follows. The following matrix V' is a Seifert matrix V' associated with
the canonical Seifert surface F' of genus one in Fig. 2.

v (ks
o —4—-1 {4+m+1 )

The matrix tV? — V is a matrix of a A-homomorphism
tif — i H(F)®@ A — Hi(SP\F)® A

with respect to A-bases given by a Z-basis e, ey for Hi(F') and a Z-basis €}, €}
for H;(S®*\F) with the linking number Link(e}, e;) = §;; whose cokernel is the A-
module Hy(E) = M(K(k,¢,m)) of the knot K(k,¢,m) (see [6, p.69]). Since our
cross-change corresponds to a +1-twist along a loop 7 representing e}, the quotient
module of M (K (k,¢, m)) by the A-cyclic submodule generated by the image of € is
the A-module

R=AN((k+(+1)(t—-1),—-((+1)t+20).

Using that t—1 is an automorphism of this A-module R’, we see that 6 = |k+{+1| =0
in R'. Thus, R’ is A-isomorphic to the A-module

R=A/(6,—((+1)t+0)=AN/(0,kt —k—1)=A/(,c),

showing that R is the residue module of the Ag-cyclic knot K (k, ¢, m) on the cross-
change loop 7. By the same argument or by Lemma 2.2, the A-module R is the
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residue module of the Ag-cyclic knot K (k,¢,m — 1) on . Taking ¢ = 0, we have
m =k—(+1)(¢—1)and m"”" = —(¢+ 1)¢. This means that

P(An, Ayeyny) =1

for all integers ¢ and n with n # —{(¢ + 1) where we take k = n + (¢ — 1)(¢ + 1).
In particular, we have p(A,, A_3) = 1 for every integer n # —2. The set of the
Alexander polynomials A_y41) (¢ € Z) is easily seen to coincide with the set of
Alexander polynomials with degree 2 of slice type and gives a concrete infinite set
of Alexander polynomials such that any two distinct elements in the set have the
Alexander polynomial distance one. For some small values of m' and m”, we have
the following calculations:

(1) [=5,1,—3] =1, [=5,1,—4] =4, p(A, A) = L
(2)  [-8,2, 4] = —1, [-8,2,-5] =4, p(A_1, As) = 1.
(3) [-12,3,—5] = —4, [~12,3,—6] =4, p(A_y, As) = 1.
(4) [3,3,-3]= 5, [3,3,-2] =2, p(A_5,As) = L.

Using this result and Corollaries 4.3, 5.2 and Examples 6.1, 6.2, we can make table 1
of the Alexander polynomial distances between the Alexander polynomials A, with
|n| £ 5. Corollary 5.2 is sometimes useful to know the Alexander polynomial distance

one by applying it to the difference A,,—A,,. For example, we can see from this method
that p(A17 A*3) = IO(A717 A3) = 1.

Table 1
As 2 1 2 1 2 1 1 2 2 1 0
Ay 1 1 2 1 1 1 1 1 1 0 1
As 2 2 2 1 1 1 2 1 0 1 2
Ay 1 2 2 1 2 1 1 0 1 1 2
Ay 2 2 1 1 2 1 0 1 2 1 1
Ay 1 1 1 1 1 0 1 1 1 1 1
A4 1 2 2 1 0 1 2 2 1 1 2
A_o 1 1 1 0 1 1 1 1 1 1 1
A3 | 2 1 0 1 2 1 1 2 2 2 2
A4 1 0 1 1 2 1 2 2 2 1 1
As| 0 1 2 1 1 1 2 1 2 1 2

O |As Ay, As A, A4 Ay A Ay A3 Ay A

7. Appendix: The Mayer-Vietoris exact sequence for a certain triplet

18



Let (U;V? V1) be a triplet consisting of a (not necessarily compact) polyhedron U
and (not necessarily compact) subpolyhedra V¢ (¢ = 0,1) of U such that VNV = .
For e = 0,1, let V=xv°® be the cone over V© with v° as the vertex, and U* = UUV*®xv°®.
We consider that U° N U! = U. Then we have the following Mayer-Vietoris exact
sequence for the singular homology (cf. E. H. Spanier [16]):

B H O uUY S B(U) E HU0 e HUY) S 0o
We have the following natural isomorphisms by using excision isomorphisms in [16]:
H,(U®) = H (U, {v°}) =2 H,(U®, V% v°) = H,(U,V®) for ¢ >0, e =0,1 and
H,(UuUY =2 H (U UU' {0 0'}) 2 H (U UUL VO UV 50t
~ H,(U,VOuVh forq>1.
Further, we have a natural monomorphism
H(UuUY - H (U U (0% 0" = H (U, VOU V).
Thus, we have the following Mayer-Vietoris exact sequence:
O HL(U) B By (U, V) @ Ho(U, VY 25 Hoy(U, VO U VY
% H(U) 5 (U V) @ B U, VY B HL(U VO U VY.
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