KAwaucHI, A.
KOBE .J. MATH.,
15 (1998) 103—114

ON THE FUNDAMENTAL CLASS OF
AN INFINITE CYCLIC COVERING

Akio KAwAUCHI!

(Received Nobember 11, 1997)
(Revised June 24, 1998)

1. Introduction

We consider a compact, connected, oriented PL n-manifold M with
HY\(M;Z) = Hom(H;(M;Z),Z) # 0. We restrict ourselves to the case that
n 2> 3 unless otherwise stated. Every element ¥ € H'(M;Z) determines a PL
map f, : M — S which is unique up to homotopy. By transverse regularity,
the preimage V = (f,)~'(g) for any non-vertex point ¢ € S! is a (possibly dis-
connected) oriented proper bicollared (n — 1)-submanifold of M. [Note on the
orientation of V: Take a small interval I, C S around the point ¢ and orient
it by the orientation of S'. Then (f,)~'(I,) is naturally identified with V x s
which is oriented by the orientation of M. Since I, and V x I, are oriented,
V' can be oriented uniquely.] We call this V a leaf of v. The homology class
[V]€ Hoy(M,0M;2Z) corresponds to y by the Poincaré duality

N[M]: HY(M;Z) = H,_(M,0M;Z).

The Pontrjagin-Thom construction explains how to construct the element ~y from
an oriented proper bicollared (n — 1)-submanifold V of M. From now on, we
assume that the element v is an indivisible element, that is, v : Hy(M; Z) > Z
is an epimorphism. We take the infinite cyclic covering p : M — M associated
with 5. Since v is indivisible, M is connected. Let exp : R = S! be the infinite
cyclic covering defined by exp(z) = €2*™V=1, Then the map f, : M — S' lifts
to a proper map f.., : M — R with t f7 = f;t, where ¢ denotes a generator of
the infinite cyclic covering transformation group, such that t(z) = = + 1 for all
z € R. Let My be the compact manifold obtained from M by splitting it along
V. Let V and V' be the two copies of V in OMy. Let V* = (f.,)‘l(xq) and
M* = (f,)"}[z4,2, + 1] for any point rq € R with exp(z,) = ¢. Then t™V* =
( f.,)“l (zq + m) and the covering projection p defines a canonical identification

!Dedicating this paper to Professor Fuichi Uchida on his 60th birthday.
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of the pair (M*,tV* + (—V*)) with the pair (My, V' + (=V)) with orientation
counted. Further, the submanifold V* of M is equivariant, that is, tmV*NV* = ()
for any m # 0, and the homology class u = [V*] € H,_(M,8M;Z) has the
properties

(t-Dp=[V"~V*]=0 and p.(u) = [V] =N [M],

where H,,_,(M,dM;Z) is naturally regarded as a module over the ring A =
Z[t,t™'] and p, : H,_y(M,0M;Z) — H,_,(M,0M: ;Z) denotes the homomor-
phism induced from p. Since the A-torsion part TH,,_,(M,dM; Z) of H,_,(M,
OM;Z) is A-isomorphic to A/(t — 1) by the first duality of (3], we see that the
homology class y is uniquely determined by the covering p: M - M , which we
call the fundamental class of the covering p : M — M (cf. (3; Lemma 6.1]).

In this paper, we study how any two leaves of an indivisible element v €
H'(M;Z) are connected via a sequence of embedded-handle surgeries in M,
in other words, how any two equivariant compact proper bicollared (n — 1)-
submanifolds of M representing the fundamental class p are connected via a se-
quence of equivariant embedded-handle surgeries in M. Our main application is
then done for a high-dimensional manifold-link theory. An oriented manifold-link
Fin a compact connected oriented n-manifold M is a closed, possibly discon-
nected, oriented (n — 2)-submanifold of the interior int M of M such that there
exists a bicollared compact oriented (n — 1)-manifold V in M with 8V O F and
OV — F C M. We call such an (n — 1)-submanifold V a Seifert hypersurface for
Fin M. We denote 9V — F by 8V which is § or a closed (n — 2)-submanifold
of OM. This Seifert hypersurface V' determines a unique indivisible element
Yv € HY(M — F;Z) = Hom(H, (M —F;Z),Z) sending each oriented meridian of
F'in M to 1 € Z. Our argument is applied for Seifert hypersurfaces of an oriented
manifold-link in an n(> 3)-manifold with connected boundary (possibly, empty)
as follows:

THEOREM 1.1.  Assume that the boundary OM is connected (possibly, 0).
Let V' be a Seifert hypersurface for an oriented manifold-link F in M. Then
every Seifert hypersurface V' for F in M such that vy = yy: and Oy V = oV’
(with orientation counted) is obtained from V' by a combination of a sequence of
embedded-handle surgeries and an ambient isotopy of M relative to FUOM.

When OM is disconnected, the corresponding assertion does not hold even
for some Seifert hypersurfaces of a trivial S"~2-knot in int(M) (see Example 3.3).
The terminology “embedded-handle surgery” is precisely explained in Section 2.
Some basic result (Theorem 2.1) and its consequences are also stated in Section 2.
In Section 3, the connectivity of a leaf is discussed. In Section 4, the proofs of
Theorems 1.1 and 2.1 are given.
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Several results similar to the present results have been given by C. Kearton
and W.B.R. Lickorish [5], P.M. Rice [6], and K. Yokoyama [8] in several methods.
Our present method is a generalization of Rice’s method in [6] which directly
investigates the intersection of two Seifert surfaces of a classical knot. This
method was generalized to that of a classical link in [4; Chapter 5] to show the
topological invariance of the S-equivalence class of a Seifert matrix of a classical
link.

Throughout this paper, spaces and maps are in the PL category, unless oth-
erwise stated.

2. Basic Result

Let k£ be an integer with 1 < k < n — 1. Let D* denote the unit k-disk.
A k-embedded-handle on a compact oriented (n — 1)-submanifold V' of M is an
embedding

@ : D¥ x D" % o int(M)
whose image we denote by h* such that
@(D* x D" %) nint(V’) = p((8D*) x D™ *)

which we denoted by A*. Then the manifold V" = cl(V’ — h*) U cl(8h* — hF)
is said to be obtained from V' by a k-embedded-handle surgery (or simply a k-
EHS) in M. We note that the manifold V' is also obtained from V" by an
(n — k)-EHS in M. Further, if V' is a leaf of v, then V" is also a leaf of 7. A
compact oriented (n — 1)-submanifold V' of M is obtained from V' by a sequence
of embedded-handle surgeries (or simply by a SEHS) if there is a sequence of
(n — 1)-submanifolds V; (j = 1,2,...,8) of M such that V' = W, V =V,
and for every j = 1,2,...,s — 1, Vj4, is obtained from V; by a k;-EHS where
1<kj<n-1 Ifk;j =k forall j, then the SEHS is also called a k-SEHS. By a
standard argument on general position, we can arrange every SEHS so that each
J-SEHS appears after every i-SEHS for all i and j with i < j. The following
theorem is a basic result for our purpose:

THEOREM 2.1. For a given leaf V' of v, a leaf V of ~ such that 8V =
OV' (with orientation counted) is obtained from V' by a combination of a SEHS
and an ambient isotopy of M relative to dM if and only if [-V U V'] = 0 in
Hn—l (M, Z) .

When n = 2, the same result holds, which is discussed in Remark 4.2.
In general, any two leaves V and V' of the same element ~ have [V] = [V'] in
H,_,(M,0M;Z). This implies that if the boundary &M is @ or connected, then
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we have that [-V UV'] =0 in H,,_;(M;Z), because [0M] =0 in H,_;(M;Z).
Thus, by Theorem 2.1, we have the following corollary:

COROLLARY 2.2. If the boundary OM is () or connected, then for a given
leaf V' of v, every leaf V of v with 8V = 0V' (with orientation counted) is
obtained from V' by a combination of a SEHS and an ambient isotopy of M
relative to OM.

We consider the case that M has two or more connected components B; (i =
0,1,...,7). We push B; into int(M) by using a boundary-collar so that the
resulting B; (say B]) meets a leaf V' of v with a closed orientable (n — 2)-
manifold transversely in int(M) (cf. M.A. Armstrong and E.C. Zeeman [1]). We
do an orientation-preserving cut on V' UeB! (¢ = £1) in int(M) to obtain an
(n — 1)-manifold V", which is still a leaf of v with V" = V"' and is said to be
obtained from V' by making an addition (or more precisely, an e-addition) of B;
to V'. Then we have

VUV =[-VUV']+¢[B] (e = +1)

in H,_1(M;Z) for any leaf V of v with 9V = dV". Since [-V U V'] is generated
by [Bi] (i =0,1,...,7) and [OM] = Y_!_([B;] = 0 in H,_,(M;Z), we see that
[~V U V'] is generated by the homology classes [B;] (i = 1,...,r) with any
one homology class, say [Bp], removed. Thus, we obtain from Theorem 2.1 the
following corollary:

COROLLARY 2.3. Assume that the boundary OM has two or more connected
components B; (i =0,1,...,r). Then for a leaf V' of v, every leaf V of 7 such
that OV = V' (with orientation counted) is obtained from V' by a combination
of a SEHS and an ambient isotopy relative to OM after making some additions
of Bix(t = 1,2, 5. ,r) ot VL,

We consider a more special case that for every i # 0, B; = S! x F; with
F; a closed connected oriented (n — 2)-manifold and V' N B; = e(P; x F;) (with
orientation counted) for a finite subset P; C S'. Note that we do not impose any
condition on By. Then the leaf V" of v obtained from V' by an e-addition of
B; to V' is isotopic to V' by an ambient isotopy of M which, on B;, slides the
set P; onto itself along S and keeps the (n — 2)-submanifold F; fixed, and also
keeps the outside of a boundary-collar of B; in M fixed (see Fig. 1). Then we
say that V" is obtained from V' by doing a winding operation on B; for V'. The
following corollary is direct from Corollary 2.3:

COROLLARY 2.4. For the connected components B; (i = 0,1,...,r) of the
boundary OM, assume that for every i # 0, B; = S' x F; with F; a closed
connected oriented (n — 2)-manifold and V' N B; = e(P; x F;) (with orientation
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V'II

Fig. 1.

counted) for a non-empty finite subset P; of S*. Then every leaf V of vy such that
OV = 9V' (with orientation counted) is obtained from the given leaf V' of v by a
combination of a SEHS and an ambient isotopy relative to OM after doing some
winding operations on B; (i = 1,2,...,r) for V'. In particular, V is obtained
from V' by a combination of a SEHS and an ambient isotopy of M relative to
By.

In general, there exist two leaves V and V' of v with 8V = 9V’ (with
orientation counted) such that V' cannot be obtained from V' by a combination
of a SEHS and an ambient isotopy of M. Some simple example is given in
Example 3.3.

3. Connectivity of a leaf

We consider an indivisible homology class z of H,_;(M, A;Z), where A is )
or a compact submanifold of M such that A’ = cl(M — A) is also () or a compact
(n — 1)-submanifold of M. We note that z is always represented by a possibly
disconnected, compact bicollared oriented (n — 1)-submanifold V with (V,9V) C
(M, A). In fact, by the Poincaré duality isomorphism N[M] : H'(M,A";Z) =
H,_1(M, A;Z) and a natural isomorphism H'(M, A';Z) = [M 4/, S"], we obtain
amap f : My — S! unique up to homotopy from z, where My is M (if
A" = 0) or the quotient space obtained from M by identifying A’ with one
point pa (if A" # 0). Then the preimage V = f~!(gq) of any non-vertex point
q € S' (with ¢ # f(pa) if A’ # 0) is a desired one. Further, if z is a non-zero,
divisible homology class, then we can see from Poincaré duality that z cannot be
represented by any connected one. In this section, we consider when an indivisible
homology class z is represented by a connected (n — 1)-submanifold V. We have
the following theorem (where we assume n > 3):
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THEOREM 3.1. An indivisible homology class z of Hn_1(M, A;Z) is repre-
sented by a connected (n — 1)-submanifold V if and only if one of the following
conditions (1) and (2) holds:

(1) There is a simple loop € in int(M) with intersection number Int([{], 2) =

= = I8

(2) A’ is disconnected and the intersection number Int([a], 2) is 0 or 1

for every simple proper arc a in M with Oa C A'.

Further, when (1) holds, some connected (n — 1)-submanifold V' representing

2 is obtained from any given (n — 1)-submanifold V' representing z by a 1-SEHS.

We refer an explanation of the n = 2 version of this theorem to Remark 3.4.
In the case (2), we must have Int([{],2) = 0 for every simple loop £ in int(M),
since otherwise we can easily construct a proper arc a’ in M with da' Cc A
such that Int([a],2) is an integer except 0 and =£1, which is a contradiction.
This also implies that there is a simple proper arc a’ in M with 8a’ C A’ and
Int([a'],z) = +1 by Poincaré duality. The following corollary is direct from
Theorem 3.1 (1):

COROLLARY 3.2. For n > 3, every leaf V' of an indivisible element v €
HY(M;Z) is modified into a connected leaf V' of v by a 1-SEHS.

The following example contains the reason why some codimension one im-
mersed sphere cannot be homologous to an embedded sphere. For n = 3, compare
with the sphere theorem (see for example J. Hempel [2)).-

EXAMPLE 3.3. Let M be the connected sum of S"~! x S' and a compact
connected oriented n-manifold M; with 8M; disconnected (n > 3). Let B be
a connected component of 9M = OM;. Let z(m,m') be the homology class
m[S"~! x p| + m'[B] in Hn—1(M;Z) for a point p € S! and integers m and
m'. The homology class z(m,m') is always representable by a closed bicollared
(n — 1)-submanifold of M and, further when B is an (n — 1)-sphere, by an
immersed (n — 1)-sphere in M. It is indivisible if and only if m and m' are
coprime. From Theorem 3.1, we can see that the indivisible homology class
z(m,m') is representable by a closed connected orientable bicollared (n — 1)-
submanifold V(m,m’') of M if and only if m = 0,+1. We note that V(1,0)
and V(1,m') (m' # 0) are leaves of the same indivisible element of H'(M;Z).
However, V(1,0) cannot be obtained from V'(1,m') by a combination of a SEHS
and an ambient isotopy of M, because V(1,0) and V(1,m’) represent distinct
homology classes of H,_1(M;Z). Let F be a trivial S® 2-knot in M;. Since
a surgery of M; along F replacing a regular neighborhood N(F) = For=tixe
D? of F with D"~! x S! produces M, we may consider that F admits Seifert
hypersurfaces Vp(1,0) and Vp(1,m') in M; which are obtained by removing an
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open (n — 1)-ball from each of V'(1,0) and V' (1,m'), respectively, and which give
the same generator of H!(M, — F;Z). If V4(1,0) is obtained from Vp(1,m')
by a combination of a SEHS and an ambient isotopy of M; relative to F', then
we would have [V;(1,0)] = [Wo(1,m)] in H,—y(My,N(F);Z) and by surgery
[V(1,0)] = [V(1,m')] in H,—y(M,D"! x S';Z). Since H,_1(D" ! x S};Z) =
0 for n > 3, we would have [V (1,0)] = [V(1,m')] in H,—y(M;Z), which is
impossible for m’ # 0. Hence we see that V;(1,0) cannot be obtained from
Vo(1,m') by a combination of a SEHS and an ambient isotopy of M; relative to
F.

Proor oF THEOREM 3.1. Assume that there is a connected (n — 1)-
submanifold V' representing 2. Then the manifold My obtained from M by
splitting it along V' has at most two connected components. When My is con-
nected, there is a simple loop ¢ in int(M) which meets with V' in one point
transversely, so that Int(¢, V) = +1 and the case (1) occurs. Assume that My is
disconnected. Then My has two connected components. Let A} (i =0,1,...,7)
be the connected components of A’. We note that every loop ¢ in int(M) is
homologous to a sum of loops not meeting with V' since V' is connected, so
that Int(¢,V) = 0. This means that every simple proper arc a in M joining
some A} and some A’ has Int(a,V) = 0 or £1 according to whether A and
A’ belong to the same connected component of My or not. Then the case (2)
occurs. Conversely, assume that z has the condition (1) or (2). Let V' be an
(n—1)-submanifold representing z. We take mutually disjoint simple proper arcs
a; (i =1,2,...,r) in M with 8a; C A’ and simple loops ¢; (j = 1,2,...,s) in
int(M) such that

(i) these arcs and loops meet V' transversely,

(ii) these arcs and loops represent a basis of the quotient group
bH; (M, A";Z) of H,(M, A'; Z) by the torsion subgroup, and

(i) Int([ai],2) =0 (i = 1,2,...,7) and Int([¢;],2) = 6;1 (j = 1,2,...,8)
in the case (1), or Int([a;],2) = ;1 (: = 1,2,...,r) and Int([{;],2) = 0 (j =
1,2,...,s) in the case (2).

Then by a 1-SEHS (along these arcs and loops), we obtain from V' an (n—1)-
submanifold V" representing z meeting in a single point only with ¢; in the case
(1) or only with a; in the case (2). Let Vj' be the connected component of V"
meeting with ¢; in the case (1) or a; in the case (2). Since the intersection pairing

Int : bHy (M, A';Z) x Hooy(M, A;Z) - Z

is non-singular by Poincaré duality, we see from (ii) that each connected compo-
nent of V" — V' represents the zero element of H,_;(M, A;Z). Hence [Vy'] =
[V"] = z. For the first half assertion, we can take V' as V.

In the case (1), we can take a simple arc a joining the loop ¢; with a connected
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component V;’ of V"' = Vy' in M. Let by and by be the two arcs obtained from ¢;
by cutting it by the two points £; N(aUVy'). Then the arc by Ua or byUa connects
V{" and V" with coherent orientation. By the 1-EHS along a 1-handle, we can
connect V' and V{". By induction, we can obtain a connected (n—1)-submanifold
V representing z from V" by a 1-SEHS. This completes the proof.

REMARK 3.4. We observe here the version of Theorem 3.1 in the case n = 2
is false in general. Let A;(i = 1,2,...,u) be the connected components of A with
orientations induced from M. When n = 2, the intersection number Int(A;, z) is
well-defined for an indivisible homology class z € Hi (M, A; Z). We define

u
Ia(z) =) |Int(4i,2)l,
i=1
which is a non-negative even integer. By convention, I4(z) = 0 for A = 0. Then
we have the following proposition (whose proof is obvious):
An indivisible homology class z € Hi(M, A; Z) is represented by a connected
1-manifold if and only if we have I4(z) < 2 in addition to the condition (1) or
(2) of Theorem 3.1.

4. Proofs of Theorems 1.1 and 2.1

41 PROOF oF THEOREM 2.1.  The “only if” part is obvious. We show
the “if” part. By Corollary 3.2, we assume that V is connected and V' has no
closed manifold component. We take mutually disjoint, oriented, simple proper
arcs a; (i = 1,2,...,r)in M and simple loops £ and £; (j = 1,2,...,8) in int(M)
with the following properties (i), (i) and (iid):

(i) these arcs and loops meet V and V' transversely and da; C OM — oV (i=
AN )
(ii) these arcs and loops represent a system of generators for the free abelian
group bH,(M,0M;Z), and
(iii) Int(a;,V) =0 (i = 1,2,...,r), Int(¢,V) = 1, and Int(¢;,V) =0 (@ =
| 1 S

Since [~V U V'] =0 in Hn_1(M;Z), we see from (jii) that Int(a;, V') =0
[i.= L 20 ¢ calflds Int(¢,V') = 1, and Int(¢;, V') =00 = by R s, 8)- By & 1-
SEHS along these arcs and loops, we can assume that the loop ¢ meets each of
V and V' at a single point, and the other loops ¢ (j = 1,2,... ,s) and the arcs
ai (i=1,2,...,r) do not meet V.U V'. Let N be a tubular neighborhood of £ in
M meeting V and V' with (n — 1)-disks. We may deform V/ and V' along ¢ so
that these (n — 1)-disks coincide, i.e., V'N N = V'N N by an ambient isotopy of
M relative to the outside of a regular neighborhood of N. Let E = c(M - N),
Vg =VNEand V,=VNE. When OM # 0, we choose a proper oriented arc
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@41 in E connecting ON and some component of dM with da,,; NOVE = 0 and
meeting Vg and Vj, transversely. We note that ON = S! x §"~2 and ONNAVE =
ON NAVE = p x S"~2 for some p € S!. We do winding operations on N for
Vg and Vg to obtain Int(a,4+1,Ve) = Int(a,4+1,VE) = 0. We note that these
operations are ambient isotopic deformations of V' and V' in M relative to the
outside of a regular neighborhood of N. By a 1-SEHS along a,.;, we can deform

'z and Vg so that a,41 NV = a,41 NV’ = 0. Since the arcs a; (i = 1,2,...,7+1)
and the loops ¢; (j = 1,2,...,s) represent a system of generators for the free
abelian group bH;(E,J0E;Z) and they do not meet with —Vg U Vj,, we see from
the non-singular intersection form

Int : bH, (E,0E;Z) x H,_(E;Z) - Z

that the homology class [-Vg U V] € H,_i(E;Z) must be zero. Thus, it is
sufficient to prove the theorem under the following assumption:

ASSuMPTION 4.1.1. 9OM D 9V' =0V # 0, and there are mutually disjoint,
oriented, simple proper arcs a; (i = 1,2,...,r) in M and simple loops {; (j =
1,2,...,s) in int(M) such that these arcs and loops do not meet V and V', and
represent a system of generators for the free abelian group bH,(M,0M;Z).

Let by (k = 1,2,...,u) be simple proper oriented arcs or simple oriented loops
in V' which represent a basis for bH;(V,0V;Z). Let b} be a slight translation
of by into a positive normal direction obtained by using a collar of V in M.
Since [-VUV'] =0in H,_(M;Z), we have Int(b;:, -V uV’) =0. Using that
bi NV =0, we see that Int(int(bz), V') = 0. By an argument of transversality in
[1], we can assume that the intersection L = int(V)Nint(V") is a closed (possibly
disconnected) orientable bicollared (n — 2)-submanifold of V' and V’. Then by a
1-SEHS on V' along by, we may consider that int(by) NV’ =0 (k =1,2,...,u).
Let L; be any connected component of L. Since by N L; =  for all k, the
non-singular intersection form

Int : bHy(V,0V;Z) x H, »(V;Z) > Z

implies that L; bounds a compact (n — 1)-submanifold V; in V. We take L; to
be innermost in V, i.e., (L—L;)NV; =0. Let ¢: V; x [-1,1] - M be a PL
embedding such that c¢(z,0) = z for all z € V; and ¢(L; x [-1,1]) C V'. We
consider the (n — 1)-manifold V" = V' — ¢(L x (—1,1)) Ue(Vy x {—1,1}). The
(n — 1)-manifold V" has at most one closed manifold component.

We first assume that V" has no closed manifold component. Then we modify
c(Ly x[-1,1]) into e(V; x {—1,1}) by a SEHS along the n-manifold ¢(V; x[-1,1]),
so that the leaf V" of v without a closed manifold component is obtained from
V' by a SEHS. By construction, we have int(V) Nint(V") = L — L,.
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Next, we assume that V" contains a closed manifold component V}". Let
V* = V" - V{". Without loss of generality, we consider that c¢(V; x 1) C V}".
Since V{"Na; = V"N ¢; = 0 for all i and j, the non-singular intersection form

Int : bHy (M,0M;Z) x Ho_y(M;Z) > Z

implies that V" is the boundary of a compact connected n-submanifold M, in
M. Since OM D 0V = 9V* # () and V* has no closed manifold component, we
have M; NV* = ). We modify the (n — 1)-submanifold dM;" — ¢(int(V;) x (=1))
of V" into ¢(V; x (—1)) by a SEHS on V' along the n-manifold M;" = M; Uc(V; x
[=1,1]). Thus, we obtain from V' a leaf V* of v by a SEHS such that V* has no
closed manifold component and int(V) Nint(V*) = L — L;.

Using that the arcs a; (i = 1,2,...,r) and loops ¢; (j = 1,2,...,s) do
not meet V" and V*, we can continue this process to obtain that L = (), that
is, (=V)U V" is a closed connected (n — 1)-manifold. Then, since it is null-
homologous in M, it bounds a compact connected n-manifold in M. Using it, we
see that V' is obtained from V' by a SEHS. This completes the proof of Theorem
P i

REMARK 4.2. The n = 2 version of Theorem 2.1 is true, although the proof
is somewhat different from 4.1. We show the “if” part since the “only if” part
is obvious. Let V and V' be leaves of an indivisible element v € H'(M;Z) such
that 9V = 9V’ (with orientation counted) and [-V U V'] = 0 in H,(M;Z).
Then we show that V' is obtained from V' by a combination of a SEHS and an
ambient isotopy relative to M. We may assume that M is bounded. We take
mutually disjoint oriented simple proper arcs a; (i = 1,2,...,7) in M meeting
V and V' transversely and being disjoint from 8V such that the surface M*
obtained from M by cutting along the arcs is a disk. We modify V and V' by
1-handle (= band) surgeries along the arcs so that |a; N V| = |Int(a;, V)| and
|a; N V'| = |Int(a;, V')| for every i = 1,2,...,r. Let V* and (V')* be the proper
oriented 1-manifolds in the disk M* obtained from V and V' by cutting along the
arcs, respectively. Since Int(a;, V') = Int(a;, V') for all 7, we can overlap the parts
of V* and (V')* contained in a boundary collar of M* by an ambient isotopy of
M* relative to V. Then by band surgeries, V* and (V')* are deformed so that
they coincide up to trivial loops in M*. Thus, to complete the proof, it suffices
to show that V' + O is deformed into V' by band surgeries in M for the boundary
O of a disk D in int(M)— V. Let £ be a simple oriented loop in int(M) such that
Int(£,V) =m > 0 and £N D is an arc. By band surgeries, V is deformed into V"
with [N V"| = Int(¢, V") = m. Then we can do an oriented band surgery along
an arc in £ joining O and V". The result of this surgery on V" + O is ambient
isotopic to V" relative to &M . We can recover V from V" by the inverse band
surgeries. Hence V' + O is deformed into V' by band surgeries in M. Thus, we see
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that V' is obtained from V' by a combination of a SEHS and an ambient isotopy
relative to OM.

4.3 PROOF OF THEOREM 1.1. We may consider that a regular neigh-
borhood N of F in M is a trivial disk-bundle over F with a trivialization
f:Fx(D?0) 2 (N,F), where D? denotes the 2-disk and 0, the origin. By the
uniqueness of PL normal disk bundles (cf. C.T.C. Wall [7]), we can assume that
VN =V NN and Vi = V'N N give cross-sections of this bundle, that is, there
are embeddings g,¢' : F x [0,1] - F x D? preserving the F-factors identically
such that

(1) g(z x ([0,1],0)) = z x ([0,1],0) for all z € F, where [0, 1] denotes the
line-segment in D? with endpoints 0 and a point 1 € S? (independent
of z),
(2) ¢(Fx[0,1)NFx0=g'(Fx0) and g (Fx[0,1)NFxS' = g'(Fx1),
(3) fo(F x[0,1]) = f(F x [0,1])) = Viy and fg'(F x [0,1]) = V.
Further, replacing D? with a smaller 2-disk, we can assume that ¢'(z x [0,1]) = zx
[0,1,] for all z € S! where [0,1.] is a line-segment in D? with an endpoint 1, €
S' depending on z. Let F; = 9(Fx1),F{ =¢'(Fx1),E=cl(M-N),Vg =Vn
E, and Vi = V'NE. Since Vg and V}, are leaves of the same element Y=wlg=
Ww'|e € H'(E;Z), we have [fF,] = [fF{] in H,_,(8E;Z), so that [F}] = [F{] in
H,_»(F x §';Z). By the assumption on g, this homology class is Poincaré dual
to the element 7o € H'(F x S'; Z) represented by the product bundle projection
Po: F x 8 —» S, Since F; and F! are leaves of the same element Y0, we have
Yo|r; = Y|r, = 0, which implies that the composite maps s = po(g|rx1), s’ =
po(9'|Fx1) : F x 1 = S! induce the same (trivial) homomorphism in homology
and hence are homotopic. This homotopy induces an isotopy preserving the F-
factors identically between the embeddings g|rxi1,9'|Fx1 : Fx1 —» F x S,
which extends, by a cone extension, to an isotopy between the embeddings g, ¢’ :
F' x[0,1] & F x D? which keeps 9lFx0 = ¢'|Fxo : F x 0> F x 0 fixed. By the
isotopy extension theorem, this isotopy extends to an ambient isotopy of F' x D2,
From this, we can construct an ambient isotopy of M relative to SM U F sending
Vy onto V. Now we consider that (N,Vy) = (N,Vy) = F x (D?,[0,1]) and
(ON,VN NON) = (ON,V}, NON) = F x (S',1). Since Vg and Vi, are leaves of
the same element y € H'(E;Z) with 0V = OVy; and the winding operations on
the components of N for Vg extend to an ambient isotopy of N relative to F,
we can apply Corollary 2.4 to obtain the desired result, taking E, Vg, and Vg as
M, V, and V', respectively. This completes the proof of Theorem 1.1.
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