ON THE INTEGRAL HOMOLOGY OF INFINITE CYCLIC COVERINGS OF LINKS

By Akio KAWAUCHI (Received September 2, 1985)

§ 0. Introduction

We consider a polygonal oriented link ℓ in the Euclidean 3-space R^3 . Let $E(\ell) = R^3 - \ell$. We have a unique infinite cyclic covering space $E(\ell)$ over $E(\ell)$ associated with the epimorphism $\gamma: \pi_1(E(\ell)) \rightarrow \langle t \rangle$ sending each meridian element*) of ℓ to t, where $\langle t \rangle$ is the infinite cyclic group generated by a letter t. For the integral group ring $\Lambda = Z\langle t \rangle$, the integral homology $H_1(\tilde{E}(\ell))$, which we denote by $H(\ell)$, forms a finitely generated Λ -module. Throughout this paper, A-modules will mean finitely generated A-modules, unless otherwise stated. For a Λ -module H, we use the following notations: DH = the (unique) maximal finite Λ -submodule of H (cf. [Ka]₄), $D_0H = \bigcap_{i=1}^{+\infty} (t-1)^i DH$, TH =the Λ -torsion part of H, BH = H/TH, $\beta H = \text{rank}_{\Lambda} H$, eH = the minimal number ofelements generating H over Λ , and $E^qH = \text{Ext }_{\Lambda}^q(H, \Lambda)$. Note that $D_0H =$ $(t-1)^N DH$ for a large positive integer N and hence $t-1: D_0 H \cong D_0 H$. By convention, eH = 0 if H = 0. It is known that $E^qH = 0$ for $q \ge 3$ and there are natural Λ -isomorphisms $E^2H \cong E^2DH \cong \text{Hom }_{\mathbb{Z}}(DH, \mathbb{Q}/\mathbb{Z})$ and H has the Λ -projective dimension ≤ 1 if and only if DH = 0 (cf. [Ka, §3]₄, Levine [L]). By the identity $\lambda(t) \cdot x = \lambda(t^{-1})x$ for $\lambda(t) \in \Lambda$ and $x \in H$, H has another Λ -module structure. We denote this Λ -module by \overline{H} . When $H = H(\ell)$, we denote DH, D_0H , TH, BH, βH and eH by $D(\ell)$, $D_0(\ell)$, $T(\ell)$, $B(\ell)$, $\beta(\ell)$ and $e(\ell)$, respectively. Let $\mu(\ell)$ be the number of components of ℓ . It is well-known that $\beta(\ell) \le \mu(\ell) - 1$ and the equality holds for, e.g., a slice link ℓ in the strong sense (cf. [Ka]₁). Our first purpose is to observe that there are many links ℓ with $D(\ell) \neq 0$. Actually, we characterize $D_0(\ell)$ for all links ℓ .

THEOREM I. For all links ℓ we have $eE^2D_0(\ell) \leq \beta(\ell) \leq \mu(\ell) - 1$. Conversely, given a finite Λ -module D with t-1: $D \cong D$, then for any integers r, s with $eE^2D \leq r \leq s$ we have a link ℓ such that $\mu(\ell) = s+1$, $\beta(\ell) = r$ and $D(\ell) = D_0(\ell) \cong D$.

^{*) &}quot;a meridian element of ℓ " means "an element of $\pi_1(E(\ell))$ represented by a loop homotopic to a meridian of ℓ " (The orientation of a meridian of ℓ is uniquely specifie! by those of ℓ and R^3).

Remarks. (I.1) For all links ℓ we also have $eE^2D(\ell) \leq \beta(\ell)$ and $e(D(\ell)/(t-1)D(\ell)) \leq \mu(\ell) - 1 - \beta(\ell)$ (cf. Lemma 1.1). In particular, if $\beta(\ell) = 0$, then $D(\ell) = 0$. If $\beta(\ell) = \mu(\ell) - 1$, then $D(\ell) = D_0(\ell)$. So, by Theorem I, we can characterize $D(\ell)$ for all links ℓ with $\mu(\ell) \leq 2$. Hillman's link in [H, Fig. V.1], say ℓ_H , is a ribbon link in the strong sense with $\beta(\ell_H) = \mu(\ell_H) - 1 = 1$ and $D_0(\ell_H) = D(\ell_H) \cong \Lambda/(3, t-2)$. The link ℓ with r = s, constructed in the proof of Theorem I is also a ribbon link in the strong sense.

(I.2) A link ℓ is reversible if there is an auto-homeomorphism h of R^3 with $h(\ell) = \ell$ such that h is orientation-preserving and $h \mid \ell$ is orientation-reversing or such that h is orientation-reversing and $h \mid \ell$ is orientation-preserving. For a reversible link ℓ , there is a Λ -isomorphism $H(\ell) \cong \overline{H(\ell)}$. So, we obtain the following:

(I.2.1) If ℓ is reversible, then there is a Λ -isomorphism $D_0(\ell) \cong \overline{D_0(\ell)}$.

From this and Theorem I, we obtain many non-reversible links. For example, any links ℓ with $D_0(\ell) = \Lambda/(m, t-2)$ for any odd integer $m \ge 5$ are not reversible.

(I.3) If there is a disconnected Seifert surface for ℓ , then we say that ℓ is weakly split (cf. [Muras, Chap. V]). This is equivalent to saying that there is an epimorphism $\pi_1(E(\ell)) \rightarrow \langle t_1, t_2 \rangle$ sending each meridian element of ℓ to a conjugate of t_1 or t_2 (cf. Smythe [Sm]), where $\langle t_1, t_2 \rangle$ is the free group with basis t_1, t_2 . We say that ℓ is homologically split if there is an epimorphism $\pi_1(E(\ell)) \rightarrow \langle t_1, t_2 \rangle$ sending each meridian element of ℓ to an element congruent to t_1 or t_2 modulo the commutator subgroup $\langle t_1, t_2 \rangle'$. Clearly, a weakly split link is homologically split, but the converse is not true (cf. [Sm]). We note the following:

(I.3.1) If ℓ is homologically split, then $eE^2D_0(\ell) < \beta(\ell)$.

For example, Hillman's link ℓ_H has $eE^2D(\ell_H) = \beta(\ell_H) = 1$ and is not homologically split, shown by Hillman [H], using different methods. For each $r \ge 1$ there are many links ℓ with $eE^2D_0(\ell) = \beta(\ell) = r$, e.g., a ribbon link ℓ in the strong sense with $\beta(\ell) = \mu(\ell) - 1 = r$ and $D_0(\ell) = \bigoplus_r \Lambda/(m, t - 2)$ for odd $m \ge 3$ (cf. (I.1)), which are not homologically split. To prove (I.3.1), let ℓ be homologically split. Then there is a Λ -epimorphism $H(\ell) \to \Lambda$. Hence $B(\ell) \cong B_1 \oplus \Lambda$ for a torsion-free Λ -module B_1 . By [Ka, §3]₄ there is a Λ -epimorphism $E^0E^0B_1 \to E^2E^1B_1$ and $E^0E^0B_1$ is Λ -free of rank $\beta B_1 = \beta(\ell) - 1$. $E^2E^1B_1 \cong E^2E^1B(\ell)$. The inclusion $D_0E^1B(\ell) \subset E^1B(\ell)$ induces a Λ -epimorphism $E^2E^1B(\ell) \to E^2D_0E^1B(\ell)$. We see from Lemma 1.1 that $D_0(\ell) \cong D_0E^1B(\ell)$. So, $E^2D_0E^1B(\ell) \cong E^2\overline{D_0(\ell)}$. Then $eE^2D_0(\ell) = eE^2\overline{D_0(\ell)} = eE^2D_0E^1B(\ell) \le eE^2E^1B(\ell) = eE^2E^1B_1 \le eE^0E^0B_1 = \beta(\ell) - 1$, as desired.

Next, we study the invariant $e(\ell)$. If H has a square Λ -presentation matrix, then let mH be the minimal size of such a matrix. Otherwise, let $mH = +\infty$.

By convention, mH=0 if H=0. Clearly, $mH \ge eH$. A presentation for H is a Λ -epimorphism $\psi \colon P \to H$ with P, Λ -free of finite rank. We say that H is normal if $e(\ker \psi) \le eP$ for any presentation $\psi \colon P \to H$. We have mH=eH for all normal H. Let $m(\ell)=mH(\ell)$. Nakanishi [N]₁ introduced $m(\ell)$ when ℓ is a knot. For subsets $A \subset R^3$ and $J \subset R$, let $AJ = \{(x, t) \in R^4 \mid x \in A, t \in J\}$. Let $F \subset R^3[0, 2]$ be a compact oriented proper polyhedral locally flat surface. By [K/S/S, I], F is ambient isotopic to a surface with only elementary critical points (concerning the height function $R^3[0, 2] \to [0, 2]$ sending (x, t) to t). When F has only elementary critical points, let $c_0(F)$, $c_1(F)$ and $c_2(F)$ be the numbers of minimal, saddle and maximal points, respectively.

THEOREM II. (1) For all links ℓ , $H(\ell)$ is normal and in particular, $m(\ell) = e(\ell)$,

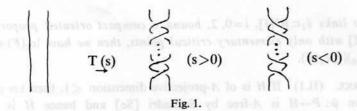
(2) If two links $\ell_i \subset R^3[i]$, i=0, 2, bound a compact oriented proper surface $F \subset R^3[0, 2]$ with only elementary critical points, then we have $|c_2(F) + e(\ell_2) - c_0(F) - e(\ell_0)| \le c_1(F)$.

REMARKS. (II.1) If H is of Λ -projective dimension ≤ 1 , then $\ker \psi$ of any presentation $\psi \colon P \to H$ is Λ -free by Seshadri [Se] and hence H is normal. However, this does not mean Theorem II (1), since there are many links ℓ with $E^2H(\ell) \neq 0$ by Theorem I.

- (II.2) An analogue of Theorem II (1) to higher dimensional links does not hold in general. For example, a finite knot module $H(\neq 0)$, occurring as the first Alexander module of a high-dimensional knot must have $mH = +\infty$. In fact, by Crowell [C] and Levine [L], the following conditions on a knot module H are equivalent (cf. Weber [W]): (i) $mH < +\infty$, (ii) H is Z-torsion-free, (iii) H is of Λ -projective dimension ≤ 1 , (iv) mH = eH, (v) H is normal.
- (II.3) Several estimates analogous to Theorem II (2) are known (cf. [H/K/N/S], $[Ka]_3$, $[N]_1$, $[N]_2$, [N/N] and [Sa]), but the present estimate combined with Theorem II (1) generalizes or improves them.
- (II.4) Assume that a link ℓ' is obtained from a link ℓ by hyperbolic transformations along m bands (cf. [K/S/S, I]). Then we can construct a surface $F \subset R^3[0, 2]$ with no critical points except m saddle points such that $F \cap R^3[0] = \ell[0]$ and $F \cap R^3[2] = \ell'[2]$ (cf. [K/S/S, I)]. By Theorem II (2), we obtain the following:
- (II.4.1) If ℓ' is obtained from ℓ by hyperbolic transformations along m bands, then $|e(\ell') e(\ell)| \le m$.

For example, we have $e(k_B) \le 4$ for all knots k_B obtained from the Borromean ring, say ℓ_B , by fusions, because $H(\ell_B) \cong \Lambda/(t-1)^2 \oplus \Lambda/(t-1)^2$. This gives a restriction to k_B . Note that the Robertello/Arf invariant, $R(k_B) \ne 0$ and the Alexander polynomials of k_B 's are not restrictive in the sense that they can have

all of the Alexander polynomials of knots k with $R(k) \neq 0$ (cf. Murakami [Murak]). (II.5) Let ℓ^* be a link diagram on a plane R^2 representing a link ℓ . For an integer $s \neq 0$, a T(s)-operation on ℓ^* is a replacement of a 2-string trivial braid in ℓ^* by a 2-string braid of s full twists (See Fig. 1). Let $u_w(\ell^*)$ be the minimal number of T(s)-operations, where s is not fixed, on the link diagram ℓ^* needed to transform ℓ into a trivial link (of $\mu(\ell)$ components). The weak unlinking number $u_w(\ell)$ of ℓ is the minimal number of $u_w(\ell^*)$ taken over all link diagrams ℓ^* representing ℓ (cf. Kinoshita [Ki]). Restricting the T(s)-operations to $T(\pm 1)$ -operations, we have the usual unlinking number $u(\ell)$ of ℓ . Clearly, $u(\ell) \geq u_w(\ell)$. The inequality $u(\ell) + \mu(\ell) - 1 \geq e(\ell)$ is well-known by a surgery description method (cf. Nakanishi [N]₁). We observe the following:



(II.5.1) For all links ℓ , $u_w(\ell) + \mu(\ell) - 1 \ge e(\ell)$.

To see this, let $u=u_w(\ell)$. Fig. 2 shows that there are u oriented links ℓ_i with $\mu(\ell_i)=2$, i=1, 2, ..., u, such that the fusion of the split union $\ell^+=\ell+\ell_1+\cdots+\ell_u$ along some 2u bands produce a trivial link 0 with $\mu(0)=\mu(\ell)$. By (II.4.1), $|e(\ell^+)-e(0)|\leq 2u$. Note that $H(\ell^+)\cong H(\ell)\oplus (\oplus_{i=1}^u H(\ell_i))\oplus (\oplus_i A)$. Then $e(\ell^+)=e(H(\ell)\oplus (\oplus_{i=1}^u H(\ell_i)))+u\geq e(\ell)+u$ (cf. Lemma 2.5). Since $e(0)=\mu(\ell)-1$, it follows that $e(\ell)+u-\mu(\ell)+1\leq 2u$, i.e., $e(\ell)\leq u_w(\ell)+\mu(\ell)-1$.

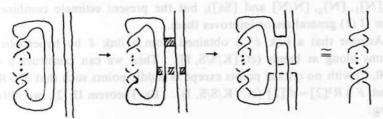


Fig. 2.

§ 1. Proof of Theorem I.

LEMMA 1.1. For all links ℓ we have the inequalities $eE^2D(\ell) \leq \beta(\ell)$, $e(D(\ell)/(t-1)D(\ell)) \leq \mu(\ell) - 1 - \beta(\ell)$ and $e(E^1B(\ell)/(t-1)E^1B(\ell)) \leq 2(\mu(\ell) - 1 - \beta(\ell))$ and a Λ -isomorphism $D_0(\ell) \cong D_0E^1B(\ell)$.

If $\beta(\ell) = \mu(\ell) - 1$, then Lemma 1.1 means that $D(\ell) = D_0(\ell)$, $E^1B(\ell) = D_0E^1B(\ell)$ and $\overline{D(\ell)} \cong E^1B(\ell)$, for $E^1B(\ell)$ is finite (cf. [Ka, §3]₄).

1.2 PROOF OF LEMMA 1.1. Let $E^+ = E^+(\ell)$ be the compact manifold obtained from $S^3 = R^3 \cup \{\infty\}$ by removing an open tubular neighborhood of ℓ and $\tilde{E}^+ =$ $\tilde{E}^+(\ell)$, an infinite cyclic covering space over E^+ determined by the covering space $\tilde{E}(\ell)$. Clearly, $H_1(\tilde{E}^+) \cong H(\ell)$. Let $H = H_1(\tilde{E}^+, \partial \tilde{E}^+)$. By the Second Duality Theorem of $[Ka]_4$, we have $\overline{D(\ell)} \cong \overline{DH_1(\tilde{E}^+)} \stackrel{\theta}{\cong} E^1BH$ and $\overline{DH} \stackrel{\theta}{\cong} E^1BH_1(\tilde{E}^+) \cong$ $E^1B(\ell)$. By [Ka, §3]₄, there is a Λ -epimorphism $E^0E^0BH \rightarrow E^2E^1BH$ and E^0E^0BH is Λ -free of rank $\beta H = \beta(\ell)$. Since $E^2E^1BH \cong E^2\overline{D(\ell)}$, it follows that $eE^2D(\ell) = eE^2\overline{D(\ell)} = eE^2E^1BH \le \beta(\ell)$. The Wang exact sequence (cf. [Mi]) $H^{t-1} \to H \to H_1(E^+, \partial E^+) \to 0$ induces an exact sequence (S') $0 \to BH^{t-1} \to BH \to H' \to 0$, where H' is the quotient of $H_1(E^+, \partial E^+)$ by the image, T', of TH. Note that $\operatorname{rank}_{Z} H' = \beta(\ell)$, and $H_{1}(E^{+}, \partial E^{+})$ and T' are Z-free of ranks $\mu(\ell) - 1$ and $\mu(\ell) - 1$ $1-\beta(\ell)$, respectively. The sequence (S') induces an exact sequence E^1BH^{t-1} $E^1BH \rightarrow E^2H' \rightarrow 0$. So, $D(\ell)/(t-1)D(\ell) \cong E^1BH/(t-1)E^1BH \cong E^2H'$. The exact sequence $0 \to T' \to H_1(E^+, \partial E^+) \to H' \to 0$ induces an epimorphism $E^1T' \to E^2H'$. Since E^1T' is Z-free of rank $\mu(\ell)-1-\beta(\ell)$, we see that $e(D(\ell)/(t-1)D(\ell))=$ $eE^2H' \le \mu(\ell) - 1 - \beta(\ell)$. The exact sequence (S) $H_1(\partial \widetilde{E}^+) \xrightarrow{i_*} H_1(\widetilde{E}^+) \xrightarrow{j_*} H \xrightarrow{\partial}$ $\widetilde{H}_0(\partial \widetilde{E}^+) \to 0$ induces a short exact sequence $(S'') \ 0 \to B(\ell) \to BH \to H'' \to 0$, where H'' is the quotient of $\tilde{H}_0(\partial \tilde{E}^+)$ by $T'' = \partial TH$. Since the boundary map $H_1(E^+, E^+)$ $\partial E^+) \rightarrow \tilde{H}_0(\partial E^+)$ sends T' onto the image of T" under the isomorphism $\tilde{H}_0(\partial \tilde{E}^+) \cong$ $\widetilde{H}_0(\partial E^+)$, we have that rank $T'' \le \operatorname{rank}_Z T' = \mu(\ell) - 1 - \beta(\ell)$. The sequence (S") induces an exact sequence $E^1BH \rightarrow E^1B(\ell) \rightarrow E^2H'' \rightarrow 0$ and hence an exact sequence $E^1BH/(t-1)E^1BH \rightarrow E^1B(\ell)/(t-1)E^1B(\ell) \rightarrow E^2H'' \rightarrow 0$. Since $eE^2H'' \leq$ $\mu(\ell) - 1 - \beta(\ell)$ [In fact, there is an epimorphism $E^1T'' \to E^2H''$ and E^1T'' is Z-free of rank $\leq \mu(\ell) - 1 - \beta(\ell)$ and $e(E^1BH/(t-1)E^1BH) = eE^2H' \leq \mu(\ell) - 1 - \beta(\ell)$, it follows that $e(E^1B(\ell)/(t-1)E^1B(\ell)) \le 2(\mu(\ell)-1-\beta(\ell))$. Next, we show that the map $D_0 j_* : D_0 H_1(\tilde{E}^+) \to D_0 H$ induced from j_* in the sequence (S) is a Λ-isomorphism. Clearly, $D_0 j_*$ is injective, for $(t-1)H_1(\partial \tilde{E}^+)=0$ and t-1: $D_0H_1(\tilde{E}^+) \cong D_0H_1(\tilde{E}^+)$. Let $x \in D_0H$ and write x = (t-1)x' for $x' \in D_0H$. There is a $y' \in H_1(\tilde{E}^+)$ so that $j_*(y') = x'$. For y = (t-1)y', we have $j_*(y) = x$ and $y \in H_1(\tilde{E}^+)$ $DH_1(\tilde{E}^+)$ [In fact, take positive integers m, m' so that $(t^m-1)x'=m'x'=0$. Then $(t^m-1)y=m'y=0$]. Choose a positive integer N so that $D_0H_1(\tilde{E}^+)=(t-1)^N$. $DH_1(\tilde{E}^+)$ and $(t-1)^N$ acts trivially on D_0H . Then $(t-1)^Ny \in D_0H_1(\tilde{E}^+)$ and $D_0 j_*((t-1)^N y) = x$. Thus, $D_0 j_*$ is a Λ -isomorphism. Therefore, $\overline{D_0(\ell)} \cong$ $\overline{D_0H_1(\widetilde{E}^+)} \cong \overline{D_0H} \cong D_0E^1BH_1(\widetilde{E}^+) \cong D_0E^1B(\ell)$. This completes the proof.

Let L be a polyhedral locally flat oriented 2-link (of 2-spheres) in R^4 , the number of whose components is denoted by $\mu(L)$. Let $E(L) = R^4 - L$ and $\tilde{E}(L)$, the infinite cyclic covering space over E(L) associated with the epimorphism $\pi_1(E(L)) \rightarrow$

 $\langle t_1, t_2 \rangle$ sending each meridian element of L to t. Let $H(L) = H_1(\tilde{E}(L))$, TH = TH(L), B(L) = BH(L) and $\beta(L) = \beta H(L)$.

LEMMA 1.3. Assume that a link $\ell \subset R^3$ is the middle cross-sectional link of a 2-link $L \subset R^4$ in a normal form (cf. [K/S/S, I]). Then the inclusion $E(\ell) \subset E(L)$ induces a Λ -isomorphism $B(\ell) \cong B(L)$.

PROOF. The natural map $H(\ell) \to H(L)$ is onto, for the natural map $\pi_1(E(\ell)) \to \pi_1(E(L))$ is onto by the van Kampen theorem. Since $H_2(E(L), E(\ell)) = 0$, we see from the Wang exact sequence (cf. [Mi]) that $BH_2(\tilde{E}(L), \tilde{E}(\ell)) = 0$. Thus, the exact sequence $H_2(\tilde{E}(L), \tilde{E}(\ell)) \to H(\ell) \to H(L) \to 0$ induces an isomorphism $B(\ell) \cong B(L)$, completing the proof.

The following characterizes B(L) for all 2-links L:

LEMMA 1.4. For a 2-link $L \subset R^4$, we have $\beta(L) = \mu(L) - 1$ and t - 1: $E^1B(L) \cong E^1B(L)$. Conversely, given a finitely generated, torsion-free Λ -module B with $\beta B = r$ and t - 1: $E^1B \cong E^1B$, then there is a 2-link $L \subset R^4$ with $\mu(L) = r + 1$ and $H(L) = B(L) \cong B$.

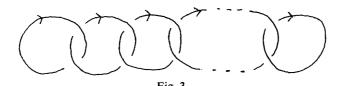
PROOF. Let ℓ be the middle cross-sectional link of L in a normal form. Then $\mu(\ell) = \mu(L)$. By Lemma 1.3, $B(\ell) \cong B(L)$ and $\beta(\ell) = \beta(L)$. Since ℓ is a ribbon link in the strong sense, we have $\beta(\ell) = \mu(\ell) - 1$. By Lemma 1.1, t-1: $E^1B(\ell) \cong E^1B(\ell)$. Hence $\beta(L) = \mu(L) - 1$ and t - 1: $E^1B(L) \cong E^1B(L)$. Next, note that B is of A-projective dimension ≤ 1 (cf. [Ka, §3]₄). Let $0 \rightarrow P_1 \rightarrow P_0 \rightarrow$ $B \rightarrow 0$ be a Λ -projective (i.e., Λ -free by [Se]) resolution for B with $eP_1 = d$, $eP_0 =$ d+r for some d. By [Ka, §3]₄, there is a Λ -exact sequence $0 \rightarrow B \rightarrow E^0 E^0 B \rightarrow$ $E^2E^1B\rightarrow 0$. By assumption, t-1: $E^2E^1B\cong E^2E^1B$, so that $B/(t-1)B\cong E^0E^0B/(t-1)$ $(t-1)E^0E^0B$. Since E^0E^0B is Λ -free of rank r, B/(t-1)B is Z-free of rank rand the induced exact sequence $0 \rightarrow P_1/(t-1)P_1 \rightarrow P_0/(t-1)P_0 \rightarrow B/(t-1)B \rightarrow 0$ splits. Let $P(t) = (p_{ij}(t))$ be a $d \times (d+r)$ -matrix representing the Λ -monomorphism $P_1 \rightarrow P_0$. By elementary row and column operations on P(t), we can assume that $p_{ij}(1) = \delta_{ij}$ for all i, j. Let $p_{ij}(t) = \sum_{n=-\infty}^{+\infty} a(i, j, n)t^n$, $a(i, j, n) \in \mathbb{Z}$. The construction of our 2-link is similar to the Kervaire/Levine construction of a 2-knot (cf. [Ke], [L]). Construct a group presentation $G = (y_1, ..., y_{d+r}, z \mid R_1, ...,$ R_d) where

$$\begin{split} R_1 &= \prod_{n=-\infty}^{+\infty} (z^n y_1 z^{-n})^{a(1,1,n)} \cdots \prod_{n=-\infty}^{+\infty} (z^n y_{d+r} z^{-n})^{a(1,d+r,n)} \\ \cdots \\ R_d &= \prod_{n=-\infty}^{+\infty} (z^n y_1 z^{-n})^{a(d,1,n)} \cdots \prod_{n=-\infty}^{+\infty} (z^n y_{d+r} z^{-n})^{a(d,d+r,n)}. \end{split}$$

Let $\gamma: G \to \langle t \rangle$ be the epimorphism defined by $\gamma(y_j) = 1$ and $\gamma(z) = t$, and \widetilde{G} , the kernel of γ . By the Fox free calculus, $\gamma(\partial R_i/\partial y_j) = p_{ij}(t)$ and $\gamma(\partial R_i/\partial z) = 0$, so that

 $H_1(\tilde{G})$ has P(t) as a Λ -presentation matrix (cf. $[Ka]_2$). Hence $H_1(\tilde{G}) \cong B$. Let $W = \sharp_{j=1}^d S^1 \times S_j^3 \sharp R^4$. Take a trivial 2-link L_0 with components S_i^2 , i=0, 1,..., r, in the factor R^4 of W. Identify $\pi_1(W-L_0)$ with the free group $\langle y_1, ..., y_{d+r}, z \rangle$ so that y_j $(1 \le j \le d)$, $y_{d+i}z$ $(1 \le i \le r)$ and z are represented by loops homotopic to $S^1 \times *_j (\subset S^1 \times S_j^3)$, meridians of S_i^2 and S_0^2 , respectively. Let $C_1, ..., C_d$ be mutually disjoint simple closed curves in $W-L_0$ such that C_i is homotopic to a loop representing the element $R_i \in \pi_1(W-L_0)$. Let $T_1, ..., T_d$ be mutually disjoint tubular neighborhoods of $C_1, ..., C_d$. Since $R_i(y_1, ..., y_{d+r}, 1) = y_i$, i=1,...,d, the 4-manifold obtained from W by surgery along $T_1, ..., T_d$ (with any framings) is R^4 . Let $L \subset R^4$ be a 2-link resulting from $L_0 \subset R^4$ by the surgery. Then $\pi_1(E(L)) \cong G$ and $H(L) \cong H_1(\tilde{G}) \cong B$. This completes the proof.

1.5 PROOF OF THEOREM I. The inclusion $D_0(\ell) \subset D(\ell)$ induces a Λ -epimorphism $E^2D(\ell) \to E^2D_0(\ell)$. So, by Lemma 1.1, $eE^2D_0(\ell) \le eE^2D(\ell) \le \beta(\ell) \le \mu(\ell) - 1$. Let D be a finite Λ -module with $eE^2D \le r \le s$ and $t-1\colon D\cong D$. First, let r=s. Since $eE^2D \le r$, there is a presentation $\psi\colon P\to E^2D$ with eP=r. Let $B=\ker\psi$, which is Λ -torsion-free of rank r. Note that $E^1B\cong E^2E^2D\cong D$. By Lemma 1.4, there is a 2-link $L\subset R^4$ with $\mu(L)=r+1$ and $H(L)\cong B$. Let $\ell\subset R^3$ be the middle cross-sectional link of L in a normal form. Then $\mu(\ell)=\mu(L)=r+1$ and ℓ is a ribbon link in the strong sense. By Lemma 1.3, $B(\ell)\cong B$. By Lemma 1.1, $\overline{D_0(\ell)}=\overline{D(\ell)}\cong E^1B\cong D$. Let ℓ be the link obtained from ℓ by reversing the orientation of ℓ . Then $D(\ell)\cong \overline{D(\ell)}\cong D$. For s=r+m, $m\ge 1$, let ℓ_m be a link with $\mu(\ell_m)=m+1$, illustrated in Fig. 3.



Then $H(\ell_m) \cong \bigoplus \Lambda/(t-1)$. Let $\bar{\ell'}$ be a link obtained from a split union $\bar{\ell} + \ell_m$ by a simple fusion so that $H(\bar{\ell'}) \cong H(\bar{\ell}) \oplus H(\ell_m)$. Since $\mu(\bar{\ell'}) = \mu(\bar{\ell}) + m = s + 1$, $\beta(\bar{\ell'}) = \beta(\bar{\ell}) = r$ and $D(\bar{\ell'}) \cong D(\bar{\ell}) \cong D$, the link $\bar{\ell'}$ gives a desired one. This completes the proof.

REMARK 1.6. There is an argument on 2-links analogous to Remark (I.3). A 2-link L in R^4 is weakly split if there is a disconnected Seifert manifold for L in R^4 , which is equivalent that there is an epimorphism $\pi_1(E(L)) \rightarrow \langle t_1, t_2 \rangle$ sending each meridian element of L to a conjugate of t_1 or t_2 . A 2-link L in R^4 is homologically split if there is an epimorphism $\pi_1(E(L)) \rightarrow \langle t_1, t_2 \rangle$ sending each meridian element of L to an element congruent to t_1 or t_2 modulo $\langle t_1, t_2 \rangle$.

(1.6.1) If L is homologically split, then $eE^2E^1B(L) < \beta(L)$.

The proof is basically contained in that of (I.3.1) and omitted. Let D be a finite Λ -module with t-1: $D \cong D$ and $eE^2D=r$. By an argument in 1.5, we have a 2-link L with $\beta(L)=\mu(L)-1=r$ and $E^1B(L)\cong D$. For example, taking $D=\bigoplus_r \Lambda/(m, t-2)$ (m, odd ≥ 3), we see that for each $r\geq 1$ there are many 2-links L with $eE^2E^1B(L)=\beta(L)=\mu(L)-1=r$, that are not homologically split.

§ 2. Proof of Theorem II

Let W be a compact connected oriented 4-manifold with $H_1(W) = Z$. Let (A, A') be a splitting of ∂W , i.e., A, A' are compact 3-submanifolds of ∂W or empty such that $A' = \operatorname{cl}_{\partial W}(\partial W - A)$. Let \widetilde{W} be the infinite cyclic connected covering space over W and $(\widetilde{A}, \widetilde{A}')$, the lift of (A, A').

LEMMA 2.1. If $H_1(\widetilde{W}) = 0$ and \widetilde{A} is connected, then $H_2(\widetilde{W}, \widetilde{A}')$ is Λ -free.

PROOF. $H_1(\widetilde{W}, \widetilde{A}) = 0$ and $H_0(\widetilde{W}, \widetilde{A}) \cong \Lambda/(t-1)$ (if $A = \emptyset$) or 0 (if $A \neq \emptyset$). By Reidemeister duality (cf. [Ka, §2]₄), there is a Λ -isomorphism $H^q_\Lambda(\widetilde{W}, \widetilde{A}') \cong \overline{H_{4-q}(\widetilde{W}, \widetilde{A})}$ for all q. By the universal coefficient exact sequence in [Ka, §1]₄, the sequence $0 \to BH^q_\Lambda(\widetilde{W}, \widetilde{A}') \to E^0H_q(\widetilde{W}, \widetilde{A}') \to E^2H_{q-1}(\widetilde{W}, \widetilde{A}') \to TH^{q+1}_\Lambda(\widetilde{W}, \widetilde{A}') \to E^1H_q(\widetilde{W}, \widetilde{A}') \to 0$ is Λ -exact for all q. We have $E^1H_2(\widetilde{W}, \widetilde{A}') = E^2H_2(\widetilde{W}, \widetilde{A}') = 0$. By [Ka, §3]₄, $H_2(\widetilde{W}, \widetilde{A}')$ is Λ -free, completing the proof.

Let G be a finitely generated group with an epimorphism $\gamma: G \rightarrow \langle t \rangle$ and \widetilde{G} , the kernel of γ .

Lemma 2.2. If G is isomorphic to the fundamental group of an orientable 3-manifold, then the Λ -module $H_1(\tilde{G})$ is normal.

PROOF. It is known that $H_1(\tilde{G}) = H_1(\tilde{M})$ for an infinite cyclic connected covering space \tilde{M} over a compact orientable 3-manifold M such that ∂M is not empty and contains no 2-spheres (cf. [Ka]₂). For a presentation $\psi \colon P \to H_1(\tilde{M})$, let $g_1, \ldots, g_r \in H_1(\tilde{M})$ be the image of a Λ -basis of P under ψ . Let T_1, \ldots, T_r be solid tori in Int \tilde{M} whose cores represent g_1, \ldots, g_r and such that $t^n T_i \cap T_j = \emptyset$ except when i = j and n = 0. The images T'_1, \ldots, T'_r of T_1, \ldots, T_r under the covering projection $\tilde{M} \to M$ are mutually disjoint solid tori in Int M. Construct a 4-manifold $W = M \times [0, 1] \cup D^2 \times D_1^2 \cup \cdots \cup D^2 \times D_r^2$ identifying $T'_i \times 1$ (with any framing) with $(\partial D^2) \times D_i^2$, $i = 1, \ldots, r$. There is an infinite cyclic connected covering $\tilde{W} \to W$ extending the covering $\tilde{M} \to M$ (identified with the covering $\tilde{M} \times 0 \to M \times 0$). By construction, $H_1(\tilde{W}) = 0$, so that $H_1(W) = Z$. Note that $\partial \tilde{W}$ is connected. By Lemma 2.1, $H_2(\tilde{W})$ is Λ -free. By assumption on M, the Euler characteristic, $\chi(M) \le 0$. Since $H_q(W) \cong Z$ (if q = 0, 1), 0 (if q = 3, 4) and $\chi(W) = 0$

 $\chi(M)+r$, it follows that $H_2(W)$ is Z-free of rank $\leq r$. Then we see from the Wang exact sequence that $eH_2(\widetilde{W})\leq r$. On the other hand, by excision, $H_2(\widetilde{W},\widetilde{M})\cong \bigoplus_{i=1}^r H_2(D^2\times D_i^2,(\partial D^2)\times D_i^2)\otimes_Z\Lambda\cong \bigoplus \Lambda$. Hence it follows from the exact sequence $H_2(\widetilde{W})\to H_2(\widetilde{W},\widetilde{M})\stackrel{\partial}{\longrightarrow} H_1(\widetilde{M})\to 0$ that $H_1(\widetilde{G})=H_1(\widetilde{M})$ is normal, since $\partial\colon H_2(\widetilde{W},\widetilde{M})\to H_1(\widetilde{M})$ is a geometric realization of $\psi\colon P\to H_1(\widetilde{M})$. This completes the proof.

2.3 PROOF OF THEOREM II (1). It is direct from Lemma 2.2.

REMARK 2.4. Let G be a group with an element of infinite order. Let $\widetilde{G}_1 = \ker \gamma$ for a finitely generated subgroup G_1 of G with an epimorphism γ : $G_1 \rightarrow \langle t \rangle$. The Λ -module $H_1(\widetilde{G}_1)$ is produced in G. By Lemma 2.2 and an argument of $[Ka]_2$, we have a necessary condition for G to be isomorphic to the fundamental group of a 3-manifold, which is different from that of $[Ka]_2$ and stated as follows:

(2.4.1) If G is isomorphic to the fundamental group of an orientable 3-manifold, then any Λ -module produced in G is normal.

(2.4.2) If G is isomorphic to the fundamental group of a non-orientable 3-manifold, then there exists an index 2 subgroup G' of G such that any Λ -module produced in G' is normal.

Lemma 2.5. For a Λ -submodule H' of a finitely generated Λ -module H, let H/H' be of Λ -projective dimension ≤ 1 . Then

$$eH' + \beta(H/H') \le eH \le eH' + e(H/H')$$
.

PROOF. The right hand side inequality is obvious. Let $\psi: P \to H$ be a presentation with eP = eH. Let $P' = \psi^{-1}H'$. Then $P/P' \cong H/H'$. Since it is of Λ -projective dimension ≤ 1 , P' is Λ -projective, i.e., Λ -free by [Se] of rank $eH - \beta(H/H')$. Using that $\psi \mid P' \colon P' \to H'$ is onto, we see that $eH' \leq eP' = eH - \beta(H/H')$. This completes the proof.

For example, if H/H' is Λ -free, then $\beta(H/H') = e(H/H')$ and hence eH = eH' + e(H/H'). The following special case of Theorem II (2) is obtained from a combination of Theorem II (1) and Nakanishi's inequality in $[N]_2$, but we shall give it a different proof.

LEMMA 2.6. When
$$c_2(F) = c_0(F) = 0$$
, we have $|e(\ell_2) - e(\ell_0)| \le c_1(F)$.

PROOF. We may assume that $e(\ell_2) \ge e(\ell_0)$. Let $E^+(F)$ be the compact 4-manifold obtained from $S^3 \times [0, 2]$, $S^3 = R^3 \cup \{\infty\}$, by removing an open tubular neighborhood of F. For i = 0, 2 let $E^+(\ell_i) = E^+(F) \cap S^3 \times i$ (cf. 1.2). Let W be a 4-manifold constructed in the proof of Lemma 2.2 where we take

 $M=E^+(\ell_0),\ \tilde{M}=\tilde{E}^+(\ell_0)$ and for $\psi\colon P\to H_1(\tilde{M}),\ eP=eH_1(\tilde{M})=e(\ell_0).$ Construct a 4-manifold $W'=W\cup E^+(F)$ identifying two copies of $E^+(\ell_0)$. Since the natural map $\pi_1(E^+(\ell_0))\to\pi_1(E^+(F))$ is onto by the van Kampen theorem, it follows that $H_1(W')=Z$ and $H_1(\tilde{W}')=0$ for the connected infinite cyclic covering sapce \tilde{W}' . Note that the covering $\tilde{W}'\to W'$ is an extension of the coverings $\tilde{E}^+(\ell_i)\to E^+(\ell_i),\ i=0,2$. By Lemma 2.1, $H_2(\tilde{W}',\tilde{E}^+(\ell_2))$ is Λ -free. Since $H_2(E^+(F),E^+(\ell_2))\to H_2(W',E^+(\ell_2))\to H_2(W',E^+(F))$ is exact and $H_2(E^+(F),E^+(\ell_2))\cong\bigoplus_{c_1(F)}Z$ and $H_2(W',E^+(F))\cong H_2(W,E^+(\ell_0))\cong\bigoplus_{e(\ell_0)}Z$, we see from the Wang exact sequence that $eH_2(\tilde{W}',\tilde{E}^+(\ell_2))=\operatorname{rank}_Z H_2(\tilde{W}',E^+(\ell_2))\le c_1(F)+e(\ell_0)$. But, the boundary map $\partial\colon H_2(\tilde{W}',\tilde{E}^+(\ell_2))\to H_1(\tilde{E}^+(\ell_2))$ is onto. Hence $e(\ell_2)\le c_1(F)+e(\ell_0)$. This completes the proof.

2.7 PROOF OF THEOREM II (2). F can be deformed into a surface F' in $R^3[0, 2]$ with only elementary critical points such that for each i, i=0, 2, $F' \cap R^3[i] = \ell'_i$ is a split union of ℓ_i and a trivial link of $c_i(F)$ components and $c_1(F') = c_1(F)$ and $c_i(F') = 0$ (cf. $[K/S/S, I, \S 3]$). By Lemma 2.6, $|e(\ell'_2) - e(\ell'_0)| \le c_1(F)$. $H(\ell'_1) \cong H(\ell_1) \oplus (\bigoplus_{c_i(F)} \Lambda)$ and by Lemma 2.5, $e(\ell'_1) = e(\ell_1) + c_i(F)$, i=0, 2. Hence $|e(\ell_2) + c_2(F) - e(\ell_0) - c_0(F)| \le c_1(F)$. This completes the proof.

References

- [C] R. H. Crowell: The group G'/G'' of a knot group G, Duke Math. J. 30 (1963), 349-354.
- [H] J. A. Hillman: Alexander Ideals of Links, Lecture Notes in Math. 895, Springer-Verlag, 1981.
- [H/K/N/S] F. Hosokawa/A. Kawauchi/Y. Nakanishi/M. Sakuma: Note on critical points of surfaces in 4-space, Kobe J. Math. 1 (1984), 151-152.
- [Ka]₁ A. Kawauchi: On the Alexander polynomials of cobordant links, Osaka J. Math. 15 (1978), 151-159.
- [Ka]₂ A. Kawauchi: A test for the fundamental group of a 3-manifold, J. Pure Applied Algebra 28 (1983), 189-196.
- [Ka]₃ A. Kawauchi: On critical points of proper surfaces in the upper half 4-space (unpublished version), Osaka City Univ. (1984).
- [Ka]₄ A. Kawauchi: Three dualities on the integral homology of infinite cyclic coverings of manifolds, Osaka J. Math. 23 (1986), 633-651.
- [Ke] M. A. Kervaire: Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271.
- [Ki] S. Kinoshita: On Wendt's theorem of knots, Osaka Math. J. 9 (1957), 61-66.
- [K/S/S] A. Kawauchi/T. Shibuya/S. Suzuki: Descriptions on surfaces in four-space, I, Math. Sem. Notes, Kobe Univ. 10 (1982), 75–125; II, ibid. 11 (1983), 31–69.
- [L] J. Levine: Knot modules. I, Trans. Amer. Math. Soc. 229 (1977), 1-50.
- [Mi] J. W. Milnor: Infinite cyclic coverings, Conference on the Topology of Manifolds, Prindle, Weber & Schmidt, 1968, 115–133.
- [Murak] H. Murakami: On the Conway polynomial of a knot with T-genus one, Kobe J.

Math. 2 (1985), 117-121.

[Muras] K. Murasugi: Lecture notes, University of Toronto, 1970.

[N]₁ Y. Nakanishi: A note on unknotting number, Math. Sem. Notes, Kobe Univ. 9 (1981), 99-108.

9 (1901), 99~100

[N]₂ Y. Nakanishi: A remark on critical points of link cobordism, Kobe J. Math. 3 (1986), 209-212.

[N/N] Y. Nakanishi/Y. Nakagawa: On ribbon knots, Math. Sem. Notes, Kobe Univ. 10 (1982), 423-430.

[Sa] M. Saito: Minimal number of saddle points of properly embedded surfaces in the 4-ball, Math. Sem. Notes, Kobe Univ. 11 (1983), 345-348.

[Se] C. S. Seshadri: Triviality of vector bundles over the affine space K^2 , Proc. Nat. Acad. U. S. A. 44 (1958), 456–458.

[Sm] N. F. Smythe: Boundary links, Topology Seminar, Wisconsin, 1965, 69-72.

[W] C. Weber: Torsion dans les modules d'Alexander, Knot Theory, Lecture Notes in Math. 685, Springer-Verlag, 1977, 300-308.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka, 558, Japan