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Abstract
It is shown that there are infinitely many immersed 2-knots with more than
any previously given number of double point singularities which are not
equivalent to the connected sum of any immersed 2-knot and any unknotted
immersed sphere.
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1. Introduction

An immersed surface-link is a generically immersed closed oriented surface
in the 4-space R4. When the surface has only one component, it is also called
an immersed surface-knot. When the surface consists of 2-spheres, it is also
called an immersed sphere-link or simply an immersed 2-link. When the
immersion is an embedding, it is also called a surface-link. Two (immersed)
surface-links L and L′ are equivalent if there is an orientation-preserving
auto-homeomorphism h of R4 sending L to L′ orientation-preservingly. An
immersed 2-link is studied in [9] in relation to a cross-sectional link. A normal
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form of an immersed surface-link introduced by S. Kamada and K. Kawamura
in [5] is used to define a marked graph diagram of an immersed surface-link
in [6]. In this paper, with an example obtained from a surface-knot described
by a marked graph diagram, it is shown as the main theorem (Theorem 3.6)
that for any positive integer n, there are infinitely many immersed 2-knots
with at least n double point singularities every of which is essential double
point singularities, that is, infinitely many immersed 2-knots with at least n
double point singularities which are not equivalent to the connected sum of
any immersed 2-knot and any unknotted immersed sphere.

This paper is organized as follows: Section 2 is devoted to a review of
a marked graph diagram of an immersed surface-link. In particular, an un-
knotted immersed sphere is defined there. In Section 3, the main theorem is
proved.

2. Marked graph representation of immersed surface-links

In this section, we review (oriented) marked graph diagrams representing
immersed surface-links described in [6]. A marked graph is a 4-valent graph
in R3 each of whose vertices is a vertex with a marker looks like
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Two marked graphs are said to be equivalent if they are ambient isotopic
in R3 with keeping the rectangular neighborhoods of markers. As usual, a
marked graph in R3 can be described by a link diagram on R2 with some
4-valent vertices equipped with markers, called a marked graph diagram. An
orientation of a marked graph G in R3 is a choice of an orientation for each
edge of G. An orientation of a marked graph G is said to be consistent if
every vertex in G looks like
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. A marked graph G in R3 is said to

be orientable if G admits a consistent orientation. Otherwise, it is said
to be non-orientable. By an oriented marked graph we mean an orientable
marked graph in R3 with a fixed consistent orientation. Two oriented marked
graphs are said to be equivalent if they are ambient isotopic in R3 with
keeping the rectangular neighborhood, marker and consistent orientation.
For t ∈ R, we denote by R3

t the hyperplane of R4 whose fourth coordinate
is equal to t ∈ R, i.e., R3

t = {(x1, x2, x3, x4) ∈ R4 | x4 = t}. An immersed
surface-link L ⊂ R4 = R3 ×R can be described in terms of its cross-sections
Lt = L ∩ R3

t , t ∈ R (cf. [3]). It is shown [5] that any immersed surface-link
L, there is an immersed surface-link L′ ⊂ R3[−2, 2] satisfying the following
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conditions:

(1) The intersections L′
1 and L′

−1 are H-trivial links;

(2) All saddle points of L′ are in R3[0];

(3) All maximal points of L′ are in R3[2];

(4) All minimal points of L′ are in R3[−2];

(5) The intersections L′∩(R3[1, 2]) and L′∩(R3[−2,−1]) are disjoint unions
of a disjoint system of trivial knot cones and a disjoint system of Hopf
link cones.

We call L′ a normal form of L. Let L be an immersed surface-link in R4,
and L′ a normal form of L. Then L′

0 is a spatial 4-valent regular graph in
R3

0. We give a marker at each 4-valent vertex (saddle point) that indicates
how the saddle point opens up above as illustrated in Fig. 1. We choose an
orientation for each edge of L′

0 that coincides with the induced orientation on
the boundary of L′ ∩R3 × (−∞, 0] from the orientation of L′. The resulting
oriented marked graph G is called an oriented marked graph of L. As usual, G
is described by a link diagram D with rigid marked vertices. Such a diagram
D is called an oriented marked graph diagram or an oriented ch-diagram (cf.
[13]) of L.

t =

t = −

t = 0

Figure 1: Marking of a vertex

Let D be an oriented marked graph diagram. We obtain two links L−(D)

and L+(D) from D by replacing each marked vertex
??

??
??

??
?

��
��
��
��
�
with and

, respectively. Links L−(D) and L+(D) are also called the negative
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Figure 2: Marked vertex resolutions

resolution and the positive resolution of D, respectively. By replacing a
neighborhood of each marked vertex vi (1 ≤ i ≤ n) with an oriented band
Bi as illustrated in Fig. 2. Denote the disjoint union B1 ⊔ · · · ⊔Bn of bands
by B(D). A link L is H-trivial if L is a split union of trivial knots and
Hopf links. A marked graph diagram D is said to be H-admissible if both
resolutions L−(D) and L+(D) are H-trivial classical link diagrams.

L+(D)L
−
(D)D

Figure 3: An H-admissible marked graph diagram

From now on, we recall how to construct an immersed surface-link L in R4

from a given H-admissible oriented marked graph diagram (cf. [5, 6]). Let D
be an H-admissible oriented marked graph diagram. We define a surface-link
F(D) ⊂ R3 × [−1, 1], called the proper surface associated with D, by
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(R3
t ,F(D) ∩ R3

t ) =


(R3, L+(D)) for 0 < t ≤ 1,
(R3, L−(D) ∪ B(D)) for t = 0,
(R3, L−(D)) for −1 ≤ t < 0.

It is known that a marked graph diagram D is orientable if and only if
the proper surface F(D) associated with D is an orientable surface. Since
D has a consistent orientation, the resolutions L+(D) and L−(D) have the
orientations induced from the orientation of D. We choose an orientation for
the proper surface F(D) so that the induced orientation of the cross-section
L+(D) = F(D)1 = F(D) ∩ R3

1 at t = 1 matches the orientation of L+(D).
Let [a, b] be a closed interval with a < b. For a link L, let L̂ ∗ [a, b] (or
Ľ ∗ [a, b]) be a cone with L[a] (or L[b]) as the base and a point in R3[b] (or
R3[a]), respectively. Let H = (O1∪· · ·∪Om)∪ (P1∪· · ·∪Pn) be an H-trivial
link in R3, where Oi is a trivial knot and Pj is a Hopf link for i = 1, . . . ,m,
j = 1, . . . , n.

• Let H∧[a, b] be a disjoint union of a disjoint system of trivial knot
cones Ôi ∗ [a, b](i = 1, . . . ,m) and a disjoint system of Hopf link cones
P̂j ∗ [a, b](j = 1, . . . , n) in R3[a, b].

• Let H∨[a, b] be a disjoint union of a disjoint system of trivial knot
cones Ǒi ∗ [a, b](i = 1, . . . ,m) and a disjoint system of Hopf link cones
P̌j ∗ [a, b](j = 1, . . . , n) in R3[a, b].

By capping off F(D) with L+(D)∧[1, 2] and L−(D)∨[−2,−1], we obtain an
oriented immersed surface-link S(D) in R4. We call the oriented immersed
surface-link S(D) the oriented immersed surface-link associated with D. It is
straightforward from the construction of S(D) that D is an oriented marked
graph diagram of the oriented immersed surface-link S(D).
Definition 2.1 (cf. [5]). A positive (or negative) standard singular 2-knot,
denoted by S(+) (or S(−)) is the immersed 2-knot of the marked graph
diagram D (or D′) in Fig. 4, respectively. An unknotted immersed sphere
is defined to be the connected sum mS(+)#nS(−) for any non-negative
integers m,n with m+ n > 0.

A double point singularity p of an immersed 2-knot S is inessential if
S is the connected sum of an immersed 2-knot and an unknotted immersed
sphere such that p belongs to the unknotted immersed sphere. Otherwise, p
is essential.
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D D
′

Figure 4: Standard singular 2-knot

3. Confirming immersed 2-knots with essential singularity

In this section, the main theorem will be shown with an example of in-
finitely many immersed 2-knots with essential singularity. For an immersed
2-knot K, let E(K) = Cl(S4 \N(K)). Let Ẽ(K) be the infinite cyclic cover-
ing of E(K). Then the homology H(K) = H1(Ẽ(K)) is a finitely generated
Λ-module, where Λ = Z[t, t−1]. This module is called the first Alexander
module of K (cf. [11]). Let

DH(K) = {x ∈ H(K)| ∃{λi}1≤i≤m : coprime (m ≥ 2) with λix = 0, ∀i},

called the annihilator Λ-submodule, which is known to be equal to the integral
torsion part of the Alexander module H(K) (cf. [7, Section 3]). Let ϵ(K) be
the first elementary ideal of DH(K). A Λ-ideal is symmetric if the ideal is
unchanged by replacing t by t−1. Let DH(K)∗ = hom(DH(K),Q/Z) have
the induced Λ-module structure, called the dual Λ-module of DH(K). The
following lemma is used in our argument.

Lemma 3.1. If K is a 2-knot such that the dual Λ-module DH(K)∗ is
Λ-isomorphic to DH(K), then the first elementary ideal ϵ(K) is symmetric.

This lemma is direct from the t-isometric non-singular symmetric pairing

ℓ : DH(K)×DH(K) → Q/Z,

called the Farber-Levine pairing (see [2, 7, 12]), because this pairing induces a
t-anti isomorphism DH(K) ∼= DH(K)∗, so that the assumption on DH(K)
implies that there is a t-anti Λ-isomorphism from DH(K) to itself. For
example, if the module DH(K) is given by Λ/(2t − 1,m) for a non-zero
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integer m, then DH(K)∗ is Λ-isomorphic to DH(K) and by Lemma 3.1, the
ideal ϵ(K) is symmetric. To see that DH(K)∗ is Λ-isomorphic to DH(K),
take a Λ-exact sequence

0 → Λ
f2→ Λ2 f1→ Λ → DH(K) → 0,

where the Λ-homomorphisms fi (i = 1, 2) are given by

f1(e1) = (2t− 1)e, f1(e2) = me and f2(e) = −me1 + (2t− 1)e2

for the standard bases e ∈ Λ and ei ∈ Λ2 (i = 1, 2). Then DH(K)∗ is
Λ-isomorphic to Ext2Λ(DH(K),Λ) by Levine [12] (cf. [7, Section 3]) and
Ext2Λ(DH(K),Λ) is Λ-isomorphic to the cokernel of the Λ-dual homomor-
phism f#

2 : Λ2 → Λ of f2. Thus, it is shown that DH(K)∗ is Λ-isomorphic
to Λ/(2t− 1,m) = DH(K).

For any marked graph diagram D of K, the fundamental group π(K) of
K is generated by the connected components of D, namely, the connected
components obtained from D by cutting the under-crossing points and the
relations s3 = s−1

2 s1s2 for all crossings as in (a) or (b) in Fig. 5.
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Figure 5: Labels at a crossing

A computation of the Alexander module H(K) and the ideal ϵ(K) is
shown in a concrete example as follows:

Example 3.2. Let T be the ribbon torus-knot of D in Fig. 6. The funda-
mental group π(T ) is isomorphic to the group < x1, x2| r1, r2 >, where

r1 : x
−1
2 x1x2 = x−1

1 x2x1, r2 : (x2x
−1
1 )3x2(x2x

−1
1 )−3 = x1.

Then the following Λ-semi-exact sequence

Λ[r∗1, r
∗
2]

d2→ Λ[x∗
1, x

∗
2]

d1→ Λ
ε→ Z → 0
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of the group presentation of π(T ) is obtained by using the fundamental for-
mula of the Fox differential calculus in [1], where Λ[r∗1, r

∗
2] and Λ[x∗

1, x
∗
2] are

free Λ-modules with bases r∗i (i = 1, 2) and x∗
j (j = 1, 2), respectively, and

the Λ-homomorphisms ε, d1 and d2 are given as follows:

ε(t) = 1, d1(x
∗
j) = t− 1 (j = 1, 2), d2(r

∗
i ) =

u∑
j=1

∂ri
∂xj

x∗
j (i = 1, 2)

for the Fox differential calculus ∂ri
∂xj

regarded as an element of Λ by letting xj

to t. The Alexander module H(T ) is identified with the quotient Λ-module
Ker(d1)/Im(d2) (see [8, Theorem 7.1.5]). The Alexander matrix MT = (mij)
defined by mij = ∂ri

∂xj
is a presentation matrix of the Λ-homomorphism d2

and calculated as follows:

MT =

[
−2t−1 + t−2 2t−1 − t−2

3− 4t−1 −3 + 4t−1

]
.

Hence we have
H(T ) ∼= Λ/(2t− 1, 3t− 4),

which is equal to DH(T ). Thus, the first elementary ideal ϵ(T ) of T is

ϵ(T ) =< 2t− 1, 3t− 4 >

=< 2t− 1, 3t− 4, 3(2t− 1)− 2(3t− 4) >

=< 2t− 1, 5 > .

The surface-link T represented by the marked graph diagram D is ambient
isotopic to the surface-link T ′ represented by the motion picture in Fig. 7.
Let s′ be the circle l1 ∪ l2 ∪ {(a, b, c, t)|1 < t < 2} ∪ {(d, e, f, t)|1 < t < 2}
in T ′. The circle s′ bounds a disk d′ in R4 such that the interior intd′ of
d′ meets T ′ with 10 crossings and Int(intd′, T ′) = 0, where Int denotes the
intersection number. Since T and T ′ are ambient isotopic, there is a disk d
such that ∂d ⊂ T and intd meets T with 10 crossings and Int(intd, T ) = 0.
Let d× I be a thickening of d. Let K be the immersed 2-knot obtained from
T by replacing the annulus T ∩ (d× I) by d× ∂I. Then K is the immersed
2-knot with 20 double point singularities. Since the first elementary ideal
ϵ(K) of K is the same as that of T , ϵ(K) =< 2t− 1, 5 > .

The following lemma is useful in a computation for a symmetric ideal.
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Figure 6: An admissible marked graph diagram D

Lemma 3.3. The following statements are equivalent:

1. The ideal < 2t− 1,m > is symmetric.
2. An integer m is ±2r or ±2r3 for any integer r ≥ 0.

Proof. First, it is easy to show that < 2t−1, 0 >=< 2t−1 > is not symmetric.
The ideal < 2t− 1,±3 >=< −t− 1,±3 > is symmetric. It is observed that

< 2t− 1, ab >=< t− 2, ab >⇒< 2t− 1, a >=< t− 2, a > (3.1)

for all non-zero integers a, b. Thus, < 2t − 1,±1 > is symmetric. Let m be
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¡2<t<¡1 ¡1<t<1

t=21<t<2

t=¡1t=¡2

t=1

(a; b; c; t)

(d; e; f; t)

(a; b; c; 1)

(d; e; f; 1)

l1

(a; b; c; 2)

(d; e; f; 2)

l2

Figure 7: A motion picture

even, that is, m = 2n for some integer n. Then

< 2t− 1,m > =< 2t− 1, 2n >

=< 2t− 1, 2n, n(2t− 1)− 2nt >

=< 2t− 1, n > .

By mathematical induction, if m = 2rn for r ≥ 0 and some odd integer n,
then

< 2t− 1,m >=< 2t− 1, n > .

Let p be a prime with |p| ≥ 5. Since Zp[t, t
−1] is a principal ideal domain,

< 2t− 1, p > ̸=< t− 2, p > . By the contraposition of (3.1), for any non-zero
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integer m divided by a prime p ≥ 5, < 2t− 1,m > ̸=< t− 2,m > . Suppose
that < 2t− 1, 9 > is symmetric, i.e., < 2t− 1, 9 >=< t− 2, 9 > . Then

< t− 2, 9 > =< t− 2, 9, 2t− 1 >

=< t− 2, 9, 2t− 1− 2(t− 2) >

=< t− 2, 3 >=< t− 5, 3 >,

< 2t− 1, 9 > =< t− 5, 9 > . (∵ 2−1 ≡ 5 (mod 9).)

Thus < t − 5, 3 >=< t − 5, 9 > . Then there are a(t), b(t) ∈ Z[t, t−1] such
that 3 = a(t)(t−5)+ b(t)9. For b(t), there are b′(t) ∈ Z[t, t−1] and c ∈ Z such
that b(t) = b′(t)(t− 5) + c. Thus

3 = a(t)(t− 5) + (b′(t)(t− 5) + c)9.

Then (a(t)+ 9b′(t))(t− 5) = 3− 9c ∈ Z \ {0}. This is a contradiction. Hence
< 2t− 1, 9 > is not symmetric. □
Lemma 3.4. There are infinitely many immersed 2-knots with at least one
essential double point singularity whose ideals are mutually distinct.

Proof. Let Tn be the ribbon torus-knot of Dn in Fig. 8 (n ≥ 1). Let Kn

be the immersed 2-knot obtained from Tn analogously to the method in
Example 3.2. By the same calculation as in Example 3.2, we have DH(Kn) =
H(Kn) ∼= Λ/(2t− 1, n). Suppose that the immersed 2-knot K∗ is equivalent
to the connected sum of a 2-knot K and an unknotted immersed sphere
S0. By Lemma 3.1, the first elementary ideal ϵ(K) is symmetric for any
2-knot K. Then the identity ϵ(K∗) = ϵ(K) is obtained since ϵ(S(+)) =
ϵ(S(−)) =< 1 >, so that the ideal ϵ(K∗) is symmetric. On the other hand,
by Lemma 3.3, < 2t − 1,m > is not symmetric except that m is 0, ±2r or
±2r3 (r ≥ 0). Therefore, the immersed 2-knot Kn obtained from Dn is an
immersed 2-knot with at least one essential singularity except that n is 2r+2

or 2r3 (r ≥ 0). Infiniteness of the immersed 2-knots under consideration is
seen from infiniteness of the ideals < 2t− 1,m > for all m. □

Let J be one of the immersed 2-knots Kn(n = 1, 2, 3, . . . ) such that the
first elementary ideal ϵ(J) is asymmetric. Then the following corollary is
obtained.

Corollary 3.5. The connected sum J#U of J and any immersed 2-knot U
such that the group orders |DH(J)| and |DH(U)| are coprime is an immersed
2-knot with at least one essential double point singularity.
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Proof. Suppose that the immersed 2-knot J#U is a connected sum of a 2-
knot K and an unknotted immersed sphere S0. Since DH(K) = DH(J#U) =
DH(J)⊗DH(U) and |DH(J)| and |DH(U)| are coprime, the Farber-Levine
pairing ℓ : DH(K) × DH(K) → Q/Z induces the nonsingular t-isometric
symmetric pairing on the direct summand DH(J) = Λ/(2t− 1,m) for some
m, so that as in the proof of Lemma 3.4, the ideal ϵ(J) =< 2t− 1,m > must
be symmetric, which is a contradiction. □

Finally, the ideal (2t− 1, 5) is known to be the first elementary ideal of a
ribbon torus-knot in [4].

Dn

n

1

2

.

.

.

.

.

.

.

.

.

Figure 8: H-admissible marked graph diagrams Dn

By using an immersed 2-knot in Lemma 3.4, the following main theorem
is proved.

Theorem 3.6. Let K = nKm be the connected sum of n copies of an
immersed 2-knot Km with at least one essential double point singularity
whose first elementary ideal is < 2t− 1,m > for any integer m ≥ 5 without
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factors 2 and 3. Then K gives infinitely many immersed 2-knots with at least
n double point singularities every of which is essential.

Proof. Assume that there is an immersed 2-knot K ′ with only d(< n) es-
sential double point singularities such that K = K ′#S0, where S0 is an
unknotted singular 2-knot. We know that DH1(S0) = 0. Thus

DH(K ′) ∼= DH(K ′)⊕DH(S0)
∼= DH(K)
∼= ⊕

n
(Λ/(2t− 1,m)).

Therefore
e(DH(K)) = e(DH(K ′)) = n, (3.2)

where e(H) is the minimum number of Λ-generators of a finitely generated
Λ-module H.

Now, for simplicity, we denote E(K ′) or Ẽ(K ′) by E or Ẽ, respectively.
By Wang exact sequence, there is an exact sequence

· · · → Hd(Ẽ)
t−1−→ Hd(Ẽ)

p∗−→ Hd(E)
δd−→ Hd−1(Ẽ) → · · · .

We have H1(E) = H0(Ẽ) = H0(E) = Z, so that we obtain

· · · → H1(Ẽ)
t−1−→ H1(Ẽ)

0→ Z
∼=→ Z 0→ Z

∼=→ Z → 0.

Then t − 1 : H1(Ẽ) → H1(Ẽ) is onto. Since H1(Ẽ) is a finitely generated
Λ-module, the map t− 1 is an isomorphism by Noetherian property.

Suppose that H1(Ẽ;Q) = H1(Ẽ) ⊗ Q ∼= Λk
Q ⊕ M, where ΛQ = Q[t, t−1]

which is a principal ideal domain, k is a non-negative integer, and M is the
ΛQ-torsion part. We have an isomorphism t− 1 : H1(Ẽ;Q) → H1(Ẽ;Q). By
the ΛQ-exact sequence

0 → ΛQ
t−1−→ ΛQ → ΛQ/(t− 1) ∼= Q → 0,

the map t− 1 : ΛQ → ΛQ cannot be an epimorphism. Therefore, k = 0 and
H1(Ẽ;Q) is a ΛQ-torsion module, which is a Λ-torsion module. The homology
H2(Ẽ;Q/Z) is a Z-torsion Λ-module. From the short exact sequence 0 →
Z → Q → Q/Z → 0, we obtain a long Λ-exact sequence

· · · → H2(Ẽ;Q/Z) h2→ H1(Ẽ;Z) f1→ H1(Ẽ;Q)
g1→ H1(Ẽ;Q/Z) → · · · .
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Let x ∈ H1(Ẽ) = H1(Ẽ;Z). Since H1(Ẽ;Q) is a Λ-torsion module, there is a
non-zero element λ ∈ Λ such that λf1(x) = 0. Then λx ∈ Ker(f1) = Im(h2).
There is an element y ∈ H2(Ẽ;Q/Z) such that λx = h2(y). Since H2(Ẽ;Q/Z)
is a Z-torsion Λ-module, there is a non-zero k ∈ Z such that ky = 0. Then
0 ̸= kλ ∈ Λ and kλx = kh2(y) = 0. Therefore H1(Ẽ) is a Λ-torsion module.

For a finitely generated Λ-module H, we define TH = {x ∈ H|λx =
0 for a non-zero λ ∈ Λ}, BH = H/TH, and TDH = TH/DH. Since H1(Ẽ) =
TH1(Ẽ), the Λ-torsion-free part BH1(Ẽ) = 0. By the second duality theorem
in [7], there are t-anti Λ-epimorphisms

θ : DH2(Ẽ) → E1BH1(Ẽ, ∂Ẽ) = E1BH1(Ẽ) = 0 and

θ′ : DH0(Ẽ, ∂Ẽ) = DH0(Ẽ) = 0 → E1BH3(Ẽ),

where EkH = ExtkΛ(H,Λ) for any non-negative integer k and any Λ-module
H, and there is a t-isometric non-singular Λ-pairing

ℓ : Ker(θ)× Ker(θ′) = DH2(Ẽ)× 0 → Q/Z.

Thus, DH2(Ẽ) = 0. By the first duality theorem in [7], there is a t-Hermitian
non-singular pairing

L : TDH2(Ẽ)× TDH1(Ẽ, ∂Ẽ) → Q(Λ)/Λ.

Since there is a Λ-epimorphism from H1(Ẽ) = H1(Ẽ, ∂Ẽ) to TDH1(Ẽ, ∂Ẽ)
and t−1 : H1(Ẽ) → H1(Ẽ) is a Λ-isomorphism, the map t−1 : TDH1(Ẽ, ∂Ẽ) →
TDH1(Ẽ, ∂Ẽ) is a Λ-epimorphism. The fact that TDH1(Ẽ, ∂Ẽ) is a finitely
generated Λ-module implies that t−1 : TDH1(Ẽ, ∂Ẽ) → TDH1(Ẽ, ∂Ẽ) is a Λ-
isomorphism. Thus we have a Λ-isomorphism t− 1 : TDH2(Ẽ) → TDH2(Ẽ).
Since DH2(Ẽ) = 0, the map t− 1 : TH2(Ẽ) → TH2(Ẽ) is a Λ-isomorphism.
For x ∈ TH2(Ẽ), there is an element x′ ∈ TH2(Ẽ) such that x = (t − 1)x′.
Then p∗(x) = (1− 1)p∗(x

′) = 0. The module TH2(Ẽ) is a submodule of the
kernel of p∗ : H2(Ẽ) → H2(E). So, we obtain the short Λ-exact sequence

0 → BH2(Ẽ)
t−1−→ BH2(Ẽ)

p∗−→ H2(E) ∼= Zd → 0.

We obtain the long exact sequence

E0(Zd) → E0BH2(Ẽ) → E0BH2(Ẽ) → E1(Zd) → E1BH2(Ẽ) → · · · .
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Since E0H is a Λ-free module for a finitely generated Λ-module H, we have
E0BH2(Ẽ) ∼= Λk for some non-negative integer k. So, the long exact sequence
is as follows:

0 → Λk t−1−→ Λk → (Λ/(t− 1))d → G → · · · ,

where G = E1BH2(Ẽ) is a finite Λ-module. Then we have

0 → (Λ/(t− 1))k → (Λ/(t− 1))d → G → · · · .

Thus, E0BH2(Ẽ) ∼= Λd.
By the second duality theorem in [7], there are a t-anti Λ-epimorphism

θ : DH1(Ẽ, ∂Ẽ) = DH1(Ẽ) → E1BH2(Ẽ) and a t-isometric symmetric
non-singular pairing ϕ : D × D → Q/Z, where D = Ker(θ). For every
prime p and every positive integer i, let D̄i

p = {x ∈ D| pix = 0} and D̃i
p =

D̄i
p/(D̄

i−1
p +pD̄i+1

p ). The t-isometric symmetric non-singular pairing ϕ induces
a t-isometric symmetric non-singular pairing ϕ̃i

p : D̃i
p × D̃i

p → Q/Z for all
prime p and all i (see [10]). Suppose D ̸= 0. Then there are p ≥ 5 and i
with D̃i

p ̸= 0, so that D̃i
p
∼= (Λ/(p, 2t− 1))ri for some ri > 0. The t-isometric

symmetric non-singular pairing ϕ̃i
p induces a t-anti automorphism of D̃i

p, so
that all the elementary ideals of D̃i

p are symmetric. This means that the
ideal (p, 2t− 1) is symmetric, for it is the (ri − 1)th elementary ideal of D̃i

p.
This contradicts Lemma 3.3. Thus, D = Ker(θ) = 0. Therefore DH1(Ẽ)
and E1BH2(Ẽ) are t-anti isomorphic. Then DH1(Ẽ) ∼= E2DH1(Ẽ) and
E2E1BH2(Ẽ) are t-anti isomorphic.

By Lemma 3.6 of [7], there is an exact sequence

0 → BH2(Ẽ) → E0E0BH2(Ẽ) ∼= Λd → E2E1BH2(Ẽ) → 0.

This means that DH1(Ẽ) ∼= E2E1BH2(Ẽ) is generated by d elements over
Λ. Combining with (3.2), we obtain n = e(DH1(Ẽ)) ≤ d, which is a con-
tradiction. Thus, there is no immersed 2-knot K ′ such that K = K ′#S0.
Infiniteness of the immersed 2-knots under consideration is seen from in-
finiteness of the ideals < 2t− 1,m > for all m. This completes the proof of
Theorem 3.6.

□
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