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ABSTRACT

The first author defined a canonical well-order in the set of links. After
reviewing the definition, we explain how to enumerate the prime links by this
order. At the end of this paper, we show a table of the first 156 prime links
under this order.
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1. Introduction

We consider unoriented links, so that we say that two links L and L′ in S3 are
equivalent and we denote it by L = L′ if there is a homeomorphism h : (S3, L) →
(S3, L′). Although there are earlier studies on tabulation of knots and links, we
mention here only three recent methods of tabulation.

J. H. Conway’s method: J. H. Conway observed that every link is obtained from a
basic polyhedron, a planar graph with a certain property, by replacing the vertices
with algebraic tangles which are tangles constructed by a certain rule. By this idea,
he made a table containing prime links with up to 10 or more crossings (See [1]). This
method is suitable for understanding some global features of knots and links.

C. H. Dowker-M. B. Thistlethwaite’s method: C. H. Dowker and M. B. Thistlethwaite
assigned a sequence of integers to every knot diagram (See [3]). Although there are
lots of sequences of integers representing the same knot, they made a table of prime
knots with up to 13 or more crossings by combining this method with a computer use.
A similar method can be used for a tabulation of links with 2 or more components
(See [2]).



Y. Nakagawa’s method: R. W. Ghrist showed that every oriented link can be realized
as a periodic orbit on a template (See [4]). Using this result, Y. Nakagawa defines
an injection from the set of knots to a set of positive integers and made a table of
oriented knots from this viewpoint (See [7]). It is not clear to apply a similar method
to the set of links with 2 or more components.

Apart from these methods, a method of enumerating the set of links and the set of
closed connected orientable 3-manifolds was suggested in [5]. The idea is to introduce
a canonical well-order in the set of links which also induces a well-order in the set
of closed connected orientable 3-manifolds. In fact, in [5] by this method, the first
28 prime links and the first 26 closed connected orientable 3-manifolds are classified
without any computer aid. The purpose of this paper is to explain how to enumerate
the set of prime links by this method and to enlarge the table of the first 28 prime
links without any computer aid. In Section 2, we review the definition of the well-
order described in [5]. In Section 3, we explain how to enumerate the set of prime
links. At the end, we show a table of the first 156 prime links.

2．Defnition of a well-order in the set of links

Let Z be the set of integers, and Zn the product of n copies of Z. We put

X =

∞∐
n=1

Zn = {(x1, x2, . . . , xn) |xi ∈ Z, n = 1, 2, . . . }.

We call elements of X lattice points. For a lattice point x = (x1, x2, . . . , xn) ∈ X,
we put �(x) = n and call it the length of x. Let |x| and |x|N be the lattice points
determined from x by the following formulas:

|x| = (|x1|, |x2|, . . . , |xn|) and
|x|N = (|xj1|, |xj2|, . . . , |xjn|) where |xj1| � |xj2 | � · · · � |xjn| and {j1, j2, . . . , jn} =
{1, 2, . . . , n}.

We define a well-order in X as follows (See [5]):

Definition 2.1. We define a well-order in Z by 0 < 1 < −1 < 2 < −2 < 3 < −3 · · · ,
and for x, y ∈ X we define x < y if we have one of the following conditions (1)-(4):

(1) �(x) < �(y).
(2) �(x) = �(y) and |x|N < |y|N by the lexicographic order (on the natural number
order).
(3) |x|N = |y|N and |x| < |y| by the lexicographic order (on the natural number
order).
(4) |x| = |y| and x < y by the lexicographic order on the well-order of Z defined
above.

For x = (x1, x2, . . . , xn) ∈ X, we put

min|x| = min1�i�n|xi| and max|x| = max1�i�n|xi|.
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Let β(x) be the (max|x| + 1)-string braid determined from x by the identity

β(x) = σ
sign(x1)

|x1| σ
sign(x2)

|x2| · · · σsign(xn)

|xn| ,

where we define σ
sign(0)
|0| = 1. We note that max|x|+ 1 is the minimum string number

of the braid indicated by the right-hand side of the identity. Let clβ(x) be the closure
of the braid β(x). Let L be the set of the links. Then we have a map

clβ : X → L

sending x to clβ(x). By Alexander’s braiding theorem, the map clβ is surjective. For
L ∈ L, we define a map

σ : L → X

by σ(L) = min{x ∈ X | clβ(x) = L}. Then σ is a right inverse of the map clβ and
hence is injective. Now we have a well-order in L by the following definition:

Definition 2.2. For L,L′ ∈ L, we define L < L′ if σ(L) < σ(L′).

For a link L ∈ L, we call �(σ(L)) the length of L.

3. A method of a tabulation of prime links

Let Lp be the set of prime links. We use the injection σ for our method of a
tabulation of Lp. For k ∈ Z, let kn and −kn be the lattice points determined by

kn = (k, k, . . . , k︸ ︷︷ ︸
n

) and − kn = (−k)n,

respectively. Let ∆ be the subset of X consisting of 0, 1m where m � 2 and
(x1, x2, . . . , xn) where n � 2, x1 = 1, 1 � |xi| � n

2
, |xn| � 2 and {|x1|, |x2|, . . . , |xn|} =

{1, 2, . . . , max|x|}. Then we have

�{x ∈ ∆ | �(x) = n} < ∞
for every n � 1, where �A denotes the cardinality of a set A. By this finiteness and
the definition of the well-order in X, we have

�{y ∈ ∆|y < x} < ∞
for every x ∈ ∆. The following lemma is proved in [5]:

Lemma 3.1. σ(Lp) ⊂ ∆.

From this lemma, the following plan on a tabulation of prime links comes to mind:
First, we enumerate the lattice points of ∆ under our order. Second, we construct
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the sequence of the links obtained by replacing x with clβ(x). Finally, we obtain a
desired table of prime links from the sequence by removing the non-prime links and
the links which have already appeared. However, to carry out this plan without any
computer aid, we have a difficulty coming from the reason that ∆ has lots of extra
lattice points, that is, lattice points x such that the link clβ(x) is not prime or has
already appeared. To save our energy, it is reasonable to prepare a subset ∆∗ ⊂ ∆
containing the set σ(Lp) and to use ∆∗ instead of ∆. To obtain such a subset ∆∗, we
need some preliminaries. For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , ym) ∈ ∆, let xT ,
−x, (x, y) and δ(x) be the lattice points determined by the following formulas:

xT = (xn, . . . , x2, x1),

−x = (−x1,−x2, . . . ,−xn),

(x, y) = (x1, . . . , xn, y1, . . . , ym),

δ(x) = (x′
1, x

′
2, . . . , x

′
n),

where x′
i =

{
sign(xi)(max|x| + 1 − xi) (xi �= 0)

0 (xi = 0).

A point of our argument is to define some transformations on lattice points.

Definition 3.2. Let x, y ∈ X, k, l, m ∈ Z with m > 0 and ε = ±1. An elementary
transformation on lattice points is one of the following operations and their inverses.

(1) (x, k, l) → (x, l, k), where |k| > |l|+ 1 or |l| > |k| + 1.
(2) (x, εkm, k + 1, k) → (x, k + 1, k, ε(k + 1)m), where k(k + 1) �= 0.
(3) (x, k, ε(k + 1)m, −k) → (x, −(k + 1), εkm, k + 1), where k(k + 1) �= 0.
(4) (x, y) → (y, x)
(5) x → xT

(6) x → −x
(7) x → δ(x)
(8) (1m, x, ε, y) → (1m, y, ε, x), where min|x| � 2 and min|y| � 2.

Then we have the following two lemmas (See [5, 6] for the proofs).

Lemma 3.3. If x is transformed into y by an elementary transformation, then we
have �(x) = �(y) and clβ(x) = clβ(y) (modulo split unions of trivial links for (7)).

Lemma 3.4. Let x, y, z ∈ X, k ∈ Z, 0 < m ∈ Z. If x is transformed into
a smaller lattice point than x or one of the following lattice points by elementary
transformations, then we have x �∈ σ(Lp).

(1) (y, km), where y does not contain ±k.
(2) (y, k,−k).
(3) (y, z), where max|y| < min|z| or max|z| < min|y|.
Definition 3.5. We define the set ∆∗ obtained from ∆ by removing the lattice points
which satisfy the condition of Lemma 3.4.
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Using ∆∗ instead of ∆, we enumerate the lattice points x, y, z, . . . of ∆∗ under our
order and construct the sequence of the links clβ(x), clβ(y), clβ(z), . . . and remove
the non-prime links and the links which have already appeared from the sequence
and then we obtain a desired table of prime links. We could carry out this process
without any computer aid for the lattice points of length up to 9 and obtain the
table, showing at the end of this paper. This plan for the lattice points of length 10
is in preparation except the case of lattice points representing knots. In the following
three remarks, we observe some points of carrying out our tabulation.

Remark 3.6 (A note on making the list of ∆∗). Let ∆∗
n = {x ∈ ∆∗ | �(x) = n} for

every n > 0. By a step-by-step method, we can make the list of ∆∗
n as follows:

(1) From ∆, we determine the ordered set An = {|x|N : x ∈ ∆∗
n}.

(2) From An, we determine the ordered set Bn = {|x| : x ∈ ∆∗
n}.

(3) From Bn, we determine the ordered set ∆∗
n.

In each step, we use Lemma 3.4. Somtimes, a technical transformation is necessary.
Since we might not find it out, our list might have a few lattice points of ∆ \ ∆∗.
However, there is no problem on such a list except an economical problem, since our
list includes the set σ(Lp).

Remark 3.7 (A note on making the links of ∆∗). The link clβ(x) has a natural
orientation coming from the braid β(x). If x is transformed into y by an elementary
transformation, then we have clβ(x) = ±clβ(y) as oriented links (See [5] for the
proof). When one considers links with two or more components, it should be noticed
that in general there are two lattice points x, y ∈ X such that

clβ(x) = clβ(y) as unoriented links, and

clβ(x) �= ±clβ(y) as oriented links.

Thus, in the case of links with two or more components, we have more extra lattice
points in ∆∗. Removing this type of extra lattice points from ∆∗ remains as an open
question.

Remark 3.8 (A note on determining links). To make the table of prime links with
up to 9 lengths, we compute the Goeritz invariant and the absolute values of the
linking numbers on the link clβ(x) for every x ∈ ∆∗ with �(x) � 9. Then we look for
links with up to 9 crossings with the same data, for example from D. Rolfsen’s table.
We always find them because the link clβ(x) has at most 9 crossings. For those links
with the same data as clβ(x), we can determine which link is equivalent to clβ(x)
by calculating some other link invariants. Actually, Conway’s notations of links and
simple geometric arguments are often useful in saving time.

In the table shown at the end of this paper, we denote by µ, G, and |lk| the number
of the components of the link, the Goeritz invariant of the link and the absolute values
of the linking numbers of all pairs of the components of the link, respectively. The
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following remark implies that every prime link is canonically embedded in the set Q+

of positive rational numbers (See [6]).

Remark 3.9. For x = (x1, x2, . . . , xn) ∈ ∆, we define a map ζ : ∆ → Q+ by

ζ(x) = n +
x2

(n + 1)n−1
+ · · · + xn

n + 1
.

Then we have the following properties (1) and (2).

(1) ζ is injective.

(2) If ζ(x) is given, we can reconstruct x.

Combining this embedding ζ with the injection σ, we can reconstruct L ∈ Lp from
the rational number ζσ(L).

In the argument above, we discussed a tabulation of Lp. Since the subset σ(L) ⊂ X
is not in ∆, we need different treatments of Definition 3.2 and Lemma 3.4 to tabulate
the set L itself. This is possible by using the injection σ : L → X. By a further
modification of our argument, we can also see that every link is canonically embedded
in Q+.
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�(x) |x|N |x| x µ G |lk| L
1 0 0 0 1 1 O
2 12 12 12 2 2 1 22

1

3 13 13 13 1 3 31

4 14 14 14 2 4 2 42
1

(12, 22) (1, 2, 1, 2) (1,−2, 1,−2) 1 5 41

5 15 15 15 1 5 51

(13, 22) (12, 2, 1, 2) (12,−2, 1,−2) 2 8 0 52
1

6 16 16 16 2 6 3 62
1

(14, 22) (13, 2, 1, 2) (13, 2,−1, 2) 1 7 52

(13,−2, 1,−2) 1 11 62

(12, 2, 12, 2) (12, 2, 12, 2) 3 2, 2 1, 1, 1 63
3

(12,−2, 12,−2) 3 6, 2 1, 1, 1 63
1

(13, 23) (12, 2, 1, 22) (12,−2, 1,−22) 1 13 63

(1, 2, 1, 2, 1, 2) (1,−2, 1,−2, 1,−2) 3 4, 4 0, 0, 0 63
2

(12, 22, 32) (1, 2, 1, 3, 2, 3) (1,−2, 1, 3,−2, 3) 2 12 2 62
3

7 17 17 17 1 7 71

(15, 22) (14, 2, 1, 2) (14, 2,−1, 2) 2 10 3 62
2

(14,−2, 1,−2) 2 14 1 72
1

(13, 2, 12, 2) (13, 2, 12, 2) 2 4 2 72
7

(13, 2,−12, 2) 2 8 0 72
8

(13,−2, 12,−2) 2 16 0 72
4

(14, 23) (13, 2, 1, 22) (13,−2, 1,−22) 2 18 1 72
2

(12, 2, 12, 22) (12,−2, 12,−22) 2 20 2 72
5

(12, 2, 1, 2, 1, 2) (12,−2, 1,−2, 1,−2) 2 24 0 72
6

(13, 22, 32) (12, 2, 1, 3, 2, 3) (12, 2,−1,−3, 2,−3) 1 9 61

(12,−2, 1, 3,−2, 3) 1 19 76

(12, 23, 32) (1, 2, 1, 2, 3, 2, 3) (1,−2, 1,−2, 3,−2, 3) 1 21 77

(1, 2, 1, 3, 22, 3) (1,−2, 1, 3,−22, 3) 3 10, 2 1, 1, 1 73
1

8 18 18 18 2 8 4 82
1

(16, 22) (15, 2, 1, 2) (15, 2,−1, 2) 1 13 73

(15,−2, 1,−2) 1 17 82

(14, 2, 12, 2) (14, 2, 12, 2) 3 2, 2 1, 1, 2 83
7

(14, 2,−12, 2) 3 6, 2 1, 1, 2 83
8

(14,−2, 12,−2) 3 10, 2 1, 1, 2 83
1

(13, 2, 13, 2) (13, 2, 13, 2) 1 3 819

(13, 2,−13, 2) 1 9 820

(13,−2, 13,−2) 1 21 85

(15, 23) (14, 2, 1, 22) (14, 2,−1, 22) 1 17 75

(14,−2, 1,−22) 1 23 87
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�(x) |x|N |x| x µ G |lk| L
8 (15, 23) (13, 2, 12, 22) (13, 2,−12, 22) 1 15 821

(13,−2, 12,−22) 1 27 810

(13, 2, 1, 2, 1, 2) (13, 2,−1, 2,−1, 2) 3 4, 4 0, 0, 2 83
9

(13,−2, 1,−2, 1,−2) 3 16, 2 0, 0, 1 83
5

(12, 2, 12, 2, 1, 2) (12,−2, 12,−2, 1,−2) 1 35 816

(14, 24) (13, 2, 1, 23) (13,−2, 1,−23) 1 25 89

(13, 22, 1, 22) (13,−22, 1,−22) 3 14, 2 1, 1, 2 83
2

(12, 2, 1, 2, 1, 22) (12,−2, 1,−2, 1,−22) 1 37 817

(12, 2, 1, 22, 1, 2) (12,−2, 1,−22, 1,−2) 3 6, 6 0, 1, 1 83
6

(12, 22, 12, 22) (12, 22, 12, 22) 3 4 0, 2, 2 83
10

(12,−22, 12,−22) 3 8, 4 0, 2, 2 83
4

(1, 2, 1, 2, 1, 2, 1, 2) (1,−2, 1,−2, 1,−2, 1,−2) 1 15, 3 818

(14, 22, 32) (13, 2, 1, 3, 2, 3) (13, 2,−1,−3, 2,−3) 2 16 0 72
3

(13,−2, 1, 3,−2, 3) 2 26 3 82
5

(12, 2, 12, 3, 2, 3) (12, 2, 12,−3, 2,−3) 2 12 2 82
16

(12, 2,−12,−3, 2,−3) 2 8 0 82
15

(12,−2, 12, 3,−2, 3) 2 28 2 82
9

(13, 23, 32) (12, 2, 1, 2, 3, 2, 3) (12,−2, 1,−2, 3,−2, 3) 2 34 1 82
8

(12, 2, 1, 3, 22, 3) (12,−2, 1, 3,−22, 3) 2 32 0 82
12

(1, 2, 1, 2, 1, 3, 2, 3) (1,−2, 1,−2, 1, 3,−2, 3) 2 40 0 82
13

(13, 22, 33) (12, 2, 1, 3, 2, 32) (12,−2, 1, 3,−2, 32) 2 30 1 82
7

(12, 24, 32) (1, 2, 1, 2, 3, 22, 3) (1,−2, 1,−2, 3,−22, 3) 2 32 0 82
10

(1, 2, 1, 3, 23, 3) (1,−2, 1, 3,−23, 3) 2 28 2 82
11

(1, 22, 1, 3, 22, 3) (1, 22, 1, 3, 22, 3) 4 2, 2 84
3

(1, 22, 1, 3,−22, 3) 4 4, 2, 2 84
2

(1,−22, 1, 3,−22, 3) 4 8, 2, 2 84
1

(1, 2, 3, 2, 1, 2, 3, 2) (1,−2, 3,−2, 1,−2, 3,−2) 2 12, 3 2 82
14

(12, 22, 32, 42) (1, 2, 1, 3, 2, 4, 3, 4) (1,−2, 1, 3,−2,−4, 3,−4) 1 29 812

9 19 19 19 1 9 91

(17, 22) (16, 2, 1, 2) (16, 2,−1, 2) 2 16 4 82
2

(16,−2, 1,−2) 2 20 2 92
1

(15, 2, 12, 2) (15, 2, 12, 2) 2 4 2 92
43

(15, 2,−12, 2) 2 16 0 92
44

(15,−2, 12,−2) 2 24 0 92
13

(14, 2, 13, 2) (14, 2, 13, 2) 2 2 3 92
49

(14, 2,−13, 2) 2 14 3 92
51

(14,−2, 13,−2) 2 26 1 92
19

(14,−2,−13,−2) 2 10 1 92
50

(16, 23) (15, 2, 1, 22) (15, 2,−1, 22) 2 22 3 82
3

(15,−2, 1,−22) 2 28 2 92
2
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�(x) |x|N |x| x µ G |lk| L
9 (16, 23) (14, 2, 12, 22) (14, 2,−12, 22) 2 22 1 92

52

(14,−2, 12,−22) 2 34 3 92
20

(14, 2, 1, 2, 1, 2) (14, 2,−1, 2,−1, 2) 2 24 0 92
55

(14,−2, 1,−2, 1,−2) 2 40 0 92
31

(13, 2, 13, 22) (13, 2, 13, 22) 2 3 4 92
53

(13, 2,−13, 22) 2 6, 3 1 92
54

(13,−2, 13, 22) 2 24 4 82
4

(13,−2, 13,−22) 2 12, 3 2 92
23

(13, 2, 12, 2, 1, 2) (13, 2,−12, 2,−1, 2) 2 20 2 92
57

(13,−2, 12,−2, 1,−2) 2 46 1 92
35

(12, 2, 12, 2, 12, 2) (12,−2, 12,−2, 12,−2) 2 10, 5 3 92
40

(15, 24) (14, 2, 1, 23) (14,−2, 1,−23) 2 32 0 92
5

(14, 22, 1, 22) (14,−22, 1,−22) 2 36 2 92
14

(13, 2, 12, 23) (13,−2, 12,−23) 2 38 1 92
21

(13, 2, 1, 2, 1, 22) (13,−2, 1,−2, 1,−22) 2 50 1 92
34

(13, 2, 1, 22, 1, 2) (13,−2, 1,−22, 1,−2) 2 48 0 92
37

(13, 22, 12, 22) (13, 22, 12, 22) 2 4 2 92
59

(13,−22, 12,−22) 2 44 2 92
29

(12, 2, 12, 2, 1, 22) (12,−2, 12,−2, 1,−22) 2 54 1 92
39

(12, 2, 1, 2, 12, 22) (12, 2,−1, 2, 12, 22) 2 5 4 92
61

(12,−2, 1,−2, 12,−22) 2 56 0 92
41

(12, 2, 1, 2, 1, 2, 1, 2) (12,−2, 1,−2, 1,−2, 1,−2) 2 66 1 92
42

(15, 22, 32) (14, 2, 1, 3, 2, 3) (14, 2,−1,−3, 2,−3) 1 23 86

(14,−2, 1, 3,−2, 3) 1 33 911

(13, 2, 12, 3, 2, 3) (13, 2, 12,−3, 2,−3) 1 13 943

(13, 2,−12,−3, 2,−3) 1 17 944

(13,−2, 12, 3,−2, 3) 1 37 936

(13,−2,−12, 3,−2, 3) 1 7 942

(14, 23, 32) (13, 2, 1, 2, 3, 2, 3) (13, 2,−1, 2, 3,−2, 3) 1 11 72

(13, 2,−1, 2,−3, 2,−3) 1 31 814

(13,−2, 1,−2, 3,−2, 3) 1 47 926

(13,−2, 1,−2,−3, 2,−3) 1 19 84

(13, 2, 1, 3, 22, 3) (13, 2,−1,−3, 22,−3) 3 14, 2 1, 1, 1 83
3

(13,−2, 1, 3,−22, 3) 3 22, 2 1, 1, 2 93
6

(12, 2, 12, 2, 3, 2, 3) (12, 2, 12, 2,−3, 2,−3) 3 6, 2 0, 1, 1 93
13

(12, 2,−12, 2,−3, 2,−3) 3 10, 2 0, 1, 1 93
14

(12,−2, 12,−2, 3,−2, 3) 3 26, 2 0, 1, 1 93
2

(12, 2, 12, 3, 22, 3) (12, 2, 12,−3, 22,−3) 3 4, 4 0, 0, 2 93
19

(12, 2,−12,−3, 22,−3) 3 4, 4 0, 0, 0 93
18

(12,−2, 12, 3,−22, 3) 3 12, 4 0, 0, 2 93
8
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�(x) |x|N |x| x µ G |lk| L
9 (14, 23, 32) (12, 2, 1, 2, 1, 3, 2, 3) (12, 2,−1, 2, 1, 3,−2, 3) 1 23 945

(12,−2, 1,−2, 1, 3,−2, 3) 1 59 932

(12, 2, 1, 3, 2, 1, 3, 2) (12,−2, 1, 3,−2, 1, 3,−2) 3 30, 2 1, 1, 2 93
11

(14, 22, 33) (13, 2, 1, 3, 2, 32) (13, 2,−1,−3, 2,−32) 1 25 88

(13,−2, 1, 3,−2, 32) 1 41 920

(12, 2, 12, 3, 2, 32) (12,−2, 12, 3,−2, 32) 3 22, 2 0, 1, 1 93
1

(13, 24, 32) (12, 2, 1, 22, 3, 2, 3) (12, 2,−1, 22, 3,−2, 3) 1 15 74

(12, 2,−1, 22,−3, 2,−3) 1 27 811

(12,−2, 1,−22, 3,−2, 3) 1 49 927

(12,−2, 1,−22,−3, 2,−3) 1 29 813

(12, 2, 1, 3, 23, 3) (12,−2, 1, 3, 23, 3) 1 33 815

(12,−2, 1, 3,−23, 3) 1 45 924

(12, 22, 1, 2, 3, 2, 3) (12,−22, 1,−2, 3,−2, 3) 1 53 930

(12, 22, 1, 3, 22, 3) (12, 22, 1, 3, 22, 3) 3 2, 2 1, 1, 1 93
17

(12, 22, 1, 3,−22, 3) 3 14, 2 1, 1, 1 93
16

(12, 22, 1,−3, 22,−3) 3 10, 2 1, 1, 1 93
15

(12,−22, 1, 3,−22, 3) 3 26, 2 1, 1, 1 93
4

(13, 24, 32) (1, 2, 1, 2, 1, 2, 3, 2, 3) (1,−2, 1,−2, 1,−2, 3,−2, 3) 3 32, 2 0, 0, 1 93
10

(1, 2, 1, 2, 1, 3, 22 , 3) (1,−2, 1,−2, 1, 3, 22, 3) 3 8, 4 0, 0, 2 93
20

(1,−2, 1,−2, 1, 3,−22, 3) 3 8, 8 0, 0, 0 93
12

(1,−2, 1,−2, 1,−3, 22,−3) 3 8 0, 0, 0 93
21

(1, 2, 1, 22, 1, 3, 2, 3) (1,−2, 1,−22, 1, 3,−2, 3) 1 61 933

(1, 2, 1, 2, 3, 2, 1, 2, 3) (1, 2,−1, 2, 3,−2, 1,−2, 3) 1 3, 3 946

(1,−2, 1,−2, 3,−2, 1,−2, 3) 1 69 934

(1,−2, 1,−2,−3,−2, 1,−2,−3) 1 9, 3 947

(13, 23, 33) (12, 2, 1, 2, 3, 2, 32) (12,−2, 1,−2, 3,−2, 32) 1 55 931

(12, 2, 1, 3, 22, 32) (12,−2, 1, 3,−22, 32) 1 51 928

(1, 2, 1, 3, 2, 1, 3, 2, 3) (1,−2, 1, 3,−2, 1, 3,−2, 3) 1 15, 5 940

(13, 22, 32, 42) (12, 2, 1, 3, 2, 4, 3, 4) (12,−2, 1, 3,−2,−4, 3,−4) 2 46 1 92
11

(12, 25, 32) (1, 2, 1, 23, 3, 2, 3) (1,−2, 1,−23, 3,−2, 3) 1 39 917

(1, 2, 1, 2, 3, 23, 3) (1,−2, 1,−2, 3,−23, 3) 1 43 922

(1, 2, 1, 3, 24, 3) (1,−2, 1, 3,−24, 3) 3 18, 2 1, 1, 2 93
5

(1, 22, 1, 2, 3, 22, 3) (1,−22, 1,−2, 3,−22, 3) 3 12, 4 0, 0, 0 93
9

(1, 22, 3, 2, 1, 2, 3, 2) (1,−22, 3,−2, 1,−2, 3,−2) 1 51 929

(12, 23, 32, 42) (1, 2, 1, 2, 3, 2, 4, 3, 4) (1,−2, 1,−2, 3,−2,−4, 3,−4) 2 50 1 92
12

(1,−2, 1,−2,−3, 2, 4,−3, 4) 2 20 2 82
6

(1, 2, 1, 3, 22, 4, 3, 4) (1,−2, 1, 3,−22,−4, 3,−4) 2 48 0 92
25
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