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§0. Introduction

We consider a polygonal oriented link £ in the Euclidean 3-space R3. Let
E(¢)=R3—¢. We have a unique infinite cyclic covering space E(4) over E(¥)
associated with the epimorphism y: n,(E(¢))—{t) sending each meridian
element® of ¢ to t, where ¢t is the infinite cyclic group generated by a letter
t. For the integral group ring A=Z{t), the integral homology H (E(£)), which
we denote by H(¢), forms a finitely generated A-module. Throughout this
paper, A-modules will mean finitely generated A-modules, unless otherwise
stated. For a A-module H, we use the following notations: DH =the (unique)
maximal finite A-submodule of H (cf. [Kal,), DoH=Nj% (t—1)DH, TH=
the A-torsion part of H, BH=H|TH, BH =rank 4 H, eH =the minimal number of
elements generating H over A, and E?H=Ext%(H, A). Note that D H=
(t—1)"DH for a large positive integer N and hence t—1: DyH=D,H. By con-
vention, eH=0if H=0. It is known that E4H =0 for ¢ >3 and there are natural
A-isomorphisms E2H=~E2DH=~Hom »DH, Q/Z) and H has the A-projective
dimension <1 if and only if DH =0 (cf. [Ka, §3],, Levine [L]). By the identity
A1) x=Mt"")x for A(f)e A and x e H, H has another A-module structure. We
denote this A-module by H. When H=H(¢), we denote DH, D H, TH, BH,
BH and eH by D(£), Dy(4), T(£), B(£), B(£) and e(¥), respectively. Let u(¢) be
the number of components of ¢. It is well-known that f(¢)<u(4)—1 and the
equality holds for, e.g., a slice link ¢ in the strong sense (cf. [Ka],). Our first
purpose is to observe that there are many links ¢ with D(£)#0. Actually, we
characterize Dy(¢) for all links £.

THEOREM I. For all links £ we have eE?Dy(£)<p(£)<m(4)—1. Con-
versely, given a finite A-module D with t—1: D=D, then for any integers r, s
with eE2D<r<s we have a link ¢ such that w(4)=s+1, p(£)=r and D(£)=
Do(£)=D.

*) “a meridian element of £ means “an element of ,(E(#)) represented by a loop homotopic
to a meridian of £ (The orientation of a meridian of £ is uniquely spec:fie | by those of
£ and R®).
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Remarks. (1.1) For all links ¢ we also have eE2D(£)<p(£) and e(D(£)/

(t—DD())<u()—1—p(£) (cf. Lemma 1.1). In particular, if B(£)=0, then
D(£)=0. If B(£)=u(£)—1, then D(£)=Dy(¢). So, by Theorem I, we can
characterize D(¢) for all links ¢ with p(¢)<2. Hillman’s link in [H, Fig. V.1],
say £y, is a ribbon link in the strong sense with f({y)=u(¢y)—1=1and Dy(£¢y)=
D(£y)=A/(3,t—2). The link £ with r=s, constructed in the proof of Theorem I
is also a ribbon link in the strong sense.
(1.2) Alink £ is reversible if there is an auto-homeomorphism h of R3 with h(¢)=
£ such that h is orientation-preserving and h| ¢ is orientation-reversing or such
that h is orientation-reversing and h| £ is orientation-preserving. For a reversible
link ¢, there is a A-isomorphism H(4)=H(¢). So, we obtain the following:

(1.2.1) If ¢ is reversible, then there is a A-isomorphism Dy(£) =2 Dy(£).

From this and Theorem I, we obtain many non-reversible links. For example,
any links £ with Dy(¢)=A/(m, t—2) for any odd integer m>35 are not reversible.

(1.3) If there is a disconnected Seifert surface for ¢, then we say that £ is weakly
split (cf. [Muras, Chap. V]). This is equivalent to saying that there is an epi-
morphism 7n,(E(¢))—<{t,, t,) sending each meridian element of £ to a conjugate
of t, or t, (cf. Smythe [Sm]), where {t;, t,) is the free group with basis ¢,, ¢,.
We say that ¢ is homologically split if there is an epimorphism 7,(E(£))— {1, ;)
sending each meridian element of ¢ to an element congruent to ¢, or ¢, modulo
the commutator subgroup {f,, t,¥’. Clearly, a weakly split link is homologically
split, but the converse is not true (cf. [Sm]). We note the following:

(1.3.1) If ¢ is homologically split, then eE2Dy(4)< B(£).

For example, Hillman’s link ¢, has eE2D(4 )= p(¢x)=1 and is not homologically
split, shown by Hillman [H], using different methods. For each r>1 there are
many links ¢ with eE2Dy(¢)=p(¢)=r, e.g., a ribbon link ¢ in the strong sense
with B(£)=u(¢)—1=r and Dy(£)=® A/(m, t—2) for odd m >3 (cf. (I.1)), which
are not homologically split. To pro:fe (I.3.1), let ¢ be homologically split. Then
there is a A-epimorphism H(¢)—A. Hence B(4)~B,®A for a torsion-free
A-module B,. By [Ka, §3], there is a A-epimorphism EC°E°B,—E2E'B; and
E°E°B, is A-free of rank BB, =f(4)—1. E2?E'B,~E2?E'B(¢). The inclusion
D,E'B(£)cE'B(¢) induces a A-epimorphism E2E!'B(£)—E2D,E'B(4). We
see from Lemma 1.1 that Dy(¢)=D,E'B(¢4). So, E2DyE'B({)=E?D(¥).
Then eE2Dy(¢)=eE2Dy(¢) = eE*DyE'B({) < eE*E'B({) = eE?E'B; < eE°E°B, =
B(¢)—1, as desired.

Next, we study the invariant e(4). If H has a square A-presentation matrix,
then let mH be the minimal size of such a matrix. Otherwise, let mH= + .
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By convention, mH=0 if H=0. Clearly, mH>eH. A presentation for H is
a A-epimorphism : P— H with P, A-free of finite rank. We say that H is normal
if e(ker ) < eP for any presentation : P~H. We have mH=eH for all normal
H. Let m(4)=mH(¥¢). Nakanishi [N], introduced m(¢) when £ is a knot.
For subsets AcR3and J=R, let AJ={(x, )eR*|xe A, teJ}. Let F<R3[0, 2]
be a compact oriented proper polyhedral locally flat surface. By [K/S/S, I], F is
ambient isotopic to a surface with only elementary critical points (concerning
the height function R3[0, 2]-[0, 2] sending (x, t) to t). When F has only
elementary critical points, let ¢y(F), ¢,;(F) and c,(F) be the numbers of minimal,
saddle and maximal points, respectively.

THeoReM II. (1) For all links ¢, H(¢) is normal and in particular, m(¢)=
e(4),
(2) If two links ¢,=R3[i], i=0, 2, bound a compact oriented proper surface
F<R3[0, 2] with only elementary critical points, then we have |c,(F)+e(£,)—
co(F)—e(4o)l <cy(F).

ReMARKS. (I1.1) If H is of A-projective dimension <1, then ker y of any
presentation : P—»H is A-free by Seshadri [Se] and hence H is normal.
However, this does not mean Theorem II (1), since there are many links £ with
E2H(4)#0 by Theorem 1.

(IL2) An analogue of Theorem II (1) to higher dimensional links does not hold
in general. For example, a finite knot module H(#0), occuring as the first
Alexander module of a high-dimensional knot must have mH =+ co. In fact,
by Crowell [C] and Levine [L], the following conditions on a knot module H are
equivalent (cf. Weber [W]): (i) mH < + o0, (i) H is Z-torsion-free, (iii) H is of
A-projective dimension <1, (iv) mH =eH, (v) H is normal.

(IL.3) Several estimates analogous to Theorem II (2) are known (cf. [H/K/N/S],
[Ka]ls, [N1,, [N]1,, [N/N] and [Sa]), but the present estimate combined with
Theorem II (1) generalizes or improves them.

(I1.4) Assume that a link ¢’ is obtained from a link ¢ by hyperbolic trans-
formations along m bands (cf. [K/S/S, I]). Then we can construct a surface
F < R3[0, 2] with no critical points except m saddle points such that F n R3[0] =
£[0] and FnR3[2]=2¢'[2] (cf. [K/S/S, I)]. By Theorem II (2), we obtain the
following:

(11.4.1) If ¢ is obtained from ¢ by hyperbolic transformations along m bands,
then |e(£") —e(£)| <m.

For example, we have e(ky)<4 for all knots kj obtained from the Borromean
ring, say ¢, by fusions, because H(4p)=A/(t—1)>@A/(t—1)2. This gives a
restriction to kz. Note that the Robertello/Arf invariant, R(kg)#0 and the
Alexander polynomials of kg’s are not restrictive in the sense that they can have
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all of the Alexander polynomials of knots k with R(k)# 0 (cf. Murakami [Murak]).
(I.5) Let ¢* be a link diagram on a plane R? representing a link ¢. For
an integer s#0, a T(s)-operation on ¢* is a replacement of a 2-string trivial
braid in £* by a 2-string braid of s full twists (See Fig. 1). Let u,(£*) be the
minimal number of T(s)-operations, where s is not fixed, on the link diagram.
£* needed to transform £ into a trivial link (of u(£) components). The weak
unlinking number u,(£) of € is the minimal number of u,(¢*) taken over all
link diagrams ¢* representing ¢ (cf. Kinoshita [Ki]). Restricting the T(s)-
operations to T(# 1)-operations, we have the usual unlinking number u(¢) of €.
Clearly, u(£)>u,(¢). The inequality u(£)+u(£)—1=e(?) is well-known by a
surgery description method (cf. Nakanishi [N],). We observe the following:

\ i)
o

T_(.s) iC/ (s>0) ‘\/) (s<0)
M N
Fig. 1.

(11.5.1) For all links £, u(£)+p(£)—1=e(£).

To see this, let u=u,(£). Fig. 2 shows that there are u oriented links ¢; with
u(€)=2, i=1, 2,..., u, such that the fusion of the split union £*=0+€,+ -+ £,
along some 2u bands produce a trivial link 0 with w(0)=pu(¢). By (IL4.1),
le(£*)—e(0)| <2u. Notethat H(¢*)=H({)®(D}=, H(Ga))&)(@ A). Thene(£Y)
=e(H(O)®(®Y-, H(¢))+u=e(£)+u (cf. Lemma 2.5). Since e(0)=u(f)—1,
it follows that e(£)+u—u(£)+1<2u, ie., e(£)<u,(€)+pu()—1.

ﬁ

Fig. 2.

§1. Proof of Theorem I.

LemMA 1.1. For all links £ we have the inequalities eE2D(£) < B(£), e(D(£)]
(t—= D)< (L) —1—B(£) and e(E'B(L)/(t—1)E'B(£))<2(u(£)—1—p(£)) and
a A-isomorphism Do(£)=DoE'B(£).
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If B(¢)=pu(¢)—1, then Lemma 1.1 means that D(¢)=D(£¢), E'B(£)=D,E'B(£)
and D(¢)=E'B(¥), for E'B(¢) is finite (cf. [Ka, §3],).

1.2 Proor oF LEMMA 1.1. Let E*=E*(4) be the compact manifold obtained
from S3=R3 U {0} by removing an open tubular neighborhood of ¢ and E+=
E+(#), an infinite cyclic covering space over E* determined by the covering space
E(¢). Clearly, H(E*)~H(¢). Let H=H,(E*, 0E*). By the Second Duality
Theorem of [Ka],, we have ngHl(E")éE‘BH and D/H'iVElBHl(EJ');
E'B(¢). By [Ka, §3],, there is a A-epimorphism E°E°BH—E?E'BH and
E°E°BH is A-free of rank BH=p(¢). Since E2E'BH=~E>D(¢), it follows that
eE2D(4)=eF2D(¢)=eE2E'BH <f(¢). The Wang exact sequence (cf. [Mi])
H=Y, H»H,(E*, dE*)—0 induces an exact sequence (S') 0-BH =L, BH-»H'-0,
where H' is the quotient of H,(E*, JE*) by the image, T', of TH. Note that
rank, H'=p(¢), and H,(E*, dE*) and T’ are Z-free of ranks u(¢)—1 and u(¢)—
1—pB(¥), respectively. The sequence (S’) induces an exact sequence E'BHL
E'BH—-E2H'—0. So, D(¢)/(t—1)D(¢)=E'BH[(t—1)E'BH=E?H’. The exact
sequence 0—»T'—H,(E*, dE*)—»H'—0 induces an epimorphism E'T’'—E2H’.
Since E'T’ is Z-free of rank u(4)—1—p(£), we see that e(D(£)/(t—1)D(4))=
eE2H' <u(4)—1—p(¢). The exact sequence (S) H,(0E*)-*.H(E*)‘~H-?,
A(PE+)—0 induces a short exact sequence (S”) 0—B(¢)—»BH—-H"—0, where
H” is the quotient of Hy(0E*) by T"=0TH. Since the boundary map H,(E*,
AE*)— H(3E*) sends T’ onto the image of T” under the isomorphism Hy(0E+) =
AL 0E*), we have that rank, T"<rank, T'=pu(¢)—1—p(¢). The sequence
(S”) induces an exact sequence E'BH—E'B(¢)—E?H"—0 and hence an exact
sequence E!BH/(t—1)E'BH—E'B(¢)/(t—1)E'B({)—~E?*H"—0. Since eE?H"<
w(€)—1—PB(£) [In fact, there is an epimorphism E'T”—E2H" and E'T” is Z-free
of rank <u(£)—1—p(¢)] and e(E'BH/(t—1)E'BH)=eE*H’ <u(¢)—1—p(¥),
it follows that e(E!B(£)/(t—1)E'B(£))<2(u(¢)—1—p(¢)). Next, we show that
the map Dgjy: DoH(E*)>DyH induced from j, in the sequence (S) is a
A-isomorphism. Clearly, Dgj, is injective, for (t— DH,(0E*)=0 and t—1:
DoH (E*)=D,H(E*). Let xe DoH and write x=(t—1)x’ for x’eDoyH. There
is a y e H,(E*) so that j,(y)=x". For y=(t—1)y’, we have ju(y)=x and ye
DH ,(E*) [In fact, take positive integers m, m’ so that (t"—1)x"=m'x"=0. Then
(tm—1)y=m'y=0]. Choose a positive integer N so that DoH (E*)=(1—1)"-
DH,(E*) and (t—1)V acts trivially on DoH. Then (t—1)¥ye D H,(E*) and
Dyj((t—1DVy)=x. Thus, Dyjs is a A-isomorphism. Therefore, Do(4)=
DOH,(E’“)EDﬁéDoElBHI(E+)§DOEIB(€). This completes the proof.

Let L be a polyhedral locally flat oriented 2-link (of 2-spheres) in R*, the

number of whose components is denoted by u(L). Let E(L)=R*— L and E(L), the
infinite cyclic covering space over E(L) associated with the epimorphism n,(E(L))~
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{t,, t,> sending each meridian element of L to t. Let H(L)=H (E(L)), TH=
TH(L), B(L)=BH(L) and B(L)=BH(L).

LEMMA 1.3. Assume that a link ¢ <R3 is the middle cross-sectional link
of a 2-link L=R* in a normal form (cf. [K/S/S,I]). Then the inclusion E({)<
E(L) induces a A-isomorphism B(¢)=~ B(L).

ProOF. The natural map H(¢)— H(L) is onto, for the natural map =,(E(4))—
7,(E(L)) is onto by the van Kampen theorem. Since H,(E(L), E(£))=0, we see
from the Wang exact sequence (cf. [Mi]) that BH(E(L), E(¢))=0. Thus, the
exact sequence H,(E(L), E(¢£))—H(£)~H(L)—0 induces an isomorphism B(¢)=
B(L), completing the proof. ’

The following characterizes B(L) for all 2-links L:

LemMMA 1.4. For a 2-link Lc R*, we have f(L)=u(L)—1 and t—1: E'B(L)=
E'B(L). Conversely, given a finitely generated, torsion-free A-module B with
BB=r and t—1: E'B=E'B, then there is a 2-link LcR* with (L) =r+1 and
H(L)=B(L)~B.

PrOOF. Let £ be the middle cross-sectional link of L in a normal form.
Then u(¢)=m(L). By Lemma 1.3, B(£{)=~B(L) and B(£)=p(L). Since ¢ is a
ribbon link in the strong sense, we have f(£)=u(¢)—1. By Lemma 1.1, t—1:
E'B(¢)~E'B(¢). Hence B(L)=wp(L)—1 and ¢—1: E'B(L)~E'B(L). Next,
note that B is of A-projective dimension <1 (cf. [Ka, §3],). Let 0P, —>Py—
B—0 be a A-projective (i.e., A-free by [Se]) resolution for B with eP;=d, ePy=
d+r for some d. By [Ka, §3],, there is a A-exact sequence 0—B—E°E°B—
E2E'B—0. By assumption, t—1: E2E'B~E?E'B, so that B/(t—1)B=~E°E°B/
(t—1)E°E®B. Since E°E°B is A-free of rank r, B/(t—1)B is Z-free of rank r
and the induced exact sequence 0—P,/(t—1)P;—Py/(t—1)P,—B/(t—1)B—0
splits. Let P(f)=(p;(1)) bea d x (d + r)-matrix representing the A-monomorphism
P,—P,. By elementary row and column operations on P(¢), we can assume
that p,(1)=¢;; for all i, j. Let p(t)=232 o a(i,j, mt", a(i, j, n)eZ. The
construction of our 2-link is similar to the Kervaire/Levine construction of a
2-knot (cf. [Ke], [L]). Construct a group presentation G=(yy,..., Ya4s Z | Rysees
R,) where

Ry = T2 (27,200 [T (22 570
Ry = T2 (27920 T2 (29,2 )40,

Let y: G—<t) be the epimorphism defined by y(y;)=1 and y(z)=t¢, and G, the
kernel of y. By the Fox free calculus, ¥(0R,/0y;)=p;(t) and y(0R;/0z)=0, so that
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H,(G) has P(1) as a A-presentation matrix (cf. [Ka],). Hence H,(G)~B.
Let W=#4_, S'x S3¢R*. Take a trivial 2-link L, with components S?, i=0,
1,..., r, in the factor R* of W. Identify n,(W— L;) with the free group {y,,...,
Vair Zp sO that y; (1<j<d), y4+;z (1<i<r) and z are represented by loops
homotopic to S!'x*;(<S!x S3), meridians of S? and Sj, respectively. Let
Cy,..., C4 be mutually disjoint simple closed curves in W—L, such that C; is
homotopic to a loop representing the element R;e n,(W—L,). Let Ty,..., T; be
mutually disjoint tubular neighborhoods of Cy,..., C,. Since R(y;,...,; Yaur )= -
ys» i=1,..., d, the 4-manifold obtained from W by surgery along Ti,..., T; (with
any framings) is R*. Let L= R* be a 2-link resulting from L, = R* by the surgery.
Then 7,(E(L))=~G and H(L)=H,(G)~B. This completes the proof.

1.5 Proor oF THEOREM I. The inclusion Dy(¢)<=D(£) induces a A-epimorphism
E2D(0)—E2Dy(£). So, by Lemma 1.1, eE2Dy(¢)<eE*D(£)<p(£)<u(4)—1.
Let D be a finite A-module with eE2D<r<s and t—1: D=D. First, let r=s.
Since eE2D <r, there is a presentation : P—E2D with eP=r. Let B=kery,
which is A-torsion-free of rank r. Note that E!B=~E2E?D~D. By Lemma 1.4,
there is a 2-link L= R* with y(L)=r+1 and H(L)~B. Let ¢ <R3 be the middle
cross-sectional link of L in a normal form. Then w(¢)=u(L)=r+1 and ¢ is a
ribbon link in the strong sense. By Lemma 1.3, B(¢{)~B. By Lemma 1.1, Do(¢)
=D(¢)~E'B=D. Let ¢ be the link obtained from ¢ by reversing the orientation
of ¢. Then D(¢)=D(¢)=D. For s=r+m, m>1, let £, be a link with u(¢,)=
m+ 1, illustrated in Fig. 3.

R

~

Fig. 3.

Then H(¢,)=@®AJ(t—1). Let £ be a link obtained from a split union £+ ¢,
by a simple fusion so that H(¢)~H(¢)®H(L,). Since we)=p(f)+m=s+1,
B(&")=P(€)=r and D(£)=D(£)=D, the link ¢’ gives a desired one. This
completes the proof.

REMARK 1.6. There is an argument on 2-links analogous to Remark (L.3).
A 2-link L in R* is weakly split if there is a disconnected Seifert manifold for L
in R*, which is equivalent that there is an epimorphism 7,(E(L))—<t,, t,> sending
each meridian element of L to a conjugate of t, or t,. A 2-link L in R* is
homologically split if there is an epimorphism m,(E(L))—<t,, t,> sending each
meridian element of L to an element congruent to ¢, or ¢, modulo {t,, t,>".
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(1.6.1) If L is homologically split, then eE2E*B(L) < B(L).

The proof is basically contained in that of (I.3.1) and omitted. Let D be a finite
A-module with t—1: D~D and eE*D=r. By an argument in 1.5, we have
a 2-link L with f(L)=pu(L)—1=r and E'B(L)=D. For example, taking D= @ Af

(m, t—2)(m, odd >3), we see that for each r>1 there are many 2- links L w1th
¢E2E'B(L)= f(L)=u(L)— L =r, that are not homologically split.

§2. Proof of Theorem II

Let W be a compact connected oriented 4-manifold with H,(W)=Z. Let (4, A"
be a splitting of 0W, i.e., A, A’ are compact 3-submanifolds of dW or empty such
that A’=cl ,w(6W—A). Let W be the infinite cyclic connected covering space
over Wand (4, 4"), the lift of (4, A").

Lemma 2.1. If H,(W)=0 and A is connected, then H,(W, A’) is A-free.

Proor. H,(W, A)=0 and H W, D=A/(t—1) (if A=) or 0 (if A#0).
By Reidemeister duality (cf. [Ka, §2],), there is a A-isomorphism H} W, A=
H4 q(W A) for all g. By the universal coefficient exact sequence in [Ka, §1],,
the sequence 0—BHY(W, A’ )—E°H (W, A)—»E*H,_ (W, A TH (W, A")—
EIH,I(W, A)—-0 is A-exact for all g. We have E'H,(W, A')=E*H (W, A)=0.
By [Ka, §3]4, H (W, A’) is A-free, completing the proof.

Let G be a finitely generated group with an epimorphism y: G—<t) and G, the
kernel of y.

LeMMa 2.2. If G is isomorphic to the fundamental group of an orientable
3-manifold, then the A-module H(G) is normal.

Proor. It is known that H,(G)=H (M) for an infinite cyclic connected
covering space M over a compact orientable 3-manifold M such that 0M is not
empty and contains no 2-spheres (cf. [Ka],). For a presentation y: P—-H, (M),
let gy,..., g, € H,(M) be the image of a A-basis of P under y. Let Ty,..., T, be
solid tori in Int M whose cores represent g,,..., ¢, and such that "T;n T,-=@
except when i=j and n=0. Theimages T},..., T, of Ty,..., T, under the covering
projection M—M are mutually disjoint solid tori in Int M. Construct a 4-
manifold W=M x [0, 1JuD2xD?y ---UD?x D? identifying T;x1 (with any
framing) with (8D?)x D?, i=1,...,r. There is an infinite cyclic connected
covering W— Wextending the covering M — M (identified with the covering M x0-
M x0). By construction, H (W)=0, so that H,(W)=Z. Note that oW is
connected. By Lemma 2.1, Hy(W) is A-free. By assumption on M, the Euler
characteristic, y(M)<0. Since H(W)=Z (if g=0, 1), 0 (if =3, 4) and 1(W)=
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¥(M)+r, it follows that H,(W) is Z-free of rank <r. Then we see from the
Wang exact sequence that eH,(W)<r. On the other hand, by excision, Hy(W,
M)=@®'—, Hy(D*x D%, (D) x D})® ; A= @® A. Hence it follows from the
exact sequence H,(W)—H (W, M)-2.H,(M)—0 that H,(G)=H (M) is normal,
since 9: Ho(W, M)—H (M) is a geometric realization of y: P—H,(M). This
completes the proof.

2.3 Proor oF THEOREM II (1). It is direct from Lemma 2.2.

REMARK 2.4. Let G be a group with an element of infinite order. Let
G,=kery for a finitely generated subgroup G, of G with an epimorphism y:
G,—<t). The A-module H,(G,) is produced in G. By Lemma 2.2 and an argu-
ment of [Ka],, we have a necessary condition for G to be isomorphic to the
fundamental group of a 3-manifold, which is different from that of [Ka], and
stated as follows:

(2.4.1) If G is isomorphic to the fundamental group of an orientable 3-manifold,
then any A-module produced in G is normal.

(24.2) If G is isomorphic to the fundamental group of a non-orientable
3-manifold, then there exists an index 2 subgroup G’ of G such that any A-module
produced in G’ is normal.

LEMMA 2.5. For a A-submodule H' of a finitely generated A-module H,
let H/H' be of A-projective dimension <1. Then

eH’ + B(H/H) < eH < eH' + e(H/H").

ProoF. The right hand side inequality is obvious. Let : P—»H be a
presentation with eP=eH. Let P'=y~'H’. Then P/P’=H/H’. Since it is
of A-projective dimension <1, P’ is A-projective, ie., A-free by [Se] of rank
eH—B(H/H'). Using that /| P’': P'—>H’ is onto, we see that eH'<eP'=eH—
B(H/H’). This completes the proof.

For example, if H/H' is A-free, then f(H/H')=e(H/H') and hence eH =eH'+
e(H/H’). The following special case of Theorem II (2) is obtained from a
combination of Theorem II (1) and Nakanishi’s inequality in [N],, but we shall
give it a different proof.

LEMMA 2.6. When c,(F)=c(F)=0, we have |e(£;)—e(£,)| <c,(F).

PrOOF. We may assume that e(¢,)>e(¢,). Let E*(F) be the compact
4-manifold obtained from S3x[0,2], S3=R3U {0}, by removing an open
tubular neighborhood of F. For i=0,2 let E*(¢)=E*(F)nS3xi (cf. 1.2).
Let W be a 4-manifold constructed in the proof of Lemma 2.2 where we take
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M=E*(4,), M=E*(4,) and for y: P—»H (M), eP=eH (M)=e(¢,). Construct
a 4-manifold W’ =Wy E*(F) identifying two copies of E*(¢,). Since the natural
map n,(E*(£4,))—n(E*(F)) is onto by the van Kampen theorem, it follows that
H,(W)=Z and H(W’)=0 for the connected infinite cyclic covering sapce w.
Note that the covering W’'— W' is an extension of the coverings E+(¢)-E*(¢),
i=0,2. By Lemma 2.1, Hy(W’, E*(¢,)) is A-free. Since H,(E*(F), E*(£;))—
H, (W', E*(£,))-Hy(W', E*(F)) is exact and Hy(E*(F), E*(4,;)= €|—)F Z and
H,(W', EX(F))=H W, E*(£y))= @ Z, we see from the Wang exacc:i( séquence
that eH,(W’', E*(¢,))=rank, Hz(veiﬁ,u)EJ’(ﬂz))gcl(F)+e(€o). But, the boundary
map &: H (W', E*(¢,))»H(E*(¢4,)) is onto. Hence e(4,)<c,(F)+e(£,).
This completes the proof.

2.7 PRroOF OF THEOREM II (2). F can be deformed into a surface F’ in R3[0, 2]
with only elementary critical points such that for each i, i=0, 2, F' n R3[i]1=/¢;
is a split union of ¢; and a trivial link of ¢,(F) components and ¢,(F")=c,(F) and

c(F)=0 (cf. [K/S/S, 1, §3]). By Lemma 2.6, |e(¢3)—e(£o)l<c((F). H(¢)=
H(él)GD( @ A) and by Lemma 2.5, e(¢})=e(¢;)+c{F), i=0, 2. Hence |e(£,)+
c,(F)— e(ZO) co(F)| < ¢ (F). This completes the proof.
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