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Abstract. A chord graph in 3-space is constructed from a ribbon surface-

link in 4-space. In earlier papers, the three moves on the diagrams of chord
graphs (namely, the chord diagrams) are introduced to describe the faithful
equivalence of a ribbon surface-link. In this paper, it is shown that any two

equivalent ribbon surface-links are faithfully equivalent, so that any chord
diagrams of any two equivalent ribbon surface-links are connected by a finite

number of these three moves. By combining it with an earlier result, it is

shown that any two TOP-equivalent ribbon surface-links are equivalent. In
other words, there is no exotic ribbon surface-link, generalizing an earlier result

on the trivial ribbon surface-knot. As another earlier result, the three moves

on the chord diagrams were modified into the 16 moves on the chord diagrams
without base crossing. In this paper, further modified moves of the 16 moves

on the chord diagrams without base crossing are also introduced to describe

how the set of ribbon torus-links is produced from the set of welded virtual
links.

1. Introduction

A surface-link is the union of closed oriented surfaces F smoothly embedded
in the 4-space R4. A surface-link F is equivalent to a surface-link F ′ if there is an
orientation-preserving diffeomorphism f : R4 → R4 sending F to F ′ orientation-
preservingly. Then the map f is called an equivalence. In Section 2, it is reviewed
from [8] that every surface-link is equivalent to the closed realizing surface of a
band surgery sequence (on finitely many mutually disjoint bands) o′ → o for trivial
links o′ and o, and a ribbon surface-link F is presented as the surface-link F (o;α)
constructed uniquely from a chord graph (o;α) which consists of a trivial link o =
∪n
i=0oi, called a based loop system, and a chord system α = ∪s

j=1αj spanning o

in R3. In fact, the ribbon surface-link F (o;α) is obtained from the trivial S2-link
constructed from o by surgery along the 1-handles with cores α. A chord diagram
is a spatial graph diagram C = C(o;α) of a chord graph (o;α) of a ribbon surface-
link F in R2. It is noted that the based loop diagram of a chord diagram is just
a diagram of a trivial link and hence may have crossings in the chord diagram.
Two chord diagrams C and C ′ are equivalent if C is deformed into C ′ by a finite
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sequence of moves in the set of fundamental moves defined by the following three
moves M0, M1 and M2.

Move M0. This move is called the Reidemeister move which consists of the Rei-
demeister moves R1, R2, R3, gR4, gR5 by regarding a chord graph as a spatial
trivalent graph diagram, illustrated in Fig. 1 where the roles of the based loops and
the chords are not changed although a distinction of a based loop and a chord is
omitted.

Figure 1. Move M0: Reidemeister moves R1, R2, R3, gR4, gR5

for trivalent graph diagrams

Move M1. This move is called the fusion-fission move, illustrated in Fig. 2, where
the fusion operation is done only for a chord between different based loops.

Figure 2. Fusion-fission M1

Move M2. This move is called the chord move which consists of moves on chords,
illustrated in Fig. 3.

By convention, a closed chord is regarded as a chord with a based loop con-
structed from the birth-death move shown in Fig. 4.

An equivalence f from a ribbon surface-link F (o;α) to a ribbon surface-link
F (o′;α′) is faithful if f sends every meridian of N(α) to a null-homotopic loop in
F (o′;α′)∪N(α′). As the main result in [4, 5], it is shown that a ribbon surface-link
F (o;α) is faithfully equivalent to a ribbon surface-link F (o′;α′) if and only if any
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Figure 3. Chord moves M2

Figure 4. The birth-death move

chord diagram C(o′;α′) is obtained from any chord diagram C(o;α) by a finite
number of the moves M0,M1,M2. The following theorem is our main theorem.

Theorem 2.4. A ribbon surface-link F (o;α) is faithfully equivalent to a ribbon
surface-link F (o′;α′) if they are equivalent.

The proof of Theorem 2.4 is given in Section 3. By combining this theorem with
the main result in [4, 5], we obtain the result that a ribbon surface-link F (o;α)
is equivalent to a ribbon surface-link F (o′;α′) if and only if any chord diagram
C(o′;α′) is obtained from any chord diagram C(o;α) by by a finite number of the
moves M0,M1,M2 (see Corollary 2.5). A surface-link F is TOP-equivalent to a
surface-link F ′ if there is an orientation-preserving homeomorphism f : R4 →
R4 sending F to F ′ orientation-preservingly. Then the map f is called an TOP-
equivalence. Note that a diffeomorphism (or a self-homeomorphism) of R4 used for
an equivalence (or a TOP-equivalence) can be assumed to have a compact support.

The proof of Theorem 2.4 goes well even if we use a TOP-equivalence in place of
an equivalence because by [1] there is no difference in the technical level used in this
paper between an equivalence and a TOP-equivalence, as noted in [4]. Thus, we see
that any two TOP-equivalent ribbon surface-links are equivalent meaning, in other
words, that there is no exotic ribbon surface-link (see Corollary 2.6) generalizing
the result on a trivial surface-knot in [4, 5].

The idea of the proof of Theorem 2.4 is to deform a ribbon surface-link into
a special position to construct a double ribbon surface-link (see Lemma 3.1 later).
It is also observed in Assertion 3.5 that this technique also makes possible to give
a new proof of [4, Corollary 4.7] different from the proof given in [5, Theorem].
In Section 4, we discuss a chord diagram without base crossing which is a chord
diagram such that the disk system bounded by the based loop system in R2 do
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not overlap and cuts the chords with mutually disjoint proper simple arcs. The
movesmi (i = 1, 2, . . . , 15) on chord diagrams without base crossing were introduced
in [6] to describe the relations on faithfully equivalent ribbon surface-links (see
Lemma 4.2). In this section, the moves mi (i = 1, 2, . . . , 15) are modified into the
moves consisting of the moves corresponding to the welded virtual links and some
additional moves Bi (j = 1, 2, 3, 4, 5, 6) in Fig. 23 (see Theorem 4.3).

2. Moves on chord diagrams

For a subset A ⊂ R3 and an interval J ⊂ R, we use the notation

AJ = {(x, t)|x ∈ A, t ∈ J}. In particular, R4 = R3(−∞,+∞).

Let ℓ′ → ℓ be a band surgery from a link ℓ′ to a link ℓ (see Fig. 5).

Figure 5. A band surgery

The realizing surface of a band surgery ℓ′ → ℓ by mutually disjoint bands
β1, β2, . . . , βm is a surface F b

a in R3[a, b] defined by

F b
a ∩R3[t] =


ℓ[t] (a+b

2 < t ≤ b),
(ℓ′ ∪m

i=1 βi)[t] (t = a+b
2 ),

ℓ′[t] (a ≤ t < a+b
2 ).

For a division a = a0 < a1 < · · · < am = b of [a, b], let G = ∪m
i=1F

ai
ai−1

be
the realizing surface of a band surgery sequence ℓ0 → ℓ1 → · · · → ℓm. Let ℓ0 and
ℓm be trivial links with d′ and d any mutually disjoint bounding disk systems in
R3, respectively. Then the closed realizing surface in R3[a, b] of the band surgery
sequence ℓ0 → ℓ1 → · · · → ℓm is the closed surface

Ĝ = d′[a] ∪G ∪ d[b],

which is called a surface-link in [a, b] normal form (see Fig. 6). The surfaces Ĝ\d′ =

cl(Ĝ\d′[a]) and Ĝ\d = cl(Ĝ\d[b]) are the lower-open realizing surface and the upper-
open realizing surface in R3[a, b] of the band surgery sequence ℓ0 → ℓ1 → · · · → ℓm,
respectively. The following result is given in [8].

Lemma 2.1. Every surface-link F is equivalent to the closed realizing surface Ĝ
of a band surgery sequence o′ → o on trivial links o′ and o.

A surface-link F in R4 is ribbon if F is the closed realizing surface of a band
surgery sequence o → ℓ → o with o a trivial link in R3 such that the band surgery
ℓ → o is the inverse of o → ℓ, which is illustrated in Fig. 7 (cf. [9]). In other words,
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Figure 6. A surface-knot in [0, 2] normal form with all the bands
in R3[1]

Figure 7. A ribbon S2-knot in [−2, 2] normal form

a ribbon surface-link in [a, b] normal form is a ribbon surface-link obtained from
the trivial S2-link d[a]∪o[a, b]∪d[b] by surgery along the 1-handles N(α) = β[a′, b′]
with a < a′ < b′ < b, where d is a disk system with ∂d = o and β is a band system
spanning o. Let α be a centerline system of the band system β. The following
observation is given in [4].

Lemma 2.2. Every ribbon surface-link F in [a, b] normal form is constructed
uniquely from an oriented trivial link o = ∪n

i=0oi and an arc system α = ∪s
j=1αj

spanning o in R3, where oi and αj denote the components of o and α, respectively.

The ribbon surface-link F in Lemma 2.2 is denoted by F (o;α). The pair
(o;α) is called a chord graph R3 of the ribbon surface-link F = F (o;α) with o
the based loop system and α the chord system. The core graph of a connected chord
graph (o;α) is the graph Λ(o;α) obtained from the abstract graph of (o;α) by
shrinking the based loops to the respective vertexes. Note that a ribbon surface-
link F = F (o;α) is a ribbon surface-knot of genus g if and only if the chord graph
(o;α) is a connected graph whose core graph Λ(o;α) is homotopy equivalent to the
bouquet

∨
g S

1 of g copies of the circle S1, where
∨

0 S
1 is regarded as a point. The

surfaces F (o;α)\d = cl(F (o;α) \ d[a]) and F (o;α)\d = cl(F (o;α) \ d[b]) in R3[a, b]
are called the lower-open ribbon surface-link and the upper-open ribbon surface-link
of the chord graph (o;α), respectively. A chord diagram is a spatial graph diagram
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C = C(o;α) of a chord graph (o;α) of a ribbon surface-link F in R2. It is noted
that the based loop diagram of a chord diagram is just a diagram of a trivial link
and hence may have crossings in the chord diagram. Two chord diagrams C and
C ′ are equivalent if C is deformed into C ′ by a finite sequence of moves in the set
of fundamental moves defined by the following three moves M0, M1 and M2.

Move M0. This move is called the Reidemeister move which consists of the Rei-
demeister moves R1, R2, R3, gR4, gR5 by regarding a chord graph as a spatial
trivalent graph diagram, illustrated in Fig. 1 where the roles of the based loops and
the chords are not changed although a distinction of a based loop and a chord is
omitted.

Move M1. This move is called the fusion-fission move, illustrated in Fig. 2, where
the fusion operation is done only for a chord between different based loops.

Move M2. This move is called the chord move which consists of moves on chords,
illustrated in Fig. 3.

It is also observed in [4] that under the use of the move M0, the move M1

is equivalent to a combination move of the elementary fusion-fission move M1.0

illustrated in the left-hand side of the move m4 in Fig. 13, the chord slide move
M1.1 and the chord pass move M1.2 illustrated in Fig. 8. The birth-death move in
Fig. 4 is obtained from these moves, unless a closed chord is involved.

Figure 8. Chord slide M1.1 and Chord pass M1.2

An equivalence f from a ribbon surface-link F (o;α) to a ribbon surface-link
F (o′;α′) is faithful if f sends every meridian of N(α) to a null-homotopic loop in
F (o′;α′) ∪N(α′). The following lemma was a main result in [3, 4]:
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Lemma 2.3. A ribbon surface-link F (o;α) is faithfully equivalent to a ribbon
surface-link F (o′;α′) if and only if any chord diagram C(o′;α′) is obtained from
any chord diagram C(o;α) by a finite number of the moves M0,M1,M2.

The following theorem is our main theorem, which is shown in Section 3.

Theorem 2.4. A ribbon surface-link F (o;α) is faithfully equivalent to a ribbon
surface-link F (o′;α′) if they are equivalent.

By combining this theorem with Lemma 2.3, the following corollary is obtained:

Corollary 2.5. A ribbon surface-link F (o;α) is equivalent to a ribbon surface-link
F (o′;α′) if and only if any chord diagram C(o′;α′) is obtained from any chord
diagram C(o;α) by a finite number of the moves M0,M1,M2.

As we explain in Section 1, we have the following result generalizing the result
on the trivial ribbon surface-knot in [4, 5]:

Corollary 2.6. Any two TOP-equivalent ribbon surface-links are equivalent. In
other words, there is no exotic ribbon surface-link.

3. Proof of Theorem 2.4

In this section, the proof of Theorem 2.4 is given. Let F (o;α) and F (o′;α′)
be equivalent ribbon surface-links in [−1, 1] normal forms by an equivalence f . By
the moves M1 and M2, we can assume the following (1)-(3) for every component of
F (o;α) and F (o′;α′), whose situations are used in an argument of [4].

(1) The based loops o and o′ are identical: o = o′ and have the n+ 1 components
oi (i = 0, 1, 2, . . . , n) for some n.

(2) The chords α and α′ have the same number of chords αj and α′
j with identical

boundaries ∂αj = ∂α′
j for all j (j = 1, 2, . . . , s) for s ≥ n,

(3) The chords α connect the based loops o as in Fig. 9. Namely, for every j with
1 ≤ j ≤ n the chord αj joins the based loop oj to the based loop o0, referred to as
a non-self-connecting chord, and for every j with n+ 1 ≤ j ≤ s the chord αj joins
the based loop o0 itself, referred to as a self-connecting chord.

The following lemma is useful in our argument:

Lemma 3.1. Let F (o;α) and F (o;α′) be equivalent ribbon surface-links by an
equivalence f . Then there are ribbon surface-links F (o∪e;α∪δ) and F (o∪e;α′∪δ′)
in [0, 1] normal forms such that

(1) Every chord in δ with δ′ connects from a loop of o to a loop of e and every loop
of e is connected with a loop of o by just one chord of δ and just one chord of δ′,

(2) Any chord diagrams C(o∪e;α∪δ) and C(o∪e;α′∪δ′) are moved into any chord
diagrams C(o;α) and C(o;α′) by the moves M0, M1, M2, respectively, so that the
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Figure 9. A specification of the chords α joining the based loops o

ribbon surface-links F (o∪ e;α∪ δ) and F (o∪ e;α′ ∪ δ′) are faithfully equivalent to
F (o;α) and F (o;α′), respectively, and

(3) The equivalence f is isotopically deformed into an equivalence f∗ : R4 → R4

from F (o ∪ e;α ∪ δ) to F (o ∪ e;α′ ∪ δ′) with f∗(x, t) = (x, t) for all x ∈ R3 and
t ∈ (−∞, 0] ∪ [1,+∞).

Proof of Lemma 3.1. Assume that F (o;α) and F (o;α′) are in [0, 1] normal
forms and the restriction of the equivalence f to R3[2,+∞) is the identity map.
Assume that f(d[1]) = d[1] for a disk system d bounded by o. Let p be a point
system in d with one point in every disk of d. Then J = p[1, 2] is an arc system.
A 2-sphere system around J is a collection of mutually disjoint 2-spheres S in
R3(1, 2) such that every 2-sphere component S1 of S is the boundary of a 3-ball
neighborhood of a point p1[t1] ∈ p[t1] in (R3[t1] \ p[t1]) ∪ {p1[t1]} for some level
t1 (1 < t1 < 2). The point p1[t1] is called the center of the 2-sphere S1. By an
argument of [4, Lemma 4.6], we can consider that f(J) is in R3[1 − ε, 2] for a
small ε > 0 and transversely intersects the interior of the 3-disk system d[1 − ε, 1]
in finite points. In the 3-disk system d[1 − ε, 1], we choose a 3-ball neighborhood
system N of the intersection point system and an arc system JN consisting of an
arc from every component of the boundary 2-sphere system ∂N to the boundary
∂d[1− ε, 1]. By deforming the 2-sphere system ∂N and the arc system JN , we have
a 2-sphere system S′ around J with distinct centers and an arc system δ′ consisting
of mutually disjoint arcs joining S′ with d[1] such that the union f(J) ∪ F (o;α′)
is deformed into the union F ′ ∪ J for the surface-link F ′ obtained from F (o;α′)
and the 2-sphere system S′ by tubing along δ′ by an isotopic deformation g of R4

keeping cl(F (o;α′) \ d[1]) ∪R3(−∞, 0] ∪R3[2,+∞) fixed. Note that the preimage
S = (gf)−1(S′) is a 2-sphere system around J and the preimage δ = (gf)−1(δ′) is
an arc system consisting of mutually disjoint arcs joining S with d[1]. We assume
that the homeomorphism gf is identical on a neighborhood N(J) of J in R3[1, 2]
and the 2-sphere systems S and S′ are in N(J). Let pS and pS′ be distinct point
systems in S and S′ with one point in every 2-sphere of S and S′, respectively.
Let JS and JS′ be the vertical arc systems in R3(1, 2] joining pS and pS′ with the
corresponding points in R3[2], respectively.

The surface in R3[0, 2] obtained from d[0]∪o[0, 1]∪d[1]∪J∪S∪JS by replacing
every arc in J and JS with a tube is deformed into the surface d[0]∪o[0, 2]∪de[0]∪
e[0, 2] in R3[0, 2] for a trivial loop system e and a disk system de bounded by e in
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R3 by an isotopic deformation h of R3(−∞, 2]. Let α and δ denote again the chord
systems on the based loop system o ∪ e in R3 which are obtained from h(α) and
h(δ) by a homotopy argument of an arc system (see [9, Lemma 4.11]), respectively.

Similarly, the surface in R3[0, 2] obtained from d[0] ∪ o[0, 1] ∪ de[1] ∪ J ∪ S′ ∪
JS′ by replacing every arc in J and JS′ with a tube is deformed into the surface
d[0] ∪ o[0, 2] ∪ de[0] ∪ e[0, 2] in R3[0, 2] for the same trivial loop system e and the
same disk system de in R3 by an isotopic deformation h′ of R3(−∞, 2] so that
h′|R3[2] = h|R3[2]. Let α′ and δ′ denote again chord systems on the based loop

system o ∪ e in R3 which are obtained from h′(α′) and h′(δ′) by a homotopy
argument of an arc system (see [9, Lemma 4.11]), respectively.

By construction, any chord diagrams C(o ∪ e;α ∪ δ) and C(o ∪ e;α′ ∪ δ′) are
moved into any chord diagrams C(o;α) and C(o;α′) by the moves M0, M1, M2,
respectively, so that the ribbon surface-links F (o∪ e;α∪ δ) and F (o∪ e;α′ ∪ δ′) are
faithfully equivalent to F (o;α) and F (o;α′), respectively.

The homeomorphism f ′ = h′(gf)h−1 : R3(−∞, 2] → R3(−∞, 2] gives an
equivalence f ′′ : R4 → R4 from the ribbon surface-link F (o ∪ e;α ∪ δ) in [0, 2]
normal form to the ribbon surface-link F (o ∪ e;α′ ∪ δ′) in [0, 2] normal form such
that f ′′|R3[2,+∞) = 1, f ′′(d[0]) = d[0] and f ′′(de[0]) = de[0]. Further, by an ar-
gument of [4, Lemma 4.2] (as in [4, Lemma 4.3]), the equivalence f ′′ satisfies
that f ′′|u[0,2]∪ue[0,2] = 1, where u is the union of an arc ui ⊂ oi \ oi ∩ (α ∪ δ)
for every i and ue is the union of an arc ue

j ⊂ ej \ ej ∩ δ for every component
ej of e. Take a point qi ∈ ui and a point qej ∈ ue

j for every i and j. Let

V be a 3-ball in R3 such that the 4-ball V [0, 2] contains F (o ∪ e;α ∪ δ) and
F (o ∪ e;α′ ∪ δ′) in the interior. Assume that f ′′′|∂V [−1,2] = 1 for the bound-
ary 3-sphere ∂V [−1, 2] of the 4-ball V [−1, 2]. Then the arcs f ′′(qi[−1, 0]) and
f ′′(qej [−1, 0]) are ∂-relatively isotopic to qi[−1, 0] and qej [−1, 0] for all i, j, respec-
tively, by an ambient isotopy of V [−1, 2] keeping the boundary ∂V [−1, 2] fixed. This
is because the arcs qi[−1, 0] and qej [−1, 0] are respectively deformed into arcs parallel
to the arc qi[0, 2]∪ωi[2]∪vi[−1, 2]∪ωi[−1] in a neighborhood of ∂V [−1, 2]∪ui[0, 2] in
the 4-ball V [−1, 2] and the arc qej [0, 2]∪ωe

j [2]∪vej [−1, 2]∪ωe
j [−1] in a neighborhood

of ∂V [−1, 2]∪ue
j [0, 2] in the 4-ball V [−1, 2] , where vej is a point in ∂V and ωe

j is an
arc in V joining qej and vej . By replacing the arcs qi[−1, 0] and qej [−1, 0] by tubes, we

have an equivalence f ′′′ : R4 → R4 from F (o∪ e;α∪ δ) to F (o∪ e;α′∪ δ′) in [−1, 2]
normal forms such that f∗(x, t) = (x, t) for all x ∈ R3 and t ∈ (−∞,−1]∪ [2,+∞).
By shrinking [−1, 2] into [0, 1], the desired equivalence f∗ is obtained from f ′′′.
This completes the proof. □

The double ribbon surface-linkDF (o;α) of F (o;α) is the closed realizing surface
in [−1, 1] normal form on the band surgery sequence o → ℓ → o → ℓ → o where
the latter-half band surgery sequence o → ℓ → o is the inverse of the first-half
band surgery sequence o → ℓ → o. Let τ be the involution on R4 = R3(−∞,+∞)
defined by τ(x, t) = (x,−t) for all x ∈ R3 and t ∈ (−∞,+∞). The double ribbon
surface-link DF (o;α) is invariant under the τ -action on R4.

Lemma 3.2. The double ribbon surface-link DF (o;α) is equivalent to a ribbon
surface-link F (o;α∪γ) in [−1, 1] normal form by a τ -equivariant equivalence g (i.e.,
an equivalence g with τg = gτ), where γ = ∪s

j=1γj is an additional trivial chord
system on o such that the component γj is situated as in Fig. 10 for every j.
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Figure 10. The situation of the trivial chord γj

Proof of Lemma 3.2. The lower-open ribbon surface-link F (o;α)\d in R3[0, 1]

is deformed into the lower-open realizing surface Ĝ\d in R3[0, 1] of a band surgery
sequence o → ℓ → õ where the bands on ℓ → õ are deformed to be disjoint from
the bands on o → ℓ by replacing the bands with narrow bands and by sliding
bands. This deformation is done by a homeomorphism h : R3[0, 1] → R3[0, 1]
with one-parameter family of homeomorphisms ht : R3 → R3 (t ∈ [0, 1]) such
h(x, t) = (ht(x), t) for all x ∈ R3 and t ∈ [0, 1] and h0 is the identity. The

closed realizing surface Ĝ in [−1, 1] normal form on the band surgery sequence
õ → ℓ → o → ℓ → õ is a ribbon surface-link F (o;α ∪ γ), where γ = ∪n

j=1γj is a
centerline system of the bands on ℓ → õ. By construction, there is a τ -equivariant
equivalence g from DF (o;α) to F (o;α ∪ γ). □

A faithful equivalence between equivalent ribbon surface-links is basically ob-
tained from the following lemma:

Lemma 3.3. Let F (o;α) and F (o;α′) be ribbon surface-links in [−1, 1] normal
forms. Then any τ -equivariant equivalence g from F (o;α) to F (o;α′) is a faithful
equivalence.

Proof of Lemma 3.3. Let µ be a τ -equivariant meridian loop of N(α) which is
the union of an arc a in R3[0, 1] and the arc τ(a) in R3[−1, 0]. Then the arcs g(a)
and gτ(a) are homotopic to the same arc in R3[0] by a homotopy in F (o;α′) ∪
N(α′) keeping ∂g(a) = ∂gτ(a) fixed. Thus, the image g(µ) is null-homotopic in
F (o;α′) ∪N(α′), showing that g is a faithful equivalence. □

Proof of Theorem 2.4 is done as follows:

Proof of Theorem 2.4. Let F (o;α) and F (o′;α′) be equivalent ribbon surface-
links in [−1, 1] normal forms by an equivalence f . We show that F (o;α) and
F (o′;α′) are faithfully equivalent. By Lemma 3.1, there are ribbon surface-links
F (o ∪ e;α ∪ δ) and F (o ∪ e;α′ ∪ δ′) in [0, 1] normal forms which are respectively
faithfully equivalent to F (o;α) and F (o;α′), and equivalent by an equivalence f∗

with f∗|R3(−∞,0]∪R3[1,+∞) = 1. Since the faithful equivalence is an equivalence
relation, we may show that the ribbon surface-links F (o∪e;α∪δ) and F (o∪e;α′∪δ′)
are faithfully equivalent. By the τ -equivariant equivalence g uniquely constructed
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from this equivalence f∗, the double ribbon surface-linksDF (o∪e;α∪δ) andDF (o∪
e;α′ ∪ δ′) are equivalent. For simplicity, for the remainder of the proof, the chord
graphs (o∪e;α∪δ) and (o∪e;α′∪δ′) are written as (o;α) and (o′;α′), respectively.
Then by Lemma 3.2 the double ribbon surface-link DF (o;α) is equivalent to a
ribbon surface-link F (o;α∪γ) in [−1, 1] normal form by a τ -equivariant equivalence
for an additional trivial chord system γ = ∪n

j=1γj on o. Similarly, the double ribbon
surface-link DF (o;α′) is equivalent to a ribbon surface-link F (o;α′ ∪ γ′) in [−1, 1]
normal form by a τ -equivariant equivalence for an additional trivial chord system
γ′ = ∪n

j=1γ
′
j on o. Then the ribbon surface-links F (o;α ∪ γ) and F (o;α′ ∪ γ′) in

[−1, 1] normal form are equivalent by a τ -equivariant equivalence. By Lemma 3.3,
the ribbon surface-links F (o;α∪γ) and F (o;α′∪γ′) are faithfully equivalent by a τ -
equivalent faithful equivalence g∗ : R4 → R4. By the moves M0 and M2, the chord
systems γ = ∪n

j=1γj and γ′ = ∪n
j=1γ

′
j are deformed into trivial self-connecting chord

systems attaching to the based loop o0 with ∂γj = ∂γ′
j for all j. By an argument

of [4, Lemma 4.2] (as in [4, Lemma 4.3]) for F (o;α∪γ) and F (o;α′ ∪γ′) instead of
F (o;α) and F (o;α′), we have a faithful equivalence h : R4 → R4 from F (o;α ∪ γ)
to F (o;α′ ∪ γ′) in [−2, 2] normal forms with h|R3(−∞,−3] ∪R3[3,+∞) = 1 such
that

h| d[−2] ∪ u[−2, 2] ∪ o[1, 2] ∪ d[2] = 1

for the union u of an arc ui ⊂ oi\oi∩(α∪γ) for every i. Note that the band systems
β and β′ with the centerline chord systems α and α′, respectively are situated in the
levels t = ±1, so that N(α) = β[−1, 1] and N(α′) = β′[−1, 1]. We put copies of the
chord systems α∪ γ and α′ ∪ γ′ in the upper bands of F (o;α∪ γ) and F (o;α′ ∪ γ′)
in R3[1], respectively, which are denoted by ᾱ∪ γ̄ and ᾱ′ ∪ γ̄′. Let Γ(α∪ γ) be the
graph obtained from the chord graph (o;α ∪ γ) in R3 by deleting the interior of
u, and Γ(α′ ∪ γ′) the graph obtained similarly from the chord graph (o;α′ ∪ γ′) in
R3 (see Fig. 11). Let Γ̄(α ∪ γ) and Γ̄(α′ ∪ γ′) be the graphs obtained by putting
Γ(α∪γ) and Γ(α′∪γ′) in F (o;α∪γ)∩R3[1] and F (o;α′∪γ′)∩R3[1], respectively.
By [4, Lemma 4.4], the faithful equivalence h : R4 → R4 induces a map

h∗ : Γ̄(α ∪ γ) → Γ̄(α′ ∪ γ′)

preserving the degree one vertexes and graph-components and also inducing an
isomorphism on the fundamental groups of the corresponding components. On
the self-connecting chords, we use the fact in [10] that every automorphism of a
free group of a finite rank is generated by the elementary Nielsen transformations,
meaning

(1) Exchange of two basis elements,
(2) Replacement of a basis element by its inverse, and
(3) Replacement of a basis element by the product of it and another basis element.

Let ϵ(o) be a boundary-collar of the based loop system o in the disk system d.
This means that after a deformation of h given by handle slides on the 1-handles
N(α) = β[−1, 1] attaching to the 3-manifolds ϵ(o)[−3, 3], the self-connecting chords
h(ᾱj) and h(γ̄j) are homotopic to ones of the self-chords ±ᾱ′

j′ , ±γ̄j′′ for all j′, j′′

up to homotopies relative to the cylinders o[−3, 3]. By ignoring the orientations
of the self-chords and by changing the orientations of ᾱ′

j′ and γ̄′
j′′ if necessary, we

can consider that h(ᾱj) and h(γ̄j) are homotopic to ones of the self-chords ᾱ′
j′

or γ̄′
j′′ for all j′, j′′ up to homotopies relative to the cylinders o[−3, 3]. If h(γ̄j)



12 AKIO KAWAUCHI

is homotopic to ᾱ′
j′ up to a homotopy relative to the cylinders o[−3, 3], then the

chord ᾱ′
j′ must be a trivial chord. Hence if h(γ̄j) is homotopic to ᾱ′

j′ (or γ̄′
j′′

with j′′ ̸= j, respectively), then by a deformation of h interchanging ᾱ′
j′ (or γ̄′

j′′ ,

respectively) and γ̄′
j , the image h(γ̄j) is homotopic to γ̄′

j up to a homotopy relative
to the cylinders o[−3, 3] for all j. This also means that h(ᾱj) must be homotopic to
one of ᾱ′

jk
and hence by changing the indexes of ᾱ′

jk
, the image h(ᾱj) is homotopic

to ᾱ′
j up to a homotopy relative to the cylinders o[−3, 3], for all j. This condition

is just equal to the assumption of [5, Theorem]. Hence by [4, 5], any chord graph
C(o;α) is deformed into a chord graph C(o;α′) by a finite number of the moves
M0, M1, M2. This means that F (o;α) is faithfully equivalent to F (o′;α′). This
completes the proof of Theorem 2.4. □

Figure 11. The graph Γ

By the proof of Theorem 2.4, we have a stronger faithful equivalence on iso-
topically deformed ribbon surface-links F (o∪e;α∪δ) and F (o∪e;α′∪δ′), as stated
in the following corollary:

Corollary 3.4. Let F (o;α) and F (o;α′) be equivalent ribbon surface-links. Then
there is a faithful equivalence f∗ : R4 → R4 with f∗(x, t) = (x, t) for all x ∈ R3

and t ∈ (−∞, 0] ∪ [1,+∞) from a ribbon surface-link F (o ∪ e;α ∪ δ) to a ribbon
surface-link F (o ∪ e;α′ ∪ δ′) in [0, 1] normal forms such that

(1) Every chord in δ and δ′ connect from a loop of o to a loop of e and every loop
of e is connected with a loop of o by just one chord of δ and just one chord of δ′,

(2) Any chord diagrams C(o ∪ e;α ∪ δ) and C(o ∪ e;α′ ∪ δ′) are moved into any
chord diagrams C(o;α) and C(o;α′) by the moves M0, M1, M2, respectively, and

(3) The faithful equivalence f∗ sends every meridian of the 1-handle system N =
N(α∪ δ) of the chord system α∪ δ on F (o∪ e;α∪ δ) to a meridian of the 1-handle
system N ′ = N(α′∪δ′) of the chord system α′∪δ′ on F (o∪e;α′∪δ′). In particular,
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the image f∗(α ∪ δ) of the chord system α ∪ δ is homotopic to the chord system
α′ ∪ δ′ on the 1-handle system N ′ by a homotopy in N ′ relative to the attaching
disk systems.

Proof of Corollary 3.4. For proof, it suffices to show that every meridian of the
1-handle system N is sent to a meridian of the 1-handle system N ′ since a technique
of removing the extra trivial chord systems occurring in the proof of Theorem 2.4 is
shown there. Since f∗ defines a diffeomorphismR3(0, 1) → R3(0, 1), every meridian
disk of N is sent to a singular disk in (α′∪δ′)[0, 1]∪N ′ which is homotopy equivalent
to a graph. Hence every meridian disk of N is sent to a meridian of N ′. □

The following Assertion 3.5 is the same assertion as [4, Corollary 4.7], which is
shown in [5, Theorem]. Using Corollary 3.4, we can have a different proof of this
assertion.

Assertion 3.5. If ribbon surface-links F (o;α) and F (o;α′) are faithfully equiva-
lent, then after a finite number of the moves M0, M1, M2 on the chord diagrams
C(o;α) and C(o;α′), the chords α are homotopic to the chords α′ in R3 by a
homotopy relative to the based loops o.

Proof of Assertion 3.5. By Corollary 3.4, there is a diffeomorphism f∗ :
R3[−3, 3] → R3[−3, 3] with f∗((o ∪ e)[−3, 3]) = (o ∪ e)[−3, 3] such that the chords
f∗(ᾱ∪ δ̄) are homotopic to the chords ᾱ′∪ δ̄ by a homotopy relative to the cylinders
o[−3, 3] and the chord diagrams C(o∪ e;α∪ δ) and C(o∪ e;α′ ∪ δ′) are moved into
the chord diagrams C(o;α) and C(o;α′) by the moves M0, M1, M2, respectively.
Since the chords α ∪ δ are homotopic to the chords α′ ∪ δ′ in R3 by a homotopy
relative to the based loops o, showing Assertion 3.5. □

4. Moves on chord diagrams without base crossing

Let F be the set of the equivalence classes of ribbon surface-links. For the set
C of chord diagrams, we have a canonical map κ : C → F. The following lemma is
a paraphrase of Corollary 2.5.

Lemma 4.1. The map κ : C → F defines a bijection κ∗ : C/(M0,M1,M2) → F.

A chord diagram without base crossing is a chord diagram such that the disks
bounded by the based loops in R2 do not overlap and cut the chords with only
mutually disjoint proper simple arcs. Let B be the subset of the set C consisting
a chord diagram without base crossing. We impose the following conventions on
the set B, where the elementary move m0 is a fundamental move in C illustrated
in Fig. 12.

Conventions.

(1) Mutually disjoint disks bounding a based loop system in the plane are oriented
counterclockwise by observing the left-hand move of the elementary move m0.

(2) A chord attaches to the disk system from outside.

(3) The right move of the elementary move m0 is always assumed.
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Figure 12. The elementary move m0

The inclusion ι : B ⊂ C induces an onto map

B → C/(M0,M1,M2)

since every based loop system is a trivial link and hence every chord diagram is
deformed into a chord diagram without based loop crossing by the move M0. We
provide the moves mi (i = 1, 2, . . . , 15) on B illustrated in Fig. 13. Note that the
shadow on the move m9 in [6] is changed because of the convention (2) and the
mirror image move of the move m13 in [6] is added in m13 because of the convention
(1). In these figures, it is also noted that every based loop without indication of an
orientation can have any orientation which is preserved by the moves. The following
lemma was the main result of [6] because a chord attached to the disk system from
inside can be always avoided.

Lemma 4.2. The inclusion ι : B → C induces a bijection

ι∗ : B/
(
mi (i = 1, 2, 3, . . . , 15)

)
→ C/(M0,M1,M2).

Note that the move m∗ in Fig. 14 is a consequence of m4, the left move of m8

and the last two moves of m9 in B, which is shown in Fig. 15.

Let B̃ be the subset of B consisting of a chord diagram without base crossing
such that every simple proper arc of a chord cut by the disk system intersects the

interior of a disk system at one point. In this set B̃, we can assume that the situation
around a based loop is illustrated in Fig. 16 where we grant a based disk without
any chord in the interior or a based disk without attaching any chord from the
left-hand or right-hand side in the picture. To make this assumption, we need the
repair move matching the up-down relations on the arcs in every based disk such
as in Fig. 17 which is obtained from the move M1 and the regular change move in
Fig. 18 obtained by the move M0. For convenience, we use the notation in Fig. 19.

Let D be the set of virtual link diagrams (see [2]). A chord graph (o, α) is of
genus one if the core graph Λ(o;α)1 of every connected component (o, α)1 of (o, α)
is homotopy equivalent to a circle. Any chord diagram of a chord graph of genus

one is also said to be of genus one. Let A be the subset of B̃ consisting of a chord
diagram of genus one without base crossing. The map

τ : D → A
is defined by sending every virtual link diagram D ∈ D to a regular chord diagram
CD replacing a neighborhood of every real crossing with the diagram in the right-
hand side of Fig. 20 (where the arrow is omitted when the chord orientation is
assumed) and then by replacing a neighborhood of every virtual crossing with the
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Figure 13. The moves m1,m2, . . . ,m15 on chord diagrams with-
out base crossing
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Figure 14. The move m∗

Figure 15. Showing the move m∗

Figure 16. A disk with chords

Figure 17. Matching the up-down relations on the arcs

diagram in the right-hand side of Fig. 21. As illustrated in Fig. 22, the Reidemeister
moves Ri (i = 1, 2, . . . , 8) on the set D of virtual link diagrams change into the moves
cRi (i = 1, 2, . . . , 8) on the set A. The set D/ (Ri (i = 1, 2, . . . , 8)) is called the set
of welded virtual links with an element a welded virtual link. Consider the moves

cRi (i = 1, 2, . . . , 8) as the moves on the set B̃. Further, we introduce the moves

Bj (j = 1, 2, . . . , 6) on the set B̃, as illustrated in Fig. 23. Then we show the
following theorem.

Theorem 4.3. The map κ̃ : B̃ → F induces a bijection

κ̃∗ : B̃/
(
cRi (i = 1, 2, . . . , 8), Bj (j = 1, 2, . . . , 6)

)
→ F.

Proof of Theorem 4.3. It is directly confirmed that the moves cRi (i = 1, 2, . . . , 8)
are consequences of the moves M0,M1,M2. By Lemma 4.1, this fact is equivalent
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Figure 18. A regular change move

Figure 19. A notation on a based loop

Figure 20. Transforming a neighborhood of a real crossing point
into a part of a chord diagram

Figure 21. Transforming a neighborhood of a virtual crossing
point into a part of a chord diagram

to the fact that the moves Ri (i = 1, 2, . . . , 8) on the set D of virtual link diagrams
do not change the equivalence class of the corresponding ribbon torus-links shown
by [11] using T. Yajima’s ribbon torus-knot description in [13]. The moves Bi (i =
1, 2, . . . , 6) are also consequences of the moves M0,M1,M2. We also note that
the birth-death move is obtained from the moves cRi (i = 1, 2, . . . , 8), Bj (j =
1, 2, . . . , 6) since any closed chord is not allowed and hence the chord diagram
component on the left figure of Fig. 4 contains at least two based loops.

The surjectivity of the map κ̃∗ is obtained from Lemma 4.2 and the repair move
as in Fig. 17 which is obtained from the moves B1 and B2.

Assume that a chord diagram C ∈ B̃ is moved into a chord diagram C ′ ∈ B̃
by a finite number of the moves mi (i = 1, 2, . . . , 15). If an upper or lower simple
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Figure 22. Replacements of the Reidemeister moves

proper arc of a chord cut by the disk system arises by the left move of the move
m8 or m14 in the process of moves from C to C ′, then construct a chord crossing
given in the middle diagram of Fig. 14 by the move B1, namely M1 (which comes
from the moves mi (i = 4, 5, 6) by an argument in Section 2) and m∗. Then there
is a process of moves from C to C ′ using the move B2 but avoiding the use of the
left moves of m8 and m14. Then we use the following observations:

(1) By the assumption of the based loop as in Fig.16, the right move of m8 is
restricted to the move in Fig. 24 which is attained by the moves B1 and cR2.

(2) The first move of m9 is attained by B1 and cR1.
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Figure 23. The moves Bj (j = 1, 2, . . . , 6)

Figure 24. A restriction of the move m8

Figure 25. The move B′5

Figure 26. A restriction of the move m14



20 AKIO KAWAUCHI

(3) The second and third moves of m9 are restricted to the move B5 and the move
B′5 in Fig. 25 which is obtained from the move B5 by using the moves B2, B3.

(4) The move m14 is restricted to the move in Fig. 26 which is attained by the
moves B1, B5 and cR2.

Then we see that the inclusion ι̃ : B̃ → C induces a bijection

ι̃∗ : B̃/
(
mi (i = 1, 2, . . . , 15, i ̸= 8, 9, 14), cR1, cR2, B

1, B2, B3, B5
)

→ C/(M0,M1,M2).

By combining this bijection with Lemma 4.1, we have the composite bijection

κ∗ι̃∗ : B̃/
(
mi (i = 1, 2, . . . , 15, i ̸= 8, 9, 14), cR1, cR2, B

1, B2, B3, B5
)
→ F.

Note that the moves mi (i = 4, 5, 6) are obtained from the move B1 (cf. [4,
Lemma 3.1]). The moves m1,m2,m3,m7,m10 correspond to cR4, cR5, cR6, B

3, B4,
respectively. The move m11 is obtained from cR8 and B1. By using B1, the move
m12 is regarded as the move B′6 in Fig. 27 which is obtained from the move B1

and B6. The move m15 is obtained from cR5 and cR7. For the remaining move
m13, use the move cR′

3 illustrated in Fig. 28 obtained from cR3 by using B1. Then
the move m13 is obtained from B1, cR2, cR

′
3 as in Fig. 29 where the mirror case is

similarly obtained. Thus, we have shown the desired result. □

Figure 27. The move B′6

Figure 28. The move cR′
3

Let F1 be the subset of F consisting of the equivalent classes of ribbon torus-
links. For the set A of chord diagrams of genus one without base crossing, we see
from [4, 11] that the composite map

κAτ : D → F1

for the map τ : D → A and the restriction κA : A → F1 of the map κ̃ to A is an
onto map from the set D/ (Ri (i = 1, 2, . . . , 8)) of welded virtual links onto the set
F1. We obtain the following result as a corollary of Theorem 4.3.

Corollary 4.4. The map τ : D → A induces an onto map

τ∗ : D/ (Ri (i = 1, 2, . . . , 8)) → A/
(
cRi (i = 1, 2, . . . , 8), Bj (j = 1, 2, . . . , 6)

)
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Figure 29. The moves for m13

and the map κA : A → F1 induces a bijection

κA∗ : A/
(
cRi (i = 1, 2, . . . , 8), Bj (j = 1, 2, . . . , 6)

)
→ F1.

In other words, two welded virtual links D and D′ represent equivalent ribbon
torus-links if and only if the chord diagrams τ(D) and τ(D′) are changed into each
other in A by a finite number of the moves cRi (i = 1, 2, . . . , 8), Bj (j = 1, 2, . . . , 6).
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